Eur. J. Org. Chem. 2009 · © WILEY-VCH Verlag GmbH & Co. KGaA, 69451 Weinheim, 2009 · ISSN 1434-193X

SUPPORTING INFORMATION

<u>Title</u>: New GM1 Ganglioside Derivatives for Selective Single and Double Labelling of the Natural Glycosphingolipid Skeleton

Author(s): Svetlana M. Polyakova, Vladimir N. Belov,* Sergey F. Yan, Christian Eggeling, Christian Ringemann, Günter Schwarzmann, Armin de Meijere, Stefan W. Hell* **<u>Ref. No.</u>**: 0200900645

Experimental Procedures

Compound 1a: To a solution of rhodamine Q (0.50 g, 1.2 mmol) and 2-(*N*-methylamino)ethanol (0.44 g, 0.47 mL, 5.9 mmol) in *N*,*N*-dimethylacetamide (10 mL) was added HATU (0.61 g, 1.6 mmol), and the mixture was stirred at room temperature for 19 h, followed by the addition of HATU (0.30 g, 0.79 mmol). After 17 h, the solvent was evaporated in vacuo at ambient

temperature, and the product was isolated by chromatography on SiO₂ (130 g) eluting with CH₂Cl₂/MeOH (10:1, v/v), yield 0.54 g (96%) as a bordeaux solid. ¹H NMR (300 MHz, [D₆]-DMSO, ppm): δ = 1.80 (br. s, (CH₂)<u>CH₂(CH₂), 4 H), 2.67 (br. s</u>, ArCH₂, 4 H), 2.84 (m, 2 rotamers, NMe, 3 H), 3.18 (m, <u>CH₂NCH₃, 2 H), 3.41 (br. s, CH₂N, 4 H), 3.47 (m, <u>CH₂OH, 2 H), 6.65 (s, H-4/5, 2 H), 6.79 (m, H-1/8, 2 H), 7.39–7.46 (m, H-3', 1 H), 7.59–7.76 (m, H-4'/5'/6', 3 H), 8.77 (br. s, NH, 2 H). ESI-MS, positive mode, *m/z* (C₂₉H₂₉N₃O₃): 468.5 [M + H]⁺.</u></u>

Rhodamine Q

Compound 1b: To a solution of rhodamine Q (0.50 g, 1.2 mmol) and methyl 3-(*N*-methylamino)propionate (0.36 g, 0.34 mL, 3.1 mmol) in *N*,*N*-dimethylacetamide (10 mL) was added HATU (0.61 g, 1.6 mmol), and the mixture was stirred at room temperature for 2 days. The solvent was evaporated in vacuo at ambient temperature, and the product was isolated by chromatography on SiO₂ (150 g) eluting with CH₂Cl₂/MeOH (10:1, v/v), yield 0.34 g (56%) as a bordeaux solid. ¹H NMR (300 MHz, [D₆]-DMSO, ppm): δ = 1.79 (br. s, (CH₂)<u>CH₂(CH₂), 4 H), 2.04 (t, ³J_{H,H} = 6.9 Hz, (CH₂)<u>CH₂(CO₂CH₃), 2 H), 2.65</u> (br. s, ArCH₂, 4 H), 2.86 (s, NMe, 3 H), 3.31 (t, ³J_{H,H} = 6.9 Hz, <u>CH₂NCH₃, 2 H), 3.39</u> (br. s, CH₂N, 4 H), 3.48 (m, OMe, 3 H), 6.65 (s, H-4/5, 2 H), 6.78 (br. s, H-1/8, 2 H), 7.44–7.50 (m, H-3', 1 H), 7.58–7.64 (m, H-6', 1 H), 7.66–7.74 (m, H-4'/5', 2 H), 8.79 (br. s, NH, 2 H). ESI-MS, positive mode, *m/z* (C₃₁H₃₁N₃O₄): 510.5 [M + H]⁺. HR-MS (ESI, positive mode): calcd: 510.2387; found 510.2384 [M + H]⁺.</u>

