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Abstract We introduce a novel computer implementation

of the Unification-Space parser (Vosse and Kempen in

Cognition 75:105–143, 2000) in the form of a localist

neural network whose dynamics is based on interactive

activation and inhibition. The wiring of the network is

determined by Performance Grammar (Kempen and Har-

busch in Verb constructions in German and Dutch. Ben-

jamins, Amsterdam, 2003), a lexicalist formalism with

feature unification as binding operation. While the network

is processing input word strings incrementally, the evolv-

ing shape of parse trees is represented in the form of

changing patterns of activation in nodes that code for

syntactic properties of words and phrases, and for the

grammatical functions they fulfill. The system is capable,

at least qualitatively and rudimentarily, of simulating sev-

eral important dynamic aspects of human syntactic parsing,

including garden-path phenomena and reanalysis, effects of

complexity (various types of clause embeddings), fault-

tolerance in case of unification failures and unknown

words, and predictive parsing (expectation-based analysis,

surprisal effects). English is the target language of the

parser described.

Keywords Predictive parsing � Syntactic ambiguity

resolution � Psycholinguistics � Unification Space �
Localist neural network

Introduction

The Unification-Space model of parsing that we developed

10 years ago (henceforth U-Space2000; Vosse and Kem-

pen 2000) is a dynamic model of syntactic parsing based on

activation and inhibitory competition. Its dynamics enable

it to simulate a considerable range of psycholinguistic

phenomena related to the syntactic aspects of human sen-

tence comprehension. In the decade that passed since its

publication, two important developments took place that

incited us to design an entirely new implementation. First,

contrary to what we expected at the time of developing U-

Space2000, predictive syntactic parsing has convincingly

been shown to be an important component of human sen-

tence comprehension (Kamide and Mitchell 1999; Kon-

ieczny 2000; Hale 2003; Van Berkum et al. 2005;

Pickering and Garrod 2007; Levy 2008). Second, thanks to

the ascent of novel neurophysiological research methods,

there is a rapidly growing need for neural-network models

of human cognition, including human syntactic parsing.

Hence, we decided to embark on a project aiming at

extending U-Space2000 with facilities for predictive pars-

ing, and to re-implement it as a localist neural network. We

expected, in addition, that this connectionist approach

would bring nearer a parsing mechanism with the highly

desirable but elusive property of ‘‘graceful degradation.’’ In

particular, we aimed at a parser that, when confronted with
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an unknown word or an incorrectly inflected known word,

does not halt immediately but attempts to guess the correct

grammatical properties of that word. To our knowledge, no

symbolic or connectionist model embodying these prop-

erties of human syntactic parsing has been implemented.

(For pointers to recent literature on neurocomputational

models of human sentence processing, we refer to van der

Velde and de Kamps (2006), beim Graben et al. (2008),

Mayberry et al. (2009), Huyck (2009); and several other

articles in this special issue of Cognitive Neurodynamics.)

How to represent, in a neural net with a fixed pattern of

connections, not only the declarative lexical and syntactic

knowledge underlying linguistic competence but also the

syntactic structures that are assembled online in the course

of the parsing process? Since we wanted the network to

compute (some equivalent of) real parse trees, we could not

start out from familiar neural network architectures pub-

lished in the literature. These typically aim at performing

more limited linguistic tasks, e.g., predicting the next word

of a sentence. Simple Recurrent Nets (SRNs), in particular,

have often been shown capable of learning such tasks, even

if the training set consists of sentences generated by a

relatively complex grammar (Elman 1990, 1991). It is far

from certain, though, that this type of performance requires

an internal representation of sentence structure (van der

Velde et al. 2004).

Therefore, we decided to start from scratch. Given that

the U-Space2000 model centered around the notions of

activation and competition, it should not come as a surprise

that we ended up with a model that has some similarities

with Interactive Activation and Competition (IAC) models

which originated in the 1980s, for instance the TRACE

model of auditory word recognition (McClelland and

Elman 1986). The resulting system we dubbed SINUS,

where US stands for Unification Space, N for Neural

Network, I for IAC, and S for Simple or Semi (to bring out

that it is anything but finished).

We start with an outline of the grammar formalism

underlying the parsing system: Performance Grammar

(PG; Harbusch and Kempen 2002; Kempen and Harbusch

2003). PG defines the structures to be formed during

parsing. Then, we sketch the dynamic aspects of the

parsing process, which we adopt from U-Space2000:

Activation spreading and competitive inhibition (Vosse

and Kempen 2000, 2009). The pièce de résistance of the

paper is the description of the neural re-implementation:

the wiring and the activation flow in the SINUS network,

and the training/optimization procedure used to set the

30? free parameters. Finally, we show that SINUS

achieves the desired psycholinguistic effects, at least in a

qualitative and rudimentary fashion, and conclude with

some evaluative remarks and suggestions for improve-

ments and extensions.

