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General linear electrodynamics allow for an arbitrary linear constitutive relation between the field

strength 2-form and induction 2-form density if crucial hyperbolicity and energy conditions are satisfied,

which render the theory predictive and physically interpretable. Taking into account the higher-order

polynomial dispersion relation and associated causal structure of general linear electrodynamics, we

carefully develop its Hamiltonian formulation from first principles. Canonical quantization of the

resulting constrained system then results in a quantum vacuum which is sensitive to the constitutive

tensor of the classical theory. As an application we calculate the Casimir effect in a birefringent linear

optical medium.
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I. INTRODUCTION

Classical electromagnetism can be formulated on much
more general optical backgrounds than the familiar ones
described in terms of Lorentzian manifolds. From the point
of view of electrodynamics, this is because one merely
needs a constitutive law that links the electromagnetic field
strength twoform F with the induction twoform density H,
and thus closes the relations

ðdFÞ��� ¼ 0; ðdHÞ��� ¼ �����j
�; (1)

which any electromagnetic theory featuring charge conser-
vation and no magnetic monopoles in four dimensions
must satisfy in the presence of a current vector field density
j. This point has been made most prominently and lucidly
by [1]. Even if one restricts attention to linear constitutive
laws [2], the resulting electrodynamic theories will generi-
cally feature birefringence, meaning that distinguished
polarizations of light will travel at different speeds. Now,
the most general action for an electromagnetic gauge
potential that results in a linear constitutive law, and which
we will carefully quantize in this paper, is

S½A;G� ¼ � 1

8

Z
dx4!G½F��F��G

���� þ j�A��; (2)

where G is a smooth covariant rank four tensor field with
the symmetries G���� ¼ G���� and G���� ¼ �G����,

and which is invertible in the sense that there is a smooth

contravariant tensor field G���� so that G����G���� ¼
2ð��

��
�
� � ��

��
�
�Þ and there is a well-defined volume form

!G for such area metric tensors [3]. The birefringence of
such general linear electrodynamics is encoded in its dis-
persion relation, or equivalently the causal structure, of the
associated field equations [4]. This dispersion relation is
known [5] to be of higher polynomial order, and indeed
the central challenge faced in this paper is to properly
deal with this fact, both in the classical and quantum
analysis. The importance of understanding Maxwell

theory on such general linear backgrounds is that the latter
comprehensively describe all linear optical backgrounds
ranging from fundamental spacetime geometries beyond
Lorentzian geometry [4,6–9] over the effective spacetime
structure seen by photons to first order quantum corrections
in a curved Lorentzian spacetime [10] to all nondissipative
linear optical media available in the laboratory [9].
The present article develops the canonical quantization

of these most general linear electrodynamics from first
principles, and arrives at an explicit calculation of the
quantum vacuum of the theory. We show that the related
Casimir effect detects deviations from a non-birefringent
background with an amplification which in principle is
limited only by technological constraints. Arriving at
these results requires special care when obtaining the
Hamiltonian formulation of the classical theory that pre-
cedes the actual quantization. While quite generally the
Dirac-Bergmann quantization procedure of course also
applies to these gauge field dynamics, the key issue is the
question of which hypersurfaces provide viable initial data
surfaces on which the canonical phase space variables can
be defined and evolved by the Hamiltonian. It is precisely
this question that makes the problem of quantization of the
dynamics (2) so subtle, and requires the conceptually
robust understanding of its causal structure developed
in [4] and concisely summarized in Sec. II. Only when
using the insights gained there can the formulation of the
Hamiltonian picture in Sec. III and the canonical quantiza-
tion in Sec. VII proceed as usual, based on the derivation of
the Dirac brackets in Sec. IVand the diagonalization of the
Hamiltonian in Sec. VI, which is particularly simple for
the area metrics in a neighborhood of Lorentzian metric
geometries, as shown in Sec. V. However, having gone
through the laborious quantization procedure, one is re-
warded in Sec. VIII with the said method to measure
deviations from a metric-induced background through the
Casimir effect, in particular, and a demonstration of how
to quantize field theories with higher-order polynomial
dispersion relations [11–29] in general.
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For simplicity, we restrict attention to flat area metric
manifolds throughout the paper. Analogous to any other
geometric structure on a smooth manifold, an area metric is
called flat if there exists a set of charts covering the under-
lying smooth manifold such that the components of the
area metric tensor are constant within each such chart.

II. CAUSAL STRUCTURE
OF LINEAR ELECTRODYNAMICS

The Hamiltonian formulation of the dynamics (2), on
which the canonical quantization will be built, hinges on
several key results of the associated causality theory. Here,
we summarize the central results of practical importance.
For a detailed derivation of these results, we refer the
reader to [4]. A necessary condition for Maxwell theory
on a four-dimensional area metric background to be pre-
dictive is that the following polynomial [5] on covectors k,

PðkÞ ¼ � 1

24
������	
!#G

��	�G��
�G��!#k�k�k�k�;

(3)

is hyperbolic. This means that there is at least one covector
h with PðhÞ � 0 such that for every covector q the poly-
nomials

Pq;hð�Þ ¼ Pðqþ �hÞ (4)

have only real roots �, in which case h is said to be a
hyperbolic covector with respect to P. That hyperbolicity
is a necessary criterion for a well-posed initial value prob-
lem is a central result of the theory of partial differential
equations [30,31]. For the flat area metric manifolds dis-
cussed here, the hyperbolicity of P is even sufficient for the
predictivity of the theory [30]. Initial data, given on a
hypersurface whose normal covectors are all hyperbolic
with respect to P, are then uniquely evolved away from the
hypersurface. Thus, a Hamiltonian formulation of the dy-
namics, which deals precisely with the evolution between
initial data surfaces, must be based on a foliation ft; xag of
the manifold whose leaves t ¼ const are hypersurfaces
with hyperbolic conormal.

However, this requirement needs to be sharpened if one
requires that the actual initial data can be collected by
observers. The definition of observers now hinges on the
so-called dual polynomial P# [32], which for those P that
arise from area metrics by virtue of (3) and which admit
hyperbolic covectors, can be calculated explicitly and
takes the deceivingly simple form

P#ðXÞ ¼ � 1

24
������	
!#G��	�G��
�G��!#X

�X�X�X�;

