Table S1. Codon usage of PCWDEs characterised in this study compared to those obtained from whole beetle transcriptomes, model insects (*T. castaneum* and *D. melanogaster*) and representatives of microbes (*Nocema Bombycis, Saccharomyces cerevisiae* and *Wolbachia*). The preferred codon(s) for each amino acid is highlighted in red.

#Codon (amino acid)	PCWDEs	C.maculatus	C.tremulae	G.viridula	L.decemlineata	S.oryzae	T.castaneum	D.melanogaster	Nosema	S.cerevisiae	Wolbachia
GCA (A)	0,287	0,346	0,352	0,361	0,348	0,322	0,329	0,314	0,27	0,29	0,387
GCC (A)	0,236	0,201	0,219	0,204	0,211	0,215	0,2	0,234	0,22	0,22	0,146
GCG (A)	0,161	0,132	0,116	0,128	0,127	0,145	0,197	0,187	0,15	0,11	0,11
GCT (A)	0,316	0,321	0,312	0,306	0,314	0,318	0,274	0,265	0,36	0,38	0,357
TGC (C)	0,414	0,392	0,38	0,362	0,376	0,351	0,361	0,483	0,26	0,37	0,503
TGT (C)	0,586	0,608	0,62	0,638	0,624	0,649	0,639	0,517	0,74	0,63	0,497
GAC (D)	0,433	0,381	0,346	0,347	0,366	0,373	0,407	0,416	0,26	0,35	0,273
GAT (D)	0,567	0,619	0,654	0,653	0,634	0,627	0,593	0,584	0,74	0,65	0,727
GAA (E)	0,65	0,66	0,68	0,682	0,678	0,689	0,698	0,611	0,72	0,7	0,668
GAG (E)	0,35	0,34	0,32	0,318	0,322	0,311	0,302	0,389	0,28	0,3	0,332
TTC (F)	0,477	0,358	0,386	0,41	0,387	0,315	0,251	0,327	0,26	0,41	0,316
TTT (F)	0,523	0,642	0,614	0,59	0,613	0,685	0,749	0,673	0,74	0,59	0,684
GGA (G)	0,376	0,337	0,356	0,364	0,359	0,341	0,305	0,286	0,4	0,22	0,33
GGC (G)	0,198	0,203	0,185	0,185	0,184	0,197	0,213	0,273	0,12	0,19	0,201
GGG (G)	0,178	0,167	0,186	0,169	0,177	0,17	0,192	0,214	0,22	0,12	0,145
GGT (G)	0,248	0,292	0,274	0,282	0,28	0,292	0,29	0,227	0,17	0,47	0,324
CAC (H)	0,44	0,387	0,372	0,366	0,378	0,377	0,43	0,443	0,31	0,36	0,366
CAT (H)	0,56	0,613	0,628	0,634	0,622	0,623	0,57	0,557	0,69	0,64	0,634
ATA (I)	0,312	0,358	0,339	0,355	0,335	0,366	0,314	0,337	0,33	0,27	0,377
ATC (I)	0,315	0,244	0,24	0,24	0,241	0,207	0,171	0,222	0,16	0,26	0,213
ATT (I)	0,373	0,398	0,421	0,405	0,424	0,427	0,515	0,441	0,51	0,46	0,41
AAA (K)	0,612	0,665	0,674	0,676	0,683	0,712	0,963	0,819	0,69	0,58	0,667
AAG (K)	0,388	0,335	0,326	0,324	0,317	0,288	0,037	0,181	0,31	0,42	0,333
CTA (L)	0,134	0,13	0,12	0,127	0,115	0,127	0,107	0,104	0,11	0,14	0,136
CTC (L)	0,14	0,107	0,117	0,12	0,121	0,093	0,086	0,124	0,06	0,06	0,095
CTG (L)	0,202	0,15	0,146	0,148	0,147	0,125	0,094	0,151	0,07	0,11	0,11
CTT (L)	0,158	0,187	0,184	0,179	0,19	0,182	0,165	0,175	0,21	0,13	0,205

TTA (L)	0,161	0,207	0,195	0,188	0,196	0,27	0,325	0,223	0,38	0,28	0,259
TTG (L)	0,206	0,219	0,238	0,239	0,231	0,203	0,222	0,223	0,17	0,29	0,195
ATG (M)	1	1	1	1	1	1	1	1	1	1	1
AAC (N)	0,435	0,398	0,362	0,356	0,382	0,367	0,334	0,373	0,27	0,41	0,338
AAT (N)	0,565	0,602	0,638	0,644	0,618	0,633	0,666	0,627	0,73	0,59	0,662
CCA (P)	0,398	0,389	0,405	0,401	0,39	0,379	0,345	0,354	0,33	0,42	0,398
CCC (P)	0,188	0,167	0,186	0,167	0,178	0,171	0,191	0,213	0,13	0,15	0,152
CCG (P)	0,16	0,13	0,117	0,131	0,135	0,15	0,207	0,202	0,16	0,12	0,104
CCT (P)	0,255	0,314	0,291	0,301	0,297	0,3	0,257	0,231	0,38	0,31	0,346
CAA (Q)	0,629	0,591	0,616	0,619	0,615	0,62	0,702	0,598	0,69	0,69	0,644
CAG (Q)	0,371	0,409	0,384	0,381	0,385	0,38	0,298	0,402	0,31	0,31	0,356
AGA (R)	0,252	0,342	0,372	0,359	0,346	0,339	0,261	0,225	0,48	0,48	0,406
AGG (R)	0,219	0,208	0,211	0,19	0,198	0,186	0,144	0,16	0,24	0,21	0,211
CGA (R)	0,167	0,146	0,151	0,175	0,165	0,158	0,192	0,182	0,1	0,07	0,104
CGC (R)	0,087	0,087	0,071	0,073	0,073	0,084	0,117	0,151	0,04	0,06	0,093
CGG (R)	0,134	0,084	0,086	0,081	0,09	0,093	0,115	0,14	0,06	0,04	0,066
CGT (R)	0,141	0,134	0,109	0,122	0,128	0,14	0,17	0,142	0,08	0,14	0,12
#Codon (amino acid)	PCWDEs	C.maculatus	C.tremulae	G.viridula	L.decemlineata	S.oryzae	T.castaneum	D.melanogaster	Nosema	S.cerevisiae	Wolbachia
AGC (S)	0,147	0,14	0,12	0,108	0,114	0,123	0,119	0,169	0,07	0,11	0,168
AGT (S)	0,17	0,185	0,177	0,181	0,178	0,193	0,2	0,171	0,25	0,16	0,195
TCA (S)	0,25	0,228	0,253	0,2 61	0,243	0,21	0,225	0,187	0,21	0,21	0,221
TCC (S)	0,15	0,139	0,146	0,133	0,149	0,142	0,125	0,156	0,08	0,16	0,121
TCG (S)	0,111	0,094	0,09	0,107	0,102	0,106	0,14	0,143	0,09	0,1	0,06
TCT (S)	0,172	0,214	0,214	0,211	0,214	0,226	0,191	0,174	0,3	0,26	0,235
ACA (T)	0,306	0,367	0,37	0,381	0,36	0,361	0,365	0,347	0,32	0,3	0,322
ACC (T)	0,222	0,2	0,212	0,184	0,198	0,192	0,17	0,199	0,14	0,22	0,204
ACG (T)	0,186	0,142	0,124	0,133	0,134	0,149	0,178	0,179	0,19	0,14	0,115
									1		
ACT (1)	0,287	0,291	0,294	0,302	0,308	0,298	0,287	0,275	0,35	0,35	0,359
GTA (V)	0,287 0,236	0,291 0,273	0,294 0,255	0,302 0,269	0,308 0,254	0,298 0,28	0,287 0,245	0,275 0,225	0,35 0,33	0,35 0,21	0,359 0,317