Structural assumptions: essentials of Performance

Grammar

Performance Grammar is a ‘‘lexicalized’’ grammar: It

assumes that the information needed to build grammati-

cally correct sentences is associated with the individual

lexical items. Syntactic trees result from the collaboration

between two processing components—one dealing with the

hierarchical structure of a tree, the other one with the linear

order of the branches. The hierarchical component retrieves

so-called lexical frames from the Mental Lexicon (see

Fig. 1 for two examples) and links them together by

‘‘binding’’ the root node of one frame to a foot node of

another frame. The two nodes being bound should carry the

same phrase label. The binding operation underlying sen-

tence (1) yields the tree in Fig. 2.

(1) Money counts

Associated with every root and foot node is a feature

matrix, and every feature consists of an attribute (printed in

capital letters) and a value. The value of an attribute is a

non-empty disjunctive set of options. In Fig. 1, for exam-

ple, the CASE feature of money has three possible options:

nominative, dative and accusative. This means it can be

used in syntactic environments that require either of these

alternatives. In this paper, where the emphasis is on syn-

tactic parsing, we distinguish morphosyntactic and linear-

order features. A root node can bind to a foot node only if

all of their features unify. We define unification here as a

nonrecursive operation on features and feature matrices.

Informally, a feature f1 in feature matrix m1 of some node

unifies with feature f2 in the feature matrix m2 of another

Fig. 1 Lexical frames for the words of sentence (1). Both frames are

simplified here: Only branches whose terminal leaves are involved in

a binding operation or carry a lexical label, are shown. Some less

frequently used abbreviations: HD = Head; STAT = status of a

clause/verb: finite, infinitival or participial (present or past). The

TENSe feature of the verb is left out
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node either if the attributes of f1 and f2 are different, or else

(that is, they have the same attribute) if the intersection of

the values of f1 and f2 is non-empty. If and only if all

features of m1 unify with all features of m2, unification

succeeds. Successful unification delivers a feature matrix

that contains the union of the features in m1 and m2 (one

exemplar of each feature); and the intersection computed as

value of features with the same attribute counts as the value

of that attribute in the resulting matrix. In Fig. 2, successful

unification is indicated by the black dot in the thick line

connecting the unified nodes. Note that the unified nodes

do not merge/fuse; they only take the same feature matrix.

If unification fails, the feature matrices remain unchanged.

Comparison of Figs. 1 and 2 shows that unification of the

two lexical frames yields a single value option for the

CASE attribute of the root and foot nodes of money, and a

single option for the NUMber, PERSon and STATus

attributes of counts. The example also illustrates how

unification determines Subject-Verb agreement.

PG’s linear component works with so-called topologies

(or topological fields). Paired with each lexical frame is a

topology, that is, a one-dimensional array of slots that serve

as placeholders for sentence constituents. In the current PG

version for English, every lexical frame headed by a verb

has a ‘‘clausal topology’’ with nine slots, as depicted in

Fig. 3. Placement rules like those in Table 1 allocate a

position in one of the slots to individual constituents; if a

constituent has more than one placement option, the left-

most one is preferred. Because every verb is treated as the

Head of a finite or nonfinite clause, and every clause has its

own topology, it follows that example sentence (2) acti-

vates four clausal topologies, as depicted in Fig. 4. The

resulting stack of topologies is ‘‘read out’’ from top to

bottom and from left to right, in a depth-first manner.

(2) Who would wish to deny that money counts?

Importantly, linear order rules are applied at the same

time as, and in conjunction with, binding (unification)

decisions. Whenever a binding decision is not accompanied

by a licit slot assignment, the derivation of the sentence

fails. Furthermore, PG does not have movement rules: Slot

positions are assigned ‘‘once and for all.’’ For example,

during the derivation of a sentence like What did you say?,

there is not an intermediate stage where the Direct Object

what occupies a position rightward of the Head verb say,

followed during a later stage by a ‘‘fronting’’ operation

which moves what to its definitive position at the beginning

of the sentence. (For detailed movement-free PG

Fig. 2 Syntactic tree for example (1) after unification of the Subject

footnote of count with the root NP node of money

Fig. 3 Topology for English clauses. The names of the three fields are our translations of the original German names Vorfeld, Mittelfeld, and

Nachfeld

Table 1 Examples of topology slot fillers for English clauses

Slot Filler

F1 In declarative main clause: Topic, Focus (one constituent only)

In interrogative main clause: Wh-constituent

In complement clause: Wh-constituent (including

Complementizer whether/if)

F2 In complement clause: Complementizer that

F3 Subject (iff non-Wh)

M1 Pre-Infinitival to \ Head verb (obligatory) \ Verb particle

M2 In interrogative main clause: Subject (iff non-Wh)

Direct Object (iff personal or reflexive pronoun);

Subject \ Direct Object

M3 Indirect Object \ Direct Object (both non-Wh; and Direct

Object not a personal/reflexive pronoun)

M4 Verb particle

E1 Non-finite Complement clause of Auxiliary verbs and other

‘‘Verb Raisers’’

E2 Finite or non-finite Complement clause of ‘VP Extraposition’

verb

Finite Complement Clause

Modifier constituents are not shown. Precedence between constituents

landing in the same slot is marked by ‘‘\’’ (N. B. The simulations to

be reported below use a somewhat simplified version of these

placement rules. In particular, since the complementizer that is

missing from the English grammar underlying the current version of

SINUS, there is no F2 slot, and F3 is renamed F2.)

