
Commentary I Hanson & Burr: Connect ionis t learning and representa t ion 

feature discovery in both frameworks. Representational as­
sumptions can be hidden in both approaches, but both frame­
works can also make them explicit, and thus subject to 
modification. 

Another issue that crosses the connectionist/AI boundary 
concerns the grounding of symbols (Harnad 1990). Many sys­
tems in both frameworks use symbols or nodes that have no 
connection to sensory input or motor output. AI systems seldom 
ground symbols like "blue" in perceptually-based definitions, 
but the same holds true for most network "input" nodes that 
respond to "blue" stimuli. Similarly, a few researchers in both 
frameworks have started to focus on this important topic, linking 
learning systems to sensori-motor components that make con­
tact with an external environment (Iba & Langley 1987; Laird et 
al. 1989). Networks no more force one in this direction than do 
symbols; rather, the driving goal is a complete theory of cogni­
tion and perception, which might be cast in either formalism. 

Finally, H&B argue that the connectionist approach leads to 
"surprisingly elegant and powerful models of memory, percep­
tion, motor control, categorization, and reasoning" (abstract), 
yet they provide no convincing evidence for this claim. Re­
search in "symbolic" approaches to learning has addressed all of 
these topics, yet models of many complex cognitive phenomena 
handled in this framework remain beyond the reach of current 
connectionist systems. 

In summary, H&B present a useful analysis of representa­
tional issues, that arise in connectionist systems, describing 
some novel tools for their study. However, they also pepper 
their article with unsubstantiated claims about the superiority of 
this framework over "symbolic" methods, ignoring important 
advances in machine learning that address all of the issues that 
they raise. They present convincing arguments that networks 
open a promising avenue to integrating representation and 
learning, but they give no evidence to support their contention 
that it "provides a unique approach" to this topic. If anything, 
the increasing amount of research on learning and representa­
tion in both frameworks actually bolsters Fodor and Pylyshyn's 
(1988) arguments about the intrinsic relation between these two 
approaches. 

Clearly, interactions between learning and representation 
will be central to an integrated theory of cognition, and future 
research should give priority to this topic. Cognitive science and 
AI are better served, however, by substantive studies and by 
attempts to unify apparently disparate frameworks (Langley 
1989) than by polemical statements about the superiority of one 
approach over another, as emphasized in the current target 
article. 

whether automata theory has ignored the relation between 
learning and representation. And the answer is no. Learnability 
theory has always been at the heels of (representational) auto­
mata theory, both in its deterministic and its probabilistic 
versions (cf., Levelt 1974, vol. I, and a host of later publica­
tions). And there is, at that, an important qualitative advantage 
to classical learnability theory: It has provided formal proofs for 
the learnability of myriad triples of automaton, knowledge 
domain, and presentation schedule. No such proofs are avail­
able for connectionist systems. Case studies can never make up 
for formal proof in these matters. 

Turning now to the connectionist modeling of empirical 
domains, I want to address H&B's presupposition that learning 
in nets is natural. ("This is one of the reasons why learning is so 
natural in nets," section 4.1). This must be a claim about the 
close compatibility between learning in nets and learning in 
human beings. It may or may not be the case that there is such a 
close compatibility for particular domains of knowledge acquisi­
tion. But, first, this is not yet known: There exists no empirical 
connectionist psychology worth speaking about. The typical end 
product in connectionist research is some working system, but 
such systems are almost never put to empirical tests, at least not 
to tests that meet the standards of present-day experimental 
psychology. Second, such close compatibility is certainly not a 
striking feature where typically human learning capabilities are 
concerned. Let me give two examples: learning without over­
riding old knowledge, and one-shot rule learning. 

(1) Learning without overriding old knowledge. In acquiring 
arithmetic, children can, after having learned addition, learn 
multiplication without loosing their addition skills. The only 
way to do this in nets is to train them on both skills simul­
taneously. For children (as well as for adults) the typical learning 
situation, however, is one in which new knowledge is added 
without having to retrain all the old skills simultaneously. Here 
nets do not behave naturally at all; old knowledge typically gets 
overridden. 

(2) One-shot rule learning. If I am told that the numbers in my 
telephone district are, as of today, extended by the initial digit 2, 
I can immediately apply that rule without having to be retrained 
on all my name/telephone number associations. Such one-shot 
rule learning is at the basis of our educational system. It is a 
characteristically human form of learning, and I have not yet 
come across any net that performs this feat. 

Three conclusions: First, there is a formal learnability theory 
for classical architectures, but not for connectionist architec­
tures. Second, there is as yet no empirical connectionist psy­
chology to support empirical claims about learning and repre­
sentation. Third, human learning displays characteristic 
features that are not captured by nets. 
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One must distinguish between formal systems and their poten­
tial applications in the modeling of empirical domains. At the 
level of formal systems, connectionist models (as in Hanson and 
Burr's [H&B's] taxonomy, Figure 1) play a role comparable to 
automata in classical computational theory. It is at this level that 
H&B approach the issues of learning and representation and 
their interrelations. It is therefore a category error to compare 
formal connectionist systems to empirical cognitive theories. 
Even if it were true, as H&B claim, that the latter had ignored 
the relations between learning and representation (which is by 
no means the case - at least not in my field, psycholinguistics, 
where this very issue is part and parcel of language-acquisition 
research), it is irrelevant to the question at hand. The point is 
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Hanson & Burr's (H&B's) main claim that connectionism pro­
vides the motive and means for the unified study of learning and 
representation. If they are right, we ought to see signs that 
connectionism is narrowing gaps both between and within 
disciplines in the cognitive sciences. A quick survey of the 
recent literature on "neural networks" elicits a strong impres­
sion that connectionism is providing a point of contact between 
the disciplines of neuroscience, computer science, and psychol­
ogy. Here I review the present and potential impact of connec­
tionism in the parts of psychology known as animal learning and 
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