
Psychol Res (1990) 52:153 - 157 Psychological
Research
© Springer-Verlag 1990

Are multilayer feedforward networks effectively Turing Machines?

Wilemm J. M. Levelt

Max-Planck-lnstitut ftir Psycholinguistik, Wundtlaan 1, Postbus 310, 6525 XD Nijmegen, The Netherlands

Summary. Can connectionist networks implement any
symbolic computation? This would be the case if networks
have effective Turing machine power. It has been claimed
that a recent mathematical result of Hornik, Stinchcombe,
and White on the generative power of multilayer feedfor-
ward networks has that implication. The present paper
considers whether this claim is correct. It is shown that
finite approximation measures, as used in Hornik et al.'s
proof, are not adequate for capturing the infinite recursive-
ness of recursive functions. The result is therefore irrele-
vant to the issue at hand.

There can be little doubt that connectionism is interested in
learnability and knowledge representation. In fact, there is
hardly a more central concern in connectionism than to
show that any complex domain of knowledge can be ac-
quired by PDP networks. Given this preoccupation, it is
surprising that almost no effort is spent on a formal analy-
sis of these issues. In fact, the standard approach is quite
unprincipled, namely by example and computer simula-
tion. In dealing with some domain of cognitive functioning
such as syntax, the strategy is to try to teach a network
some more ore less interesting syntactic set. If it works, the
conclusion is drawn that the result suggests that PDP net-
works can learn syntax.

Such generalizations, however, are totally unwar-
ranted. Those who have more than 30 years of memory
available may remember how the same kind of argument
blossomed and perished when language was modelled as a
Markov process. It was never taken to be alarming that
there were long-distance dependencies in language, de-
pendencies that could bridge several intervening elements.
The solution was to increase the order of the approximation
accordingly; or in terms of finite automata: to have states
relate to ordered pairs, or triples, or quadruples of previous
in- or output elements. There was always hope, until
Chomsky proved that the generative power of finite auto-
mata was in principle insufficient for the generation of

natural languages. A recent paper by Servan-Schreiber,
Cleeremans, and McClelland (1988) deals with long-dis-
tance dependencies and their representation in recurrent
nets. It is I'histoire qui se repOte. Long-distance depend-
encies can be represented in recurrent networks by making
the states also reflect the history of the previous output. It
is still the pre-Chomskian style of argument after all these
years.

What is needed for network processing is something
akin to what automata theory is for symbolic processing.
One should prove what kinds of functions can be computed
by different kinds of automata. The theorems of automata
theory have been of foremost importance for the theory of
symbolic computation. Not only did they make it feasible
to determine the simplest architectures for the representa-
tion of different kinds of knowledge, such as the push-
down automaton for context-free grammars. But in addi-
tion they made it possible to define and proof leamability
for various triples of architecture, knowledge domain, and
presentation schedule (cf. Levelt, 1974, and numerous sub-
sequent publications).

Formally, connectionism is in exactly the same ball
park. It makes little sense to spend years implementing a
domain of knowledge in a network that cannot contain it. It
makes even less sense to study leamability in such cases. In
fact, this formal approach was that of the pioneers Minsky
and Papert, who proved which functions their perceptrons
could or could not compute.

In the present paper I shall consider whether a recent
proof on the generative power of connectionist networks
carries the implication that networks can represent any
symbolic computation.

Hornik et al.'s result

Recently Hornik, Stinchcombe, and White (1989) proved
that multilayer feedforward networks with one hidden
layer are capable of approximating any Borel-measurable 1
function to any desired degree of accuracy, provided that
enough hidden nodes are available.

154

IR r

<
X

R

~{x: [f(~)-g(x)l > e}<~

f(~)
f(x)

R
----~ X

Fig. 1. Feedforward multilayer networks with several input and output
nodes (top left) or with single input and output nodes (top right). At the
bottom: g(x) is the function to be approximated, andf(x) the approximat-
ing function computed by the network, with g as the measure of approxi-
mation.