Cogn Neurodyn (2009) 3:331–346 333

123



treatments of grammatical phenomena that often have been

analyzed in terms of movement, see Kempen and Harbusch

2003 and Kempen 2009). We will not dwell on this topic

here because only relatively simple cases have been

implemented in the present SINUS version.

Dynamic assumptions: U-Space2000

A simple two-word sentence like (1) only allows one possible

attachment between the lexical frames, provided the words

are unambiguous. However, when the number of words

increases, the number of syntactically allowed attachments

(unifications) increases rapidly. Figure 5 provides an exam-

ple with a relatively simple seven-word sentence. The first

tree shows the lexical frames of the sentence and the unifi-

cations defining the correct parse tree. However, if we leave

semantic and pragmatic constraints out of consideration, at

least one additional attachment is allowed by the grammar:

The PP with a spot might also be analyzed as a Modifier of

the verb. Moreover, because we aim for a robust parser that

degrades gracefully, it should always be on the alert for ill-

formed input, in particular lexical, morphological, and word

order errors. The middle tree shows additional attachment

options when word order and morphology are left out of

consideration. In order to find, within the total set of possible

attachment patterns, a small set of syntactically plausible

alternatives—preferably just one or two—, U-Space2000

stages competitions between mutually exclusive attachments

(e.g., between the ‘‘low’’ and ‘‘high’’ attachment of PP with

the cat). The outcome of these competitions is determined by

an interplay of dynamic factors based on activation spreading

and lateral inhibition—mechanisms that are frequently used

in neurocognitive modeling. The third tree in Fig. 5 shows

(most of) the inhibitory links that U-Space2000 creates

internally in the course of parsing the sentence.

Fig. 4 Application of the placement rules in Table 1 to sentence (2).

The black dots and the arrows pointing to them express the placement

of embedded clauses: The complete content of the topology at the tail

of an arrow is entered into the slot containing the dot. Wish and deny
are treated as ‘‘VP Extraposition verbs’’ in the terminology of

Generative Grammar

Fig. 5 Above PG lexical frames (labeled nodes with continuous lines)

and ultimately correct unifications (straight dashed arrows) for a

simple sentence. Middle alternative unification options. Below com-

petitive inhibition between alternative unification options (continuous
lines ending in black dots)
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SINUS is built on similar dynamic principles which, as

shown by U-Space2000, enable psycholinguistically plau-

sible simulations of ambiguity resolution, garden-path

phenomena, reanalysis, and effects of word (form) fre-

quency and complexity. However, SINUS is not just a

neural-net re-implementation of U-Space2000. It aims to

achieve, at least in rudimentary form, two feats seldom

seen in computational models of human sentence com-

prehension: predictive parsing, and graceful degradation

(error-tolerance).

Connectivity

The SINUS network consists of a one-dimensional array of

‘‘columns.’’ Every node in a column codes for a gram-

matical property of an incoming word (localist represen-

tation). These properties are either adduced from the

lexicon or assigned during the parsing process. Among the

former are morphosyntactic features (e.g., a node repre-

senting ‘‘Number = Singular,’’ or a node coding for the

fact that a personal pronoun projects—i.e., is the Head

of—an NP); the latter include grammatical functions (e.g.,

the NP headed by an input noun receiving the role of

Subject) and linear positions in a phrase or clause (e.g., a

Subject NP selecting topology slot F3 as its destination).

One column represents one word, and the columns are

filled one by one, from left to right, according to word

order in the input string. In its present version, SINUS has

12 columns. Because one column serves as receptacle for

syntactic predictions concerning future input, SINUS can

process sentences up to 11 words long. However, in the

section ‘‘Removing the upper bound on sentence length,’’

we describe an algorithm that removes this limitation.

Intercolumnar connections enable the representation of

grammatical relation between the words of a sentence.

