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1 Introduction

Moonshine is not a well defined term, but everyone in the area recognizes it when they

see it. Roughly speaking, it means weird connections between modular forms and spo-

radic simple groups. It can also be extended to include related areas such as infinite

dimensional Lie algebras or complex hyperbolic reflection groups. Also, it should only be

applied to things that are weird and special: if there are an infinite number of examples

of something, then it is not moonshine. – R. E. Borcherds [1]

In this paper, we propose a moonshine for the sporadic Mathieu group M12

in the spirit of the above statement. This is best summarized in the following
figure:

M12 conj.
class ρ̂

−−−−−−−→
Eta-product
gρ̂(τ)y additive

ylift

Jacobi form
φ ρ̂
0,1(τ, z)

Borcherds
−−−−−→

lift

dd modular
form ∆

(N,M)
k (Z)

−−−→
BKM Lie

superalgebra
GN (M)

Figure 1: The proposed moonshine correspondence for M12

Recent results have provided evidence for the existence of a moonshine for
the Mathieu group M24 [2–7]. This moonshine in its most general form relates
conjugacy classes of M24 to genus-two Siegel modular forms that arise in the
enumeration of dyonic degeneracies in a family of N = 4 string theories [8–
11] (see [12] for a review). Somewhat mysteriously, in some cases the square-
root of these Siegel modular forms appear as the Weyl-Kac-Borcherds (WKB)
denominator formulae for Borcherds-Kac-Moody (BKM) Lie superalgebras [13,
14]. This work is an attempt at understanding the ‘square-root’ in terms of an
outer automorphism of M12 that leads to M24.

The canonical example that illustrates these ideas is the conjugacy class
1A(124) of M24. The M24 moonshine maps this to the weight ten Igusa cusp
form, Φ10(Z). It’s square-root is a weight five Siegel modular form (with charac-
ter) ∆5(Z). Gritsenko and Nikulin, in their studies of rank three Lorentzian Kac-
Moody algebras [15,16], have shown that ∆5(Z) arises as the WKB denominator
formula of a BKM Lie superalgebra. Clery and Gritsenko have constructed a fam-
ily of modular forms that they call dd modular forms that generalize ∆5(Z) [17].
In an earlier paper [18], we have shown that all dd modular forms appear as the
square roots of Siegel modular forms that enumerate dyon degeneracies and that
they arise as the WKB denominator formulae for rank three BKM Lie super-
algebras. The main result of this paper is to show that all dd modular forms
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and their associated BKM Lie superalgebras are associated with a generalized
moonshine for the sporadic group M12.

The organization of the paper is as follows. In section two, we summarise the
group theoretic aspects that are relevant for our considerations. We work out
the relationship between M12 and M24 and show how one can track conjugacy
classes of M24 to those of M12. In section three, we work out the first class of
examples. These associate conjugacy classes of M12 with balanced cycle shapes
to multiplicative eta-products, weight zero Jacobi forms of index one and dd
modular forms. In section four, we consider a generalized moonshine for M12 in
the sense of Norton. This leads to the other dd modular forms as well as weight
zero Jacobi forms of index > 1. We conclude in section 5 with some remarks.
Appendix A has some of the relevant group theoretic details while appendix B
has some of the background material on modular forms.

Notation: We use a hat to distinguish objects associated with M12 from those
associated with M24. Thus a conjugacy class of M12 will be indicated by ρ̂ while
that ofM24 will be ρ. Characters ofM12 will be thus written as χ̂i while characters
of M12 :2 are written with a tilde: χ̃i.

2 Group Theory

2.1 A quirk

As described by Mark Ronan [19], the Mathieu groups M12 and M24 arise due
to the existence of certain quirks. Among all the permutation groups, only S6

admits an outer automorphism of order two that leads toM12. In particular, one
can show that the group S6 ⋊Z2 constructed using this outer automorphism is a
maximal subgroup ofM12. Similarly,M12 admits an outer automorphism of order
two that leads to M24 in a similar fashion. Let us denote this automorphism of
M12 by ϕ and the image of an element g ∈M12 under this automorphism by ϕ(g).
The group M12 :2 ≡M12 ⋊Z2 is given by the set M12 ×Z2 with the composition
rule:

(g1, h1) · (g2, h2) = (g1 · h1(g2), h1 · h2) , (2.1)

where g1, g2 ∈ M12 and h1, h2 ∈ Z2 and h(g) = g when h = e and h(g) = ϕ(g)
when h = ϕ.

Now consider the realization of M12 as a subgroup of the permutation group
S12 and let us use the same symbol g to now indicate the 12 × 12 permutation
matrix in this realization. The 24-dimensional representation of the groupM12 :2
is then given by

(g, e) =

(
g 0
0 ϕ(g)

)
, (g, ϕ) =

(
0 g

ϕ(g) 0

)
∀g ∈M12 . (2.2)
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The group M12 : 2 is a maximal subgroup of M24. In the sequel, the conjugacy
classes associated with elements of type (g, e) ∈ M12 : 2 will play an important
role in our considerations.