This is an important result. It shows that multilayer
networks can indeed compute an impressive class of func-
tions. It also led to immediate euphoria. Elman (1989), for
instance, wrote: "Put simplistically, they are effectively
Turing machines. In principle, then, such networks are
capable of implementing any function that the Classical
system can implement." And surely, if multilayer feedfor-
ward networks are effectively Turing machines, they can
implement any explicit symbolic computation, since we
know that Turing machines can. 2 These networks would
then form a universal language for symbolic computation,
and this would undermine recurrent claims that they are in
principle incapable of certain kinds of symbolic computa-
tion.

In order to find out whether Hornik et al.'s result has
this implication we shall have to look a bit more carefully

1 Let B be the smallest collection of subsets of the real numbers R such
that B contains all the closed intervals {x[a <_ x <_ b} and satisfies the
conditions: (i) The empty set belongs to B; (ii) For all A e B the
complement of A belongs to B; (iii) For any finite or countably infinite
subset A of B the union UAeA A belongs to B. The elements of B are called
the Borel sets of R. A real valued function f on R is called a Borel
measurable or Bairefunction, if for all a e R the set {xlx e R,f(x) < a}
belongs to B.

2 More precisely: in the course of the last half-century the question
whether there is a Turing machine for any explicit or effective symbolic
computational procedure has been answered by defining an effective
procedure by one that can be Turing-computed.

into what the authors have proven. Their final theorem
concerns networks with r input units and s output units.
The functions therefore map real-valued vectors in Rr to
real-valued vectors in Rs (see Figure 1, top left).

For the sake of simplicity, however, I shall discuss
Hornik et al.'s result by way of examples in RxR (Figure 1,
top right), i.e., for networks with one-dimensional input
and output vectors. The theorem says that for any measur-
able function g and any arbitrary e there is a network that
produces a function f such that the difference metric of f
and g is smaller than a (Figure 1, bottom). This difference
metric will turn out to be important, and needs some further
comment. The authors take the probability e that fix) and
g(x) differ by more than e (i.e., "significantly"), and they
require that that probability (of a significant difference) is
smaller than e. So there may be occasional big differences
between f- and g-values, but it shouldn't occur too often.
How can one talk about the "probability" that a big dif-
ference occurs? That presupposes that we know the prob-
ability distribution of x occuring as input to the network. It
doesn't matter when f and g differ more than 8 for input
values that are rarely presented to the network. It is, how-
ever, not essential that the difference metric is a probability
measure. Any other finite measure will do.

The heart of the matter is, of course, in the construction
of this approaching function f. A hidden node does two
things. It adds the weighted activations from the input
nodes. That, however, is not relevant for the single input
node/output node network in Figure 1; nor is it relevant for
the proof. The other thing the hidden node does is to
perform a nonlinear transformation of input activation into
output activation. This nonlinearity is essential, but almost
any nonlinearity will do, as Stinchcombe and White (1989)
have shown. The output node, finally, adds the weighted
activations it receives from the hidden nodes. So it pro-
duces the sum given in Figure 1. Given a finite difference
metric and enough hidden nodes, this sum can approach
any measurable function, and most of the proof goes in
showing that this is the case.

The approximat ion of discrete recursive functions

Let us now turn to the question of whether these networks
are also effectively Turing machines. Turing machines can
recognize all and only the recursively enumerable sets, also
called the type-0 languages. Recognizing means that for
each element in the set, say each grammatical sentence if
the set is a language, the machine will halt in a final state,
i.e., it will say "yes, this is a grammatical sentence" after
only a finite sequence of moves or transitions. When it
receives a string that doesn't belong to the set, it may say
"no, this doesn't belong to the set," but it may as well run
forever without producing an answer. The latter case is
unpleasant in the case of natural languages, because you
can never know whether the machine is dealing with a very
complicated grammatical sentence that just takes a long
time to check, or whether the machine is running on
forever on an ungrammatical string, an element in the
complement of the set. Levelt (1974) and others have ar-
gued that this cannot be a good model for natural lan-