With a few exceptions, all nodes in the columns function

in the same manner. Every node has an activation level

between zero and unity, set initially to zero. If the activa-

tion level of a node surpasses a difference threshold (i.e.,

exceeds the activation levels of competing nodes by more

than a minimum value, the threshold), then the grammat-

ical property represented by that node forms part of the

current analysis of the input sentence. Activation spreads to

other nodes via a pattern of connections that is derived

from the PG grammar. This activation is added to the

activation level of the node at the receiving end of an

excitatory connection, but it is subtracted from that level if

the connection is inhibitory (the equations describing these

effects are introduced in the section ‘‘Computational

aspects.’’). Whether a connection is excitatory or inhibitory

depends on whether the nodes at either end belong to the

same or to different layers. Every column is divided into

six layers, each containing nodes that code for one type of

grammatical information (word category, lexical frame,

unification node, topology slot, etc.). Connections between

nodes in the same layer are all inhibitory; this holds for

intracolumnar as well as intercolumnar connections. Con-

nections between nodes in different layers are all excit-

atory, whether upward or downward, and they only connect

nodes in adjacent layers (but see footnote 2 for one

exception to the latter).

The bank of interconnected word columns is the ‘‘Uni-

fication Space’’ where syntactic structures are built in the

form of activation patterns. Upon initialization, the system

is ‘‘empty’’ in the sense that all nodes have zero activation.

The properties of input lexical items are adduced from a

separate store, the Mental Lexicon. Via pathways from

each lexical item to the bank of columns, every word

recognized in the input can, in principle, reach every col-

umn: A special circuitry allocates every input words to the

leftmost empty column in their order of arrival.1 The

lowest layer of a column is the first to receive activation

from the word it represents, whereafter this activation

spreads upward via ‘‘feedforward’’ links to the next higher

layer, reverberating again via ‘‘feedback’’ links to the next

lower layer.

We now describe the layers of a word column from

bottom to top (see Fig. 6). Describing one word column

suffices because all columns embody the same network.

The Input layer functions as the intermediary between

Mental Lexicon and Unification Space. It represents the

identity of ‘‘its’’ input word and passes the morphosyntactic

properties of this word on to the next higher layer.

The Word Category layer represents the Head of the

lexical frame associated with the input word (e.g., the noun

of an NP lexical frame, the preposition of a PP lexical

frame, the verb of a clausal lexical frame). It also contains

nodes that code for the morphosyntactic properties of the

input word (number, person, gender, case, etc.). In case of

lexical ambiguity, several word category nodes and their

associated features can be active simultaneously. (Due to

competition via inhibitory connections, one of the catego-

ries will ultimately gain the upper hand.)

The word category and the morphosyntactic features are

activated bottom-up by a short activation pulse. However,

this pulse cannot keep the nodes in the Word Category

layer alive for a long time. In fact, the network critically

relies on excitatory feedback from the Lexical Frame layer:

Category and feature nodes receive feedback from the

phrasal nodes whose head they are (nouns and pronouns

1 Recent neurophysiological evidence (e.g., Snijders et al. 2009)

suggests that the Mental Lexicon is subserved by the Left Posterior

Middle Temporal Gyrus, and the Unification Space by the Left

Inferior Frontal Gyrus.

Cogn Neurodyn (2009) 3:331–346 335

123



from NP, verbs from S, adjectives and adverbs from AP,

etc.; note that, in PG, every word, even the particle of a

particle verb, is head of a phrase). Feedback may depend

on combinations of activated features. For example, the

word category Pronoun should not get top-down feedback

from an NP phrasal node when the latter was activated

bottom-up by an input Noun.

The Lexical Frame layer codes for the syntactic infor-

mation in the lexical frame(s) associated with the input

word, together with the feature matrices (cf. Fig. 1). Mul-

tiple frames may be active at the same time. Importantly,

word columns do not systematically set apart syntactic

elements belonging to different lexical frames (see the

paragraph on lexical frame nodes in the next section for

more details on the treatment of lexical ambiguity).

The Unification layer contains so-called Unification

nodes (U-nodes). A U-node carries the name of a gram-

matical function (Subject, Direct Object, Modifier, etc.). It

is connected to a root node in its ‘‘own’’ column and a foot

node in another column, and its label specifies the gram-

matical function that the root node fulfills in the lexical

frame to which the foot node belongs. For instance, node

#6 in Fig. 6 codes for the Subject function of money in

sentence (1)—more precisely, for the unification of the root

node of NP money with the foot NP-node of the Subject of

counts (cf. also the black circle in the thick line of Fig. 2).

U-nodes receive bottom-up activation from the unification

‘‘partners’’ (i.e., the root and the foot node they bind) and

from feature nodes. An example of the latter: The activa-

tion level of node #6 in Fig. 6 depends partly on the acti-

vation levels of the number and person features involved.

In example (1), the input word money leads to activation

of several U-nodes—not only the U-node representing the

option that the input word is going to play the role of

Subject in the upcoming sentence, but also the U-node for

Direct Object, Indirect Object, and Prepositional Object.

Since these roles are incompatible, they compete by

inhibiting each other. Differential feedback from the Linear

Order layer (see below), may cause the activation levels of

these U-nodes to diverge. For instance, in the current

SINUS version, Subject U-nodes receive a higher amount

of initial activation. Due to this head start, the first NP of a

clause will often seize the Subject role, especially when

helped by an ensuing finite verb.