GTG (V)	0,23	0,213	0,224	0,222	0,205	0,186	0,205	0,257	0,18	0,19	0,201
GTT (V)	0,318	0,327	0,341	0,326	0,355	0,356	0,378	0,322	0,35	0,39	0,351
TGG (W)	1	1	1	1	1	1	1	1	1	1	1
TAC (Y)	0,464	0,378	0,341	0,346	0,356	0,348	0,348	0,351	0,38	0,44	0,335
TAT (Y)	0,536	0,622	0,659	0,654	0,644	0,652	0,652	0,649	0,62	0,56	0,665
TAA (*)	0,385	0,384	0,355	0,333	0,37	0,479	0,544	0,458	0,7	0,47	0,466
TAG (*)	0,193	0,243	0,221	0,226	0,216	0,226	0,179	0,212	0,1	0,23	0,241
TGA (*)	0,422	0,373	0,424	0,441	0,413	0,295	0,277	0,33	0,2	0,3	0,293

Table S2. Codon usage of PCWDEs characterised in this study compared to those obtained from whole beetle transcriptomes, model insects (*T. castaneum* and *D. melanogaster*) and representatives of microbes (*Nocema Bombycis*, *Saccharomyces cerevisiae* and *Wolbachia*). The data are expressed in relative synonymous codon usage (RSCU) values. RSCU values lower than 1 indicate that a codon is avoided and values higher than 1 indicates the given codon is preferred. A higher RSCU value indicates a higher preference for the particular codon. The preferred codon(s) for each amino acid is highlighted in red.

#Codon (amino acid)	PCWDEs	C.maculatus	C.tremulae	G.viridula	L.decemlineata	S.oryzae	T.castaneum	D.melanogaster	Nosema	S.cerevisiae	Wolbachia
GCA (A)	4	4	5	5	5	3	2	5	3	5	7
GCC (A)	2	2	1	1	1	1	1	3	2	3	1
GCG (A)	1	1	0	0	0	0	0	1	0	0	0
GCT (A)	4	4	3	3	3	3	2	4	7	10	7
TGC (C)	6	6	5	5	5	5	3	8	1	2	15
TGT (C)	17	17	18	20	19	19	13	17	112	8	7
GAC (D)	7	7	4	5	4	4	3	4	4	10	2
GAT (D)	19	19	18	19	17	16	9	13	38	37	16
GAA (E)	24	24	25	26	25	22	14	18	55	45	20
GAG (E)	6	6	4	4	4	3	2	5	7	6	3
TTC (F)	9	9	12	12	12	7	4	6	4	9	7
TTT (F)	21	21	38	36	40	46	43	37	40	26	45
GGA (G)	11	11	7	6	6	6	2	4	9	2	3
GGC (G)	2	2	1	1	1	1	1	4	0	1	1
GGG (G)	2	2	1	1	1	1	0	2	2	0	0
GGT (G)	3	3	3	3	3	3	2	2	4	11	3
CAC (H)	6	6	5	5	5	4	3	6	1	3	5
CAT (H)	17	17	18	20	18	16	10	16	12	13	17
ATA (I)	6	6	12	13	12	14	5	10	9	5	15
ATC (I)	6	6	4	4	4	3	1	3	2	5	4
ATT (I)	11	11	15	15	15	16	28	13	42	15	16
AAA (K)	28	28	41	38	41	47	325	75	67	41	45
AAG (K)	9	9	6	6	6	6	0	3	10	15	11
CTA (L)	1	1	1	1	1	1	0	1	1	1	2

CTC (L)	1	1	1	1	1	0	0	1	0	0	1
CTG (L)	3	3	2	2	2	1	0	2	0	1	1
CTT (L)	1	1	3	3	3	3	2	3	5	1	5
TTA (L)	1	1	3	3	3	9	8	5	18	8	9
TTG (L)	3	3	5	5	5	5	4	5	2	9	4
ATG (M)	18	18	19	20	18	16	10	16	22	20	16
AAC (N)	10	10	8	8	9	9	7	8	5	12	8
AAT (N)	27	27	31	31	30	32	28	27	43	35	33
CCA (P)	8	8	7	6	7	6	3	7	3	9	6
CCC (P)	1	1	1	1	1	1	0	2	0	1	0
CCG (P)	1	1	0	0	0	0	1	2	0	0	0
CCT (P)	3	3	3	3	3	3	1	2	6	4	5
CAA (Q)	27	27	24	23	23	21	16	21	18	13	22
CAG (Q)	8	8	7	7	7	6	2	7	2	2	6
AGA (R)	5	5	10	10	9	9	3	3	11	21	9
AGG (R)	3	3	2	2	2	2	0	1	2	4	2
CGA (R)	2	2	1	1	1	1	1	2	0	0	0
CGC (R)	0	0	0	0	0	0	0	1	0	0	0
CGG (R)	1	1	0	0	0	0	0	1	0	0	0
CGT (R)	1	1	0	0	1	1	1	1	0	2	0

Species	Chrysomela tremulae	Leptinotarsa decemlineata	Gastrophysa viridula	Callosobruchus maculatus	Sitophilus oryzae	Diabrotica virgifera	Ips pini	Dendroctonus ponderosae	Diaprepes abbreviatus	Hypothenemus hampei
Common name	Poplar leaf beetle	Colorado potato beetle	Green dock beetle	Cowpea weevil	Rice weevil	Western corn rootworm	Pine engraver	Mountain pine beetle	Diaprepes root weevil	Coffee berry borer
Food	Poplar leaves	Potato leaves	Dock leaves	Pulses/ beans	Rice grains	Maize roots	Pine xylem	Pine xylem	Citrus roots	Coffee beans
Tissue	Larval midgut	Larval midgut	Larval midgut	Whole larvae	Adult midgut	Larval midgut + adult head	Adult midgut	Adult midgut	Whole larvae	Larval midgut
Sequencing	454 FLX	454 Titanium	454 Titanium	454 Titanium	454 Titanium	Sanger	Sanger	Sanger	Sanger	Sanger
Number of reads	264,698	839,061	1,234,472	909,444	926,752	17,782	1,671	152,724	5,219	2,032
Number of unique sequences after assembly	10,910	21,692	20,817	32,584	22,989	7,686	618	17,528	1,987	854
Number of contigs	-	-	-	-	-	3,513	125	12,259	398	177
Number of singletons	-	-	-	-	-	4,173	493	5,269	1,589	677

Table S3. Summary statistics for beetle EST datasets.