155

Table 1. A vocabulary V, a recursive grammar G, an enumeration of
strings of increasing length over V, and the characteristic values of these
strings

V = {John, Peter, went, and}
G = S --+ N + went

N - + N andN
N --+ John, Peter

String Characteristic value

1 John 0
2 Peter 0
3 went 0
4 and 0
5 John John 0
6 John Peter 0
7 John went 1
8 John and 0
9 Peter Peter 0

10 Peter went 1
11 Peter and 0
12 Peter John 0
13 went and 0

etc. etc.
21 John Peter went 0
22 John Peter and 0

etc. etc.
85 John Peter went and 0
86 John and Peter went 1

etc. etc.
341 John Peter went and John 0
342 John John Peter went and 0

etc. etc.

guages. Language users typically have as strong intuitions
about the grammaticalness of strings as about the ungram-
maticalness of strings. So natural languages are not just
recognizable, they are probably also decidable. This means
that the Turing machine should always produce either a
"yes" or a "no" answer after a finite number of transitions.
Such sets or languages are called decidable or recursive.
Among them are all context-free and all context-sensitive
languages. I shall now limit the discussion to these recur-
sive sets, because - for the sake of exposition - I shall
argue from linguistic examples. But if the conclusion holds
for recursive sets, it holds for recursively enumerable sets
as well, precisely the sets for which Turing machines can
be recognizers.

A recursive set is characterized by a recursive function.
And the question we have to ask is whether networks can
be approximators of recursive functions, as they are of
measurable functions. Each recursive language has a char-
acteristic function that is recursive. One can, obviously,
enumerate all strings that can be composed from the lan-
guage's vocabulary. Just begin enumerating all 1-word
strings, then all 2-word strings, etc. Table 1 presents a small
recursive grammar over a 4-word vocabulary and (the be-
ginning of) an enumeration of the strings that can be com-
posed out of this vocabulary.

There will be an infinite number of such strings. Anoth-
er way of saying that the strings can be enumerated is that
one can assign natural numbers to them: string 1, string 2,
etc. (see Table 1). The characteristic function for a recur-

g(=)
1

,(=)

c h a r a c t e r i s t i c f u n c t i o n

• I • i • • • • •

a t i i n ~ n , a i ~ i i a n p

1 2 3 4 5 6 7 8 9 1 0 - 1 2 . - - - ~ X

F
1 / 2 - o

1 / 4

118

1 / 1 6

weighting function

~(~) : (½)~

1 3 5 7 9 1 1 1 3 - - * X

N

x=l

N

f(x) (circles)
g(~) (aots)

o ®® ® ® O ® O ® ®®®
J i i i i i I i i , , i / L

1 2 3 4 5 6 7 8 9 1 0 " 1 2 " - - ~ Z '

Fig. 2. Feedforward multilayer networks with several input and output
nodes (top left) or with single input and output nodes (top right). At the
bottom: g(x) is the function to be approximated, andf(x) the approximat-
ing function computed by the network, with bt as the measure of approxi-
mation.

sive set or language assigns the value 1 or 0 to each of these
string numbers. The value is 1 if the string is in the lan-
guage; it is 0 if the string does not belong to the language.
Table 1 presents these characteristic values for the recur-
sive set defined by grammar G. String 1 has characteristic
value 0, string 2 has characteristic value 0, etc., string 7 has
characteristic value 1, and so on. More generally, the char-
acteristic function for a language is a mapping from N to
{1,0}.

Remember that the right-hand network of Figure 1
computes a function from R to R. We are now considering
a special case: a function that is defined for every natural
number, but for none of the reals in between. That function
is also measurable in the Borel sense. Hence, the Hornik et
al. (1989) theorem entails that for any recursive set's char-
acteristic function and each e there is a network with one
input and one output node that approximates the character-
istic function to a degree < e. You put in the number of the
string, and it appropriately produces a 1 or a 0 as the case
may be.

