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In higher eukaryotes the biogenesis of spliceosomal

UsnRNPs involves a nucleocytoplasmic shuttling cycle.

After the m7G-cap-dependent export of the snRNAs U1,

U2, U4 and U5 to the cytoplasm, each of these snRNAs

associates with seven Sm proteins. Subsequently, the m7G-

cap is hypermethylated to the 2,2,7-trimethylguanosine

(m3G)-cap. The import adaptor snurportin1 recognises

the m3G-cap and facilitates the nuclear import of the

UsnRNPs by binding to importin-b. Here we report the

crystal structure of the m3G-cap-binding domain of

snurportin1 with bound m3GpppG at 2.4 Å resolution,

revealing a structural similarity to the mRNA-guanyly-

transferase. Snurportin1 binds both the hypermethylated

cap and the first nucleotide of the RNA in a stacked

conformation. This binding mode differs significantly

from that of the m7G-cap-binding proteins Cap-binding

protein 20 (CBP20), eukaryotic initiation factor 4E

(eIF4E) and viral protein 39 (VP39). The specificity of

the m3G-cap recognition by snurportin1 was evaluated

by fluorescence spectroscopy, demonstrating the impor-

tance of a highly solvent exposed tryptophan for the

discrimination of m7G-capped RNAs. The critical role of

this tryptophan and as well of a tryptophan continuing the

RNA base stack was confirmed by nuclear import assays

and cap-binding activity tests using several snurportin1

mutants.
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Introduction

The transport of macromolecules between the nuclear and

cytoplasmic compartments in eukaryotic cells is achieved by

transport factors, most of them belonging to the importin-b
superfamily (Görlich and Kutay, 1999; Chook and Blobel,

2001; Weis, 2003). Nuclear import of karyophilic proteins

bearing a canonical nuclear localisation signal (NLS) requires

the recognition by the adaptor importin-a, which in turn

binds to importin-b via an N-terminal importin-b-binding

(IBB) domain (Görlich et al, 1996). The interaction with

and translocation through the nuclear pore complex is

mediated by importin-b. Besides the importin-a/b-dependent

nuclear import, several alternative pathways have been iden-

tified (Görlich and Kutay, 1999; Weis, 2003). Among these

pathways, there is an exceptional strategy that has evolved in

higher eukaryotes for the transport of spliceosomal UsnRNPs,

namely U1, U2, U4 and U5, as their biogenesis involves

a nucleocytoplasmic shuttling cycle (Will and Lührmann,

2001).

Transcription and modification of the 30 and 50 ends leads

to m7G-capped UsnRNAs that are recognised by the cap-

binding proteins Cap-binding protein 20 (CBP20)/80. Three

additional proteins, phosphorylated adaptor for RNA export

(PHAX), the actual export receptor chromosome region

maintenance 1 (CRM1) or Exportin1 (XpoI; Ohno et al, 2000)

and Ras-related nuclear antigen (RanGTP; Ohno et al, 2000;

Segref et al, 2001) are required for the export of the UsnRNAs

into the cytoplasm.

In the cytoplasm, seven Sm proteins bind to the Sm site

common to these UsnRNAs, forming the snRNP core com-

plex. This assembly process is mediated by the SMN complex

(Meister et al, 2002; Gubitz et al, 2004; Yong et al, 2004).

Proper assembly of the core UsnRNPs and the SMN complex

bound to it is a prerequisite for the hypermethylation of the

m7G-cap to the 2,2,7-trimethyl-guanosine (m3G)-cap (Mattaj,

1986; Massenet et al, 2002). Initial studies on the cap

hypermethylation of human U1snRNP showed that the

snRNA-(guanosine-N2)-methyltransferase is an S-adenosyl-

methionine-dependent enzyme that binds to the SmB/B0

proteins (Plessel et al, 1994). Further in vitro reconstitution

experiments revealed that the presence of the SmB/B0protein

in the snRNP core complex is essential for the cap hyper-

methylation (Raker et al, 1996). Finally, the cap hypermethyl-

ase was identified in Saccharomyces cerevisiae and denoted

TGS1 (for Trimethyl-Guanosine Synthase) (Mouaikel et al,

2002). A sequence database search revealed that the putative

mammalian orthologs are significantly larger, with their C-

terminal domain harbouring the conserved methyltransferase

domain (Mouaikel et al, 2002).