(5)

which sends any tangent vector X to a real number. That
the dual polynomial P# can be calculated analytically at
all, and takes such a comparatively simple form, is only
due to an interplay of the area metric structure underlying it

and the necessary hyperbolicity of P. While the hyperbolic
covectors of P distinguish admissible initial data surfaces,
admissible observers are distinguished by their worldline
tangent vectors being hyperbolic vectors of P#. In other
words, the very existence of observers restricts the admis-
sible area metric geometries further to those where also P#

is hyperbolic. But exactly this hyperbolicity of P# then
allows to make a choice of time orientation, which in turn
implies a choice of positive energy. More precisely, a time
orientation is chosen by picking one connected set of all
hyperbolic tangent vectors, a so-called hyperbolicity cone
C#, out of the several such connected components defined
by P#. But then the covectors q for which all future-
directed observers measure positive energy, qðXÞ> 0 for
all X 2 C#, themselves constitute a cone ðC#Þþ in cotan-
gent space, which thus deserves to be called the positive
energy cone with respect to the chosen time-orientation.
The latter, in turn, selects the (open and convex) cone C of
hyperbolic covectors of P that lie within the positive
energy cone ðC#Þþ. For technical convenience we require,
without loss of generality, that P be positive on all of C;
indeed, from (3) it is clear that this always can be arranged
for by switching the overall sign of G.
Besides the hyperbolicity of P and P#, one finally needs

to require that there exists a time orientation such that
any nonzero P-null covector lies either in ðC#Þþ or
�ðC#Þþ. In other words, the energy of any massless mo-
mentum is to have a definite sign upon which all observers
agree. If and only if this bihyperbolicity and energy-
distinguishing properties are met, it is justified to call the
underlying area metric manifold an area metric spacetime,
and we will consider only such. For an illustration in a
typical case, see Fig. 1, and for a detailed exposition of
these concepts, see [4].
The final piece of technology concerns the duality map

between covectors and vectors in an area metric spacetime.
The map

L : C ! LðCÞ; LðqÞ ¼ Pðq; q; q; �Þ
Pðq; q; q; qÞ (6)

is shown in [4] to be a well-defined and invertible Legendre
map precisely because P is assumed to be bihyperbolic and
energy-distinguishing. Spacelike hypersurfaces are mean-
ingfully defined as those having tangent directions that are
purely spatial with respect to some observer. More pre-
cisely, the spacelike hypersurfaces are those whose con-
ormals lie in L�1ðC#Þ. But since it can be shown that
L�1ðC#Þ always lies within C, the condition that a hyper-
surface be spacelike (and thus initial data on it accessible
by local observers) further sharpens the condition for a
feasible initial data surface for the dynamics (2) we iden-
tified before. Thus, only a foliation ðt; x1; x2; x3Þ of an area
metric spacetime into spacelike hypersurfaces t ¼ const
(which then contain all vectors that are annihilated by the
covector L�1ð@=@tÞ, see Fig. 1) provides an appropriate
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temporal-spatial split for the Hamiltonian formulation. For
the flat area metric spacetimes considered here, one may
further choose the coordinates such that L�1ð@=@tÞ is con-
ormal to the spacelike hypersurfaces. In other words, one
can choose trivial shift and lapse in the flat case.

The reader may find it helpful to get a feel for these
seemingly abstract conditions for the special case where
the area metric is induced by a metric g by virtue of
G���� ¼ g��g�� � g��g��. Precisely the same concep-

tual steps force one then to take the metric g to be of
Lorentzian signature (otherwise Maxwell theory would
not be well-posed). Since in this metric-induced case
PðkÞ ¼ ðg��k�k�Þ as usual, we have LðCÞ ¼ C#, and

thus one recovers the standard Lorentzian notions of
observers and spacelike hypersurfaces. However, the
general construction presented before does not justify
itself from this reduction to the metric case. The general
treatment rather demonstrates the appropriateness and
consistency of the standard Lorentzian definitions from a
conceptual point of view.

III. HAMILTONIAN FORMULATION

With the appropriate foliation ðt; x1; x2; x3Þ of the area
metric spacetime with spacelike leaves for constant time t
and conormals given by L�1ð@=@tÞ, as constructed in the
previous section, we are now in a position to develop
the Hamiltonian formulation of the dynamics encoded in
the action (2). For a flat area metric spacetime, one can
choose coordinates not only such that the area metric has
constant components throughout those charts, but also that
additionally the components of the volume form !G fea-
turing in the action are numerically identical to those of
the totally antisymmetric Levi-Civita symbol ����� de-

fined by �0123 ¼ þ1. In such a coordinate system, we
obtain the canonical momenta associated with the field

variables ðA0; AiÞ from the Lagrangian density L of the
action (2) as

�0 ¼ �L
�ð@0A0Þ ¼ 0;

�i ¼ �L
�ð@0AiÞ ¼ �G0i0j@0Aj �G0ij0@jA0 �G0ijk@jAk;

(7)

where here, and for the remainder of the paper, Latin
indices range from 1 to 3, while Greek indices continue
to range from 0 to 3. In the language of the theory
for constrained systems [33,34], we thus identify

1 ¼ �0 � 0 as a primary constraint of the dynamics.
Defining the matrix Mij with the property MijG

0i0j ¼ �k
j ,

whose existence is guaranteed if the differential equations
coming from (2) are hyperbolic (see Appendix), and using
(7) to express @0Ai in terms of the canonical momenta �i,
we find the total Hamiltonian density

H ¼ � 1

2
Mjs�

j�s � A0@j�
j � �jMijG

0irk@rAk

þ 1

2
Gijkr@iAj@kAr � 1

2
MirG

0ijkG0rmn@mAn@jAk

þ u1ðxÞ�0ðxÞ: (8)

Following the Dirac-Bergmann algorithm [34] for obtain-
ing the Hamiltonian formulation of systems with con-
straints, we now compute the commutator f�0;H g.
If this commutator is not zero, we need to impose
f�0;H g � 0 as a secondary constraint, in order to ensure
that the primary constraint 
1 � 0 is preserved under time
evolution. Indeed, one obtains f�0;H g ¼ �@j�

j. Thus

we impose 
2 ¼ @j�
j � 0 as a secondary constraint,

which must be added to (8) with a corresponding
Lagrange multiplier. The total Hamiltonian now reads

observers
#C

cotangent space tangent space

(C   )#

C

+

hyperbolic covectors

positive energy covectors

T

ann L (T)−1

FIG. 1. Causal structure of a typical bihyperbolic and energy-distinguishing polynomial dispersion relation. Dotted surfaces indicate
sets of covectors and vectors that are null with respect to the polynomial P and its dual P#, respectively. The cone C of hyperbolic
covectors and the cone C# of observers both arise as hyperbolicity cones. Purely spatial directions, as seen by an observer with
worldline tangent T, are those vectors annihilated by the preimage of T under the Legendre map L.
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H ¼ H 0 þ u1ðxÞ�0ðxÞ þ ðu2ðxÞ � A0Þ@j�j; (9)

with

H 0 ¼ � 1

2
Mjs�

j�s � �jMijG
0irk@rAk

þ 1

2
ðGmnjk �MirG

0ijkG0rmnÞ@mAn@jAk: (10)

Now we find f
2;H g ¼ 0, so that the Dirac-Bergmann
algorithm ends here and 
1 � 0 and 
2 � 0 exhaust the
constraints. However, f
1ðt; ~xÞ; 
2ðt; ~yÞg ¼ 0, so that 
1

and 
2 are first class constraints, implying that the multi-
pliers u1ðxÞ and u2ðxÞ are completely undetermined. The
infinitesimal gauge transformations induced by ð
1; 
2Þ
on the canonical variables ðA�;�

�Þ are

�A�ðt; ~xÞ ¼
Z

d3y�Iðt; ~yÞfA�ðt; ~xÞ; 
Iðt; ~yÞg
¼ �1ðt; ~xÞ�0

� � �i
�@i�

2ðt; ~xÞ; (11)

���ðt; ~xÞ ¼
Z

d3y�Iðt; ~yÞf��ðt; ~xÞ; 
Iðt; ~yÞg ¼ 0; (12)

with I ¼ 1, 2 and �Iðt; ~xÞ being the infinitesimal parame-
ters of the transformations. Knowledge of these generators
of gauge transformations allows us to identify classical
observables of the theory as those functionals that are
invariant under gauge transformations. Equivalently,
observables commute with the constraints fO;
Ig � 0.
In the present case, it can be checked that the electromag-
netic inductions

Da ¼ �G0a0bF0b � 1

2
G0abkFbk

¼ �G0a0b@0Aj �G0ab0@jA0 �G0abk@bAk; (13)

Ha ¼ � 1

2
�0abc

�
Gbcm0Fm0 þ 1

2
GbcmnFmn

�

¼ � 1

2
�0abc½Gbcm0ð@mA0 � @0AmÞ þGbcmn@mAn�;

(14)

defined with respect to the chosen foliation of spacetime
into spacelike hypersurfaces, indeed commute with the
constraints, so that they can be used as observables.
Thus we are finally able to write the Hamiltonian (10)
for our system in terms of gauge-invariant observables
Da and Ha as

H 0 ¼ 1

2
UalD

aDl þ 1

2
ValHaHl; (15)

where the matrices U and V are given as

Ual ¼ �Mal þ 1

8
TpqjkG

0sjkG0tpqMsðlMaÞt (16)

Val ¼ � 1

8
�0jkða�j0jlÞpqTpqjk; (17)

with Tpqjk defined such that

ðGpqmn �G0rpqG0amnMarÞTpqtu ¼ �8�m
½t �

n
u�: (18)

The existence of T is guaranteed due to the invertibility
properties of area metrics; indeed it can be written explic-
itly in terms of the block matrices constituting the area
metric tensor, see again the Appendix.

IV. GAUGE FIXING AND DIRAC BRACKETS

We now remove the indeterminacy in the Lagrange
multipliers by fixing a gauge, in order to convert the system
into one with only second class constraints, for which we
then construct the associated Dirac brackets. This is
achieved here by manually imposing two further con-
straints 
3 � 0, 
4 � 0 such that detf
Ið ~xÞ; 
Jð ~yÞg � 0,
with I, J ¼ 1; . . . 4, so that the new set of constraints 
I is
now of second class. In our case, the Euler-Lagrange
equations for the gauge field A obtained from the action
(2) are given by

G����@�@�A� ¼ 0; (19)

which is conveniently split into one temporal equation

G0a0b@a@bA0 þ ½G0abc@a@c �G0a0b@0@a�Ab ¼ 0 (20)

and three spatial equations

½G0bla@a@b �G0l0m@0@m�A0 þ ½G0l0m@20 � 2G0ðlmÞa@0@a
þGlamd@a@d�Am ¼ 0: (21)

As the third constraint, we impose the Glauber gauge


3 ¼ A0ð ~xÞ �
Z

d3x0Gð ~x; ~x0ÞG0abc@0a@0cAbð ~x0Þ � 0 (22)

with �G0a0b@a@bGð ~x; ~x0Þ ¼ �ð ~x� ~x0Þ, or more explicitly,

Gð ~x; ~x0Þ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi� detðMabÞ

p
4�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�Mabðxa � x0aÞðxb � x0bÞp : (23)

The expressions under both square roots are non-negative
ultimately due to the energy-distinguishing property (see
Appendix). Consistency of the gauge (22) with the tempo-
ral Eq. (20) requires that the last constraint


4 ¼ G0a0b@aAb � 0 (24)

must be fulfilled. In summary, our constraints 
I are
given by


1 ¼ �0 � 0;


3 ¼ A0ð ~xÞ �
Z

d3x0Gð ~x; ~x0ÞG0abc@0a@0cAbð ~x0Þ � 0;


2 ¼ @a�
a � 0;


4 ¼ G0a0b@aAb � 0;

(25)
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and satisfy

f
Iðt; ~xÞ;
Jðt; ~yÞg

¼
Z d3k

ð2�3Þ

0 0 �1 0

0 0 0 �G0a0bkakb

1 0 0 0

0 G0a0bkakb 0 0

2
666664

3
777775ei

~k:ð ~x� ~yÞ:

(26)

The matrix above f
Iðt; ~xÞ; 
Jðt; ~yÞg is invertible, so that
the constraints 
I are now of second class and the
gauge freedom is gone. Its inverse ðf
ð ~xÞ; 
ð ~yÞg�1ÞIJ,
defined throughZ

d3yf
Ið ~xÞ; 
Jð ~yÞgðf
ð ~yÞ; 
ð~zÞg�1ÞJM ¼ �M
I �ð ~x� ~zÞ;

(27)

is simply given as

f
Iðt; ~xÞ; 
Jðt; ~yÞg�1

¼
Z d3k

ð2�3Þ

0 0 1 0

0 0 0 1
G0a0bkakb

�1 0 0 0

0 � 1
G0a0bkakb

0 0

2
6666664

3
7777775ei

~k:ð ~x� ~yÞ:

(28)

Equipped with Eq. (28) we can now follow Dirac’s proce-
dure and replace the standard Poisson bracket f; g by the
Dirac bracket f; gD, which is defined as

fAð ~xÞ; Bð ~yÞgD ¼ fAð ~xÞ; Bð ~yÞg �
Z

d3zd3wfAð ~xÞ; 
Ið~zÞg
� ðf
ð ~zÞ; 
ð ~wÞg�1ÞIJf
Jð ~wÞ; Bð ~yÞg: (29)

Thus we arrive at the fundamental Dirac brackets of our
system, with respect to which the theory must be quantized

fA�ðt; ~xÞ; ��ðt; ~yÞgD

¼
Z d3k

ð2�Þ3
�
��
� � �0

��
�
0 � �m

��
�
n kakmG

0a0n

G0p0qkpkq

� �0
��

�
bG

0abckakc
G0p0qkpkq

�
ei

~k:ð ~x� ~yÞ;

fA�ðt; ~xÞ; A�ðt; ~yÞgD ¼ 0;

f��ðt; ~xÞ; ��ðt; ~yÞgD ¼ 0; (30)

and the dynamics of the system is simply generated by the
Hamilton equations

@tA�ðt; ~xÞ �
Z

d3yfA�ðt; ~xÞ;H 0ð ~yÞgD;

@t�
�ðt; ~xÞ �

Z
d3yf��ðt; ~xÞ;H 0ð ~yÞgD;

(31)

where, due to the use of Dirac brackets, only H 0 is
involved.