Figure 7 shows that unification partners need not be

situated in adjacent columns. However, a foot node

belonging to a remote column exerts less influence on

unification strength than a foot node in a nearby column.

(This effect is achieved by weights on intercolumnar con-

nections that decrease with increasing distance.) Impor-

tantly, a column includes several exemplars of every

U-node: one exemplar for every other column. In the three-

column system depicted in Fig. 7, every column contains

two exemplars of the Subject U-node; the twelve-column

system of SINUS includes eleven tokens of every U-node.

In our descriptions of what happens in a word column, we

will skip these details.

A U-node may link to several different types of root

nodes. For example, Modifier nodes of S-frames (clauses)

receive excitation from PP-nodes, AP-nodes, or other

S-nodes (adverbial clauses).

The Linear Order layer contains nodes representing a

licit ‘‘destination’’ of a U-node; more precisely, they try to

assign one topology slot to one U-node. These nodes

receive bottom-up activation from the U-nodes for which

they seek a destination. The amount of bottom-up activa-

tion is tempered when not all placement conditions are met.

For instance, as specified in Table 1, the Direct Object is

allowed to land in slot M3 of a clausal topology only if it is

neither a Wh-constituent nor a personal or reflexive

pronoun.

The PG grammar (the rules in Table 1 in particular) may

specify two or more placement options for a U-node. For

instance, the Subject can go to slot F3 or to slot M2 of a

clausal topology. In Fig. 6, these options are represented by

nodes #7 and #7’. Linear Order nodes coding for compet-

ing options inhibit each other. Competition also arises

Fig. 6 Activation spreading through the SINUS network for the noun

money and the verb counts in example (1)
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between two or more Linear Order nodes that attempt to

assign the same topology position to different U-nodes.

The higher the current activation level of a Linear Order

node, the more secure the placement option it tries to

realize for its U-node.

The Topology layer consists of nodes that represent a

position in a topology (i.e., a slot or a relative position

within a slot). The activation level of a Topology node

indicates the strength of an association between a U-node

and a position in a topology. One of the factors influencing

these levels are the competitions raging in the Linear Order

layer. Nodes in the Topology layer do not compete with

one another. Instead, nodes coding for early positions

transmit activation to certain nodes further downstream in

the same topology, in a manner that causes positions to be

filled in a temporal order that roughly corresponds to their

spatial (left-to-right) order in the topology. This transmis-

sion takes place indirectly, via nodes in the Linear Order

layer, as will be explained in the next section.

The Topology layer specifies topologies for all types of

lexical frames in the grammar, not only for the clausal one

associated with S-nodes. For instance, it includes an NP

topology consisting of four slots (for Determiner Phrase,

prenominal Modifier, Head, and postnominal Modifier. The

upmost row of nodes in the Topology layer of Fig. 6 codes

for the three leftmost NP positions (hence, node #5 is the

destination of the Head (pro)noun of an NP. The second

row of nodes codes for three of the nine slots of clausal

topologies. (The topologies for other phrase types, which

are very small, are not shown in Fig. 6.)

Finally, outside of the word columns and their layers

there is a ‘‘global’’ node, called the Apex, which serves as a

‘‘coat hanger’’ for the syntactic structure of the entire input

sentence. It has a constant (nondecaying) activation and

connects to the S-nodes in the various columns. These

S-nodes enter into a competition to become the ‘‘unification

partner’’ of the Apex, and the winner ultimately dominates

the entire parse tree. The activation of the Apex node has

the side-effect of ‘‘attracting’’ S-nodes: It slightly reduces

the probability for the latter to attach at lower positions,

e.g., as a relative or complement clause.

Flow of activation and inhibition

SINUS spends 20 processing cycles on every new input

word. During a cycle, for every node in every column, the

activation level of that node is updated by adding the

activation transmitted to it from connected nodes in higher

and lower adjacent layers, and by subtracting inhibition

and decay (for details, see the section ‘‘Computational

aspects’’). The intercolumnar connections enable SINUS to

pre-activate (or pre-inhibit) certain nodes in columns

rightward of the last filled column. Then, when these col-

umns are filled, the patterns of activation running there

influence the way the input is processed. For instance, they

can bias the analysis of a word-class ambiguous word

towards the reading whose activation pattern conforms best

to the pre-activated pattern. In the current SINUS version,

pre-activation is restricted to a single column—the one

immediately following the one that was filled last. Pre-

activation endows SINUS with a rudimentary form of

predictive parsing.

Figure 6 shows SINUS at work for example (1). The

arrows show feedforward activation between nodes that

turn out to win the competitions in the various layers

(except for #7’ and #8’; see below).

Node #1 in the Input layer is activated first. During

subsequent cycles, activation spreads to node #2 (Noun) in

the Word Category layer, which in turn activates node #3

(NP) in the Lexical Frame layer. From here, activations

spreads in two directions, in parallel: to node #4 in the

Fig. 7 Example of

intercolumnar connectivity of

Unification nodes. U-nodes

(circles) in three word columns

linked to, and receiving

activation from, phrasal nodes

(squares) in two other columns.