Compound 1i: To compound $1e^{[1]}$ (0.68 M solution in *N*,*N*-dimethylacetamide, 44 µL, 30 µmol) was added Et₃N (4.0 µL, 29 µmol) followed by $4-tBuO,NH_2^{[2]}$ (10 mg, 28 µmol), and the mixture was stirred at room temperature for 2 days. The solvent was evaporated in vacuo at ambient temperature, and the title product was isolated by chromatography on SiO₂ (30 g) eluting with CH₂Cl₂/MeOH (8:1, v/v), yield 17 mg (58%). ESI-MS, positive mode, *m/z* (C₅₂H₇₂N₄O₁₂S₂): 1053.4 [M – H + 2Na]⁺, negative mode: 1007.5 [M – H]⁻, 1029.5 [M – 2H + Na]⁻.

Compound 1j: To a solution of **1i** (17 mg, 17 μ mol) in trifluoroacetic acid (5.0 mL), was added at 0 °C triethylsilane (1.0 g, 1.38 mL, 8.7 mmol), and the mixture was stirred at room temperature for 1 day. The solvent was evaporated in vacuo at ambient temperature, and the title product was isolated by chromatography on SiO₂ (20 g) eluting with CH₂Cl₂/MeOH (8:1, v/v), yield 7 mg (52%) of a red-purple solid. ESI-MS, positive mode, *m/z* (C₄₈H₆₄N₄O₆): 793.6 [M + H]⁺, 815.5 [M + Na]⁺, negative mode: 791.5 [M – H]⁻. HR-MS (ESI, positive mode): calcd: 793.4899; found 793.4896 [M + H]⁺.

Methyl Ester 1k: To compound **1g** (50 mg, 0.08 mmol) dissolved in anhydrous DMAA (5 mL), di(*N*-succinimidyl) carbonate (45 mg, 0.17 mmol) and Et₃N (0.17 mL, 1.20 mmol) were added under N₂ with stirring. The reaction mixture was left at room temperature for 1 h. Then **4**-MeO,NH₂*HCl (84 mg, 0.24 mmol) was added, and the reaction mixture was stirred at room temperature for 48 h. The volatile materials were removed under reduced pressure, and the residue was purified by column chromatography on SiO₂ (50 mL), eluting with CH₂Cl₂/MeOH (5:1) to yield the title compound (70 mg, 91%) as a red powder. ¹H NMR (CDCl₃, 300 MHz): δ = 0.85 (t, 3H, Me), 1.22 (m, 28 H, 14×CH₂, H-4‴ to H-17‴), 1.70 (m, 2 H, CH₂-3‴), 1.85 (s, 4 H, 2×CH₂, H-3/9), 2.65 (m, 9 H, NMe and 3×CH₂, H-1″ and H-4/8), 3.10–3.65 (m, 6 H, 3×CH₂, H-2″ and H-

2/10), 3.70 (m, 3 H, MeO), 4.20 (m, 1 H, CH-2^{'''}), 5.94 (m, 1 H, NH-CO), 6.72–6.87 (m, 2 H, CH-5/7), 7.36 (m, 1 H, CH-6'), 7.50–7.70 (m, 3 H, 3×CH, H-3'/4'/5'), 9.80–10.00 (m, 2 H, 2×NH) ppm. ¹³C NMR (CDCl₃, 125.7 MHz): δ = 14.0 (Me), 19.0 (2×CH₂, C-3/9), 23.0 (CH₂), 25.5 (CH₂), 28.0 (2×CH₂, C-4/8), 29.5 (CH₂), 32.0 (CH₂), 39.5 (NMe), 42.6 (2×CH₂, C-2/10), 47.0 (CH₂-1''), 51.3 (OMe), 53.0 (CH-2'''), 62.5 (CH₂-2''), 111.5 (C), 111.7 (C), 112.3 (C), 112.7 (C), 124.3 (C), 127.9 (CH), 129.2 (CH), 129.6 (CH), 130.0 (CH), 130.3 (CH), 130.6 (CH), 136.5 (C), 151.6 (C), 152.2 (C), 152.7 (C), 154.7 (C), 156.4 (CO), 168.0 (CO), 174.0 (CO) ppm. ESI-MS, negative mode, *m*/*z* (rel. int., %): 965 (100) [M – H]⁻, positive mode, *m*/*z* (rel. int., %): 1011 (100) [M – H + 2Na]⁺. HR-MS (ESI, positive mode): found: 967.4185, 984.4452, and 989.4002; calcd. for C₄₉H₆₆N₄O₁₂S₂: 967.4191 [M + H]⁺, 984.4457 [M + NH₄]⁺, and 989.4011 [M + Na]⁺.