V. BIHYPERBOLIC AREA METRICS CLOSE
TO LORENTZIAN METRICS

The preceding Hamiltonian analysis and calculation of
Dirac brackets made only implicit use of the requirement
that the area metric background be bihyperbolic and
energy-distinguishing, namely, in the abstract construc-
tions underlying the definition of spacetime foliations
into spacelike leaves. But now we need to explicitly solve
the field Eqs. (21) with the gauge imposed by (22), and this
requires to restrict attention to concrete bihyperbolic and
energy-distinguishing area metric backgrounds. Moreover,
for actual calculations it is most convenient to choose a
coordinate frame in which the area metric takes a simple
normal form. The normal form theory of area metrics in
four dimensions has been developed in [9], and used in [4]
to show that the area metric cannot be bihyperbolic unless
the endomorphism J on the space of two-forms defined
through

J��
�� ¼ G��	
!	
�� (32)

has a complex eigenvalue structure (Segré type) of the
form ½1�11�11�1�, ½2�21�1�, ½3�3�, ½1�11�111�, ½2�211�, ½1�11111�
or [111111]. However, four-dimensional area metrics that
are induced by a Lorentzian metric automatically lie in the
first class, ½1�11�11�1�, and moreover the continuous depen-
dence of the eigenvalues of an endomorphism on the
components of a representing matrix implies that any
area metric in the neighborhood of such a metric-induced
area metric is equally of class ½1�11�11�1�. Thus, area metrics
of immediate phenomenological relevance are clearly
those of this first class, and it can be shown that by
GLð4Þ frame transformations these can always be brought
to the form

G½ab�½cd� ¼

�� 0 0 � 0 0
0 �� 0 0 � 0
0 0 �� 0 0 �
� 0 0 � 0 0
0 � 0 0 � 0
0 0 � 0 0 �

2
666666664

3
777777775

for real�;�; � and real positive�;�; �;

(33)

where for notational purposes, G is considered here as a
bilinear form on the space of two-forms for convenience,
and the representing matrix shown above is with respect to
the obvious induced basis in the order [01], [02], [03], [23],
[31], [12]. The positivity of �, �, � follows from our
convention that P is positive on the hyperbolicity cone C.
If and only if the area metric is induced by a Lorentzian
metric, do the real scalars assume the values � ¼ � ¼
� ¼ 1 and � ¼ � ¼ � ¼ 0. So any finite (but not too
large) deviation from a Lorentzian metric is encoded in
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these scalars and the frame that brings about this normal
form.

It is straightforward to show that if one chooses
� ¼ � ¼ �, the polynomial

PðqÞ ¼ ���ðq40 þ q41 þ q42 þ q43Þ
þ �ð�2 þ �2Þðq22q23 � q20q

2
1Þ

þ �ð�2 þ �2Þðq21q23 � q20q
2
2Þ

þ �ð�2 þ �2Þðq21q22 � q20q
2
3Þ (34)

associated with an area metric of this class is hyperbolic
with respect to h ¼ L�1ð@=@tÞ. This is most efficiently
verified in the normal frame by observing that for
h ¼ ð1; 0; 0; 0Þ, the real symmetric Hankel matrix
H1ðPq;hÞ associated with the polynomial Pq;h is positive

definite for any covector q, which implies that P is hyper-
bolic [35,36]. The dual polynomial P# takes precisely
the same shape in the normal form frame employed
here, and thus is also seen to be hyperbolic. The energy-
distinguishing property is also easily checked. Finally, note
that for area metrics with polynomial (34), we have

G0abc ¼ ��0abc (35)

in this normal form frame, which significantly simplifies
the field Eqs. (20) and (21) whose solutions we will now be
able to obtain, orthogonalize appropriately, and thus obtain
a diagonalization of the Hamiltonian.

It is worth noting that the hyperbolic polynomial (34)
only factorizes if at least two of the scalars �, �, �
coincide, so that area metrics with a bimetric dispersion
relation merely present a subset of measure zero within the
set of area metrics neighboring Lorentzian metrics. Indeed,
for the generic case of mutually different scalars, the
polynomial P is irreducible. Thus, theories trying to ac-
count for birefringence in linear electrodynamics by some
sort of bimetric geometry fail to parametrize almost all
general linear backgrounds near Lorentzian metric ones.

VI. DIAGONALIZATION OF THE HAMILTONIAN

In order to diagonalize the Hamiltonian (10) for
bihyperbolic and energy-distinguishing general linear elec-
trodynamics with a higher-order polynomial dispersion
relation given by (34), we first need to find the solutions
of the classical field Eqs. (20) and (21). After choosing the
Glauber gauge (25), the first equation is trivially satisfied,
and the second one reduced to

½G0l0m@20 þGlamd@a@d�Amðt; ~xÞ ¼ 0; (36)

due to (35). Moreover, these field equations are com-
pletely equivalent to the field equations arising from (31).
Specifically, we look for plane wave solutions

Aaðt; ~xÞ ¼
Z d3p

ð2�Þ3 e
�ið!tþ ~p: ~xÞfað ~pÞ; (37)

so that introducing (37) into (36) we observe that the
equation

½G0l0mð!Þ2 þGlamdpapd�fmð ~pÞ ¼ 0 (38)

must be satisfied if (37) is indeed a solution. Equation (38)
has nontrivial solutions only if

detðG0l0mð!Þ2 þGlamdpapdÞ ¼ 0: (39)

The nonzero frequencies ! for which this is the case are
precisely the solutions of Pð!; ~pÞ ¼ 0, compare (A6).
From the energy-distinguishing condition of an area metric
spacetime, it follows that these frequencies are nonzero
unless ~p ¼ 0, and real because of the hyperbolicity of P.
It is then further immediate from (34) that if some (without
loss of generality positive) !ð ~pÞ is a solution for some
given ~p in our normal frame, then so is �!ð ~pÞ, and that
!ð ~pÞ ¼ !ð� ~pÞ. Thus, we have four nonzero energy solu-
tions �!Ið ~pÞ labeled by I ¼ 1, 2, two positive and two
negative ones, for each spatial momentum ~p. Therefore
any solution of the field equations for the real gauge
potential A can be expanded as