The label ‘‘Subj’’ stands for

‘‘Subject Unification node.’’

Note that each exemplar of a

U-node connects to only one

column, and that different

columns connect to different

U-node exemplars
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Linear Order layer,2 which selects a slot position for money

in the NP-topology (node #5); and to node #6, which codes

for the Subject role in a clause. The activation level of node

#6 does not reach its maximum level yet since it only has

support from a root node: No foot node that might serve as

unification partner is on the horizon yet. Hence, up to this

point there is partial support for the Subject role of money.

Node #6 partially pre-activates nodes #7 and #7’in the

Linear Order layer, which select topology slots F3 and M2,

respectively. Nodes #7 and #7’ compete with one another,

and #7 emerges as the winner due to feedback from node

#8 (this feedback activation route is not depicted in Fig. 6).

Since topology node #8 codes for slot F3, the NP money

may be said to land in Forefield slot F3.3

This raises the question why Linear Order slot #7’ does

not receive feedback from topology slot #8’, thereby being

doomed to lose the competition with node #7. The answer

is that node #8’ has to stay dormant until after topology

node #13 has been woken up. Node #13 codes for slot M1,

the landing site for verbs. So let us see what happens when

the verb counts is input into column 2 (node #9). From

here, activation propagates to node #10 (Verb), node #11

(S) and node #6, which was already partially active. Due to

this added activation, node #6 now reaches its maximum

activation level. This means there is sufficient support for

the Subject role of NP money. The activation boost that the

verb brings about to node #6, propagates to node #7 and

indirectly to node #8 (slot F3).

In parallel, activation propagates from node #11 to Node

#12, which consigns the verb to topology slot M1 (node

#13). At that moment, SINUS may be said to have found a

parse: a clause headed by counts in clausal topology slot

M1, with money heading the Subject NP and placed in

topology slot F3. SINUS can visualize the current parse

tree by running a ‘‘tree extraction’’ procedure (which has

no influence on the course of events in the columns; see

next section for details).

Node #13 sends feedback to Linear Order nodes that

code for downstream topology slot positions in the Mid-

field (M2 through M4; not shown in Fig. 6). One of them is

node #7’. This activation could have worked as a trigger

that raises the activation of node #7’ to a level above the

threshold. However, inhibition from competitor node #7 is

too strong. As a consequence, NP money stays in Fore-

field slot F3 (node #8) where it was consigned by Linear

Order node #7, and does not end up at M2 (represented by

node #8’).

Many lexical items have more than one set of syntactic

properties. This raises the question how lexical ambiguity

influences the course of events in a column. As already

mentioned in the previous section, SINUS does not dis-

tinguish differing lexical frames associated with the cur-

rent input word: Nodes in the Lexical Frame layer do not

code for the lexical frame from which they received their

activation. For instance, the verb counts can be intransi-

tive—as in sentence (1)—or transitive (the lexical frame

for the transitive counts includes a Direct Object branch

that is missing from Fig. 1). In U-space columns, the

distinction between the transitive and intransitive S-frames

is lost: The Input, Word Category, and Lexical Frame

layers of a column contain only one token of a node

coding for a given type of (morpho-)syntactic element.

Only after the parsing process has come to a halt, can one

observe whether counts was used transitively or intransi-

tively—by checking whether the resulting parse tree

contains a Direct Object branch. An example of a word

category ambiguity is the word her, which in SINUS is

encoded both as a personal pronoun (heading an NP) and

as a possessive pronoun (heading a Determinar Phrase).

When seeing this word, SINUS honors this distinction by

activating both an NP and a DP lexical frame (which

henceforth inhibit one another).

Computational aspects

In this section, we present the essentials of the equations

that specify the flow of activation through the SINUS

network, and we sketch the procedure for extracting syn-

tactic trees from the current activation pattern running in

the bank of columns.

Activation spreading

The activation level of SINUS nodes can be modified in

two different ways: node updating and activation copying.

Nodes are updated quasi-simultaneously in discrete time

slices. Basically the same update function is applied to all

nodes (see also Fig. 8):

aiðt þ 1Þ ¼ HðalmlðfforwðtÞÞ þ blaiðtÞ � cl finhðtÞ
þ dl fbackðtÞÞ

That is, the activation level of node i in layer l at time t ? 1

is the sum of four terms at time t:

2 This feedforward acivation from nodes that code for lexical frames,

to Linear Order nodes coding for the position of the lexical Heads of

these frames skips the Unification layer. This is the only exception to

the rule that feedforward and feedback passes only through adjacent

layers. See also the activation from node #11 to node #12 in the

second column of Fig. 6.
3 In the meantime, input node #1 has ceased to be active. However,

this does not mean that the other nodes cannot stay alive: Since

feedback activation flows down, followed by another wave of

feedforward activation, the nodes sustain each other’s activation.
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• the summed feedforward activation (fforw) adduced from

the adjacent lower layer multiplied by parameter al,

• plus the current excitation level (ai) multiplied by decay

parameter bl,

• minus the summed inhibition (inhibitory activation,

finh) adduced from within the current layer multiplied

by parameter cl,

• plus the summed feedback (fback) adduced from the

adjacent higher layer, multiplied by parameter dl.