2.2 Conjugacy classes of M12 and M12 :2

M12 has fifteen conjugacy classes and the outer automorphism ϕ acts on the
conjugacy classes of M12. It interchanges the conjugacy classes (cycle shapes),

4A (2242)↔ 4B (1442) ; 8A (4 8)↔ 8B (122 8) and 11A↔ 11B ,

leaving all other conjugacy classes invariant. This observation enables us to
track how conjugacy classes of M12 combine into conjugacy classes of M12 : 2
using the 24-dimensional representation that we just constructed. For instance,
the cycle shape 1828(2B) of M12 : 2 decomposes into two identical copies of the
M12 conjugacy class 1424(2B), the cycle shape 142244(4A) of M12 : 2 decomposes
as 1442(4B) and 2242(4A). It is easy to see that both these elements arise in
M12 : 2 in the form of (g, e). Of course, M12 : 2 has conjugacy classes that do
not reduce to conjugacy classes of M12 in this fashion. One such class is the one
corresponding to the cycle shape 46(4C).

Since both M12 : 2 and M24 have 24 dimensional (permutation) representa-
tions, it is rather easy to track conjugacy classes directly in terms of cycle shapes.
We find that among the cycle shapes that appear in the half-BPS counting, only
the cycle shape 1373(7A) does not appear as a conjugacy class of M12 : 2. This
implies that all symplectic automorphisms of K3 other than the Z7 one can also
be considered as elements of M12 : 2. In Table 1, we track how some conjugacy
classes of M24 realized by group elements of the form (g, e) given in Eq. (2.2)
decompose into M12 conjugacy classes.

Balanced cycle shapes

A cycle shape, ρ = 1a12a2 · · ·NaN , is said to be balanced if there exists a positive
integer M such that

(
M
1

)a1(M
2

)a2 · · ·
(
M
n

)an
is the same as ρ. It is known that

all conjugacy classes of M24 arise from balanced cycle shapes [20]. However, that
is not necessarily true for all M12 conjugacy classes. We observe that the cycle
shapes associated with the M12 conjugacy classes 4B and 8B are not balanced.

2.3 Irreps of M12 and M12 :2

The decomposition of irreps of M12 : 2 into those of M12 can also be worked out.
For instance, 22 = 11 ⊕ 11′ where 11′ is the image of 11 under the action of the
outer automorphism ϕ. Similarly 16′ is the image of 16 and 55′ is the image of
55. All other irreps of M12 are invariant under the action of ϕ. Such irreps arise
from two inequivalent irreps of M12 :2 of the same dimension.
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ρ 124 1828 1636 142244 1454 12223262 1373 12214182

M24 class 1A 2A 3A 4B 5A 6A 7A 8A

M12 :2 class 1A 2B 3A 4A 5A 6B – 8A

M12 classes 1A/1A 2B/2B 3A/3A 4A/4B 5A/5A 6B/6B – 8A/8B

Table 1: From M24 cycle shapes to M12 cycle shapes [21].

3 The correspondence

3.1 Additive M12 moonshine

The additive version of the M24 moonshine correspondence relates cycle shapes
of M24 to multiplicative eta-products through the map [22–24]:

ρ = 1a12a2 · · ·NaN 7−→ gρ(τ) ≡
N∏

j=1

η(jτ)aj , (3.1)

where η(τ) is the Dedekind eta function. These eta-products appear as the gen-
erating function of the degeneracy of twisted electrically charged 1

2
-BPS states

in type IIA string theory compactified on K3 × T 2 [2]. Among the conjugacy
classes of M24 that appear in this fashion, all classes other than the 7A = 1373

conjugacy class reduce to conjugacy classes of M12 :2.
We propose that the additive version of the M12 moonshine correspondence

relates M12 conjugacy classes to eta-products through the map Eq. (3.1). Thus,
the eta-product for theM12 conjugacy class 2B is η(τ)4η(2τ)4. In all cases except
for 4A and 8A,1 one observes that this corresponds to taking the square-root of
a M24 eta-product. This is similar to McKay’s observation (proved in [25]) that
the cube-root of the modular invariant j provides a moonshine for the group E8.
We thus have the relationship

gρ(τ) = gρ̂(τ)× gϕ(ρ̂)(τ) , (3.2)

where ρ is a conjugacy class of M24 (as well as M12 :2) and ρ̂ is a conjugacy class
ofM12. In the last row of Table 1, we write ρ̂/ϕ(ρ̂) to indicate the two conjugacy
classes of M12 into which a given conjugacy class of M24 decomposes.

In appendix A.4, we show that all M12 conjugacy classes with balanced cycle
shapes give rise to multiplicative eta-products. Unlike M24 whose conjugacy
classes all have balanced cycle shapes, two M12 conjugacy classes 4B and 8B
have unbalanced cycle shapes and hence we shall exclude them from most of
our considerations. We shall also distinguish between M12 conjugacy classes that

1This happens as the outer-automorphism of M12 acts non-trivially on these two conjugacy
classes.
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reduce to conjugacy classes of M11 and those that don’t. The one’s that do
(reduce to M11 conjugacy classes) have cycle shapes with at least one one-cycle.

