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Are multilayer feedforward networks effectively Turing Machines? 
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Summary. Can connectionist networks implement any 
symbolic computation? This would be the case if networks 
have effective Turing machine power. It has been claimed 
that a recent mathematical result of Hornik, Stinchcombe, 
and White on the generative power of multilayer feedfor- 
ward networks has that implication. The present paper 
considers whether this claim is correct. It is shown that 
finite approximation measures, as used in Hornik et al.'s 
proof, are not adequate for capturing the infinite recursive- 
ness of recursive functions. The result is therefore irrele- 
vant to the issue at hand. 

There can be little doubt that connectionism is interested in 
learnability and knowledge representation. In fact, there is 
hardly a more central concern in connectionism than to 
show that any complex domain of knowledge can be ac- 
quired by PDP networks. Given this preoccupation, it is 
surprising that almost no effort is spent on a formal analy- 
sis of these issues. In fact, the standard approach is quite 
unprincipled, namely by example and computer simula- 
tion. In dealing with some domain of cognitive functioning 
such as syntax, the strategy is to try to teach a network 
some more ore less interesting syntactic set. If it works, the 
conclusion is drawn that the result suggests that PDP net- 
works can learn syntax. 

Such generalizations, however, are totally unwar- 
ranted. Those who have more than 30 years of memory 
available may remember how the same kind of argument 
blossomed and perished when language was modelled as a 
Markov process. It was never taken to be alarming that 
there were long-distance dependencies in language, de- 
pendencies that could bridge several intervening elements. 
The solution was to increase the order of the approximation 
accordingly; or in terms of finite automata: to have states 
relate to ordered pairs, or triples, or quadruples of previous 
in- or output elements. There was always hope, until 
Chomsky proved that the generative power of finite auto- 
mata was in principle insufficient for the generation of 

natural languages. A recent paper by Servan-Schreiber, 
Cleeremans, and McClelland (1988) deals with long-dis- 
tance dependencies and their representation in recurrent 
nets. It is I'histoire qui se repOte. Long-distance depend- 
encies can be represented in recurrent networks by making 
the states also reflect the history of the previous output. It 
is still the pre-Chomskian style of argument after all these 
years. 

What is needed for network processing is something 
akin to what automata theory is for symbolic processing. 
One should prove what kinds of functions can be computed 
by different kinds of automata. The theorems of automata 
theory have been of foremost importance for the theory of 
symbolic computation. Not only did they make it feasible 
to determine the simplest architectures for the representa- 
tion of different kinds of knowledge, such as the push- 
down automaton for context-free grammars. But in addi- 
tion they made it possible to define and proof leamability 
for various triples of architecture, knowledge domain, and 
presentation schedule (cf. Levelt, 1974, and numerous sub- 
sequent publications). 

Formally, connectionism is in exactly the same ball 
park. It makes little sense to spend years implementing a 
domain of knowledge in a network that cannot contain it. It 
makes even less sense to study leamability in such cases. In 
fact, this formal approach was that of the pioneers Minsky 
and Papert, who proved which functions their perceptrons 
could or could not compute. 

In the present paper I shall consider whether a recent 
proof on the generative power of connectionist networks 
carries the implication that networks can represent any 
symbolic computation. 

Hornik et al.'s result 

Recently Hornik, Stinchcombe, and White (1989) proved 
that multilayer feedforward networks with one hidden 
layer are capable of approximating any Borel-measurable 1 
function to any desired degree of accuracy, provided that 
enough hidden nodes are available. 
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Fig. 1. Feedforward multilayer networks with several input and output 
nodes (top left) or with single input and output nodes (top right). At the 
bottom: g(x) is the function to be approximated, andf(x) the approximat- 
ing function computed by the network, with g as the measure of  approxi- 
mation. 

This is an important result. It shows that multilayer 
networks can indeed compute an impressive class of func- 
tions. It also led to immediate euphoria. Elman (1989), for 
instance, wrote: "Put simplistically, they are effectively 
Turing machines. In principle, then, such networks are 
capable of implementing any function that the Classical 
system can implement." And surely, if multilayer feedfor- 
ward networks are effectively Turing machines, they can 
implement any explicit symbolic computation, since we 
know that Turing machines can. 2 These networks would 
then form a universal language for symbolic computation, 
and this would undermine recurrent claims that they are in 
principle incapable of certain kinds of symbolic computa- 
tion. 

In order to find out whether Hornik et al.'s result has 
this implication we shall have to look a bit more carefully 

1 Let B be the smallest collection of subsets of the real numbers R such 
that B contains all the closed intervals {x[a <_ x <_ b} and satisfies the 
conditions: (i) The empty set belongs to B; (ii) For all A e B the 
complement of A belongs to B; (iii) For any finite or countably infinite 
subset A of B the union UAeA A belongs to B. The elements of B are called 
the Borel sets of R. A real valued function f on R is called a Borel 
measurable or Bairefunction, if for all a e R the set {xlx e R,f(x) < a} 
belongs to B. 