Family			Chrysomelidae					Curculionidae		
Species	Chrysomela tremulae	Leptinotarsa decemlineata	Gastrophysa viridula	Callosobruchus maculatus	Diabrotica virgifera	Sitophilus oryzae	Ips pini	Dendroctonus ponderosae	Diaprepes abbreviatus	Hypothenemus hampei
Number of unique sequences	23,238	21,692	20,817	32,584	7,686	22,989	618	17,528	1,987	854
Cellulolytic enzymes:										
Endo-β-1,4-glucanase (GH45)	2	7	1	-	4	5	6	9	5	2
Cellulose 1,4-β- cellobiosidase (GH48)	2	3	3	-	1	2	3	6	1	2
Pectolytic enzymes:										
Endopolygalacturonase (GH28 subfamily A)	9	10	7	-	3	7	2	19	4	2
Endopolygalacturonase (GH28 subfamily B)	-	-	-	7	-	-	-	-	-	-
Pectin methylesterase (CE8)	-	-	-	-	-	5	4	7	2	-
Rhamnogalacturonate lyase (PL4)	-	-	-	-	-	-	3	5	-	-
Other PCWDEs:										
β-mannanase (GH5 undefined subfamily)	-	-	1	4	-	-	-	-	-	-
β-mannanase (GH5 subfamily 7)	-	-	-	-	-	-	-	-	-	2
Total	13	20	12	11	8	19	18	46	12	8

Table S4. Families of beetle plant cell wall degrading enzymes identified in coleopteran-derived EST datasets.

Table S5. cDNAs encoding beetle plant cell wall degrading enzymes identified from public databases. Genbank accession numbers are provided for each sequence.

Super-family				Curculionoidea				
Family	Chrysor	nelidae		Cerambycida	ae	Curculionidae		
Species	Phaedon cochleariae	Gastrophysa atrocyanea	Apriona germari	Psacothea hilaris	Oncideres albomarginata chamela	Otiorhynchus sulcatus	Hypothenemus hampei	Sitophilus oryzae
Common name	Mustard leaf beetle	Unknown	Mulberry longicorn beetle	Yellow-spotted longicorn beetle	Unknown	Black vine weevil	Coffee berry borer	Rice weevil
Cellulolytic enzymes:								
Endo-β-1,4-glucanase (GH5 subfamily 2)	-	-	AAX18655.1	BAB86867.1	ADI24131.1	-	-	-
Endo-β-1,4-glucanase (GH45)	CAA76931.1	-	AAR22385.1 AAU44973.1	-	ADI24132.1	-	-	-
Cellulose 1,4-β-cellobiosidase (GH48)	-	BAE94320.1 BAE94321.1	-	-	-	CAH25542.1	-	-
Pectolytic enzymes:								
Endopolygalacturonase (GH28)	CAA76930.1	-	-	-	-	-	-	AAG35693.1
Pectin methylesterase (CE8)	-	-	-	-	-	-	-	AAW28928.1
Other PCW degrading enzymes:								
β-mannanase (GH5 subfamily7)	-	-	-	-	-	-	ACU52527.1	-
Xylanase (GH11)	CAA76932.1	-	-	-	-	-	-	-

Figure S1. Predicted amino acid alignment of GH48 beetle enzymes. The amino acid sequence of the cellulose Cell48F from the bacterium *Clostridium cellulolyticum*, for which the crystal structure has been resolved, is used as a reference sequence (1). The catalytic residues (predicted from the *C cellulolyticum* sequence) are marked with arrows. Glu44 (numbering according to the *C. cellulolyticum* sequence) acts as the catalytic nucleophile/base, and Glu55 is the catalytic proton donor. Note that, in *G. viridula* Cellbio-3, the residue corresponding to the catalytic nucleophile/base is an Asp residue rather than a Glu.

Ccellulolyticum_ref_seg Ctremulae_Cellbio-1 Ctremulae_Cellbio-2 Gviridula_Cellbio-2 Gviridula_Cellbio-3 Lidecemlineata_Cellbio-2 Lidecemlineata_Cellbio-2 Lidecemlineata_Cellbio-3 Soryzae_Cellbio-1 Soryzae_Cellbio-1 Dpondercose_Cellbio-2 Dpondercose_Cellbio-2 Dpondercose_Cellbio-4 Dpondercose_Cellbio-4 Dpondercose_Cellbio-4 Dpondercose_Cellbio-5 Dpondercose_Cellbio-6	1 ASSPANKY 1			SVII O.U. TEKC PNTS TINE OF TEKC PNTS TEKC TINE OF TEKC TEKC TEKC TINE OF TEKC <td< th=""><th>MSR DANS AP FOD SA FLIDTSC N M.M. SD - HAR SD - HAR SD - HAR SD - HAR SG SD - HAR SG SD - HAR SG SD - HAR </th><th></th><th>ARA 168 15 S L 166 16 S L 167 16 S L 167 16 S L 166 16 S L 16</th></td<>	MSR DANS AP FOD SA FLIDTSC N M.M. SD - HAR SD - HAR SD - HAR SD - HAR SG SD - HAR SG SD - HAR SG SD - HAR SD - HAR SD - HAR SD - HAR SD - HAR		ARA 168 15 S L 166 16 S L 167 16 S L 167 16 S L 166 16 S L 16
Ccellulolyticum ref seq Ctremulae_Cellblo-1 Ctremulae_Cellblo-2 Gviridula_Cellblo-2 Gviridula_Cellblo-3 Gviridula_Cellblo-3 Lidecemlimeta_Cellblo-3 Lidecemlimeta_Cellblo-3 Soryzae_Cellblo-1 Soryzae_Cellblo-1 Bponderosae_Cellblo-2 Bponderosae_Cellblo-2 Bponderosae_Cellblo-3 Bponderosae_Cellblo-4 Bponderosae_Cellblo-4 Bponderosae_Cellblo-4 Bponderosae_Cellblo-4	169 DCTSK YI 167 DAD = 1 168 YTS = 1 168 YTS = 1 168 PCA = 1 168 PCA = 1 168 PCA = 1 167 PCA = 1 167 PCA = 1 167 PCA = 1 167 PCA = 1 165 PCA = 1 150 P						G 201 G 33 G 201 G 33 G 201 G 33 G 201 G 33 G 201 G 201 G 201 G 2
Ccellulolyticum_ref_seq Ctremulae_Cellbio-1 Ctremulae_Cellbio-2 Gviridula_Cellbio-2 Gviridula_Cellbio-3 Ldecemlinesta_Cellbio-2 Ldecemlinesta_Cellbio-1 Soryzae_Cellbio-1 Soryzae_Cellbio-1 Bponderosae_Cellbio-3 Dponderosae_Cellbio-5 Dponderosae_Cellbio-5 Dponderosae_Cellbio-5 Dponderosae_Cellbio-5 Dponderosae_Cellbio-5 Dponderosae_Cellbio-6	334 TDANFK 5 338 HUDAMS UP 411 NEPELS 0 431 NEPELS 0 431 NEPELS 0 433 NUTAMS 5 338 NUTAMS 5 339 NUTAMS 5 339 NUTAMS 5 340 OUPTIS 5 340 OUPTIS 5 340 OUPTIS 5 341 OUPTIS 5 341 NUTAMS 5 3		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2			Mark Mark <th< td=""><td>IT I V SO3 SI V 496 V 499 SI V 494 SI V 514 SI V 514</td></th<>	IT I V SO3 SI V 496 V 499 SI V 494 SI V 514
Ccellulolyticum ref seq Ctremulae_Cellbio-1 Ctremulae_Cellbio-2 Gviridula_Cellbio-2 Gviridula_Cellbio-2 Gviridula_Cellbio-2 Udecemlineata_Cellbio-2 Ldecemlineata_Cellbio-1 Soryzae_Cellbio-1 Soryzae_Cellbio-2 Dponderosae_Cellbio-2 Dponderosae_Cellbio-2 Dponderosae_Cellbio-2 Dponderosae_Cellbio-2 Dponderosae_Cellbio-3 Dponderosae_Cellbio-4 Dponderosae_Cellbio-4 Dponderosae_Cellbio-4	504 1 497 1 500 A 497 4 499 5 499 5 499 5 499 5 499 5 499 5 499 5 497 4 497 4 497 6 472 5 473 8 497 7 497 7	NN 505 I Y Open NIL YE YE YE YE NIL YE YE YE YE YE DL YE YE	Karove D S OBC 17 OAP 17 OAP 17 BE 17 B				629 621 624 624 620 621 623 623 623 622 619 621 620 597 621 597 621 599