The m3G-cap is part of a bipartite NLS specific for UsnRNP

nuclear import (Fischer and Lührmann, 1990; Fischer et al,

1991). The second signal is located on the Sm-core RNP

complex (Fischer et al, 1993). The functionality of both

import signals has been shown to depend on importin-b
(Palacios et al, 1997; Huber et al, 1998; Narayanan et al,

2004). The m3G-cap is specifically recognised by snurportin1,

which acts as an adaptor between the UsnRNP cargo and

importin-b (Huber et al, 1998). Snurportin1 consists of two

functional domains, the N-terminal IBB domain and the m3G-

cap-binding domain. The IBB domain comprises amino acids

1–65 and exhibits high homology to the IBB domains of other
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transport adaptors, such as importin-a and RIP-a, that use

importin-b as a transport receptor (Görlich et al, 1996; Jullien

et al, 1999; Huber et al, 2002). The m3G-cap-binding domain,

ranging from amino acids 95 to 300, shares no significant

sequence similarities with other cap-binding proteins or with

any other protein (Huber et al, 1998).

The three-dimensional structures of several m7G-cap-bind-

ing proteins, namely CBP20 of the cap-binding complex

(CBC) involved in nuclear export of UsnRNA (Calero et al,

2002; Mazza et al, 2002), the viral nucleoside 20-O-methyl-

transferase VP39 (Hodel et al, 1997, 1998; Hu et al, 2002)

and the eukaryotic translation initiation factor 4E (eIF4E)

(Marcotrigiano et al, 1997; Matsuo et al, 1997; Niedzwiecka

et al, 2002; Tomoo et al, 2003) have been determined. Despite

the lack of structural similarity, they all reveal a common

strategy in the specific binding of m7G-cap-bearing RNAs.

These proteins interact with the m7G-cap by sandwiching the

monomethylated guanine base between two aromatic side

chains. However, to date there has been no experimental clue

as to whether snurportin1 shares that canonical binding

mode of the m7G-cap-binding proteins, or whether a different

strategy is used for specific binding of the m3G-cap. Hence,

the crystal structure determination of snurportin1 in complex

with m3G-cap has been of particular interest in order to reveal

and understand the structural basis for the specific recogni-

tion of the m3G-cap by snurportin1. After all attempts to

crystallise full-length snurportin1 either by itself or in com-

plex with m3G-cap oligo and/or importin-b had failed, we

focused on the structure determination of the m3G-cap-bind-

ing domain of human snurportin1 identified by limited

proteolysis experiments (Strasser et al, 2004). Although a

37 kDa fragment of snurportin1 was used for crystallisation,

the obtained single crystals contain just a 26 kDa m3G-cap-

binding fragment, indicating a continuation of proteolysis

within the crystallisation droplet (Strasser et al, 2004).

We have determined the crystal structure of the 26 kDa

m3G-cap-binding domain of human snurportin1 in complex

with an m3G-cap dinucleotide. Snurportin1 binds the m3G-

base and the first base of the UsnRNA in a stacked conforma-

tion. This is in contrast to the structurally characterised m7G-

cap-binding proteins, where only the cap base is sandwiched

between two aromatic side chains. In order to investigate this

novel binding mode in more detail, binding constants of

several cap oligonucleotides to snurportin1 were determined

by fluorescence spectroscopy, and the role of the tryptophan

residues in the binding pocket was analysed by nuclear

import assays and spectroscopic cap-binding affinity tests

for various tryptophan mutants.

Results and discussion

Structure of the snurportin1–m3G-cap complex

The crystal structure of the m3G-cap-binding domain of

human snurportin1 was determined by means of MIRAS

using several heavy-atom derivatives and refined at a resolu-

tion of 2.4 Å (Table I). The overall structure is composed of

five a-helices and 10 b-strands that form two almost coplanar

b-sheets linked by two crossing b-strands (Figure 1). The

m3G-cap-binding pocket is located between the two b-sheets;