TheM12-module that leads to the eta-product is easy to construct. It is given
by the Fock space, F ♮, of the oscillator (non-zero) modes of 12 chiral scalars. As
can be seen from a computation more or less identical to the one discussed in the
appendix A of [18]. The following trace over the Fock space can be expressed in
terms of M12 characters. One has

1

gρ̂(τ)
= TrF♮

(
g qL0−1/2

)
,

= q−1/2
(
1 +

[
1 + χ̂2(ρ̂)

]
q +

[
3 + 3χ̂2(ρ̂) + χ̂7(ρ̂)

]
q2 + · · ·

)
, (3.3)

where g is an element ofM12 (in the conjugacy class ρ̂ with balanced cycle shape)
acting as a subgroup of the permutation group on the 12 chiral scalars and the
characters are numbered as in the M12 character table(see Eq. (A.1)). One can
also see the appearance of M12 characters in the Fourier coefficients expansion of
q−1/2 gρ̂(τ). One also has

q−1/2 gρ̂(τ) = 1−
[
1 + χ̂2(ρ̂)

]
q +

[
− 1 + χ̂9(ρ̂)

]
q2 + · · · . (3.4)

3.2 Multiplicative M12 moonshine

As we just did for the additive M12 moonshine, we shall first consider the multi-
plicative version of moonshine that appears forM24 [3–7] and show that it implies
a multiplicative moonshine for M12 as well. The multipicative moonshine corre-
spondence for M24 maps its conjugacy classes to weight zero Jacobi forms that
arise as twisted elliptic genera of K3 [10, 11, 26]. The appearance of representa-
tions of M24 is seen by decomposing the elliptic genus in terms of characters of
the N = 4 superconformal algebra (SCA) at level k = 1 [27–29]. In the expansion
below, α is a constant while Σ(τ) is a function of τ .

ψρ
0,1(τ, z) = αρ C(τ, z) + q−

1
8 Σρ(τ) B(τ, z) , (3.5)

where C(τ, z) is the massless character and B(τ, z) is the massive character of the
N = 4 SCA at level one and ρ denotes a M24 conjugacy class. The characters
are such that

C(τ, z = 0) = 1 and B(τ, z = 0) = 0 .

Hence, it is easy to show that αρ = χρ(K3), the twisted Euler characteristic of
K3. The M24 moonshine correspondence implies that

αρ = χ1(ρ) + χ23(ρ) ,
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where χN represents the character for the M24-irrep of dimension N [3, 4]. The
function Σρ(τ) has the following Fourier expansion

Σρ(τ) =
(
− 2 +

∞∑

n=1

Aρ(n) qn
)
, (3.6)

where Aρ(n) are integers that can also be expressed in terms of characters of
M24 [3–7]. One has

Σρ(τ) = −2 + [χ45(ρ) + χ45(ρ)] q + [χ231(ρ) + χ231(ρ)] q
2

+ [χ770(ρ) + χ770(ρ)] q
3 + [χ2277(ρ) + χ2277(ρ)] q

4 + · · · (3.7)

As we did for the case of the additive moonshine, we look to rewrite the
conjugacy classes of M24 that appear in the multiplicative moonshine in terms of
M12 conjugacy classes. In other words, we seek a relationship of the form

αρ = α̂ ρ̂ + α̂ϕ(ρ̂) , (3.8)

Σρ(τ) = Σ̂ ρ̂(τ) + Σ̂ϕ(ρ̂)(τ) , (3.9)

where we decompose the M24 conjugacy class ρ in terms of two conjugacy classes
of M12 that we denote by ρ̂ and its image under the outer automorphism ϕ(ρ̂).
This works for all M24 conjugacy classes given in Table except for 7A which does
not reduce to a conjugacy class of M12 :2.

Given a conjugacy class ρ̂ of M12, we consider the Jacobi form of weight zero
and index one given by

φρ̂
0,1(τ, z) = α̂ ρ̂ C(τ, z) + q−

1
8 Σ̂ ρ̂(τ) B(τ, z) , (3.10)

where α̂ ρ̂ = 1 + χ̂2(ρ̂) and

Σ̂ρ̂(τ) = −1 + χ̂6(ρ̂) q + [χ̂8(ρ̂) + χ̂15(ρ̂)] q
2

+ [χ̂11(ρ̂) + 2 χ̂13(ρ̂) + 2 χ̂14(ρ̂) + χ̂15(ρ̂)] q
3 + · · · . (3.11)

The above formulae are obtained by using the decomposition of M24 irreps into
M12 irreps as given in appendix A.3. Thus, one has

ψρ
0,1(τ, z) = ψ̂ ρ̂

0,1(τ, z) + ψ̂
ϕ(ρ̂)
0,1 (τ, z) . (3.12)

It is easy to see that for conjugacy classes that are invariant under the outer
automorphism, one has ψρ

0,1(τ, z) = 2ψ̂ρ̂
0,1(τ, z). However, the M24 conjugacy

classes ρ = 4B, 8A decompose into distinct M12 conjugacy classes, one of which
is not balanced and we will not consider them.
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3.3 The genus-two Siegel modular form

3.3.1 The additive lift

Let g denote an element of M24 (that reduces to an element of M23) whose
conjugacy class is ρ. It has been shown in ref. [18] that the degeneracy of g-
twisted 1

4
-BPS multiplets in the T 6 compactified heterotic string is generated by

a genus-two Siegel modular form. This Siegel modular form is obtained as the
additive lift of a Jacobi form of weight k, index 1 and level N given by

φρ
k,1(τ, z) ≡

θ1(τ, z)
2

η(τ)6
× gρ(τ) , (3.13)

where k = 1
2
(
∑

i ai) − 2 and we have indicated the M24 conjugacy class as a
superscript. The Siegel modular form is then given by the additive lift of the
Jacobi form, φk,1(τ, z). One has [9, 18]

Φρ
k(Z) = A

[
φk,1(τ, z)

]
=

∞∑

m=1

φρ
k,m(τ, z) s

m , (3.14)

where Z ≡ ( τ z
z σ ) ∈ H2, r = exp(2πiz) and φρ

k,m(τ, z) is a Jacobi form of weight k
and index m obtained by the action of the Hecke operator on the additive seed
φρ
k,1(τ, z):

φρ
k,m(τ, z) ≡ T

(N)
− (m)φk,1(τ, z)

=
1

m

∑

ad=m
(a,N)=1

d−1∑

b=0

χ(a) ak φρ
k,1(

aτ+b
d
, az) . (3.15)

This is not the most general form of the additive lift. We have given the simplest
case in order to emphasize the fact that the new Jacobi forms are determined
completely in terms of the additive seed2.