Figure S2. Predicted amino acid alignments of the beetle pectin methylesterases (CE8). The amino acid sequence of the pectin methylesterase from the fungus *Erwinia chrysanthemi*, for which the crystal structure has been resolved, is used as a reference sequence (2). The catalytic residues (predicted from the *E. chrysanthemi* sequence) are marked with arrows. Asp199 (numbering according to the *E. chrysanthemi* sequence) acts as the catalytic nucleophile/base, and Asp178 is the catalytic proton donor. Note that the catalytic nucleophile/base in *S. oryzae* Pectinesterase-5 is replaced by an Asn residue, suggesting a potential lack of catalytic activity for this protein.

Echrysanthemi_ref_seq Soryzae_Pectinesterase-1 Soryzae_Pectinesterase-2 Soryzae_Pectinesterase-3 Soryzae_Pectinesterase-4 Soryzae_Pectinesterase-5 Dponderosae_Pectinesterase_2 Dponderosae_Pectinesterase_3 Dponderosae_Pectinesterase_4 Dponderosae_Pectinesterase_5 Dponderosae_Pectinesterase_5 Dponderosae_Pectinesterase_6 Dponderosae_Pectinesterase_7	1ATTYNAVVSKSSD 1DQTAPCTASR PII TASKSNYFTTATYLQGWSFPSIST-SKADYTVGN 1 -DHOTYPGSASRPII SDSEAQVTETNYLGGWSFPSIST-SKADYTVGN 1 YHNNLYCGVSSFVLSNSBAQNYIELEYLQGWLFESIHL-SEPDYSVGY 1 -SHQNYPGTETRPILSDEASKYQEENIFGDWEPEEIIIPDEPDYIKA 1 -DHQEYPCTETRPVLSDEASKYQEENIFGDWEPEEIIIPDEPDYIKA 1 -DTAPGTSTRPIISTEASSYAKSNYLQGWSFSTIST-STADYTVGS 1TQTSPCTSSFPILSTEASYTKAKYLQGWSFSTIST-STADYTVGS 1LEYPGTNNRPILSEEASRYTIENYLSGWEPEEIEIPDQPHVVSE 1 -SHQTYPCTSTPVLSNSBAEILSEENYLQGWSFESIST-SSADYTVGS 1DQTPCTSTRPIITSEASYNQKSNYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSNSBAEILSEENYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWSFESIST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKEYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLQGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLGGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLGGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLGGWFFESUST-SSADYTVGS 1DUTPCTSTPVLSBAASYTKESYLGGWFFESUST-SSADYTVGS 1DUTPCTSTPUST	KTFKTIADAIASAPAGSTPFVILIKNUVI YNTIQAAVNAAINTG-GTTRKYIKINAGTY QQFSSVOQAVNEAINAG-GTSRKYIRIEPGTY EPYSSIGTAINVALSVN-ISROOYIYIKNEIY ESIQESVNAAIKAGNSSTRKYIKIEAGVY ESIQEVVNQAFLDG-GVDRKFIKIEPGTY YSTIQAAVNAAINAG-GTTRKYIKIPAGTY QSIQAVNEAIQSGSSAFRTYIKIEPGHY COTYDIQQAVNAAINAG-GTSRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTSRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTSRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTSRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTNRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTNRKYIKIPAGTY -GYSTIQAAVNAAINAG-GTNRKYIKIPAGTY DSIQKVVNDAIRDSDGTRAIYIKIQAGHY	VERLT TRNNLH KGESRNGAVIAAATAA	G 74 G 121 NPNG 126 NPNG 128 NPEG 124 NPNG 124 G 121 NEDG 123 NEDG 127 G 122 NEDG 127 NENG 127
Echrysanthemi_ref_seq Soryzae_Pectinesterase-1 Soryzae_Pectinesterase-2 Soryzae_Pectinesterase-3 Soryzae_Pectinesterase-4 Soryzae_Pectinesterase-5 Dponderosae_Pectinesterase_2 Dponderosae_Pectinesterase_3 Dponderosae_Pectinesterase_4 Dponderosae_Pectinesterase_5 Dponderosae_Pectinesterase_6 Dponderosae_Pectinesterase_7	75 TLKSDGSK-WGTAGSSTITISAKDFSAQSLTIRNDFDFPANQAKSDSDS 122 SLFNSADPAYSMYNSCAGKAGNA-NLGTSCSSVVWINADDVQVTKITFEN PS 129 TKYKTGDPAYSMYEKCAGNA-NLGTSCSSVWINADDVQVTKITFEN PS 129 TKYKTGDPAYSMYEKCAGNA-NLGTSCSSVWINADDVQVTKITFEN PS 125 ARVQEGDPAWDIYRCGHNGYTGTNCSAVFVVRSDQFDLMRITVENGA 125 ERVQEGDPAWDIYNCGATKSGNLG-SCATVLWIENDEFMMTLVTVONTA 122 SLFSSGDPAYSIYSSCASKS-ALGTTCSSVFWVKAAAVQIVNLTIEN SS 124 VNYQEGDPAWELYKSCAIKEALGIECSAVFWVQSNDFDLQGVTIMIGA 128 SRVSSGDPGYKLYKSCASKS-ALGTSCSTVFWVQSNDFDLQGVTIMIGAT 128 SRVSSGDPGYKLYKSCASKS-ALGTSCSSVFWVKAASVQIVNLTIEN SS 128 