several residues of strands b1, b3, b10 and adjacent loop

regions interact with the entire m3G-cap dinucleotide

(Figure 2A, see Supplementary Figure 1). Both bases of the

bound m3GpppG are in a nearly coplanar orientation 3.5–

3.8 Å apart, but slightly displaced with respect to a perfect

base stacking (Figure 2B). The six-membered ring of the

nonmethylated guanine is almost perfectly centered on

the dimethylated N2 atom (Figure 2B). The base-stacking

of the dinucleotide is continued by the side chain of Trp276

on the side of the trimethylated guanine, and is flanked

by Leu104 on the side of the nonmethylated guanine

(Figure 2A). Additionally, the m3G-base is in hydrophobic

contact with the side chains of Glu106 and Trp107, the latter

in an almost perpendicular orientation to the stack with a

distance of 4.3 Å. Remarkably, the protein forms only two

hydrogen bonds with the trimethylated guanine base. The

hydroxyl group of Ser105 donates a hydrogen to O6 and

accepts one from N1 (Figure 2A). The nonmethylated gua-

nine also forms hydrogen bonds with Ser105 as its NH2 group

at position 2, N1 is hydrogen-bonded to the main-chain

carbonyl oxygen, and O6 accepts the hydrogen of the main-

chain amide. The interaction is further stabilised by hydrogen

bonds between several basic residues, the triphosphate and

the riboses. The side chain of Lys128 and the main-chain

amide of Arg129 interact with phosphate oxygens, and

Lys144 is in contact with the cyclic oxygen of the ribose of

the first snRNA nucleotide, as well as with phosphate oxy-

gens (Figure 2A, see Supplementary Figure 1). A database

search revealed that all residues involved in the interaction

with the m3GpppG dinucleotide are highly conserved among

all known snurportin1 sequences. The only exception was

found in Arabidopsis thaliana, where Ser105 is replaced by a

proline residue. This replacement is structurally possible, but

appears very unlikely due to the loss of hydrogen bonds

involved in ligand binding. Since only a single base exchange

is necessary to change serine into proline, an error of the

database entry could also be plausible.

The binding mode of the m3G-cap by snurportin1 differs

significantly from that observed for the m7G-cap-binding

proteins CBP20, eIF4E and VP39, as these proteins always

intercalate the m7G-base between two aromatic side chains

and keep the bound di- or oligonucleotides in an extended

conformation (Figure 3) (Hodel et al, 1997, 1998; Calero et al,

2002; Mazza et al, 2002; Niedzwiecka et al, 2002; Tomoo

et al, 2003).

So far only crystals of the m3G-cap-binding domain with

bound m3GpppG have been obtained. All attempts to crystal-

lise full-length snurportin1 have failed, probably due to a

high degree of conformational flexibility between the N-

terminal IBB domain and the m3G-cap-binding domain.

Also, no crystals of the m3G-cap-binding domain could

be obtained in the absence of m3GpppG, indicating an

effect of the dinucleotide on the structural integrity of the

protein. Furthermore, it was not possible to crystallise a

complex using a larger oligonucleotide, like synthetic

m3GpppAmpUmpA, which resembles the UsnRNAs more

closely. The inspection of the crystal packing revealed that

a larger cap oligonucleotide could not be accommodated in

this crystal form of the snurportin1–m3GpppG complex.

Mode of interaction between snurportin1 and m3G-cap

During UsnRNP biogenesis, the hypermethylation of the

m7G-cap occurs after assembly of the Sm-core UsnRNP com-

plex and initiates the import of this complex into the nucleus.

Therefore, the specificity of m3G-cap binding by snurportin1

Structure of the snurportin1–m3GpppG–complex
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is of particular interest with respect to the discrimination of