Given that the eta-product uniquely determines the Siegel modular form,
Φρ

k(Z) one anticipates that this Siegel modular form should also be obtained as
a trace over some module graded by M24. Evidence towards the veracity of this
statement is provided in ref. [30]. Given our observation in Eq. (3.2), that the
M24 eta-products split into two M12 eta-products, we expect something similar
to happen with the Siegel modular form, Φρ

k(Z). In other words, we expect in
all the cases where the eta product split, the Siegel modular form also splits into
the product of two other Siegel modular forms as follows:

Φρ(Z) = ∆ρ̂(Z)×∆ϕ(ρ̂)(Z) , (3.16)

2The most general Hecke operator that appears in the 1

4
-BPS counting is discussed by Clery

and Gritsenko [17, 18].
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where ρ is a conjugacy class of M24 (as well as M12 :2) and ρ̂ is a conjugacy class
of M12. Let us focus on conjugacy classes of M12 that are invariant under the
outer automorphism. In particular, consider the conjugacy classes 1A, 2B, 3A
and 5A. In all these cases, this implies that

Φρ
k(Z) =

[
∆ρ̂

k/2(Z)
]2

(3.17)

This indeed agrees with the observations made in ref. [13] where it was shown
that the Siegel modular forms ∆ρ̂

k/2(Z) are natural generalizations of ∆5(Z) which
is the square-root of the weight ten Igusa cusp form. Further, it was shown that
they are given by the additive lift

∆ρ̂
k/2(Z) = A

[
θ1(τ,z)
η(τ)3

× gρ̂(τ)
]
, (3.18)

where gρ̂(τ) is the eta-product associated with the M12 conjugacy class, ρ̂. In
other words, the additive lift given above provides a direct link between the Siegel
modular forms ∆k/2(Z) and M12 conjugacy classes that parallels what happened
between the Φk(Z) and M24 conjugacy classes. In most examples, these Siegel
modular forms are examples of the dd modular forms of Clery and Gritsenko [17].

The splitting of conjugacy class 4B

The M24 conjugacy class 4B is an interesting one. From table 1, we see that it
splits into two distinct M12 conjugacy classes 4A and 4B.3. This suggests that
we should expect a splitting of the form:

Φ4B
3 (Z) = ∆4A

2 (Z)×∆4B
1 (Z) ,

where the modular forms ∆ρ̂(Z) are given by the additive lift given in Eq. (3.18).
In particular, the Siegel modular form, ∆4A

1 (Z), corresponding to ρ̂ = 4A (cycle
shape 2244) has already appeared in [18, see sec. 3] where it was denoted by Q1(Z)
and can be expressed in terms of genus-two theta constants (see appendix B).
The Siegel modular form Φ4B

3 (Z) was constructed in [2] and is also expressible in
terms of products of genus-two theta constants. The modular form for ∆4B

2 (Z)
has not been constructed so far. However, it can be expressed as the quotient of
Φ4B

3 (Z) by ∆4A
2 (Z).

∆4B
2 (Z) =

Φ4B
3 (Z)

∆4A
1 (Z)

. (3.19)

Does it imply that it is a meromorphic form? Interestingly, that doesn’t happen
as all the genus-two theta constants that appear in ∆4A

1 (Z) also occur in Φ4B
3 (Z)

leading to a neat cancellation! Thus, ∆4B
2 (Z) is not a meromorphic modular

form. Further, the M12 conjugacy class 4B does not have a balanced cycle shape
and hence is not considered.

3This splitting is different from the square-root of Φ4B

3 (Z) considered in [2] The additive
seed in that case arises from the cycle shape 12242 which does not occur as a M12 conjugacy
class.
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The conjugacy classes 6A and 8A

The M24 conjugacy class 6A splits into two copies of the M12 conjugacy class 6B.
Thus we expect it behave in a fashion similar to 1A. The M24 conjugacy class
8A behaves like the 4B conjugacy class and splits into two distinct conjugacy
classes 8A/8B as can be seen from Table 1. The corresponding modular forms
have been constructed by the additive lift in [2] but have not been extensively
studied. Further, the M12 conjugacy class 8B does not have a balanced cycle
shape.