AVYKDGDPAWSMFNYCAQKS-ELGTSCTSIFWAQNTDLEVAYITIEN TS 128 AVYKDGDPAWSMFNYCACKS-ELGTSCTSIFWAQNTDLEVAYITIEN TS 124 ERVQEDDPAWDLYNSCASKTGVIG-SCATVLWVNSPEFQLQGVTIMIGA	SKIKDTQAVALYVTKSGDRAYFKDVSLVGYQDT (NTGDQQAVALQTNSDQIQIHNARLLGHQDT) SAQQAVAVQTNGKNIHFEDVQFLGFQDT (NQQAVAVQTNGDKVQFDHVNIKGFQDS) TDQAQVAVIDADKVHLMSSNFLGGDT (NSGTDQAVALQTNADKIQIDNCRLLGHQDT) (NSGTDQAVALQTNADKIQIDNCRLLGHQDT) SSNGYGQSVALKTDADKVQINNARLLGHQDT (NTGTDQAVAVQTNADKVQINNARLGHQDT) (NTGTDQAVALQTNADKVQIENSRLGHQDT) (NTGTDQAVALQTN-SDKVQIENSRLGHQDT) (NTGTDQAVALQTN-SDKVQIENSRLGHQDT) (NTGTDQAVALQTN-SDKVQIENSRLGHQDT) (NTGTDQAVALQTN-SDKVQIENSRLGHQDT) (DQQAVARTDGDQQNFDHVHFYGFQDT)	YVSGGSFFSDCRISGTVDFIFGDGTALFNNCDLV YACSGSSSVESYYTNTYIEGDIDFVFGGGSAIFESCTFY YLNGSGRYFINKSLITGDVDFVFGGSATAIFLNTTI FYLNGNGEQRIHIHGSYVEGQTDIIVGGAASVENNCTVK YLGAHPEQRIHIHGSYVEGQTDIIVGGGAEIHLSTVK GSGGGSTVQRSHVTDTYIAGDVDFVFGGSTVFEGCTFH CSSGGGTTVQRSHVSDCYIAGDVDFVFGGSTVFEGCTFH YAGSNNDGVQRYVIDNTYIEGDVDFVFGGATVFTGVTFK YSGGGGTTTQRSHVTNTYIEGDVDFVFGGATVFTGVTFK YSGGGGTTTQRSHVTNTYIEGDVDFVFGGATVFFGCTFH LAGGTRVYFSRFTIKGDVDFIGGSSAVEDNAQII GGLQDNGSQLERVFVERCYVEGEVDYVFGSASVEDNAQII	/SRYR 195 /VK 244 /GR 240 /AR 243 /VV 244 /VI 241 /AL 243 /TV 243 /TV 246 /AV 251 /AK 244 /GR 241 /TV 243
Echrysanthemi_ref_seq Soryzae_Pectinesterase-1 Soryzae_Pectinesterase-2 Soryzae_Pectinesterase-3 Soryzae_Pectinesterase-4 Soryzae_Pectinesterase-5 Dponderosae_Pectinesterase_2 Dponderosae_Pectinesterase_3 Dponderosae_Pectinesterase_4 Dponderosae_Pectinesterase_5 Dponderosae_Pectinesterase_5 Dponderosae_Pectinesterase_6	196 ADVKSGNVSGYLTAPSTNINQKYGLVITNSRVIRESDSVPAKSYGLGRP 245ADRRSDTÄVVFAPDTDPHKMYGYFYKSTTGFSAWSSSKKAYLGRA 241GDRPRTSGLIFAPSTDPNKKYGFLVINSLISAISNIEQRHGLSLARA 244DDRPRNTAIIFAPSTPPTKKYGFLVECTISTSGNISESTGLHLARA 245GKRGKNTAIIFAPSTPPTKKYGFLVIDSVITGDEVYLGSNKTSLARA 242GNENIEHPVIFAPSTPATQTFGFLVNSTLTGDSYLGSNKVYLGRA 244SGR-STEAVVFAPDTDFSISYGYLVUDSTITGTSFATSKEVHLARS 244AGR-STEAVVFAPDTDFSISYGYLVUDSTITGTSFATSKEVHLARS 252SDRHPSGAIVFAPSTVPGNSYGFLAINSVITADSTFKSSQKVNLARA 245ADR-NSEAVVFAPETDPSQTYGYLVVSSTITGDNAVADSRKVYFAS 242GDR-RDTVFAPDTDPSISYGYLVDSSTITGNAVADSRKVYFAS 242GDR-RDTVTVFAPTDPSQTYGYLVDSSTITGNAVADSRKVYFAS	T HPTTTFSDGRYADPNAIGQTVFLNTSMDNHI- VDSGVSSSSAYVPGTSPNGQLI KESTTDGI IN IDSGV-SSGYVPGVSPNGQLVIRESTDGINV VDSGV-SGSYVPGVSPNGQLVIRESTISKGLNV VDSGIEKSEDYVPGVSPNGQLVIRESTDGVVS VDSGIEKSEDYVPGTSPNGQLVIRESTDGVVS VDSGVSSSDYVAGTSPNGQVVIRESTDGVVS VDAGV-SAGDYVAGSSPNGQVVIRESTDGUVS VDAGV-SAGDYVAGSSPNGQVVIRESTDGI IN VDAGV-SAGDYVAGSSPNGQVVIRESTDGI IN VDAGSSADLYPGESPNGQVVIRESTDGVIP VDSTSTANGQVVIRESTDCVIN	T GWDKMSGKDKNGNTIWFNPEDSRFFYKSYGAGA ISGPWT-TATSGRFYGGNNANSRDINNDNYN FWEYNNSGNGA /DAPYS-TSTSGREFNTDINTNRIDDNYNNR FWEYNNSGNGA /DQPYTAAATSGRPFMCNIQKNRDIDDNYNNR FWEYDNYDDE- /DQPYTAAATSGRPFSTDIKTDRNIDDNYNNR FWEYNNYGDDA /EQPYAPTSTSGRLFSTDLKEDRDIDDNTHNR FWEYKNYGDNA TTAPYT-AATSGRAYSGDASSRNINNNSYNF FWEYGNSGDGA TTAPYT-TATSGRAYSGDASSSNINNNSYNF FWEYGNSGDGA ADAPYA-TSTSKRAYSGNNDTSRDIDDNTHNR LWEYNNRG IGA ADAPYA-TSTSKRAYSGNNDTSRDINDTYNR FWEYDNTCDGA YKAPYT-TATSGRYSGNAGSSRNINDCNYNR FWEYDNTCDGA YKAPYT-TATSGRAYSGNAGSSRNINDCNYNR FWEYNTCNAA /DAPD-TAAGGRAYAGNANTNRNIDDANYNR FWEYKNTCDGA	311 366 361 359 367 364 364 364 369 372 365 352 366

Figure S3. Predicted amino acid alignments of the beetle β -mannanase enzymes from a novel, unassigned, GH5 subfamily. The amino acid sequence of the β -mannanase from the Blue Mussel *Mytilus edulis*, for which the crystal structure has been resolved, is used as a reference sequence (3). The catalytic residues (predicted from *M. edulis*) are marked with arrows. Glu308 (numbering according to the *M. edulis* sequence) acts as the catalytic nucleophile/base, and Glu177 is the catalytic proton donor.