m7G-cap-bearing UsnRNAs and mRNAs, preventing their

accidental reimport into the nucleus. The physiological car-

goes of human snurportin1 share the common sequence

m3GpppAm at the 50 end of the UsnRNA. Previous studies

have already demonstrated that an m3GpppG dinucleotide is

sufficient to be bound by snurportin1, and that the binding of

m7GpppG to snurportin1 is two to three orders of magnitude

less efficient than that of m3GpppG (Huber et al, 1998). In

order to quantify the interaction of snurportin1 with different

50-caps, we determined the binding constants of various

50-oligonucleotides by means of fluorescence spectroscopy

(Table II). For these experiments the full-length snurportin1

was used, as the crystallised 26 kDa domain formed in situ

during the co-crystallisation of the 37 kDa fragment and

m3GpppG (Strasser et al, 2004). Attempts to obtain the

26 kDa fragment either by preparative proteolysis or as

recombinant protein failed, since this fragment precipitates

due to unfolding or incorrect folding, respectively, in the

absence of m3GpppG and is therefore not suitable for bio-

chemical experiments. The Kd-value for the m3GpppG di-

nucleotide (which is present in the crystal structure) was

determined to be 1.0 mM, while it is 12.1 mM for the m3GpppA

dinucleotide. The crystal structure of the complex containing

the m3GpppG dinucleotide reveals that the adenosine of

m3GpppA could be harboured in the binding pocket as

well, since there is no strong discrimination between the

purines commonly caused by polar interactions. The higher

Kd-value of the m3GpppA appears to be related to the lack

of two hydrogen bonds with Ser105. It turned out to be

impossible to determine the exact Kd-value of the m7GpppA

dinucleotide by fluorescence spectroscopy, owing to an ex-

tremely large inner filter effect caused by the high dinucleo-

tide concentrations required, but it can be estimated that the

Kd-value for m7GpppA is greater than 170mM. Obviously, the

difference in Kd-values between m3GpppA and m7GpppA

must be related to the two methyl groups on N2 of the

m3G-base. These two methyl groups are in van der Waals

(VDW) contact with Trp107, but the difference in affinities

between m3GpppA/G and m7GpppA cannot be caused exclu-

sively by the contribution of these two VDW contacts to the

free binding energy. Hence, the difference in affinity should

be related to the binding process itself. Upon binding to

snurportin1 the cap is dehydrated, and hydrogen bonds to

Table I Crystallographic data and refinement statistics

Data collection
Data set Native MIRAS

Hg U Pt

Wavelength (Å) 0.98 1.54 1.54 1.54
Resolution range (Å) 20–2.4 (2.5–2.4) 100–3.5 (3.6–3.5) 100–3.5 (3.6–3.5) 100–3.5 (3.6–3.5)
Space group P41212 P41212 P41212 P41212
Cell dimensions (Å) a¼ b¼ 57.47 a¼ b¼ 57.43 a¼ b¼ 57.09 a¼ b¼ 57.12

c¼ 130.09 c¼ 130.83 c¼ 130.5 c¼ 131.47
No. of reflections 24 9994 (8674) 57 589 (3113) 54 724 (2993) 109 333 (3087)
Completeness (%) 95.4 (66.3) 100.0 (100.0) 97.5 (99.3) 99.7 (100.0)
Average I/d 18.7 (3.0) 18.1 (9.3) 11.7 (4.6) 16.2 (3.6)
Rmerge 0.09 (0.25) 0.112 (0.3) 0.124 (0.27) 0.132 (0.55)
MIRAS phasing
Heavy-atom sites 4 3 4
Phasing power

Isomorphous 1.631 1.005 0.782
Anomalous 0.627 0.845 0.312

R-cullis
Isomorphous 0.644 0.799 0.834
Anomalous 0.922 0.914 0.976

Overall figure of merit
Before solvent flattening 0.23
After solvent flattening 0.75

Refinement statistics
R-factor (%) 22.7 (32.1)
Rfree (%) 27.6 (40.3)
No. of protein atoms 1604
No. of ligand atoms 53
No. of water molecules 77
Ramachandran plot statistics
Most favourable regions (%) 87.6
Additionally allowed regions (%) 11.2
Generously allowed regions (%) 1.2
Disallowed regions (%) 0.0
r.m.s. deviations from ideal values
Bond distances (Å) 0.0074
Angles (deg) 1.75
Average B-value protein (Å2) 46.7
Average B-value m3GpppG (Å2) 75.5

Values in parenthesis refer to the highest resolution shells.
Rmerge¼

P
hkl

P
i|Ii(hkl)�/Ii(hkl)S|/

P
hkl

P
i/Ii(hkl)S, where the sum i is over all separate measurements of the unique reflection hkl.

R-factor¼
P

hkl||Fobs|�|Fcalc||/
P

hkl|Fobs|.
Rfree as R-factor, but summed over a 5% test set of reflections.
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water molecules are replaced by hydrogen bonds to the

protein. Obviously, the m7G- and m3G-caps differ in solution

with respect to their hydration shells, as the m7G-cap is

capable to bind two water molecules via its NH2 group.

These two water molecules have to be released for the

binding of the m7G-cap requiring a substantial amount of

energy, as these hydrogen bonds are not replaced by hydro-

gen bonds to the protein. The dimethylated N2 of the m3G-

cap has no bound water molecules; hence its binding to

snurportin1 and the hydrophobic interaction with the

Trp107 side chain is much more favourable. These differences

could already cause the observed differences in Kd, but other

molecular properties might additionally contribute to the

discrimination.