3.3.2 The multiplicative lift

We have seen that the twisted elliptic genera of K3, ψρ
0,1(τ, z), which provide a

multiplicative moonshine for M24 also can be written as the sum of two terms
each arising from a conjugacy class of M12 as given in Eq. (3.12). It turns out
that these twisted elliptic genera lead to product formulae for the Siegel modular
forms Φρ

k(Z). Similarly, the Jacobi forms ψ̂ρ̂
0,1(τ, z) provide a product formula

for ∆ρ̂(Z). In particular, for the conjugacy classes, ρ = 1A, 2A, 3A, 5A, of M24,

the relationship ψρ
0,1(τ, z) = 2 ψ̂ρ̂

0,1(τ, z) is consistent with the Φρ
k(Z) being the

square of ∆ρ̂(Z). This should also hold in principle for the conjugacy class 6A
but we have not checked this as the multiplicative lift has not been constructed
(see [2, 31] for some details in this regard).

However, the conjugacy class 4B appears to lead to a different Siegel modular
form. In particular, the product formula for ∆4B

1 (Z) arises from a Jacobi form
of weight zero and index two [18]. Thus, it appears to us that φ4B

0,1(τ, z) does not
generate a product formula for the Siegel modular form generated by the additive
lift ∆4B

1 (Z). As we will discuss later, 4B is a conjugacy class of M12 that does
not descend to a conjugacy class of M11. Such conjugacy classes arise from a
generalized M12 moonshine in the sense of Norton that we will discuss in a later
section.

3.4 Borcherds-Kac-Moody algebras

A very nice result is that the M12 modular forms ∆ρ̂(Z) discussed in the previous
section (for ρ̂ = 1A, 2B, 3A, 5A ) arise as the Weyl-Kac-Borcherds denominator
formula for a family of rank-three Lorentzian Kac-Moody superalgebras [2,13,32].
All the BKM Lie superalgebras have identical simple real roots with Cartan
matrix 


2 −2 −2
−2 2 −2
−2 −2 2


 ,

but differ in their imaginary roots. In other words, we end up with the sequence
summarized in figure 1 that takes us from conjugacy classes ofM12 to Borcherds-
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Kac-Moody Lie superalgebras. In particular we obtain

M12 conj. class 1A 2B 3A 5A

BKM Lie algebra G1(1) G1(2) G1(3) G1(5)

Table 2: Relating M12 conjugacy classes to Lie superalgebras(notation of [18])

4 Generalized M12 moonshine

In our approach, the conjugacy classes of M12 that don’t reduce to conjugacy
classes of M11 such as 4B naturally appear when one considers a generalized
moonshine in the sense of Norton [33, see appendix by Norton]. Generalized
moonshine is best described using notation that is standard in Conformal Field
Theory(CFT). The character of a module, H in CFT is given by

1

1

≡ TrH

(
qL0−

c
24

)
, (4.1)

where the box notation will be explained soon. Now let g and h denote commuting
symmetries of finite order of the CFT. Let Hh denote the h-twisted module in
the orbifold of the original CFT by the group generated by h. Then, we define

1

h

≡ TrHh

(
qL0−

c
24

)
, (4.2)

and similarly, one might consider a more general situation with the insertion of
g in a trace over the h-twisted module.

g

h

≡ TrHh

(
g qL0−

c
24

)
. (4.3)

Using these ideas from CFT, we use the same pictures to represent suitable traces
over twisted modules though we don’t always specify the details of the module.

The three different moonshines that we have discussed involving eta-products,
Jacobi forms and Siegel modular forms all arise from taking g to be an element
of M12 and taking the trace over a suitable module graded by g and thus are of
type g

1

. We shall discuss the generalized moonshine for each of these modular

forms.

4.1 Eta-products

The module here is furnished by the oscillator Fock space of twelve chiral bosons
– this was denoted earlier by F ♮. Then, as we have already seen, one has

gρ̂(τ) = TrF♮

(
g qL0−

1
2

)
←→ g

1

, (4.4)

10



where ρ̂ is the conjugacy class of g. Let h denote an element of M12 (of order N)
that acts by permuting the 12 chiral bosons. and Fh denote the h-twisted Fock
space. Then, it is natural to consider the generalized moonshine of type 1

h

. For

all conjugacy classes with balanced cycle shapes, a calculation analogous to the
one in [18, see appendix A] gives rise to the eta product with modified argument4

gρ̂
(

τ
N

)
= TrFh

(
qL0−

1
2N

)
←→ 1

h

, (4.5)

where ρ̂ = [h]. These turn out be square-roots of the eta-products that count
1
2
-BPS states in the ZN CHL orbifold – the ZN being generated by an element of
M12 :2 of the form (h, e).

Next, one can consider the more general case of two different commuting
elements of M12 and a generalized moonshine of type g

h

. Again, one obtains

an eta-product (let g have order M and h has order N as before)

gρ̂
(

τ
N

)
= TrFh

(
g qL0−

1
2N

)
←→ g

h

, (4.6)

Again, using the relationship that we have observed with g-twisted 1
2
-BPS states

in the CHL ZN -orbifold, we obtain three conjugacy classes corresponding to the
values: (M,N) = (2, 2), (2, 4), (4, 2), (3, 3) – the first one gives rise to the conju-
gacy class 2A, the next two correspond to the conjugacy class 4A and the last
one gives rise to the conjugacy class 4A.

ρ̂ 26 2242 34

M12 class 2A 4A 3B

4.2 The Siegel modular forms

Given a multiplicative eta-product associated with a generalized moonshine of ar-
bitrary type, we can immediately construct a Siegel modular form by the additive
lift. This enables us to provide candidate Siegel modular forms for a generalized
moonshine of similar type.