The feedforward activation is scaled by the following

equation:

mlðxÞ ¼ ð1� eklxÞ
.
ð1� ekl maxðxÞÞ

where max(x) is the maximum value x can reach, and kl a

free parameter. This equation plays a role only in the three

highest layers. H(x) corrects outlying values of x to zero or

unity: if x \ 0 then H(x) = 0; if x [ 1, then H(x) = 1. The

value of parameters with subscript l are layer-dependent.

The second mode of spreading activation is simpler. It

consists of copying the current level of a node to an

identically labeled node in another column. Activation

copying is part of the mechanism enabling SINUS to

process sentences that consist of more words than the

number of columns (explained in the next section).

Tree extraction

The total pattern of activation running in the bank of col-

umns defines the grammatical relationships between the

words of the sentence, that is, the parse tree. A parse tree

can be extracted from the activation state of the network at

the end of a processing cycle. The extraction procedure

presupposes, as implied by the standard intercolumnar

connections, that every root node in a lexical frame is

connected, via a U-node, to all foot nodes in other columns

that carry the same name (so that they could unify) and,

that every foot node of a lexical frame is connected, via a

U-node, to all its namesakes in other columns. Every

U-node codes for the grammatical function that one lexical

frame fulfills in the other frame. Given an input sentence,

only a few U-nodes will reach an above-zero activation

level. Tree extraction proceeds as follows:

1. Select the most active lexical frame in each filled

column; more precisely, the most active root node

(in example (1): an NP-node in column 1 and an

S-node in column 2).

2. For every foot node in these lexical frames, select the

most highly activated U-node that binds it to a root

node in another column (in the example: the Subject

U-node in column 2, which unifies the Subject NP of

counts with the root NP of money).

3. If the activation level of this U-node surpasses the

threshold value (which can be set by the user of the

SINUS program), look up the topology slot where this

U-node has landed.

4. For each thus selected U-node in each column, merge

the two unification partners into a single tree node.

Draw the resulting tree nodes and the names of their

U-nodes from left to right in accordance with their

positions in the topologies; the S-node that unifies with

the Apex becomes the root node of the complete tree.

If a filled column has no U-node surpassing the activa-

tion threshold, it forms the root of a syntactic fragment

covering only part of the input sentence. The analysis of

a complete grammatical sentence should consist of pre-

cisely one fragment that should not include any cyclical

attachments, and whose root is unified with the Apex.

(An example of cyclical attachment: An NP is functioning

as Subject of a clausal lexical frame—i.e., of a frame

rooting in an S-node—and, at the same time, this S-node is

attached as a relative clause within the NP.)

The procedure for extracting syntactic trees from an

activation pattern running in SINUS is crude. It cannot fully

represent every state of the network, which may embody a

cyclical structure or a tree that does not belong to the set of

trees generated by the PG grammar. An exotic example of

the latter: a Determiner Phrase that (temporarily) seems to

be the Subject of a Prepositional Phrase. Therefore, the

quality of SINUS as a syntactic parser should be evaluated

in the light of the final structures yielded at the end of

processing complete or incomplete sentences.

Nonetheless, we stress that the syntactic structures

assembled by SINUS in the course of parsing a sentence and

delivered at end-of-sentence are merely auxiliary structures

that contribute to reaching the ultimate goal of sentence

comprehension: reconstructing the communicative intention

Fig. 8 General structure of a SINUS node
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of the speaker/writer. We assume that this reconstruction

process unfolds incrementally, running in parallel with

syntactic parsing. Correct syntactic trees are not the final

goal of the comprehension process. But, given that SINUS

currently is not running in the context of a complete sen-

tence comprehension system, we have no choice but to use

(activation patterns underlying) parse trees as evaluation

criterion.

Removing the upper bound on sentence length

The present version of SINUS contains n = 12 columns. In

order to enable it to parse input strings containing more

words than fit into the Unification Space, we implemented

a mechanism that enables the activation patterns in a pair

of columns to be ‘‘compressed’’ into one member of the

pair, thereby creating space for an extra input word. We

now describe this compression mechanism, using the five-

word sentence in (3) as an illustration and presupposing

(for explanatory purposes) that SINUS contains only n = 4

columns.