So is it correct to conclude that for each discrete recur-
sive function there is a network that can approach it to any
degree of accuracy? No, it isn't. We shall have to look very

156

Table 2. A recursive grammar and strings of increasing recursion it
generates

G = S -+ if N says S, he is lying
S --+ N says S
S ~ it is raining
N -~ John, Mary, Peter

Examples of generated strings, with degree of recursion

Degree
1
2
3

Examples Weight
if John says it is raining, he is lying gl
if John says Mary says it is raining, he is lying p.2
if John says Mary says Peter says it is raining,
he is lying g3
etc. etc.

For [at = g 2 = g 3 Z g i = ex>

carefully into what it might mean to approximate a recur-
sive function in the sense defined by Hornik et al. (1989).

As we saw above, we need a measure of approximation
between the target function and the approximating func-
tion. That (dis)similarity metric should be a finite measure
(such as a probability measure, where the total probability
of the outcomes is 1).

Let us, by way of example, construct such a case for the
characteristic recursive function g in Figure 2. We take as a
measure the function g on NxF, where g(x) = 0/2) x. It is
also shown in Figure 2. The sum of this infinite progression
is 1, i,e., finite. The function g can be used as a measure for
the approximation of two characteristic functions. If the
functions differ by more than ~ for x = 1, that will contrib-
ute 1/2 to the difference metric; if they differ more than ~ for
x = 2, that will contribute 1/4 to the difference metric; et
cetera. Hence the maximal difference between any two
such functions is 1; that is the case when their values differ
by more than ~ for every x.

How are we going to construct an approximating func-
tion f, given an arbitrary e ___ 1? (For e > 1 any characteris-
tic function on N will do because Ig(x) -f(x)[< e for all x).
That is relatively easy. We will construct an f that is a
perfect fit to the first n values of g, where n is chosen in
such a way that 2(1/2) x ___ 1 - e. In this way the weight of
the remaining differences can never reach the value ~.
Hornik et al. (1989) showed that such an f can be con-
structed with a network containing n hidden nodes. But it is
irrelevant whar f does for numbers greater than n. Even if it
differs from our characteristic function g for all subsequent
numbers, the total weight difference of the two functions
will be smaller than e.

In short, if g is the characteristic function to be approxi-
mated, and ~ the desired measure of approximation, then
take the following steps: (i) define a finite difference me-
tric, (ii) take a finite set of points { al, a2. . . an } such that for
the remaining set of points the difference metric will be
smaller than ~ for any approximating function, (iii) create a
network with n hidden nodes that computes a function f
which is an exact representation of g on the domain al ...
an (this is always possible). Thenf i s an approximation of g
in the sense of Homik et al. (1989). So indeed, recursive
functions can be approximated by multilayer feedforward
networks in the sense defined by Hornik et al. (1989).

But is this what we were after? The issue was whether
connectionist nets are effectively Turing machines, i.e.,
mechanisms that can ipso facto represent natural lan-
guages, or perform any explicit symbolic computation.
What has been shown, however, is that for any recursive
language (or set) there is a network with n hidden nodes
that can exactly represent the characteristic values (0 or 1)
of n strings. The idea of the approximation is to choose n
large enough so as to make the cumulative weight of the
discrepancies for all other values smaller than e. In other
words, the network fools us by correctly replicating a finite
set of characteristic values that we are supposed to value
highly, but it can miss all the other values. It is therefore
precisely the unlimited recursion of these sets that is not
captured in this way. The classical computational models
of mind were designed to account for this very unlimited
productivity of symbol systems.

So how did it come about that we got ourselves fooled
by the network? How did it occur that it does not represent
the productivity of a recursive function, and still ap-
proaches it within e? The reason is that Homik et al. (1989)
require a weighting function, an approximation metric, that
isfinite. Only then is it possible to approximate a recursive
function by reproducing a finite number of its values. But
one should reject this limitation if one wants to evaluate
whether the network is able to reproduce the infinite pro-
ductivity of a recursive function. What one should value
highly is that this unlimited recursion is captured, not that
some finite set of "important" characteristic values is cor-
rectly reproduced.