The Siegel modular forms associated with moonshine of type 1

h

are obtained

by writing the modular forms that count 1
4
-BPS states in the CHL orbifold gen-

erated by the element (h, e) (of order N) as in Eq. (3.16). For the M12 conjugacy
classes 1A, 2B, 3A, this implies that the Siegel modular form is the square-root of
the modular form counting 1

4
-BPS dyons. The modular forms that, in principle,

4The conjugacy classes 4B and 8B do not fit this and are not considered.
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lead to the conjugacy classes 5A and 6B have not been constructed and hence
our proposal remains conjectural in these cases.

A similar approach leads to generalized moonshine of type g

h

with g (of

order M) and h (of order N) commuting elements of M12. Now, the modular
forms that one obtains are square-roots of the Siegel modular forms that count g-
twisted 1

4
-BPS states in the CHL ZN orbifold. This leads to Siegel modular forms

for the conjugacy classes 2A, 3B, 4A. The conjugacy class 4A has two possibilities
corresponding to (N,M) = (2, 4) and (4, 2). All these modular forms are again
instances of the dd-modular forms of Clery and Gritsenko [17].

As with the other modular forms, these dd modular forms also arise as the
Weyl-Kac-Borcherds denominator formulae for BKM Lie superalgebras consid-
ered in [18]. We list them in Table 3.

M12 conj. class 2B 3A 2A 3B 4A 4A′

Modular Form ∆
(2,1)
3 ∆

(3,1)
2 ∆

(2,2)
2 ∆

(3,3)
1 ∆

(2,4)
1 ∆

(4,2)
1

BKM Lie algebra G2(1) G3(1) G2(2) G3(3) G2(4) G4(2)

Table 3: Siegel modular forms and Lie superalgebras(notation of [18]) for gener-
alized moonshine

4.3 Jacobi forms

There are two routes to obtaining Jacobi forms associated with generalized moon-
shine. The first method is look directly for generalization of the Jacobi forms of
type g

1

that we considered earlier. The second method is to consider the Jacobi

forms that provide Borcherds/multiplicative lifts for the Siegel modular forms (of
the previous subsection) associated with generalized moonshine. It turns out that
these two methods do not necessarily lead to the same Jacobi forms.

We begin with the first method and look for a generalized moonshine for the
Jacobi forms of type 1

h

. The simplest way to obtain these Jacobi forms is to

consider their transformation under the (τ, z)→ (−1/τ, z/τ) of the Jacobi forms
of type h

1

. In these examples, the Jacobi forms that generate product formulae

for the Siegel modular forms also lead to the same Jacobi form.
Let us first consider the conjugacy classes ofM12 that reduce toM11 classes. In

particular, consider the classes 1A, 2B, 3A and 5A. One expands the transformed
Jacobi forms (of weight zero and index one) in terms of N = 4 characters as in

Eq. (3.10). However, one can see that the function Σ̂ρ̂(τ) must have the following

12



Fourier expansion

Σ̂ρ̂ =
(
β +

∞∑

n=1

Aρ̂(n) qn/N
)
, (4.7)

where the fractional power of q reflects the width of the cusp and Aρ̂(n) are
conjectured to be integers. The coefficients A(n) are conjectured to be integers
to all orders. We find

Σ̂2B(τ) = (8q1/2 + 24q + 56q3/2 + 112q2 + · · · )

Σ̂3A(τ) = (3q1/3 + 9q2/3 + 15q + 30q4/3 + 45q5/3 + · · · )

Σ̂5A(τ) = (q1/5 + 3q2/5 + 4q3/5 + 7q4/5 + 9q + · · · )

The next generalization is to consider generalized moonshine of type g

h

,

where g and h are two commuting elements of M12. From our multiplicative
eta-products, we know that these lead to conjugacy classes 2A, 3A and 4A –
these conjugacy classes do not reduce to conjugacy classes of M11. The product
formula for the corresponding Siegel modular forms have been discussed in [18]
and the associated Jacobi forms are of weight zero and index two. Thus, they
are somewhat different from the other examples that we have considered. We
can decompose these weight two Jacobi forms in terms of N = 4 superconformal
characters. This will be discussed elsewhere [30].

In principle, we could consider the index one Jacobi forms associated with
conjugacy classes of M24 that do not reduce to conjugacy classes of M23. These
were considered by Cheng as well as Gaberdiel et. al. [4–6]. However, they do
not seem to be related to Siegel modular forms to the best of our knowledge.
Hence, we do not pursue this any further.

5 Concluding Remarks

In this paper, we have conjectured a relationship between M12 conjugacy classes
with balanced cycle shapes and Siegel modular forms as well as BKM Lie super-
algebras. The simplest examples appear for conjugacy classes of M12 that reduce
to conjugacy classes of M11. We have proposed that other conjugacy classes
correspond to a generalized moonshine. Evidence for these conjectured relation-
ships have been provided for a large class of conjugacy classes – notably for those
classes with cycles less than 6. In particular, we believe that the correspondence
should hold for the M12 conjugacy classes 6B. We anticipate that there exists
a Siegel modular form as well as BKM Lie superalgebra(s) associated with this
conjugacy class5 [34]. However, we are unsure about their existence for the con-
jugacy classes 6A, 8A, 10A and 11A/B – the additive lift, if it exists, implies
that these are modular functions (i.e., of weight zero).