Aaðt; ~xÞ ¼
X
I¼1;2

Z
Nsmooth

d3p

ð2�Þ3 ðe
�ið!Ið ~pÞtþ ~p: ~xÞfIað ~pÞ

þ eið!Ið ~pÞtþ ~p: ~xÞf�Ia ð ~pÞÞ; (40)

where strictly speaking, the integral is to be taken only over
spatial momenta ~p for which the roots ! of Pð!; ~pÞ are
nondegenerate, so that the elementary plane wave solutions
are linearly independent. However, the set of covectors for
which these zeros are degenerate is of measure zero [4], so
that this restriction of the integral domain can be techni-
cally disregarded. It may be worth emphasizing that the
standard appearance of this expansion is somewhat decep-
tive, since the !I appearing here are solutions of (39),
rather than the standard Lorentzian dispersion relation.
Having obtained a basis of solutions of the classical field

equations, we now identify an inner product that is pre-
served under time evolution and positive definite for posi-
tive energy solutions. To this end, consider solutions

Aað ~pÞðt; ~xÞ and ~Aað ~qÞðt; ~xÞ of the field equation for specific
spatial covectors ~p and ~q, respectively. Using the field
Eq. (36), it can be shown that the continuity equation

@0ðG0a0bA�
að ~pÞ@$0

~Abð ~qÞÞ
þ @mð�GaðmnÞbA�

að ~pÞ@$n
~Abð ~qÞÞ ¼ 0 (41)

is satisfied. This implies that we have a conserved chargeQ
given by

Q ¼
Z

d3xG0a0bA�
að ~pÞ@$0

~Abð ~qÞ: (42)

The above defined charge Q can be used to define a
scalar product in the space of solutions, which then by
definition is conserved under time evolution and is defined

as ðAð ~pÞ; ~Að ~qÞÞ ¼ �iQ. It satisfies the following properties:

SERGIO RIVERA AND FREDERIC P. SCHULLER PHYSICAL REVIEW D 83, 064036 (2011)

064036-6



ðAð ~pÞ; � ~Að ~qÞÞ ¼ �ðAð ~pÞ; ~Að ~qÞÞ
ð�Að ~pÞ; ~Að ~qÞÞ ¼ ��ðAð ~pÞ; ~Að ~qÞÞ
ðAð ~pÞ; ~Að ~qÞÞ ¼ ðAð ~pÞ; ~Að ~qÞÞ� ¼ �ðA�ð ~pÞ; ~A�ð ~qÞÞ:

(43)

Hence, if we define for our different frequency solutions

FI
að ~pÞðt; ~xÞ ¼ e�ið!Ið ~pÞtþ ~p: ~xÞfIað ~pÞ; (44)

we find that ðFIð ~pÞ; F�Jð ~qÞÞ ¼ 0 and

ðFIð ~pÞ; FJð ~qÞÞ ¼ �ðF�Ið ~pÞ; F�Jð ~qÞÞ
¼ �2!Ið ~pÞG0a0bfI�a ð ~pÞfIað ~pÞ�IJ�ð ~p� ~qÞ:

(45)

In the derivation of the above results, we used charge
conservation to find that for I � J

G0a0bfI�a ð ~pÞfJ�b ð� ~pÞ ¼ G0a0bfI�a ð ~pÞfJbð ~pÞ ¼ 0: (46)

Moreover, since G0a0b is negative definite due to (33),
Eq. (45) shows that the positive energy solutions can be
positively normalized, implying in turn that the negative
energy solutions are negatively normalized. This indefinite-
ness of the scalar product is responsible for creation and
annihilation processes. Choosing, without loss of general-

ity, fIað ~pÞ ¼ aIað ~pÞffiffiffiffiffiffiffiffiffiffiffi
2!Ið ~pÞ

p , we finally have

ðFIð ~pÞ; FJð ~qÞÞ ¼ �ðF�Ið ~pÞ; F�Jð ~qÞÞ
¼ �G0a0baI�a ð ~pÞaIað ~pÞ�IJ�ð ~p� ~qÞ; (47)

and our general solution reads

Aaðt; ~xÞ ¼
X
I¼1;2

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!Ið ~pÞp ðe�ið!Ið ~pÞtþ ~p: ~xÞaIað ~pÞ

þ eið!Ið ~pÞtþ ~p: ~xÞa�Ia ð ~pÞÞ: (48)

Now that we have the general solution (48), we can use it to
write the Hamiltonian evaluated at a solution in diagonal
form,

H0 ¼
Z

d3xH 0ð ~xÞ

¼ � 1

2

Z
d3xG0a0bð@0Aa@0Ab � Aa@

2
0AbÞ

¼ 1

2

X
I;J

Z d3p

ð2�Þ3
d3q

ð2�Þ3 !
Jð ~pÞ½ðFIð ~pÞ; FJð ~qÞÞ

þ ðFJð ~pÞ; FIð ~qÞÞ�

¼ � 1

2

X
I¼1;2

Z d3p

ð2�Þ3 !
Ið ~pÞG0a0b½a�Ia ð ~pÞaIbð ~pÞÞ

þ aIað ~pÞa�Ib ð ~pÞÞ�: (49)

The last expression shows that the classical Hamiltonian is
positive because G0a0b is negative definite.

VII. QUANTIZATION

Equipped with the results developed so far, we are now
ready to quantize the electromagnetic field. First, notice
that if we multiply Eq. (38) by pl then the amplitude
eigenvectors aIbð ~pÞ satisfy

G0a0bpaa
I
bð ~pÞ ¼ 0; (50)

such that the constraints G0a0b@aAb � 0 and @a�
a � 0

are satisfied. Now it can be shown [4] that for almost all
spatial momenta ~p, the two associated positive energies do
not coincide, !I¼1ð ~pÞ � !I¼2ð ~pÞ, so that the covectors
aI¼1
b ð ~pÞ and aI¼2

b ð ~pÞ are determined up to scale, linearly

independent and thus forming a basis for the space of all
purely spatial covectors v for which G0a0bpavb ¼ 0, and
diagonalize the Hamiltonian (49). Thus, the only one
freedom we have is a choice of normalization, which we
choose such that any solution aIbð ~pÞ is expressed as

aIbð ~pÞ ¼ aIð ~pÞ�Ibð ~pÞ with the covectors �Ibð ~pÞ normalized

with respect to our scalar product, i.e.,

�G0a0b�I
�
a ð ~pÞ�Ibð ~pÞ ¼ 1; (51)

where there is no summation over I. Furthermore, pa and
any aIbð ~pÞ are clearly linearly independent, such that the set
of covectors�

�I¼1
b ð ~pÞ; �I¼2

b ð ~pÞ; ~pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�G0a0bpapb

p �
(52)

constitute a basis for V, which is orthonormalized with
respect to the scalar product (43). Hence, they satisfy the
completeness relation

�G0i0j
X
I¼1;2

�I�j ð ~pÞ�Ibð ~pÞ ¼ �i
b �

pmpbG
0m0i

G0r0sprps

: (53)

