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Abstract.

The late-time behaviour of the Einstein-dust system is well understood for homogeneous
spacetimes. For the case of Bianchi I we have been able to show that the late-time behaviour
of the Einstein-Vlasov system is well approximated by the Einstein-dust system assuming that
one is close to the unique stationary solution which is the attractor of the Einstein-dust system.

1. Introduction

The Einstein-Vlasov system with Bianchi symmetry is a system of integro-differential equations
on a Lorentzian manifold M which has the structure M = I × G where I is an interval and
G a Lie group. It can be seen as a kind of transport equation, say Xf = 0, coupled to other
ordinary differential equations. There exists certain limiting process such that the transport
equation is transformed into an ordinary differential equation. This happens if the function f

becomes a distribution. The resulting system is called Einstein-dust system and the late-time
behavior is well understood. It has been studied by the theory of dynamical systems and for
almost all Lie groups the ω-limit set is known [1]. The strategy to study the late-time behaviour
of the Einstein-Vlasov system consists in trying to show that the late-time behavior is well ap-
proximated by the Einstein-dust system. Physically this makes sense since one might expect a
decay of the velocity dispersion for expanding cosmological models. The result presented in the
following shows that this is true for case of the Lie group R3 and assuming that one is close to
the unique stationary solution which is the attractor of the Einstein-dust system.

2. Einstein-Vlasov system with Bianchi I symmetry

2.1. Einstein equations with Bianchi I symmetry

A Bianchi spacetime is defined to be a spatially homogeneous spacetime whose isometry group
possesses a three-dimensional subgroup G that acts simply transitively on the spacelike orbits.
They can be classified by the structure constants of the Lie algebra associated to the Lie group.
We will only consider the simplest case where the structure constants vanish, i.e. the case of
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Bianchi I where the metric has the following form using Gauss coordinates:

4g = −dt2 + gab(t)dx
adxb. (1)

In terms of coordinate expressions

ρ = T 00

ja = T 0
a

Sab = Tab

where ρ, ja and Tµν are the energy density, matter current and energy momentum tensor
respectively. Using the 3+1 decomposition of the Einstein equations as made in [2] the basic
equations are

ġab = −2kab (2)

k̇ab = Hkab − 2kack
c
b − 8π(Sab −

1

2
gab trS)− 4πρgab (3)

−kabk
ab +H2 = 16πρ (4)

T0a = 0. (5)

where kab is the second fundamental form, H its trace and a dot above a letter denotes a derivative
with respect to the cosmological (Gaussian) time t. It has been assumed that the cosmological
constant vanishes.

2.2. Vlasov equation with Bianchi I symmetry

For the matter model we will take the point of view of kinetic theory. This means that we have a
collection of particles (in a cosmological context the particles are galaxies or clusters of galaxies)
which are described statistically by a non-negative distribution function f(xα, pα) which is the
density of particles at a given spacetime point with given four-momentum. We will assume that
all the particles have equal mass (one can relax this condition if necessary, see [3]) . We want
that our matter model is compatible with our symmetry assumption, so we will also assume
that f does not depend on xa. In addition to that we will assume that there are no collisions
between the particles. In this case the distribution function satisfies the Vlasov equation (See
(3.38) of [2]):

∂f

∂t
+ 2kab p

b ∂f

∂pa
= 0. (6)

where f is defined on the set determined by the equation

−(p0)2 + gabp
apb = −m2

called the mass shell. For a given Bianchi I geometry the Vlasov equation can be solved explicitly
with the result that if f is expressed in terms of the covariant components pi then it is independent
of time. The non-trivial components of the energy momentum tensor are:

ρ =

∫
f0(pi)(m

2 + gcdpcpd)
1

2 (det g)−
1

2 dp1dp2dp3 (7)

Sab =

∫
f0(pi)papb(m

2 + gcdpcpd)
−

1

2 (det g)−
1

2dp1dp2dp3 (8)

For this kind of matter all the energy conditions hold. In particular ρ ≥ trS ≥ 0. Our system
of equations consists of the equations (2)-(8).



3. Central results

The assumption that the spacetime is close to isotropic is expressed by assuming that the quantity

F =
σabσ

ab

H2
. (9)

is small. Here σab denotes the trace-free part of the second fundamental form. The quantity F is
related to the so called shear parameter, which is bounded by the cosmic microwave background
radiation and is a dimensionless measure of the anisotropy of the Universe (See chapter 5.2.2
of [1]). The other assumption which is needed is that the spacetime is close to “dust-like”. This
is expressed by assuming that the absolute value of the momenta of the particles is bounded.
We define P as the supremum of the absolute value of the momenta at a given time t:

P (t) = sup{|p| = (gabpapb)
1

2 |f(t, p) 6= 0} (10)

The main result is the following:

Theorem 1. Consider any C∞ solution of the Einstein-Vlasov system with Bianchi I-symmetry

and with C∞ initial data. Assume that F (t0) and P (t0) are sufficiently small. Then at late times

one can make the following estimates:

H(t) = −2t−1(1 +O(t−1)) (11)

P (t) = O(t−
2

3
+ǫ) (12)

F (t) = O(t−2) (13)

where ǫ is a small and strictly positive constant. These estimates imply that the spacetime
isotropizes and that asymptotically there is a dust-like behaviour. The proof is based on a
bootstrap argument. See [4] for the details. Using these estimates one can obtain more detailed
information about the behaviour of the metric. In analogy to the Kasner solution one can define
the generalized Kasner exponents for the non-vacuum case. Let λi be the eigenvalues of kij with
respect to gij we define

pi =
λi

H
(14)

as the generalized Kasner exponents. Having analyzed carefully the dust case with small data
we could conclude that:

Theorem 2. Consider the same assumptions as in the previous theorem. Then

pi =
1

3
+O(t−1) (15)

and

gab = t+
4

3 [Gab +O(t−2)] (16)

gab = t−
4

3 [Gab +O(t−2)] (17)

where Gab and Gab are independent of t.



4. Conclusions and Outlook

The result can be seen as a generalization of theorem 5.4 of [5]. We obtain the same the result,
but a) we also obtain how fast the expressions converge b) we obtain an asymptotic expression
for the spatial metric c) we do not assume additional symmetries. However we used a different
kind of restriction namely the small data assumptions. For the study of more complicated Lie
groups a starting point can be [6] - [9] where the late-time asymptotics are obtained assuming
an additional symmetry. Another direction of generalization is the study of the asymptotics
towards the initial singularity. In [10] and [11] the case of two fluids has been studied which
leads to the non-diagonal case. For the Vlasov case already the non-LRS case has been analyzed
in [12]. Already in this case surprising new features like the existence of heteroclinic networks
arose. Finally it would be interesting concerning the direction of the initial singularity to show
that also in the Vlasov case the off-diagonal components of the metric tend to constants and
thus are not important for the dynamics. See [13] for the importance of this behaviour and [14]
for consequences in a quantum version.
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