5We thank Fabien Clery for an extensive email discussion in this regard.
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We also anticipate that there exists a M12-module V ♮ that is graded by three
integers (n, ℓ,m)

V ♮ = ⊕(n,ℓ,m)V(n,ℓ,m) ,

such that
1

∆5(Z)
=

∑

(n,ℓ,m)

TrV(n,ℓ,m)

(
qnrℓsm

)
(5.1)

Insertions of elements g ∈ M12 in the trace should lead to ∆5(Z) being replaced
by dd modular forms associated with the conjugacy class of g. Similarly, by
considering h-twisted versions of the module V ♮, we should recover all the dd
modular forms.

In a forthcoming paper [30], we show that the Siegel modular forms Φk(Z)
and ∆k(Z) imply an infinite number of moonshines for the Mathieu groups M24

and M12 respectively. We also show that these moonshines include the additive
and multiplicative moonshines that were discussed in this paper and elsewhere
in the context of M24.

The original motivation for our study of the M12 moonshine was to under-
stand the square-root that appeared in relating Siegel modular forms to BKM
Lie superalgebras. However, our study has raised more questions than have been
answered. We conclude with a few of these questions. Can we understand the
appearance of the Fock space of 12 chiral bosons? Is there any relation to the
worldvolume theory of a M5-brane wrapping a Enriques surface? Can we derive
the dd modular forms in terms of a theory of multiple M5-branes?

Acknowledgements: A significant part of this work was done during a visit last
summer at the Albert Einstein Institute at Potsdam. We thank all the members
of the Institute and in particular, Stefan Theisen for a very productive stay. We
also thank Karthik Inbasekar and Dileep Jatkar for comments on a preliminary
version of this paper as well as Prof. Naresh Dadhich for encouragement.
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A Character Tables

A.1 Character Table for M12

The character table for M12 (obtained from the GAP character table database
[35]) 



Label 1A 2A 2B 3A 3B 4A 4B 5A 6A 6B 8A 8B 10A 11A 11B

χ̂1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ̂2 11 −1 3 2 −1 −1 3 1 −1 0 −1 1 −1 0 0
χ̂3 11′ −1 3 2 −1 3 −1 1 −1 0 1 −1 −1 0 0
χ̂4 16 4 0 −2 1 0 0 1 1 0 0 0 −1 α α∗

χ̂5 16′ 4 0 −2 1 0 0 1 1 0 0 0 −1 α∗ α
χ̂6 45 5 −3 0 3 1 1 0 −1 0 −1 −1 0 1 1
χ̂7 54 6 6 0 0 2 2 −1 0 0 0 0 1 −1 −1
χ̂8 55R −5 7 1 1 −1 −1 0 1 1 −1 −1 0 0 0
χ̂9 55 −5 −1 1 1 3 −1 0 1 −1 −1 1 0 0 0
χ̂10 55′ −5 −1 1 1 −1 3 0 1 −1 1 −1 0 0 0
χ̂11 66 6 2 3 0 −2 −2 1 0 −1 0 0 1 0 0
χ̂12 99 −1 3 0 3 −1 −1 −1 −1 0 1 1 −1 0 0
χ̂13 120 0 −8 3 0 0 0 0 0 1 0 0 0 −1 −1
χ̂14 144 4 0 0 −3 0 0 −1 1 0 0 0 −1 1 1
χ̂15 176 −4 0 −4 −1 0 0 1 −1 0 0 0 1 0 0




(A.1)

where α = (ω + ω3 + ω4 + ω5 + ω9) with ω = exp(2πi/11).

A.2 Character Table for M12 :2

The character table for M12 :2 (obtained from the GAP database [35])




Label 1A 2A 2B 3A 3B 4A 5A 6A 6B 8A 10A 11A 2C 4B 4C 6C 10B 10C 12A 12B 12C

χ̃1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
χ̃2 1 1 1 1 1 1 1 1 1 1 1 1 −1 −1 −1 −1 −1 −1 −1 −1 −1
χ̃3 22 −2 6 4 −2 2 2 −2 0 0 −2 0 0 0 0 0 0 0 0 0 0
χ̃4 32 8 0 −4 2 0 2 2 0 0 −2 −1 0 0 0 0 0 0 0 0 0
χ̃5 45 5 −3 0 3 1 0 −1 0 −1 0 1 5 −3 1 −1 0 0 1 0 0
χ̃6 45 5 −3 0 3 1 0 −1 0 −1 0 1 −5 3 −1 1 0 0 −1 0 0
χ̃7 54 6 6 0 0 2 −1 0 0 0 1 −1 0 0 0 0 A −A 0 0 0
χ̃8 54 6 6 0 0 2 −1 0 0 0 1 −1 0 0 0 0 −A A 0 0 0
χ̃9 55 −5 7 1 1 −1 0 1 1 −1 0 0 5 1 −1 −1 0 0 −1 1 1
χ̃10 55 −5 7 1 1 −1 0 1 1 −1 0 0 −5 −1 1 1 0 0 1 −1 −1
χ̃11 110 −10 −2 2 2 2 0 2 −2 0 0 0 0 0 0 0 0 0 0 0 0
χ̃12 66 6 2 3 0 −2 1 0 −1 0 1 0 6 2 0 0 1 1 0 −1 −1
χ̃13 66 6 2 3 0 −2 1 0 −1 0 1 0 −6 −2 0 0 −1 −1 0 1 1
χ̃14 99 −1 3 0 3 −1 −1 −1 0 1 −1 0 1 −3 −1 1 1 1 −1 0 0
χ̃15 99 −1 3 0 3 −1 −1 −1 0 1 −1 0 −1 3 1 −1 −1 −1 1 0 0
χ̃16 120 0 −8 3 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 B −B
χ̃17 120 0 −8 3 0 0 0 0 1 0 0 −1 0 0 0 0 0 0 0 −B B
χ̃18 144 4 0 0 −3 0 −1 1 0 0 −1 1 4 0 2 1 −1 −1 −1 0 0
χ̃19 144 4 0 0 −3 0 −1 1 0 0 −1 1 −4 0 −2 −1 1 1 1 0 0
χ̃20 176 −4 0 −4 −1 0 1 −1 0 0 1 0 4 0 −2 1 −1 −1 1 0 0
χ̃21 176 −4 0 −4 −1 0 1 −1 0 0 1 0 4 0 −2 1 −1 −1 1 0 0