Notice that the normalized covectors �Ibð ~pÞ satisfy the

orthogonality identities (46). Now, the general solution
(48) takes the form

Aaðt; ~xÞ ¼
X
I¼1;2

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!Ið ~pÞp
� ðe�ið!Ið ~pÞtþ ~p: ~xÞaIð ~pÞ�Iað ~pÞ
þ eið!Ið ~pÞtþ ~p: ~xÞaI�ð ~pÞ��Ia ð ~pÞÞ; (54)

where the coefficients aIð ~pÞ correspond to the amplitudes
of the solutions and depend on the initial values that one
considers for a specific problem in the classical approach.
These amplitudes are precisely the mathematical objects
that should be promoted to operators âIð ~pÞ and âIyð ~pÞ at
the quantum level, where by construction they will act in
the usual way on the bosonic Fock space once bosonic
commutation relations have been imposed between them
[37]. The corresponding quantum field then reads
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Âaðt; ~xÞ ¼
X
I¼1;2

Z d3p

ð2�Þ3
1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2!Ið ~pÞp
� ðe�ið!Ið ~pÞtþ ~p: ~xÞâIð ~pÞ�Iað ~pÞ
þ eið!Ið ~pÞtþ ~p: ~xÞâIyð ~pÞ��Ia ð ~pÞÞ: (55)

Using this quantum solution and the expressions for the
energy and spatial momentum (which can be obtained by
calculating the energy-momentum tensor), we find that the
quantum Hamiltonian and quantum spatial momentum
operators are given by

Ĥ 0 ¼ 1

2

X
I¼1;2

Z d3p

ð2�Þ3!
Ið ~pÞ½âIð ~pÞâIyð ~pÞÞþ âIyð ~pÞâIð ~pÞÞ�;

(56)

P̂ i ¼ 1

2

X
I¼1;2

Z d3p

ð2�Þ3 pi½âIð ~pÞâIyð ~pÞÞ þ âIyð ~pÞâIð ~pÞÞ�:

(57)

Hence, if we identify the operators âIð ~pÞ, âIyð ~pÞ with
annihilation and creation operators, respectively, a condi-
tion for the Hamiltonian to be positive definite is that these
operators obey the bosonic commutation relations

½âIð ~pÞ; âJyð ~qÞ� ¼ ð2�Þ3�IJ�ð ~p� ~qÞ;
½âIð ~pÞ; âJð ~qÞ� ¼ ½âIyð ~pÞ; âJyð ~qÞ� ¼ 0:

(58)

Hence, the quantum Hamiltonian operator can be
written as

Ĥ0 ¼
X
I¼1;2

Z d3p

ð2�Þ3 !
Ið ~pÞâIyð ~pÞâIð ~pÞÞ

þ X
I¼1;2

1

2

Z
d3p!Ið ~pÞ�ð0Þ; (59)

from which expression we identify the energy of the elec-
tromagnetic vacuum, which was calculated here for plane
wave solutions without any boundary conditions, as

Evacðno boundariesÞ ¼ X
I¼1;2

1

2

Z
d3p!Ið ~pÞ�ð0Þ: (60)

In the next section, we will calculate how this expression
changes if one imposes boundary conditions. Finally, by
using the completeness relation (53) one confirms that

½Âaðt; ~xÞ; �̂bðt; ~yÞ�

¼ i
Z d3p

ð2�Þ3
�
�b
a � pmpaG

0m0b

G0r0sprps

�
ei ~p:ð ~x� ~yÞ; (61)

which shows the consistency of the quantization procedure
with the Dirac brackets (30), since the latter reduce to the
above form due to (35).

VIII. APPLICATION: CASIMIR EFFECT IN A
BIREFRINGENT LINEAR OPTICAL MEDIUM

The Hamiltonian (59) shows that the quantization
of general linear electrodynamics leads to a modified
quantum vacuum compared to standard non-birefringent
Maxwell theory. In fact, local physical phenomena which
only depend on the quantum vacuum can be used to detect
a nonmetricity of spacetime. In this section, we analyze
one such phenomenon, namely, the Casimir effect; similar
studies can be conducted for the Unruh effect and sponta-
neous emission.
The Casimir effect [38] arises because of the energy cost

incurred by imposing boundary conditions on the electro-
magnetic field strength. Physically, such boundary condi-
tions arise for instance by introducing perfectly conducting
metal plates into the spacetime. For two infinitely extended
plates parallel to the 1-2-plane, and this is the configuration
we will study here for general linear electrodynamics, the
electromagnetic field strength must satisfy the boundary
conditions

F01jplates ¼ F02jplates ¼ F12jplates ¼ 0 (62)

everywhere on either plate; this follows, by Stokes’ theo-
rem and thus independent of the geometric background,
from the physical assumption that the plates are ideal
conductors inside of which the field strength must vanish.
Now the key point is that having, or not having, bound-

ary conditions for the vacuum amounts to an energy dif-
ference, the so-called Casimir energy

ECasimir ¼ Evacðplate boundariesÞ � Evacðno boundariesÞ:
(63)

But both energies on the right-hand side diverge and need
to be regularized such that their difference is independent
of the regulator. This is most easily achieved by first
considering boundary conditions analogous to (62), but
for all six faces of a finite rectangular box with faces
parallel to the coordinate planes, and separated by coor-
dinate distances L1, L2, L3. In a second step we will then
push all faces a very large coordinate distance L apart in
order to obtain an expression for Evacðno boundariesÞ
regularized by L, and similarly push all but two faces in
order to obtain a corresponding regularized expression for
Evacðplate boundariesÞ. The difference of these two regu-
lated quantities will indeed turn out to be finite per unit
area and be independent of the regulator L.
Now more precisely, a basis of solutions of general

linear electrodynamics satisfying the box boundary con-
ditions is labeled by a triple ðn1; n2; n3Þ of non-negative
integers and a polarization I ¼ 1, 2 and takes the form
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Axð ~xÞ ¼ aIxðn1; n2; n3Þ cos
�
n1�

x

L1

�
sin

�
n2�

y

L2

�

� sin

�
n3�

z

L3

�
;

Ayð ~xÞ ¼ aIyðn1; n2; n3Þ sin
�
n1�

x

L1

�
cos

�
n2�

y

L2

�

� sin

�
n3�

z

L3

�
;

Azð ~xÞ ¼ aIzðn1; n2; n3Þ sin
�
n1�

x

L1

�
sin

�
n2�

y

L2

�

� cos

�
n3�

z

L3

�
;

(64)

where the aImðn1; n2; n3Þ are solutions to Eq. (38) for
!Iðn1�=L1; n2�=L2; n3�=L3Þ, which always exist if
the dispersion relation is bihyperbolic and energy-
distinguishing. The vacuum energy in the presence of the
box boundary conditions is thus given by the discrete sum

Evacðbox boundariesÞ

¼ 1

2

X1
~n¼0

X
I¼1;2

!I

�
�
n1
L1

; �
n2
L2

; �
n3
L3

�
: (65)

Removing appropriate faces to a coordinate distance L one
finds from this, in the very large L limit, the L-regularized
expression for the vacuum energy without boundary con-
ditions

EL
vacðno boundariesÞ ¼ L3

2�3

X
I¼1;2

Z 1

0
d3p!Ið ~pÞ; (66)

and the L-regularized expression for the vacuum energy in
the presence of two plates parallel to the 1-2-plane and
separated by a coordinate distance d

EL
vacðplate boundariesÞ

¼ L2

2�2

X
I¼1;2

X
n0

Z 1

0
dpxdpy!