Acid 11: To a suspension of the methyl ester 1k (50 mg, 0.05 mmol) in anhydrous THF (20 ml), was added dry LiI (60 mg, 0.45 mmol), and the mixture was heated under reflux in a closed tube (ALDRICH, "Ace Glass" polymerization tube) at 100 °C (bath) for 48 h and cooled to room temperature. TFA (4 μ L, 0.05 mmol) was then added, the solvent was removed under reduced pressure, and the residue was purified by preparative TLC (silica gel) eluting with CH₂Cl₂/MeOH (3:1) to yield the title compound (28 mg, 57%) as a red powder. ¹H NMR ([D₆]-DMSO, 300 MHz): δ = 0.85 (t, 3 H, Me), 1.23 (m, 28 H, 14×CH₂, H-4″'' to H-17″'), 1.41–1.70 (m, 4 H, 2×CH₂, H-3/9), 1.78 (m, 2 H, CH₂-3″''), 2.59 (s, 1 H, NMe), 2.60–2.81 (m, 4 H, 2×CH₂, H-4/8), 2.88–3.03 (m, 2 H, CH₂-1″), 3.10–3.45 (m, 2 H, CH₂-2″), 3.48–3.63 (m, 4 H, 2×CH₂, H-2/10), 3.90 (m, 1 H, CH-2″'), 5.35 (m, 1 H, NH-CO), 6.68–6.84 (m, 2 H, CH-5/7), 7.28–7.52 (m, 3 H, 2×CH, H-4′/5′), 7.59–7.74 (m, 2 H, 2×CH, H-3′/6′), 10.16–10.28 (m, 2 H, 2×NH) ppm. ¹³C NMR ([D₆]-DMSO, 125.7 MHz): δ = 13.8 (Me), 19.0 (2×CH₂, C-3′9), 22.0 (CH₂), 25.1 (CH₂), 27.2 (2×CH₂, C-4/8), 28.9 (CH₂), 31.2 (CH₂), 41.6 (2×CH₂, C-2/10), 54.7 (CH-2″''), 59.2 (CH₂-2″'), 112.1 (C), 112.8 (C), 116.1 (C), 118.4 (C), 124.1 (C), 128.6 (CH), 128.7 (CH), 129.4 (CH), 130.3 (CH), 145.5 (C), 151.3 (C), 151.6 (C), 157.5 (C), 157.8 (CO), 167.5 (CO), 174.0 (CO) ppm. ESI-MS, negative mode, *m/z* (rel. int., %): 951 (100) [M – H]⁻, positive mode, *m/z* (rel. int., %): 997 (100) [M – H + 2Na]⁺. HR-MS (ESI, positive mode): found: 953.4031, 975.3854; calcd. for C₄₈H₆₄N₄O₁₂S₂: 953.4035 [M + H]⁺, 975.3854 [M + Na]⁺.

Compound 2-OH: To a stirred solution of **20** (5.6 mg, 0.01 mmol) in anhydrous DMF (0.2 mL), was added *N*-metylaminoethanol (20 μ L), and the mixture was stirred at room temperature for 12 h. The solvent was evaporated under reduced pressure, and the title product was isolated by chromatography on SiO₂ (20 mL) eluting with CH₂Cl₂/MeOH (10:1). Yield: 5.7 mg (92%) of a violet solid. ¹H NMR (300 MHz, CD₃OD): $\delta = 1.90-2.02$ (m, 4 H, CH₂), 2.03–2.15 (m, 4 H, CH₂), 2.66–2.88 (m, 4 H, CH₂C), 2.98–3.12 (m, 7 H, CH₃N and CH₂C), 3.25–3.34 (m, 4 H, CH₂O, CH₂N),