The discrimination between m7G- and m3G-caps by snur-

portin1 might also be related to the strength of the cation–p
interaction. With respect to the pKa-value of 7.46 of m3GpppG

(Wieczorek et al, 1995), the m3G-base is expected to be

positively charged under crystallisation conditions (pH 5.5).

As suggested for m7G-cap-binding proteins (Quiocho et al,

2000), a cation–p interaction between the positively charged

Figure 1 Structure of human snurportin1 (residues 97–300) with
bound m3GpppG-cap dinucleotide (PDB accession code 1XK5).
Ribbon plot of the m3G-cap-binding domain with b-sheets coloured
in blue, a-helices in green and loop regions in grey. Secondary
structure motifs are numbered consecutively from the N-terminus
to the C-terminus. The m3GpppG dinucleotide is depicted in ball-
and-stick mode with nitrogen atoms in blue, carbons in grey,
oxygens in red and phosphorus atoms in green.

Figure 2 The m3G-cap-binding pocket. Snurportin1 is shown in ribbon presentation and coloured in green. Side chains of residues interacting
with the m3G-cap dinucleotide are shown in ball-and-stick mode. The m3G-cap dinucleotide is coloured as described in Figure 1. (A) Stereo
view of the cap-binding pocket. Side chains forming hydrogen bonds or hydrophobic contacts with the cap are coloured as the m3G-cap, and
water molecules involved in the interaction are shown as yellow balls. Hydrogen bonds are depicted as dashed grey lines. (B) Base stack of the
m3GpppG dinucleotide, whereas Trp276 and Trp107 are coloured yellow. (C) Distances between both bases of the cap dinucleotide, between the
m3G-base and Trp276 and between the atoms of the dimethylamine of the cap base and Trp107 are depicted as dashed black lines. Numbers
indicate the distances in Å.
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trimethylated guanine and the coplanar aromatic side chain

of Trp276 is expected. The presence of the two methyl groups

bound to N2 probably changes the distribution of the positive

charge within m3G in comparison to m7G and therefore

significantly affects the cation–p interaction. Interestingly,

Trp107 is only 4.5 Å distant to the N2 atom of the m3G-base

(Figure 2C); hence, a cation–p interaction appears reasonable

assuming a significant positive partial charge on N2 stabilised

by the two methyl groups.

Consistent with a previous report (Huber et al, 1998), the

binding of the synthetic tetranucleotide m3GpppAmpUmpA,

which resembles more closely UsnRNAs in vivo, to full-length

snurportin1 is even stronger (Kd¼ 0.23 mM) than that of

m3GpppG, which should be related to the presence of addi-

tional nucleotides and/or due to the 20O-methylated riboses.

Inspection of the electrostatic surface potential of the m3G-

cap-binding domain gives no hint on binding sites for the

additional nucleotides (data not shown). However, the crys-

tallised domain lacks the C-terminal 61 residues, which could

extend the RNA-binding surface. To clarify the role of these

C-terminal residues, the determination of the Kd-value for

the crystallised snurportin1 fragment would be necessary,

but the 26 kDa fragment aggregates rapidly in the absence of

m3GpppG (see above) and could therefore not be used for

biochemical experiments.

The crystallised domain is also lacking the N-terminal 78

residues, raising the question whether the IBB domain could

affect the m3G-cap-binding analogous to importin-a. This

appears possible since the IBB domain of importin-a is

known to compete with the NLS of a cargo for binding to

importin-a (Kobe, 1999). To examine this potential autoinhi-

bitory effect of the snurportin1 IBB domain on m3G-cap

binding, the affinity of the m3GpppG was evaluated in the

presence of increasing amounts of IBB domain (residues 1–

65). Remarkably, even at 100-fold excess of IBB domain over

snurportin1 (and a five-fold excess of m3GpppG over snur-

portin1) the affinity remains unaltered (see Supplementary

Table Ia). In a second approach, an N-terminally truncated

snurportin1 comprising residues 66–360 was used. The Kd-

value for m3GpppG turned out to be 1.24 mM (70.3 mM),

which is close to the value of 1.0 mM (70.03mM) observed

for the full-length protein. Both experiments demonstrate that

the IBB domain of snurportin1 does not exhibit an autoinhi-

bitory effect on cargo binding as reported for importin-a.