I

�
p2
x; p

2
y;

�
n�

d

�
2
�
; (67)

where the prime in the summation symbol n means that a
factor 1=2 should be inserted if this integer is zero, for
then we have just one independent polarization. Hence,
we find for the physical vacuum Casimir energy UðdÞ ¼
ðEvacðplate boundariesÞ � Evacðno boundariesÞÞ=L2 per
unit area

UðdÞ ¼ 1

2�2

X
I¼1;2

�X
n0

Z 1

0
dpxdpy!

I

�
p2
x; p

2
y;

�
n�

d

�
2
�

� d

�

Z 1

0
dpxdpydpz!

Iðp2
x; p

2
y; p

2
zÞ
�
: (68)

In principle, the execution of the above integrals can
proceed as in the standard case. However, with the fre-
quencies !I now being solutions to a quartic, rather than
quadratic, dispersion relation, these integrals are much

harder particularly due to the absence of rotational invari-
ance. Fortunately, the fact that contributions from the two
different polarizations I ¼ 1, 2 are simply added in the
above expression allows for an analytic study of the case
where the polynomial P is reducible. In terms of the scalars
�, �, �, � defining the area metric in a normal form frame,
this is the case if and only if two of the scalars �, �, �
coincide, and we may take � ¼ �, for instance. Even in
this simplest of nontrivial cases, the Casimir energy cru-
cially depends on the birefringence properties of the under-
lying general linear electrodynamics. More precisely, the
polynomial in (34) factorizes into two Lorentzian metrics,

PðpÞ ¼ �ð�p2
0 � �p2

3 � �ðp2
1 þ p2

2ÞÞ
� ð�p2

0 � �p2
3 � �ðp2

1 þ p2
2ÞÞ; (69)

so that we immediately obtain the positive energy solutions

!I¼1 ¼
�
1

�
ð�p2

3 þ �p2
1 þ �p2

2Þ
�
1=2

and

!I¼2 ¼
�
1

�
ð�p2

3 þ �p2
1 þ �p2

2Þ
�
1=2

; (70)

turning (68) into a sum of integrals as they appear in the
standard Casimir problem on a Lorentzian background.
Thus, from here on the standard calculation of the
Casimir effect [39] can be followed for each of these
integrals separately, and one finally obtains the Casimir
energy (68)

UðdÞ ¼ � 1

2

�
�

�
þ �

�

�
�2

720d3
: (71)

This energy difference of course results in a Casimir force

FðdÞ ¼ �U0ðdÞ ¼ � 1

2

�
�

�
þ �

�

�
�2

240d4
(72)

between the plates. We conclude that the standard Casimir
force is recovered if � ¼ � ¼ �, irrespective of the value
of the scalar �. This in turn is equivalent to the absence of
classical birefringence [40]. Note that the amplification of
any birefringence is limited only by the technological
constraint of how small the separation d between the plates
can be made in any realistic setup. In contrast to classical
birefringence tests, which usually require accumulative
effects over large distances (with all the uncertainties
present in such nonlocal measurements), one sees here
that the Casimir force allows for a detection of birefrin-
gence by way of a highly local measurement.

IX. CONCLUSIONS

The canonical quantization of general linear electrody-
namics, as undertaken in this article, required the solution
of several, and in themselves challenging, questions.
First, from the classical field theory point of view, it had

to be clarified which general linear electrodynamics are
predictive on the one hand and physically interpretable in
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terms of quantities measurable by observers on the other
hand. The answer to both questions is encoded in the
polynomial dispersion relation of the field theory, and
amounts to the simple algebraic conditions that the latter
be bihyperbolic and energy-distinguishing. Further down
the road, these conditions turned out to be crucial in
ensuring the existence of a Glauber gauge, which allowed
to define a time-conserved scalar product in the space
of classical solutions, on which all further developments
were based.

Second, and closely related, is the construction of a

Hamiltonian formulation of general linear electrodynam-

ics. The causal structure encoded in the higher-order poly-

nomial dispersion relation of this theory required a revision

of the construction of suitable spacetime foliations that

underlie a Hamiltonian formulation. The key point here

was that the leaves of the foliation must be such that

initial data provided on them must be causally evolved

by the field equations and at the same time be accessible

to observers. It turned out that bihyperbolic and energy-

distinguishing area metric manifolds provide precisely the

structure to ensure both, and ultimately render the classical

Hamiltonian positive.
Third, the quantum Hamiltonian operator is positive

definite. For a theory with a higher-order polynomial dis-

persion relation this is far from trivial, and again only due

to bihyperbolicity and the energy-distinguishing property.

The positive definiteness of the quantum Hamiltonian

operator is inherited from the positivity of the classical

Hamiltonian because the positive energy solutions have

positive norm with respect to the scalar product identified

before. This is of course synonymous with the stability of

the quantum vacuum, and thus the physical relevance of

the Casimir effect we derived from it.
The wider lesson learned from our study consists in this

being a prototypical, and rather nontrivial, example for the
quantization of a field theory with a modified dispersion
relation. Such theories are discussed extensively through-
out the literature with a number of motivations, but usually
disregarding the fundamental consistency conditions that
were instrumental in this work. In particular, the classically
inevitable condition that the dispersion relation be given
by a bihyperbolic and energy-distinguishing polynomial
proved inevitable also at virtually every step of the quan-
tization process.

Actual calculations were made tractable by employing

the fact that the dispersion relation of general linear elec-

trodynamics is ultimately determined by a fourth rank

area metric tensor for which a complete algebraic classifi-

cation and associated normal forms are available for the

phenomenologically directly relevant case of four space-

time dimensions. This normal form theory was also used to

ensure that the birefringent optical backgrounds for which

we calculated the Casimir effect (and which owe their

physical relevance to their parametrizing the neighborhood

of non-birefringent optical media) indeed are bihyperbolic

and energy-distinguishing. While it is possible to directly

exclude 16 out of a total of 23 algebraic classes of four-

dimensional area metrics as admissible spacetime struc-

tures, a complete and simple characterization of all

area metric manifolds that are bihyperbolic and energy-

distinguishing however remains an open problem. The high

interest that would attach to a comprehensive solution of

this problem is clearly underlined by the pivotal role we

saw these conditions to play for the classical and quantum

theory alike.
Another open, albeit well-defined, problem is the cou-

pling of fermions to general linear electrodynamics. The

issue is the very definition of spinors in the presence of a

higher-degree polynomial dispersion relation, rather than

one given by a Lorentzian metric. For rather than satisfying

the standard binary Dirac algebra, generalized Dirac ma-

trices that intertwine spacetime and spinor indices must

now satisfy a quarternary algebra determined by the fourth-

degree polynomial associated with a four-dimensional area

metric spacetime structure. Even employing the normal

form theory, representations of this quarternary algebra

appear hard to find in any other but the case of a reducible

dispersion relation satisfying the relevant conditions

(which then leads to a 16-dimensional spinor representa-

tion with an associated refined Dirac equation for this

special bimetric case). Once a representation in the general

case is obtained, the canonical quantization can proceed

exactly along the now clearly defined path for such theo-

ries, and complete a full theory of general linear quantum

electrodynamics including charges.
Concluding, we see that the results of this article open up

the arena for comprehensive, and above all conceptually

watertight, studies of quantum effects brought about by

birefringence. Indeed, beyond the Casimir force we calcu-

lated here explicitly, any other effect rooting in the quan-

tum vacuum of electrodynamics can be directly calculated

now on the basis of the technical findings of this paper.