This is easily shown from a final example, presented in
Table 2. The recursive grammar in that figure generates
strings of increasing degrees of recursion. We can now
define a metric Ix, with value gl for strings of degree 1, g2
for strings of degree 2, etc. If we want our metric to capture
the infinite productivity if the recursive grammar, we
should find it as important that strings of degree 1 are
correctly generated as that strings of degree 2, degree 3,
and so on are correctly generated by our simulating net-
work. That is, gl = g2 = g3 = ... But then, obviously, Zgi
= ~, and we don't have a finite metric anymore.

A r e m a r k on learnabi l i ty

Connectionists make life harder for themselves than is
necessary. Their standard approach is to demonstrate that
networks can represent some domain of knowledge by
showing that this domain of knowledge can be taught to the
network. Though the logic is correct, it is also cumber-
some. What we have learned from automata theory is that
there is no simple relation between what an automaton can
generate (or represent) and what the same automaton can
learn. There are, in fact, surprising incongruencies between
the generative power of automata and their learning capac-
ity - even on the most lenient definitions of learnability
(see Levelt, 1974, for a review of these matters). There is
no good reason to believe that similar incongruencies
won ' t arise for networks. Networks may have a far better
representing than learning capability. But to find out, one
has to develop a formal theory of learnability instead of

157

endulg ing in endless compute r s imulat ions (see Levelt ,
1990, for further comments on this issue). Horn ik et a l . ' s
theorems on the genera t ive power of ne tworks could form
the starting point for such a formal learnabi l i ty theory.

Conclusion

The quest ion addressed in this paper is whether Horn ik et
a l . ' s impor tant theorems on the genera t ive power of
mul t ip le - l ayer feedforward ne tworks can lead to the con-
c lusion that these networks are effect ively Turing ma-
chines. The answer is two-way. There is a tr ivial sense in
which the a rgument holds. Given a finite measure for
weighing the d i f ference be tween a character is t ic funct ion
of a recurs ive set and any approximat ing funct ion the net-
work produces , one can construct a ne twork that comes
arbi trar i ly close to the recurs ive function. But this is done
by having the ne twork s imulate a f inite set of character is t ic
values, namely those that contr ibute most to the metric.
One needs, at most , n h idden nodes to s imulate n such
character is t ic values correctly.

But in a broader sense the answer is "no." The ne twork
fools us by being correct on a finite set of strings whose
correct representat ion we are supposed to value highly. If,
however , we want to capture by our approximat ion metr ic
the infini te recursiveness of a recursive function, then a

finite metr ic won ' t , do, and H o m i k et al. 's results are
i rrelevant to the issue.

Acknowledgements. I am grateful to Jeff Elman, who supplied me with
the necessary ammunition for this paper, in particular with the Hornik et
al. results. I also wish to thank my mathematician brother Ton Levelt,
who helped me understand the Hornik theorems and who functioned as a
most creative sounding board throughout the writing of this paper. Still,
he cannot be held accountable for any flaws in my argument.

References

Elman, J. L. (1989). Representation and structure in connectionist mod-
els. CRL Technical Report 8903.

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedfor-
ward network are universal approximators. Discussion Paper
88 -45R. Department of Economics, UCSD.

Levelt, W. J. M. (1974). Formal grammars in linguistics and psycholin-
guistics (3 vols.). The Hague: Mouton.

Levelt, W. J. M. (1990). On leamability, empirical foundations, and
naturalness. Commentary on S. J. Hanson & J. Burr. What connec-
tionist models learn: Learning and representation in connectionist
networks. Brain and Behavioral Sciences (in press).

Servan-Schreiber, D., Cleeremans, A., & McClelland, J. L. (t988). En-
coding sequential structure in simple recurrent networks. Report
CMU-CS-88-183.

Stinchcombe, M., & White, H. (1989). Universal approximation using
feedforward networks with non-sigmoid hidden layer activation
functions. Department of Economics, UCSD.