Medulis_ref_seq Cmaculatus_man-1 Cmaculatus_man-2 Cmaculatus_man-3 Cmaculatus_man-4 Gviridula_man-1	1 AAVRLSVSGTNLNYNGHHIFLSGANQAWVNYARDFGHNQYSKGKSTFESTLSDMQSHGGNSVRVWLHIEGESTPEFDNNGYVTGID-NTLISDMRAY HAAQRHNILIFFTLWNGAVKQST 1FITIRNNSFYYGEDRVFLSGANIAWINFAEDFGSGGYAKVRSSYESAIDDISSHGGNVIRVWLHADGRWSPKWDKDGFATGEDTQSLIDDLGLMLDYAASKNVFVFITLWTLEGT 1FISVRNTSFYYGNDKVFLSGANLAWIYFGSDFGSGGYAKVRSAYESAIDDISSHGGNAMRVWLHADGRYSPKWDQDGFATGEDTQSLIDDLGLMLDYAASKNVFVFITLWTLEGT 1FISVRNTSFYYGNDKVFLSGANLAWIYFGSDFGSGGYAKVRSAYESAIDDISSHGGNAMRVWLHADGRYSPKWDQDGFATGEDTQSLIEDLGLMLDYAASKNVFVFITLWTLEGT 1FISVRNTSFYYGKDKVFLSGANIAWFNFARDFGSGGYYQVRSRFETAINEISSNGGNVIRVWVHTDGQWSPKWDQNGFATGEDTQSLIEDLGLMLDYAASKNVFVIVLTLWTLEGT 1FIRVQDKKLFYNNDQVFLSGANIAWFNFARDFGSGGYYQVRSRFETAINEISSNGGNVIRVWVHTDGQWSPKWDANGFATGEDTQSLIQLGLMLDYAASKNVFVIVLVLWNLDVT 1FIRVQDKKLFYNNDQVFLSGANIAWFNFARDFGSGAYDYVKPRFEQAIDEISNAGGNVIRVWVHIDGQWSPKWDANGFATGEDTPSLINELGQLLDHAAQRNVFVIFTLWDLNVT 1FIRVQDNALYYNNDKVFLSGANIAWFNFARDFGSGAYSNVKTNYQQALDEISQAGGNSIRVWVHIDGQWSPKFDSEGYATGSDTDSLISDLGELLDYAEQKNVFVILCLWNLAVA	120 115 115 115 115 115
Medulis_ref_seq Cmaculatus_man-1 Cmaculatus_man-2 Cmaculatus_man-3 Cmaculatus_man-4 Gviridula_man-1	121 HYRLNCLMVDTRKLQSYIDHALKPMANALKNEKALGGWDIMNEFECEIKPGESSSEPCFDTRHLSGSGAGWAGHLYSAQEIGRFVNWQAAAIKEVDPGAMVTVG-SWNMKADTDAMGFHNL 116 PKPMMHLYQEDRLQSYLDRVLKPLVVALRDKKALAGWDLVNEPMGSISQTQVDPNPCYDTHHKDSGAGWAGKTIDFRLVLKLINWHADAIKSVVPEALLSNAENGELLTTNVCEKCRDH 116 PKPMMHLYQEDRLQAYLDRVLKPLVAGLKDKKALAAWDLVNEPMGSLSQTHKDPNPCYDTTHLKDTGAGWANETIEYEKILKLINWHADAIKSVDPKALVTSADNGEFTTTTVCEKCRDH 116 PQPMLHLYTEDDKLQAYLDRVLKPLVAGLKDKKALAAWDLVNEPMGSLSQTHKDPNPCYDTTHLKDTGAGWANETIEYEKILKLINWHADAIKSVDPKALVTSADNGEFTTTTVCEKCRDH 116 PQPMLHLYTEDDKLQAYLDRVLKPLVAGLKDKKALAAWDLVNEPMGSLSQWQQDPNPCYDTTHLKDTGAGWAGTTINYQNILKLINWHADAIKSVDPKALVTNGESGEFTTTTICEKCRDH 116 PRQMLHLYSQPDRLQSYLDKVLKPLVAALKDKPALAAWDLVNEPHGSLSQWQQDPNPCYDTTHLKDTGAGWAGTTINYQNILKLINWHADAIKSVDPKALVTNGESGEFTTTTICEKCRDH 116 PRQMLHLYSQPDRLQSYLDKVLKPLVAALKDKPALAAWDLVNEFLASITETQRDINPCFDTTHLKYSGAGWSGAHLLLKDILRFINWHADAIKFVDPKALCTIGGAGEWLTTNVSPVTRDH 116 PTKMLFLYTDDAKLQSYLEKVLKPMAAGLKDKKALAAWDIINEFIGSLTQGLTDSNPCYDTNNLINSGADWTNVHLKPKDVLKFINLHADAIKSADPKALVTVGESSELTATTICEKCRD	240 236 236 236 236 236
Medulis_ref_seq Cmaculatus_man-1 Cmaculatus_man-2 Cmaculatus_man-3 Cmaculatus_man-4 Gviridula man-1	241 YSDHCLVKAGGKQSGTLSFYQVHTYDWQNHF-GNESPFKHSFSNFRLKKFMVIGEFNQEHGAGMSSESMFEWAYTKGYSGAWTWSRTDV-SWNNQLRGMQHLKSRTDHGQVQFGL 237 YTDECLIGAGGRANGTIDFYAMHSYTWEGRF-APTSPFLHNFDFYKSKKFILMQEFSTTITESHNASWNYRHIYEGDYVGIMSWQYNQWGKWVDTKESMFEGMGAIRNLTSHGKINIKL 237 YTDECLIGAGGRAKGTIDFYALHSYTWEGRY-QPTSPFKHNFDFYNSKKFYLMEEFSTTNSESHSPSWNYHHIYEGGFGGILSWQYNQWGKWVDSKESMFEGMASIRNLTSHGKIDIKL 237 YSDECLIGAGGRAKGTIDFYAHHSYTWEGRY-QPTSPFKHNFDFYKKNKPFVVEEFSTTNSESHSPSWNYHHIYEGGFGGILSWQYNQWGKWVDSKESMFEGMASIRNLTSNGKIDIKL 237 YSDECLIGAGGRAKGTIDFYAMHSYTWEGRY-QPTSPFKHNFDFYKKNKPFVVEEFSTTNSESHSPSWNYHHIYEGGFGGILSWQYNQWGKWVDSKESMFEGMASIRNLTSNGKIDIKL 237 YTDACLIAAGGRQLGTLDMVMVHTYTFQGRFVSDTCPFKKRFLDYHTTKPMVIEEFSTACNECHDAVANYRYLYDSGYSGALAFQYNGPGQCVDDHPVMFAGMSAIRNLNYNGRIDIRL 237 YSDSCLVGAGGKALGTIDFYQLHSYTWNGAF-STSSPFKNAAAAFKSDKHIVVGEFATCCSELQDSAKNYQYLYNSGFSGALSWQYNEGGNCADPKSVIDQGMSAIKDYTNGNVHVTL	353 354 354 354 355 354