,

where A = (α − α2 − α3 + α4) and B = (−ω7 + ω11) with α = exp(2πi/5) and
ω = exp(2πi/12).

A.3 Decomposing M24 characters

We decompose some of theM24 irreps that appear in the multiplicative moonshine
in terms of characters of M12 : 2 and M12. This was obtained using the program
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GAP [35, 36]:

χ23 = χ̃2 + χ̃3 = χ̂1 + χ̂2 + χ̂3 ,

χ45 = χ̃5 = χ̂6 ,

χ231 = χ̃9 + χ̃20 = χ̂8 + χ̂15 ,

χ770 = χ̃12 + χ̃16 + χ̃17 + χ̃18 + χ̃19 + χ̃20

= χ̂11 + 2 χ̂13 + 2 χ̂14 + χ̂15 ,

where the M12 :2 and M12 characters are labeled as in the character table given,
respectively, in Appendix A.2 and A.1.

A.4 Multiplicative eta products andM12 conjugacy classes

Let ρ̂ = 1a12a2 · · ·NaN be a cycle shape for a partition of 12. Thus, we have∑
i iai = 12. Using the map Eq. (3.1), we obtain an eta-product, gρ̂(τ). Let

gρ̂(τ) have the following Fourier expansion

gρ̂(τ) =

∞∑

n=1

an q
n/2 . (A.2)

Extending a definition of Dummit et. al., we call the eta-product multiplicative
if anm = anam when gcd(n,m) = 1. Replacing, q by q2 in the above equation, we
see that this reduces precisely to eta-products considered by Dummit et. al. [23].
They found 30 multiplicative eta-products – among these eta-products, we need
to look at cycles shapes with only even cycles so that it can be reduced to a cycle
shape with

∑
i iai = 12. We find 15 of the 30 cycle shapes in their list satisfy our

criterion. Further, 12 of the 15 cycle shapes also arise as M12 conjugacy classes.
The cycles shapes 43, 3 9 and 12 gives rise to multiplicative eta-products but
are not M12 conjugacy classes. The M12 classes 4B and 8B do not give rise to
multiplicative eta-products. We list them in the Table 4.

112 26 1424 1333 34 2242 1252 62 1 2 3 6 4 8 2 10 1 11

1A 2A 2B 3A 3B 4A 5A 6A 6B 8A 10A 11A/B

Table 4: Balanced cycles shapes associated with multiplicative eta-products and
their M12 conjugacy class.

B The modular forms

The genus-one theta functions are defined by

θ
[a
b

]
(z1, z2) =

∑

l∈Z

q
1
2
(l+ a

2
)2 r(l+

a
2
) eiπlb , (B.1)
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where a.b ∈ (0, 1) mod 2 and q = exp(2πiz1) and r = exp(2πiz2). One has
ϑ1 (z1, z2) ≡ θ

[
1
1

]
(z1, z2), ϑ2 (z1, z2) ≡ θ

[
1
0

]
(z1, z2), ϑ3 (z1, z2) ≡ θ

[
0
0

]
(z1, z2)

and ϑ4 (z1, z2) ≡ θ
[
0
1

]
(z1, z2).

We define the genus-two theta constants as follows [15]:

θ
[a
b

]
(Z) =

∑

(l1,l2)∈Z2

q
1
2
(l1+

a1
2
)2 r(l1+

a1
2
)(l2+

a2
2
) s

1
2
(l2+

a2
2
)2 eiπ(l1b1+l2b2) , (B.2)

where a =

(
a1
a2

)
, b =

(
b1
b2

)
, and Z =

(
z1 z2
z2 z3

)
∈ H2. Further, we have defined

q = exp(2πiz1), r = exp(2πiz2) and s = exp(2πiz3). The constants (a1, a2, b1, b2)
take values (0, 1). Thus there are sixteen genus-two theta constants. The even
theta constants are those for which aTb = 0 mod 2. There are ten such theta
constants. Note that six of the even theta constants with a 6= 0 have even
Fourier coefficients while the remaining four theta constants with a = 0 have
integral Fourier coefficients.

Φ4B
3 (Z) =

(
1

8
θ

[
1
0
0
1

]
(2Z) θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z)

)2

≡
[
∆3/2(Z)

]2
. (B.3)

∆4B
1 (Z) =

1

4
θ

[
0
1
1
0

]
(2Z) θ

[
1
1
1
1

]
(2Z) . (B.4)
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