This includes, for instance, the Unruh effect or the sponta-

neous emission of photons from quantized point particles.

Once spinor fields are included, the range of effects of

course extends to the full spectrum of processes discussed

in standard quantum electrodynamics with charged fermi-

ons. Far from being merely academic musings, however

interesting, these findings are of immediate relevance

to physicists with interests ranging from fundamental

theory to material science. Indeed, while on the one

hand directly testable in birefringent optical media in

laboratory experiments [41], the constructions of this paper

on the other hand also put phenomenological studies of

modified dispersion relations [12–29] (or, equivalently,

Lorentz-violating spacetime structures [42–50]), as

they now abound in the literature, on a solid theoretical

footing.
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APPENDIX: AREA METRICS
AND HYPERBOLICITY

An area metric in four dimensions takes the following
block matrix Petrov form [9]

G½���½��� ¼ M�1 K
KT N

� �
; (A1)

where the antisymmetric index pairs [01], [02], [03], [23],
[31], [12] label, in this order, the basis in which the matrix
is given. The matrices M, K, N are 3� 3 matrices are
related to the area metric through

Mab ¼ G0a0b;

Ka
b ¼ 1

2
�0bmnG

0amn;

Nab ¼ 1

4
�0amn�0bpqG

mnpq;

(A2)

where � is the totally antisymmetric Levi-Civita symbol. If
M in the expression above is invertible, which at the end of
this section we will see to be the case if the corresponding
area metric leads to well-posed field equations, then
detðN � KTM�1KÞ � 0. This ensures the existence of
the object Tpqtu defined in (18), which can be shown to

be explicitly given by

Tabtu ¼ �2�tuf�abmððN � KTMKÞ�1Þfm: (A3)

The principal symbol of the linear field equations govern-
ing the dynamics for the electromagnetic field on area
metric backgrounds was found in [9] as the determinant
of the 6� 6 matrix

A�p� ¼ G0m0np0 � 2G0ðmnÞapa � 1
2 �nefG

efmapa

�mnapa �n
mp0

" #
:

(A4)

Using that for any n� n matrices A, B, C, D

det
A B
C D

� �
¼ detðAD� BCÞ if CD ¼ DC; (A5)

we can write the determinant of (A4) as the determinant of
a 3� 3 matrix as

detðA�p�Þ ¼ detðG0m0np2
0 � 2G0ðmnÞapap0 þGmanupapuÞ

¼ �p2
0PðpÞ; (A6)

where P is precisely the polynomial given in Eq. (3). Using
(A6), the polynomial P can now be expressed in terms
of the constitutive matrices M, K, N. After calculation,
one finds

PGðp0; ~pÞ ¼ ap4
0 þ bð ~pÞp3

0 þ cð ~pÞp2
0 þ dð ~pÞp0 þ eð ~pÞ;

(A7)

with coefficients

a ¼ � detðMabÞ;
bð ~pÞ ¼ �abcG

aclm
M Kb

l pm;

cð ~pÞ ¼ �ðNrfG
lrmf
M þ �abc�

tmrKb
t K

a
rM

cl þ 2Ke
aK

½m
e Ma�l

þ 2Kl
aK

½a
e Mm�eÞplpm;

dð ~pÞ ¼ �2�renð2NeaK
½m
r Ma�l � Km

r K
l
aK

a
e Þplpmpn;

eð ~pÞ ¼ �Nbf�
bmr�fns

�
1

2
MuvNrs � Ku

rK
v
s

�
pupmpvpn;

(A8)

where Gambn
M ¼ MabMmn �ManMmb. Using this expres-

sion, we find that a necessary condition for the well-
posedness of the initial value problem is that the matrix
Mab is invertible. Moreover, for an observer’s frame, in
which the coefficient bð ~pÞ ¼ 0 as explained in [4], the
matrices K and M satisfy

K½m
f Mn�f ¼ 0: (A9)

In this case, Eqs. (A8) reduce to

a ¼ � detðMabÞ;
bð ~pÞ ¼ 0;

cð ~pÞ ¼ �ðNrfG
lrmf
M þ �abc�

tmrKb
t K

a
rM

cl

þ 2Ke
aK

½m
e Ma�lÞplpm;

dð ~pÞ ¼ �2�renð2NeaK
½m
r Ma�l � Km

r K
l
aK

a
e Þplpmpn;

eð ~pÞ ¼ �Nbf�
bmr�fns

�
1

2
MuvNrs � Ku

rK
v
s

�
pupmpvpn:

(A10)

For area metrics for which there exists a frame such that
G0abc ¼ ��0abc, such as those considered from Sec. V
onwards, or equivalently Ka

b ¼ 
�a
b, the polynomial

PGðpÞ is further reduced to

PGðp0; ~pÞ ¼ �p4
0 detðMÞ � p2

0ðNmnG
imjn
M Þpipj

� 1

2
ðMijpipjÞðGbkslNbspkplÞ

¼ �p4
0 detðMÞ � p2

0ðNmnG
imjn
M Þpipj

� ðMijpipjÞðAdjNÞklpkpl: (A11)
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From the energy-distinguishing property of the area metric
spacetimes considered here, it follows that Pðp0; ~pÞ ¼ 0
does not have any solutions p0 ¼ 0 unless ~p ¼ 0. But then
the matrix Mab must be of definite signature. For suppose
that this is not the case, then one could find ~p � 0 such that
Mijpipj ¼ 0. That would imply extra zero solutions for

p0, in contradiction to the energy-distinguishing condition.

The same holds for the adjoint of N, and thus for N itself.
Thus, without loss of generality, we assume that M is
negative definite; then using Descarte’s rule of signs,
hyperbolicity of P implies that N must be positive definite.
The opposite definiteness of M and N can be shown to be
also sufficient for the hyperbolicity of (A11). This is indeed
the case for class I area metrics (33) with � ¼ � ¼ �.
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