2 More precisely: in the course of  the last half-century the question 
whether there is a Turing machine for any explicit or effective symbolic 
computational procedure has been answered by defining an effective 
procedure by one that can be Turing-computed. 

into what the authors have proven. Their final theorem 
concerns networks with r input units and s output units. 
The functions therefore map real-valued vectors in Rr to 
real-valued vectors in Rs (see Figure 1, top left). 

For the sake of simplicity, however, I shall discuss 
Hornik et al.'s result by way of examples in RxR (Figure 1, 
top right), i.e., for networks with one-dimensional input 
and output vectors. The theorem says that for any measur- 
able function g and any arbitrary e there is a network that 
produces a function f such that the difference metric of f 
and g is smaller than a (Figure 1, bottom). This difference 
metric will turn out to be important, and needs some further 
comment. The authors take the probability e that fix) and 
g(x) differ by more than e (i.e., "significantly"), and they 
require that that probability (of a significant difference) is 
smaller than e. So there may be occasional big differences 
between f- and g-values, but it shouldn't occur too often. 
How can one talk about the "probability" that a big dif- 
ference occurs? That presupposes that we know the prob- 
ability distribution of x occuring as input to the network. It 
doesn't matter when f and g differ more than 8 for input 
values that are rarely presented to the network. It is, how- 
ever, not essential that the difference metric is a probability 
measure. Any other finite measure will do. 

The heart of the matter is, of course, in the construction 
of this approaching function f. A hidden node does two 
things. It adds the weighted activations from the input 
nodes. That, however, is not relevant for the single input 
node/output node network in Figure 1; nor is it relevant for 
the proof. The other thing the hidden node does is to 
perform a nonlinear transformation of input activation into 
output activation. This nonlinearity is essential, but almost 
any nonlinearity will do, as Stinchcombe and White (1989) 
have shown. The output node, finally, adds the weighted 
activations it receives from the hidden nodes. So it pro- 
duces the sum given in Figure 1. Given a finite difference 
metric and enough hidden nodes, this sum can approach 
any measurable function, and most of the proof goes in 
showing that this is the case. 

The approximat ion of discrete recursive functions 

Let us now turn to the question of whether these networks 
are also effectively Turing machines. Turing machines can 
recognize all and only the recursively enumerable sets, also 
called the type-0 languages. Recognizing means that for 
each element in the set, say each grammatical sentence if 
the set is a language, the machine will halt in a final state, 
i.e., it will say "yes, this is a grammatical sentence" after 
only a finite sequence of moves or transitions. When it 
receives a string that doesn't belong to the set, it may say 
"no, this doesn't belong to the set," but it may as well run 
forever without producing an answer. The latter case is 
unpleasant in the case of natural languages, because you 
can never know whether the machine is dealing with a very 
complicated grammatical sentence that just takes a long 
time to check, or whether the machine is running on 
forever on an ungrammatical string, an element in the 
complement of the set. Levelt (1974) and others have ar- 
gued that this cannot be a good model for natural lan- 
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Table 1. A vocabulary V, a recursive grammar G, an enumeration of 
strings of increasing length over V, and the characteristic values of these 
strings 

V = {John, Peter, went, and} 
G = S --+ N + went 

N - +  N andN 
N --+ John, Peter 

String Characteristic value 

1 John 0 
2 Peter 0 
3 went 0 
4 and 0 
5 John John 0 
6 John Peter 0 
7 John went 1 
8 John and 0 
9 Peter Peter 0 

10 Peter went 1 
11 Peter and 0 
12 Peter John 0 
13 went and 0 

etc. etc. 
21 John Peter went 0 
22 John Peter and 0 

etc. etc. 
85 John Peter went and 0 
86 John and Peter went 1 

etc. etc. 
341 John Peter went and John 0 
342 John John Peter went and 0 

etc. etc. 

guages. Language users typically have as strong intuitions 
about the grammaticalness of strings as about the ungram- 
maticalness of strings. So natural languages are not just 
recognizable, they are probably also decidable. This means 
that the Turing machine should always produce either a 
"yes" or a "no" answer after a finite number of transitions. 
Such sets or languages are called decidable or recursive. 
Among them are all context-free and all context-sensitive 
languages. I shall now limit the discussion to these recur- 
sive sets, because - for the sake of exposition - I shall 
argue from linguistic examples. But if the conclusion holds 
for recursive sets, it holds for recursively enumerable sets 
as well, precisely the sets for which Turing machines can 
be recognizers. 