3.46–3.58 (m, 6 H, CH₂N), 3.72 (t, J = 5.8, 2 H, CH₂N), 6.88 (s, 2 H, CH) ppm. ¹⁹F NMR (282.4 MHz, CD₃OD): $\delta = -120.1$ (t, J = 10, 1F), -143.1 (dd, J = 5 and 20, 1F), -144.8 (dd, J = 12 and 20, 1F) ppm. ESI-MS, positive mode, m/z (rel. int., %): 618.3 [M]⁺ (100). HR-MS (ESI, positive mode): found: 618.2580; calcd. for C₃₅H₃₄F₃N₃O₄: 618.2574 [M + H]⁺.

Compound 2-OCONHS: The compound **2**-OH (6.2 mg, 0.01 µmol) was stirred with di(*N*-succinimidyl) carbonate (25.6 mg, 0.10 µmol) and NEt₃ (25 µL) in anhydrous DMF (1 mL) at room temperature for 3 h. The title product was isolated by preparative HPLC (A/B: 60/40 \rightarrow 100/0 in 25 min, detection at 254 nm, $t_{\rm R} = 6.5$ min). ESI-MS, positive mode, m/z (rel. int., %): 759.3 [M]⁺ (100). HR-MS (ESI, positive mode): found: 759.2634; calcd. for C₄₀H₃₈F₃N₄O₈⁺: 759.2636 [M]⁺.

Compound 3-OH: To a solution of compound **21** (65.4 mg, 0.1 mmol) and NEt₃ (50 μ L) in anhydrous DMF (1 mL), was added HATU (76.0 mg, 0.2 mmol) followed by *N*-methylaminoethanol (80 μ L, 1.0 mmol), and the mixture was stirred at 50 °C for 24 h. After evaporation of the solvent under reduced pressure, the title compound was isolated by chromatography on SiO₂ (70 mL) eluting with MeOH/Et₂O (1:1 + 0.5% NEt₃). Yield: 45 mg

(61%) of a violet powder. ¹H NMR (300 MHz, D₂O): $\delta = 1.62$ (s, 6 H, CH₃), 1.68 (s, 6 H, CH₃), 2.71/2.79 (s, 3 H, NCH₃), 3.05–3.11 (m, 2 H, NCH₂), 3.26 (s, 6 H, NCH₃), 3.38 (m, 2 H, CH₂O), 3.80–3.91 (m, 2 H, CH₂S), 3.99–4.10 (m, 2 H, CH₂S), 6.07 (s, 2 H, CH=), 6.85 (s, 2 H, CH), 7.28 (s, 2 H, CH), 7.62–7.70 (s, 1 H, CH), 7.76–7.83 (s, 1 H, CH), 7.90–8.00 (s, 2 H, CH) ppm. ESI-MS, negative mode, *m/z* (rel. int., %): 734.4 [M – H]⁻ (100). HR-MS (ESI, positive mode): found: 736.2356; calcd. for C₃₇H₄₁N₃O₉S₂: 736.2357 [M + H]⁺.

Compound 3-OCONHS: The compound **3**-OH (37 mg, 0.05 mmol) was stirred with di(*N*-succinimidyl) carbonate (51 mg, 0.2 mmol) and NEt₃ (0.1 mL) in anhydrous DMF (0.6 mL) at room temperature for 1 h. The product was isolated by preparative HPLC (A/B: $20/80 \rightarrow 50/50$ in 25 min, detection at 254 nm, $t_{\rm R} = 11.5$ min). ESI-MS, negative mode, m/z (rel. int., %): 875.3 [M – H]⁻ (100). HR-MS (ESI, positive mode): found: 877.2416; calcd. for C₄₂H₄₄N₄O₁₃S₂: 877.2419 [M + H]⁺.