Role of tryptophan residues Trp276 and Trp107

in m3G-cap binding

An obvious feature of the m3G-cap-binding pocket is the

presence of the two tryptophan residues Trp107 and Trp276

(Figure 2). In order to understand their functional signifi-

cance, these tryptophan residues were substituted by alanine,

either singly or together. The resulting mutated proteins were

purified and characterised with regard to m3G-cap-binding

affinity using fluorescence spectroscopy and an in vitro

nuclear import assay. However, an exact determination of

Kd-values for the mutated proteins was not possible, as the

strongly reduced affinities (see below) would require high

concentrations of m3GpppG, leading to a very large internal

filter effect. Therefore, the change in affinity was estimated

comparing the changes in fluorescence upon addition of

m3GpppG.

Binding of m3GpppG to wild-type snurportin1 leads to a

decrease in fluorescence of 62.7% (73.9%), indicating a

strong interaction. Taking the changed fluorescence proper-

ties of each mutant into account, the binding of m3GpppG

decreases the fluorescence for the W276A and W107A mu-

tants only by 20.0% (76.1%) and 25.0% (76.3%), respec-

tively, and even less (15.8% (74.2%) for the double mutant,

corresponding to a reduced cap-binding activity. The effect of

the W276A substitution is expected, as this tryptophan stacks

on the m3G-base and forms a strong cation–p interaction.

More interestingly, the W107A mutation shows almost the

same reduction in fluorescence, suggesting an important role

in m3G-cap binding. Since the two methyl groups of N2 are

pointing towards Trp107, this tryptophan should have a

substantial impact on the discrimination of m7G-cap-bearing

Figure 3 Comparison of cap-binding pockets. m7G-cap-binding
pockets of CBP20, eIF4E and the viral nucleoside 20-O-methyltrans-
ferase (VP39) are presented in comparison to the m3G-cap-binding
pocket of snurportin1. Side chains of residues interacting with the
caps are depicted in ball-and-stick mode. Atoms of the caps and the
interacting side chains are coloured as described in Figure 1, with
the exception of carbon atoms of the dinucleotide, which are shown
in orange. In all presented cases, the residues stacking the bases and
those forming hydrogen bonds with the cap bases are depicted.
Hydrogen bonds are shown as dashed grey lines.

Table II Binding constants of various m3G-cap oligoribonucleotides
for human snurportin1

Cap oligo Kd values (mM) Standard deviation
of curve fit (mM)

m3GpppG 1.0070.03 0.12
m3GpppA 12.170.55 2.72
m7GpppA X170712.9 17
m3GpppAmpUmpA 0.2370.02 0.08
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RNAs. Indeed, the binding affinity of m7GpppA to the W107A

mutant is identical to that of m3GpppA, as determined by the

decrease in tryptophan flourescence (see Supplementary

Table Ib). Hence, the fully solvent-exposed Trp107 plays an

important role in the process of cap-binding and discrimina-

tion of m7G-caps.

Furthermore, the b-strand (b1) harbouring Trp107 exhibits

a highly twisted conformation and might adopt a different,

more relaxed conformation in the absence of the cap, with

the side chain of Trp107 located inside the cap-binding

pocket. However, there is currently no experimental evidence

for such a conformational flexibility of the b-strand b1 or for

an induced fold upon cap binding as observed for CBP20

(Calero et al, 2002; Mazza et al, 2002).

The essential role of these two tryptophan residues, Trp276

and Trp107, was also observed in the in vitro nuclear import

assay using intact U1snRNPs as transport cargo. The decrease

in import observed for the three mutants correlates quan-

titatively with the reduced cap-binding affinities evaluated

by fluorescence spectroscopy (Figure 4). Therefore, it appears

unlikely that snurportin1 forms other strong contacts, like

protein–protein interactions, with the U1snRNP. However,

the nuclear import of UsnRNPs in vivo was reported to

occur by means of a larger complex containing snurportin1,

importin-b, the SMN protein and presumably other compo-

nents of the SMN complex (Narayanan et al, 2002, 2004).