A recursive set is characterized by a recursive function. 
And the question we have to ask is whether networks can 
be approximators of recursive functions, as they are of 
measurable functions. Each recursive language has a char- 
acteristic function that is recursive. One can, obviously, 
enumerate all strings that can be composed from the lan- 
guage's vocabulary. Just begin enumerating all 1-word 
strings, then all 2-word strings, etc. Table 1 presents a small 
recursive grammar over a 4-word vocabulary and (the be- 
ginning of) an enumeration of the strings that can be com- 
posed out of this vocabulary. 

There will be an infinite number of such strings. Anoth- 
er way of saying that the strings can be enumerated is that 
one can assign natural numbers to them: string 1, string 2, 
etc. (see Table 1). The characteristic function for a recur- 
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Fig. 2. Feedforward multilayer networks with several input and output 
nodes (top left) or with single input and output nodes (top right). At the 
bottom: g(x) is the function to be approximated, andf(x) the approximat- 
ing function computed by the network, with bt as the measure of approxi- 
mation. 

sive set or language assigns the value 1 or 0 to each of these 
string numbers. The value is 1 if the string is in the lan- 
guage; it is 0 if the string does not belong to the language. 
Table 1 presents these characteristic values for the recur- 
sive set defined by grammar G. String 1 has characteristic 
value 0, string 2 has characteristic value 0, etc., string 7 has 
characteristic value 1, and so on. More generally, the char- 
acteristic function for a language is a mapping from N to 
{1,0}. 

Remember that the right-hand network of Figure 1 
computes a function from R to R. We are now considering 
a special case: a function that is defined for every natural 
number, but for none of the reals in between. That function 
is also measurable in the Borel sense. Hence, the Hornik et 
al. (1989) theorem entails that for any recursive set's char- 
acteristic function and each e there is a network with one 
input and one output node that approximates the character- 
istic function to a degree < e. You put in the number of the 
string, and it appropriately produces a 1 or a 0 as the case 
may be. 

So is it correct to conclude that for each discrete recur- 
sive function there is a network that can approach it to any 
degree of accuracy? No, it isn't. We shall have to look very 



156 

Table 2. A recursive grammar and strings of increasing recursion it 
generates 

G = S -+ if N says S, he is lying 
S --+ N says S 
S ~ it is raining 
N -~ John, Mary, Peter 

Examples of generated strings, with degree of recursion 

Degree 
1 
2 
3 

Examples Weight 
if John says it is raining, he is lying gl 
if John says Mary says it is raining, he is lying p.2 
if John says Mary says Peter says it is raining, 
he is lying g3 
etc. etc. 

For [at = g 2  = g 3  . . . .  Z g i  = ex> 

carefully into what it might mean to approximate a recur- 
sive function in the sense defined by Hornik et al. (1989). 

As we saw above, we need a measure of approximation 
between the target function and the approximating func- 
tion. That (dis)similarity metric should be a finite measure 
(such as a probability measure, where the total probability 
of the outcomes is 1). 

Let us, by way of example, construct such a case for the 
characteristic recursive function g in Figure 2. We take as a 
measure the function g on NxF, where g(x) = 0/2) x. It is 
also shown in Figure 2. The sum of this infinite progression 
is 1, i,e., finite. The function g can be used as a measure for 
the approximation of two characteristic functions. If the 
functions differ by more than ~ for x = 1, that will contrib- 
ute 1/2 to the difference metric; if they differ more than ~ for 
x = 2, that will contribute 1/4 to the difference metric; et 
cetera. Hence the maximal difference between any two 
such functions is 1; that is the case when their values differ 
by more than ~ for every x. 

How are we going to construct an approximating func- 
tion f, given an arbitrary e ___ 1? (For e > 1 any characteris- 
tic function on N will do because Ig(x) -f(x)[ < e for all x). 
That is relatively easy. We will construct an f that is a 
perfect fit to the first n values of g, where n is chosen in 
such a way that 2(1/2) x ___ 1 - e. In this way the weight of 
the remaining differences can never reach the value ~. 
Hornik et al. (1989) showed that such an f can be con- 
structed with a network containing n hidden nodes. But it is 
irrelevant whar f  does for numbers greater than n. Even if it 
differs from our characteristic function g for all subsequent 
numbers, the total weight difference of the two functions 
will be smaller than e. 