Figure S4. Predicted amino acid alignments of beetle-derived rhamnogalacturonate lyases (PL4). The amino acid sequence of RhiE, a rhamnose-induced protein from the plant pathogen *Erwinia chrysanthemi* harboring rhamnogalacturonate lyase activity on rhamnogalacturonan I, is used as a reference sequence (4).

Echrysamthemi_RhiE Dponderosae_PL4-1 Dponderosae_PL4-2 Dponderosae_PL4-3 Dponderosae_PL4-4 Dponderosae_PL4-5	1 -AVKLTLDCMNSTLDNGLLKVRFCADGSAKEVWKGCTNLISRLSGAARDPDKNRSFYLDYYSGCVNEFVPERLEVIKOTPDQVFLAYIDDQNGKLRLEYHLIMTRDVSGLYSYVAANTGSAPVTVSELAN 1 -TVTLTTSGLTATVSNGDVTVVFNAHARVSSVKIDDVNIVSTTENSFYLDWNENGEVSSPSSLTVINDTDSLAHFYWLODGASDQFEIELHYLVVEGISGVYSWARFINSQSANVSLGEART 1 -KVTLTTNGLAATVSNGDVEVVFKADATVSAVKVNGVNIVSTSQKTFYLDWNENGQVTNPSELKVGENSDSLAHFYWLODGASDQFEIELHYLVVEGISGVYSWARFINSQSANVSLGEART 1 -KVTLTTNGLAATVSNGDVEVVFKADATVSAVKVNGVNIVSTSQKTFYLDWNENGQVTNPSELKVGENSDSLAHFYWLODGASDQFEIELHYLVVEGISGVYSWARFINSQSANVSLGEART 1 -AVSLTVDGLAATVSNGDVEVVFKADATVSAVKVNGVNIASSGVKTFYLDWNENGQVTSPSIHIVEQISSLAHFYWLODGASNQFHIEFLYVWEDDISGIYSYARYINSQSGTVSSLGETRT 1 -AVSLTVDGL	130 122 122 122 122 122 135
Echrysamthemi_RhiE Dponderosae_PL4-1 Dponderosae_PL4-2 Dponderosae_PL4-3 Dponderosae_PL4-4 Dponderosae_PL4-5	131 VYREDATRLDTLENSIRRGTPLLYDELEQLEKVQDETWRLEDGSVYSKYDFAGYQRESRYWGYMGNGYGAWMYPASGEYYSGDALKQELLYHQDAIILNYLTGSHFGTEDMYAQEGFEKLYGPWLLYINGGNDRELVADVSR 123 VYRENADLLTQGTNQARSGTLYLYSYLNTQTKVQDETWELADGTYYTKYDYAGYLRNTTYQGVYGSGYGAFLISPSREYHAGGPLKQDLLHQDSLITNYFVSSHFGTSGITAFSGWTHIYGPWLLYFNTGTNSAILSDVAT 123 IYREDSSILTQGTNQARSGTLYLYSYLNTQTKVQDETWQLADGTYYTKYDYAGYLRETSYQGVYGNGYGAFVISPSREYHAGGPLKQDLLHQDSLIANYFVSSHFGTSGITAFSGWTHIYGPWLLYFNTGTNSAILSDVAT 123 YRFDAAILTQGTNQARSGTLYLYSYLNTQTKVQDETWQLADGTYYTKYDYAGYLRETSYQGVYGNGFGAFVISPSREYHAGGPLKQDLLHQDSLIANYFVSSHFGTSGITAFSGWTHIYGPWLLYFNTGSDSAILSDVAN 123 YRFNAAILTQGTNQVRSGTTPTTVDLNQCTTVQDSTWEYPNGTYYSKYDYAAYIRQINYGGVYGNGFGAFVVSPSREYHGGGPLKQDLTVHQECIVANYFVSGHFGTPEVTAEFGWTHIYGPFLLYFPTGNDGSIVSAVEN 123 YRFQASILTQGTNQVRSGTTPTTVDLNQCTTVQDSTWEYPNGTYYSKYDYAAYIRQINYGGVYGNGFGAFVVSPSREYHGGGPLKQDLTVHQECIVANYFVSGHFGTPGISASPGWTHIYGPFLLYFPTGDDGSIISAVGN 123 VYRFQASILTQGTNQVRSGTTPTTVDLNQCTTVQDSTWEYPNGTYYSKYDYAAYIRQINYGGVYGNGFGAFVVSPSREYHGGGPLKQDLTVHQECIVANYFVSGHFGTPGISASPGWTHIYGPFLLYFPTGDDGSIISAVGN 124 VYRFQASILTQGTNQVRSGTTPTTVDLNQCTTVQDSTWEYPNGTYYSKYDYAAYIRQINYGGYGNGFGAFVVSPSREYHGGGPLKQDLTVHQECIVANYFVSGHFGTPGISASPGWTHIYGPFLLYFPTGDDGSIISAVGN 124 VYRFQASILTQGTNQVRSGTTPTTVDLNQCTTVQDSTWEYPNGTYYSKYDGAYIGFGYNGGSFGGWIVSASREYHSAGPLKQELLVHQDSLMLNYFHSTHFGTPNLLVPFGWSKFFGPYLVYINTGSEEEVLADAAN	272 264 264 264 264 264 264
Echrysamthemi_RhiE Dponderosae_PL4-1 Dponderosae_PL4-2 Dponderosae_PL4-3 Dponderosae_PL4-4 Dponderosae_PL4-5	273 RAEHERASWPYRWLDDARYPRORATVSCRLRTEAPHATVVLNSSAENFDIOTTGYLFSARTNRDGRFSLSNYPPGEYRLSAYADGGTOIGLLAQOTVRVE-GKKTRLGQIDAROFAPLAWAI GOADRRADEFRFGDKPROYR 265 QAETEKDSWPYSFVNDDDYPVDRGTVKGTITGOPLATIMLYDTEETSYD DOOLGYVFTTESDSSG SYTLKNYR PGTYNVVAYPVAGOGSENEAKTTVTVAGETVTVSSLDLPB PDDIIWNIGETNRRS EFKYSAELRNU 265 RAQTEKSSWPYSFVNDDAYPRTRGTVTGKITGOPKAAVMLYDST-ETFDDOOLGYAFTTESDSSG SYTLKNYR PGTYNVVAYPVAGOGSENEAKTTVTVAGETVTVSSLDLPB PDDIIWNIGETNRRS EFKYSAELRNU 265 