tert-Butyl (2*R/S*)-[(9-Fluorenylmethoxycarbonyl)amino]octadecanoate (4*t*BuO,NHFmoc):^[3] To a cold solution of *tert*-butyl (2*R/S*)-aminostearate (0.142 g, 0.40 mmol) in 1,4-dioxane (8 mL), was added in small portions FmocCl

(0.124 g, 0.48 mmol) followed by NaHCO₃ (0.2 g). The reaction mixture was stirred at room temperature for 24 h, diluted with EtOAc (50 mL), washed with water (2×20 mL) and dried. Concentration under reduced pressure afforded an oil, which was dissolved in CH₂Cl₂ (5 mL), and the solution was filtered through silica gel (50 mL) to afford the title compound (0.15 g, 65%). HR-MS (ESI, positive mode): found: 578.4202; calcd. for $C_{37}H_{55}NO_4$: 578.4204 [M + H]⁺.

(2R/S)-[(9-Fluorenylmethoxycarbonyl)amino]octadecanoicAcid(4-OH,NHFmoc): [3] To a solution of 4-tBuO,NHFmoc (0.145 g, 0.25 mmol) inCH₂Cl₂ (0.5 mL), were added at 0 °C Et₃SiH (50 µL) and TFA (0.5 mL), and the

mixture was kept at 4 °C for 20 h. Evaporation in vacuo gave the title compound as an oil (0.125 g, 96%). HR-MS (ESI, positive mode): found: 522.3575; calcd. for $C_{33}H_{47}NO_4$: 522.3578 [M + H]⁺.

18-Hydroxyoctadecanoic Acid (10a): A solution of the acid **9** (1.3 g, 4.4 mmol) in Et₂O (120 mL) was hydrogenated with H₂ (1 atm) over PtO₂ (65 mg) at room temperature for 3 h, filtered through Celite[®], and concentrated to give the title compound (1.3 g, 99%) as a colorless solid with m. p. 99–100 °C (91–93 °C,^[4] 95–96 °C^[5]).

18-Bromooctadecanoic Acid (**10b**): To a solution of **10a** (0.6 g, 2.0 mmol) in AcOH (9.4 mL), was added 48% aqueous HBr (9.4 mL), and the mixture was refluxed for 18 h. Solvents were evaporated in vacuo, and the product was filtered through SiO_2 (100 mL) with hexane/EtOAc (2:1, v/v, + 0.5% AcOH) to give **10b** (0.71 g, 98%) as a colorless solid, m. p. = 80 °C (74–75.5 °C^[6]).

Chromatographic Behavior:

Figure A. High performance thin layer chromatography (HPTLC) of fluorescent labelled gangliosides presented in the Schemes 3, 5, and 8. Lane 1: natural ganglioside GM1; lane 2: product **5**; lane 3: product **23a**; lane 4: product **17b**; lane 5: product **23b**; lane 6: product **17a**. Solvent system: chloroform/methanol/15 mM CaCl₂ (60:35:8 v/v). Lane 1 was visualized by treatment with an anisaldehyde reagent followed by heating at 150 °C for 5 min.

Literature

- [1] V. P. Boyarskiy, V. N. Belov, R. Medda, B. Hein, M. Bossi, S. W. Hell, Chem. Eur. J. 2008, 14, 1784–1792.
- [2] A. M. Papini, E. Nardi, F. Nuti, J. Uziel, M. Ginanneschi, M. Chelli, A. Brandi, Eur. J. Org. Chem. 2002, 16, 2736– 2741.
- [3] Cf.: A. M. Papini, E. Nardi, F. Nuti, J. Uziel, M. Ginanneschi, M. Chelli, A. Brandi, Eur. J. Org. Chem. 2002, 16, 2736– 2741.
- [4] F. Riche, J.-P. Mathieu, M. Vincens, A. Bardy, M. Comet, M. Vidal, Bull. Soc. Chim. Fr. 1984, 1-2, 49-55.
- [5] S. C. Bhattacharyya, K. K. Chakravarti, U. G. Nayak, Chem. Ind. 1960, 21, 588-588.
- [6] J. G. Pomonis, H. Hakk, Lipids 1990, 25, 821-826.