Structural homology

Searching the PDB for structurally related proteins revealed

that the overall fold of the m3G-cap-binding domain exhibits

high structural similarity to the GTP-binding domain of the

mRNA-guanylyltransferase indicated by an r.m.s.d. of 2.6 Å

for 204 common Ca atoms. Interestingly, this enzyme is

involved in the formation of the 50-cap as it transfers GMP

to the 50end of mRNAs and UsnRNAs via a 50–50-triphosphate

bridge (Hakansson et al, 1997). This domain is also found in

DNA ligases, where it is involved in ATP binding

(Subramanya et al, 1996). Superposing the structures of

snurportin1 and mRNA-guanylyltransferase, which shares

the highest structural similarity to snurportin1, reveals that

the binding sites for GTP and the m3G-cap are in a similar

area of the protein surface, but the positions of the nucleo-

tides and the residues forming the binding pocket, and

therefore all interactions, are completely different (Figure

5A/B). Furthermore, the GTP-binding pocket of the mRNA-

guanylyltransferase penetrates much more deeply between

the b-sheets than the m3G-cap-binding pocket of snurportin1.

The structural homology between the m3G-cap-binding

domain and the mRNA-guanylyltransferase was unexpected,

since all searches for sequences homologous to the m3G-cap-

binding domain gave no significant hint to any other protein

(Huber et al, 1998). Indeed, the amino-acid sequence identity

between the human m3G-cap-binding domain and the human

mRNA-guanylyltransferase is only 12.7% (Figure 5C). A more

elaborate database search recently identified the m3G-cap-

binding domain of snurportin1 as an inactive paralogue of the

mRNA-guanylyltransferase (Mans et al, 2004). The structural

homology suggests that the m3G-cap-binding domain shares

a common ancestor with the GTP-binding domain of the

mRNA-guanylyltransferase that was linked to an IBB domain

by shuffling and fusion of the corresponding exons.

Materials and methods

Structure determination
Purification, m3G-cap-binding affinity test and crystallisation
strategy are described elsewhere (Strasser et al, 2004). Shortly,
crystals of a 26 kDa m3G-cap-binding domain of snurportin1 were
only obtained in the presence of the synthetic m3GpppG-cap
dinucleotide. Single crystals for X-ray data collection were grown
in sitting drops using 8–10% (w/v) PEG 10 k and 200 mM sodium
citrate (pH 5.5) as precipitant. Diffraction data of a native crystal
were collected at the PSF beamline BL1 (BESSY, Berlin) to a
resolution of 2.4 Å. Three different heavy-atom derivative data sets
were collected on a Micromax 007 rotating anode generator
(Rigaku/MSC, USA) operating at 40 kV and 20 mA, equipped with
Osmic focusing mirrors and a Mar345dtb detector system (Xray-
Research, Germany) in order to solve the phase problem. Data were
processed using Denzo/Scalepack (HKL-research) and CCP4 pro-
grams (Bailey, 1994). Heavy-atom sites were found and initial
phases were improved by AutoSHARP (Globalphasing Ltd, UK).
The graphics program O (Jones et al, 1991) was used for model-
building and the structure was refined with CNS (Brünger et al,
1998). A 37 kDa fragment of snurportin1 was used for crystal-
lisation, but the crystals contain only a 26 kDa fragment. Inspection
of possible GluC-protease cleavage sites and preliminary mass
spectroscopic data indicates that this fragment consists of residues
79–300. The refined model comprises residues 97–300. The missing
residues are not defined in the electron densisty map due to
conformational flexibility. The m3GpppG-cap dinucleotide was well
defined in the electron density map.

Topology and parameter files for the m3GpppG-cap dinucleotide
were created with the help of the Dundee PRODRG2 Server (van
Aalten et al, 1996). Secondary structure elements were assigned by
STRIDE (Frishman and Argos, 1995) and figures were generated
with Pymol (www.pymol.org).

Expression constructs
For all expression constructs described, full-length snurportin1 in
pGEX6P1 (Amersham Biosciences) was used as a PCR template

Figure 4 In vitro nuclear import assay of snurportin1. Nuclear
import of fluorescently labelled U1snRNPs in the presence of
importin-b, RanGDP, NTF2, an energy regenerating system, and
either snurportin1 or one of the mutated proteins (W107A, W276A,
and W107A/W276/A). In the left panel, cell nuclei stained with
DAPI are shown. The middle panel shows the import of Cy3-
labelled U1snRNPs. The quantification of the import rates is given
in the right panel (a.u.: arbitrary units for intensity per pixel).
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(Strasser et al, 2004). The coding region of the deletion mutant of
snurportin1 (residues 66–360) was amplified using primers with
restriction sites for BamHI and XhoI and inserted into pGEX6P1.
The IBB domain (residues 1–65) was cloned in pET28b (Novagen)
via NcoI and XhoI restriction sites. Tryptophan mutants W276A,
W107A and W276A/W107A in pGEX6P1 were generated using the
QuickChangeTM Site Directed Mutagenesis Kit (Stratagene).