RAQTEKSSWPYSFVNDDAYPRTRGTVTGKITGOPKAAVMLYDST-ETFDDOOLGYAFTTESDSSG SYTLKNYR PGTYNVVAYPVAGOGSENEAKTTVTVAGGTATVSTLNLPB PGNIIWNIGETDRRS EFKYSAELRNU 265 QVAAEQAKWPYSFVNDDEYPYRGOVSGTVSGKSATVVLWDSTGEEFDOOOLGYLYSAETDSKGYYAISNYRPGSYRIAAYPTAGLGSDSLDESTVTVTAGGREHVA-LTLTEPSNIIWSLGEANRLSSEFKYSDOPRNYQ 265 QVAAEQAKWPYSFVNDAEYPTSRGKVSGNVSGCKSATVVLWDSTGEEFALGELGYLYSTOTDSTGYYAFDKVRPGNYRIAAYPTAGLGSDSLDESTVTVEAGATQHVG-FTLAEPDNILWSLGEANRLSSEFKYSDOPRNYQ 265 QVASEQSKWPYSFVNDAEYPTSRGKVSGNVSGCKSATVVLWDSTGEEFALGELGYLYSTOTDSTGYYAFDKVRPGNYRIAAYPTAGLGSDSLDESTVTVEAGATQHVG-FTLAEPDNILWSLGEANRLSSEFKYSDOPRNYQ 275 QALLEQSCWPYSWVEDEEYPLSRGSVSGRVTGOTKAMVVVDAVEQOFDLONLGYLFHAETNEDGTFAIENTRGSYDVVAYPLAGHSSENLARKSITVEAGGTHNIGDLDEPEPANIIWAIGETSRRSDSYHWSDELRNY	413 406 405 405 405 405 405 405
Echrysamthemi_RhiE Dponderosae_PL4-1 Dponderosae_PL4-2 Dponderosae_PL4-3 Dponderosae_PL4-4 Dponderosae_PL4-5	414 WQTEVPADLTHEIGKSRERKDWYYAOTQ-POSWHILFNTRTPEQPYTINIAIAAASNNGMTTPASSPQLAVKLNGQLLTTIKYDNDKSIYHGAMQSGRYHEAHIPLPAGALQQGGNR TLELLGEMVMYDAITITETPQ 407 YETLPPETLTFTIGTSTDADDWYYAQSQ-AGIWTIEYDDAKDGNTRTLRVALAAASQSPHLIVSVNSHKVGDVYGDQAVYRSAMQSGTFHSNVFTVTNAQVVNGTNTITLQVSKGKVMYDAISLQRG 406 YETLPPETLTFVIGSSNAANDWYYSQSK-AGIWTIQYEJTQDGNGRTLRVALAAASQSPHLIVNINGHKIGDIYFDNDQSVYRSAMQSGKFHSNIFTANNAQIVSGTNVITLQVSKGKVMYDAISLQRG 406 WEWVPPTENTFVVGSSNAANDWYYSQSK-AGIWTIQYEJTQDGNGRTLRVALAAASQSPHLIVNINGHKIGDIYFDNDQSVYRSAMQSGKFHSNIFTANNAQIVSGTNVITLQVSKGKVMYDAISLQRG 406 WEWVPPTENTFVVGSSNAANDWYYSQSC-TGSWYIKYQDAPDGNSKTLRVAIAASSKSPHLQVIVNGHRVGDNYYDNDHAIYRSAMQSGQYTSNVFTVTNAQVVDGENTIEFHISIGQIMYTISLQRG 406 WEWVPPTENTFVGSSDRAEDWYYAQSQ-TGSWYIKYQDADGASTLRVAIAASSKSPHLQVIVNGHRVGDNYYDNDHAIYRSAMQSGQYTSNVFTVTNAQVVDGENTIEFHISIGQIMYTISLQRG 406 WEWVPPTENTFIGSSDREDWYYAQSQ-TGSWYIKYQDTAGSARTLRVAIAASSKSPHLQVIVNGHRVGDNYFDDNDAXIYRSAMQSGQYTSNVFTVTNAQVVGENTIEFHISIGQIMYTISLQRG 406 WEWVPPTENTFIGSSDREDWYYAQSQ-TGSWYIKYDDTGSARTLRVAIAASSKSPHLQVIVNGHRVGDYYDNDHAIYRSAMQSGQYTSNVFTVTNAQVVGENTIEFHISIGQIMYTTISLQRG 406 WEWVPPTENTFIGSSDREDWYYAQSQ-TGSWYIKYDDTGSARTLRVAIAASSKSPHLQVIVNGHRVGDTYFDNDQSIYRSAMQSGYTSNVFTVTNAQVVGENTIEFHISIGQIMYTTISLQRG 407 WHLLPPANLTFEIGKSDIGNDWYYAQSQ-TGSWYIKYDDIAGYGILRVAFAASRSPHLQVIVAGNTIFDONGTIYFDNDQSIYRSAMQSGYTSNVFTVSAQVVSGENTIEFHISIGQIMYTDISLAVDE	551 534 533 532 532 532 546

References

- 1. Parsiegla, G., Reverbel, C., Tardif, C., Driguez, H. & Haser, R. (2008) Structures of mutants of cellulase Cel48F of Clostridium cellulolyticum in complex with long hemithiocellooligosaccharides give rise to a new view of the substrate pathway during processive action. *J Mol Biol* **375**, 499-510.
- 2. Fries, M., Ihrig, J., Brocklehurst, K., Shevchik, V. E. & Pickersgill, R. W. (2007) Molecular basis of the activity of the phytopathogen pectin methylesterase. *Embo J* 26, 3879-87.
- 3. Larsson, A. M., Anderson, L., Xu, B., Munoz, I. G., Uson, I., Janson, J. C., Stalbrand, H. & Stahlberg, J. (2006) Three-dimensional crystal structure and enzymic characterization of betamannanase Man5A from blue mussel *Mytilus edulis*. *J Mol Biol* **357**, 1500-10.
- 4. Laatu, M. & Condemine, G. (2003) Rhamnogalacturonate lyase RhiE is secreted by the out system in *Erwinia chrysanthemi*. *J Bacteriol* **185**, 1642-9.