Nonnative phonemes are open to native interpretation: A perceptual learning study

Matthias J. Sjerps and James M. McQueen

Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands

E-mail:
Matthias.Sjerps@mpi.nl, James.McQueen@mpi.nl

Introduction

- Phonetic categories in one's native language are flexible: They can be altered by exposure to an ambiguous sound, presented in only 20 words (lexically-guided perceptual learning).
- Acquiring second-language (L2) phonetic categories is difficult, even after extensive exposure.

Can a (difficult) L2 phoneme be learnt to represent an L1 phoneme, when presented in L1 context?

- Four experiments investigated the possibilities and bounds of lexically-guided perceptual learning in speech perception, using (1) a digital /fs/-mixture, (2) English [θ] (as in "bath"), (3) a nonspeech sound, and (4) natural instances of $/ \mathrm{f} / \mathrm{and} / \mathrm{s} /$.

General methodology:

Cross-modal identity priming
Training: Two groups of Dutch listeners were trained to interpret an ambiguous sound [?] as either /f/ or /s/, using /f/- or /s/-biasing words (e.g. "ongeloof" (disbelief) or "ingenieus" (ingenious)), which ended in [?] ("ongeloo?" or "ingenieu?").
Testing: We used Dutch minimal pairs like "doof'/"doos" (deaf/box). Listeners made visual lexical decisions to those words, after auditory primes. The primes were ambiguous versions of the minimal pairs (e.g. "doo?"), or unrelated words (control condition).

References:

Mcoueen, J. M., Culter, A.. \& Norris, D. (2006). Phonological
abstraction in the mental lexico. Cognitive Science 30.1113 .126.

Results

1. $[?]=/ f s /$ /mixture

- Dutch listeners successfully learnt to interpret a digitally mixed /fs/-sound as representing either /f/ or /s/.
- Replication of McQueen et al. (2006).

4. [?] = natural fricatives

- Natural instances of $[f]$ and [s] were used during "training"; one group at test heard [f]-final primes (e.g. "doof"), the other group heard [s]-final primes (e.g. "doos").
- This allowed for a comparison between the processing of "old" and "new" instances; and thus is a test of thoroughness of learning.
- The priming effects obtained with [θ] and /fs/ were very similar to the effects obtained with normal instances of /f/ and /s/.

2. [?] $=[\theta]$

- Dutch listeners with English as L2 successfully learnt to interpret $[\theta]$ as representing /f/, or $/ \mathrm{s} /$, despite years of learning that $/ \mathrm{f} / \mathrm{l}, \mathrm{s} /$ and $[\theta]$ are distinct.
- Same amount of priming with $[\theta]$ as with /fs/.

3. [?] = signal-correlated noise - Listeners successfully learnt to interpret the nonspeech sound as representing /f/, but not /s/.

- Spectral similarity is important for perceptual learning.

Conclusions

- English [θ] can be learnt to represent either /f/ or /s/ by L1 speakers of Dutch, when presented in L1 context.
- Perceptual learning of ambiguous items transfers to words that were not in the training set. This argues against a word-level episodic model of speech perception.
- The priming effects obtained with both/fs/ and [θ] were very similar to the effects obtained with natural fricatives. This finding reflects the fact that lexically-guided perceptual learning is fast and very thorough.

Perceptual learning in a native language is thorough, depends on spectral characteristics, and can override years of second-language phonetic learning.