Protein expression and purification
Expression and purification of snurportin1 wild-type, truncated
snurportin1 (residues 66–360) and the tryptophan mutants were
performed as described previously (Strasser et al, 2004). The IBB
domain (residues 1–65) was expressed as a His-tagged protein at
301C for 5 h using 1 mM IPTG and purified at first by Ni-NTA
agarose. Therefore, the supernatant was applied to the resin in
300 mM NaCl, 20 mM Tris, pH 7.5, 2 mM 2-mercaptoethanol, and
eluted with the loading buffer containing 300 mM imidazole. The
fractions containing the IBB domain were pooled, concentrated and
further purified by gel filtration on Superdex 75 media (100 mM
NaCl, 50 mM HEPES, pH 7.5, 2 mM DTT).

Fluorescence spectroscopy
Fluorescence measurements were performed on a Fluoromax3TM

spectrofluorimeter (Jobin Yvon) at 201C in 100 mM NaCl, 50 mM
HEPES/NaOH (pH 7.5), using cuvettes with 0.5�1.0 cm2 section
(Hellma). Emission at 315 or 340 nm, used for the calculation of
dissociation constants, was recorded during excitation at 295 nm

(1 nm bandwidth) for 60 s with time constants of 0.5 s. Equilibrium
dissociation constants were obtained by fitting the solutions of a
quadratic function, assuming a 1:1 stoichiometry and taking into
account the fluorescence of the cap oligonucleotides (Graphit 3.1,
Erithacus Software). Standard deviations were calculated from three
independent experiments. To determine the cap-binding affinity of
wild-type snurportin1 and of the mutants W107A, W276A and
W107A/W276A, emission spectra (310–500 nm) were collected after
excitation at 295 nm for the proteins alone and in the presence of
m3GpppG in a 20-fold, or in case of m7GpppA and m3GpppA in a 50-
fold, molar excess. Spectra were corrected for the fluorescence of the
cap dinucleotides and buffer contributions. The decrease in fluores-
cence upon ligand binding to snurportin1 was determined in three
independent measurements. For competition experiments with the
IBB domain, the decrease in tryptophan fluorescence after addition of
m3GpppG in a five-fold molar excess to snurportin1 full length was
compared to the decrease after addition of increasing amounts of the
IBB domain (residues 1–65). The IBB domain was titrated up to a 100-
fold molar excess to snurportin1 wild type.

Nuclear import assay
Nuclear import assays were performed as described by Huber
et al (2002). Each transport reaction mixture contained 100 nM
Cy3-labelled human U1snRNPs, and, except for the negative
control, 500 nM importin-b, 300 nM of snurportin1 or the mutated
snurportin1 proteins (W107A, W276A and W107A/W276/A). The
transport was performed on permeabilised HeLa cells for 10 min

Figure 5 Structural similarity of snurportin1 with bound m3GpppG to the mRNA-guanylyltransferase with bound GTP. (A) Superimposed
protein structures presented as ribbon diagrams and the bound nucleotides in ball-and-stick representation. Human snurportin1–m3GpppG
complex (coloured red) and the mRNA-guanylyltransferase–GTP complex (coloured grey) of the Paramecium bursaria chlorella virus 1 (PDB
accession code 1CKM) share an amino-acid sequence identity of 8.3% for the structurally homologous regions. (B) Close-up view of the
nucleotide-binding pockets. In the mRNA-guanylyltransferase, the bound GTP protrudes much deeper into the cleft between the b-sheets. (C)
Structure-based sequence alignment of human snurportin1 and human mRNA-guanylyltransferase reveals a sequence identity of 12.7%.
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at room temperature in a humidified chamber. After extensive
washing with 1�PBS, the cells were fixed with paraformaldehyde
(5% in 1�PBS) and mounted on coverslips. Images were taken at
400-fold magnification. Rates of U1snRNP import were calculated
with the help of the program ImageJ (http://rsb.info.nih.gov/ij/),
by averaging nuclear fluorescence intensities of 50 cells. In order to
compare the results, the intensities of each experiment were
normalised against wild-type snurportin1 intensities.

Supplementary data
Supplementary data are available at The EMBO Journal Online.
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