In short, if g is the characteristic function to be approxi- 
mated, and ~ the desired measure of approximation, then 
take the following steps: (i) define a finite difference me- 
tric, (ii) take a finite set of  points { al, a2. . .  an } such that for 
the remaining set of points the difference metric will be 
smaller than ~ for any approximating function, (iii) create a 
network with n hidden nodes that computes a function f 
which is an exact representation of g on the domain al ... 
an (this is always possible). Thenf i s  an approximation of g 
in the sense of Homik  et al. (1989). So indeed, recursive 
functions can be approximated by multilayer feedforward 
networks in the sense defined by Hornik et al. (1989). 

But is this what we were after? The issue was whether 
connectionist nets are effectively Turing machines, i.e., 
mechanisms that can ipso facto represent natural lan- 
guages, or perform any explicit symbolic computation. 
What has been shown, however, is that for any recursive 
language (or set) there is a network with n hidden nodes 
that can exactly represent the characteristic values (0 or 1) 
of n strings. The idea of the approximation is to choose n 
large enough so as to make the cumulative weight of the 
discrepancies for all other values smaller than e. In other 
words, the network fools us by correctly replicating a finite 
set of characteristic values that we are supposed to value 
highly, but it can miss all the other values. It is therefore 
precisely the unlimited recursion of these sets that is not 
captured in this way. The classical computational models 
of mind were designed to account for this very unlimited 
productivity of symbol systems. 

So how did it come about that we got ourselves fooled 
by the network? How did it occur that it does not represent 
the productivity of  a recursive function, and still ap- 
proaches it within e? The reason is that Homik  et al. (1989) 
require a weighting function, an approximation metric, that 
isfinite. Only then is it possible to approximate a recursive 
function by reproducing a finite number of its values. But 
one should reject this limitation if one wants to evaluate 
whether the network is able to reproduce the infinite pro- 
ductivity of  a recursive function. What one should value 
highly is that this unlimited recursion is captured, not that 
some finite set of "important" characteristic values is cor- 
rectly reproduced. 

This is easily shown from a final example, presented in 
Table 2. The recursive grammar in that figure generates 
strings of increasing degrees of  recursion. We can now 
define a metric Ix, with value gl for strings of  degree 1, g2 
for strings of degree 2, etc. If  we want our metric to capture 
the infinite productivity if the recursive grammar, we 
should find it as important that strings of degree 1 are 
correctly generated as that strings of degree 2, degree 3, 
and so on are correctly generated by our simulating net- 
work. That is, gl = g2 = g3 = ... But then, obviously, Zgi 
= ~,  and we don't  have a finite metric anymore. 

A r e m a r k  on learnabi l i ty  

Connectionists make life harder for themselves than is 
necessary. Their standard approach is to demonstrate that 
networks can represent some domain of knowledge by 
showing that this domain of knowledge can be taught to the 
network. Though the logic is correct, it is also cumber- 
some. What we have learned from automata theory is that 
there is no simple relation between what an automaton can 
generate (or represent) and what the same automaton can 
learn. There are, in fact, surprising incongruencies between 
the generative power of automata and their learning capac- 
ity - even on the most lenient definitions of learnability 
(see Levelt, 1974, for a review of these matters). There is 
no good reason to believe that similar incongruencies 
won ' t  arise for networks. Networks may have a far better 
representing than learning capability. But to find out, one 
has to develop a formal theory of learnability instead of 
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endulg ing  in endless  compute r  s imulat ions  (see Levelt ,  
1990, for further comments  on this issue). Horn ik  et a l . ' s  
theorems on the genera t ive  power  of  ne tworks  could  form 
the starting point  for such a formal  learnabi l i ty  theory.  

Conclusion 

The quest ion addressed  in this paper  is whether  Horn ik  et 
a l . ' s  impor tant  theorems on the genera t ive  power  of  
mul t ip le - l ayer  feedforward  ne tworks  can lead  to the con- 
c lusion that these networks  are effect ively  Turing ma-  
chines.  The  answer  is two-way.  There  is a tr ivial  sense in 
which  the a rgument  holds.  Given  a finite measure  for 
weighing  the d i f ference  be tween  a character is t ic  funct ion 
of  a recurs ive  set and any approximat ing  funct ion the net- 
work  produces ,  one can construct  a ne twork  that comes  
arbi trar i ly close to the recurs ive  function. But this is done 
by  having  the ne twork  s imulate  a f inite set of  character is t ic  
values,  namely  those that contr ibute most  to the metric.  
One needs,  at most ,  n h idden nodes to s imulate  n such 
character is t ic  values  correctly.  

But in a broader  sense the answer  is "no."  The ne twork  
fools us by  being correct  on a finite set of  strings whose  
correct  representat ion we  are supposed to value highly. If, 
however ,  we want  to capture by our approximat ion  metr ic  
the infini te recursiveness  of  a recursive function, then a 

finite metr ic  won ' t ,  do, and H o m i k  et al. 's  results are 
i rrelevant  to the issue. 
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