(3) Little Johnny counts his money

The mechanism needs a memory cache where part of the

activation pattern running in the to-be-vacated column can

be stored. To this purpose, SINUS utilizes a set of auxiliary

columns, which we call sidecolumns in order to distinguish

them from the main columns discussed so far. The bank of

n main columns is paralleled by n sidecolumns, which are

much simpler than main columns. More specifically, they

consist of only two layers: a Unification and a Linear Order

layer. The Unification layer contains one U-node for every

grammatical function; this node is connected to one or

more nodes in the Linear Order layer. Nodes in sidecol-

umns only inhibit incompatible U-nodes in main columns,

and they are able to copy their activation level into their

namesakes in the sidecolumn of the immediately preceding

column. The activation levels of sidecolumn nodes are kept

constant: They are not subject to decay and receive no

feedforward or feedback activation, and no inhibition. As

SINUS always keeps the column to the immediate right of

the last filled column free for pre-activation (see the section

‘‘Predictive parsing’’), the compressing mechanism is

launched immediately after the processing cycles for the

word in column n-1 have been completed (in the example

of sentence (3): after counts has been processed). It basi-

cally comprises the following steps:

1. Select the leftmost main column that, in view of its

current pattern of attachments to nodes in other

columns, is a ‘‘suitable’’ candidate to be vacated. A

column is suitable if it codes for an input word heading

a lexical frame whose root node does not dominate any

other word. In (3), the adjective little is a suitable

candidate for vacation: It is the head of an AP whose

other branches are currently empty (little being the

only member of the Adjectival Phrase). As no other

suitable candidates are available, the little column is

chosen as the first one to be vacated.

2. The activation levels of the U-nodes and the Linear

Order nodes in the to-be-vacated main column are

copied into their namesakes in the sidecolumn of their

unification partner (here, the sidecolumn of Johnny).

(NB The to-be-vacated column need not be adjacent to

the target column; and the latter need not be further

downstream than the former.)

3. The activation patterns running in all main columns

and sidecolumns to the right of the to-be-vacated

column are copied into their namesakes within the left-

hand neighbor.

The crucial effect achieved by the compression opera-

tion is to enable the ‘‘essential content’’ of an erased col-

umn to keep exerting its influence, in particular its

inhibitory influence on competitors for U-nodes and

topology slots. In (3), SINUS’ first column now codes for

the noun Johnny, and the Modifier U-node in its sidecol-

umn represents the fact that the NP headed by Johnny

includes a Modifier. In order to enable SINUS to

‘‘remember’’ this information, it keeps activation levels in

sidecolumns constant throughout the parsing process: no

decay, no updating.

To continue example (3), after the first compression

operation, his is entered into main column 3. The lexical

frame associated with this word is a Determiner Phrase

(DP), which cannot be strongly attached to the current tree

but weakly activates the Determiner U-node in its column.

Compression now looks for a suitable column to vacate and

selects column 1: The Subject NP represented there does

not dominate a subconstituent in any other column. Hence,

counts is copied into main column 1, and its sidecolumn

now codes for the fact that SINUS has already consumed a

Subject. This information—or rather the inhibition emitted

by the Subject U-node in the counts sidecolumn—serves to

ward off other constituents that aspire to this grammatical

role. After copying the activation patterns in the counts and

his columns into their predecessors, the word money enters

column 3 and adopts the function of Direct Object. If the

sentence would not have finished here, the next candidate

for compression would be his.4

4 The compression procedure does not affect tree extraction: The user

interface of the SINUS simulation program includes a procedure that

stores the essential content of columns that fell victim to compression.

This enables users to inspect trees dominating the complete input

string.
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Parameter estimation

The structure of the network of the current SINUS version

was derived from a (simple) English PG-grammar that

specifies the hierarchical structures and topologies for

sentences consisting of a finite active or passive main

clause, possibly including finite complement clauses. The

NPs could include a postnominal finite relative clause or a

reduced relative clause headed by a passive verb. (Table 1

gives an impression of the major constituents that could

populate a clause, and of their linear order.)

The bank of 12 columns in the current version of SINUS

consists of 4,632 nodes. The system includes 32 free

parameters; all other parameters are either fixed in advance

or their value is fully determined by other parameters.

SINUS takes between 1 and 3 s to process a sentence once

on a modern CPU (while parsing a 10-word sentence,

SINUS needs to compute more than 430.000 activation

levels). Parameter values were estimated through an opti-

mization algorithm based on Simulated Annealing. We

used the following set of 11 training sentences:

(T1) He knows her

(T2) He knows her boy

(T3) *He sleep

(T4) It is the elephant which hits the monkey

(T5) It is the elephant which the monkey hits

(T6) The elephant hits the monkey

(T7) The elephant hits the monkey which hugs the

rabbit

(T8) The elephant is given to the monkey by the rabbit

(T9) The elephant is struck by the monkey

(T10) The elephant which hits the monkey hugs the

rabbit

(T11) The elephant which the monkey hits hugs the

rabbit

The set contains active sentences with one or two object

NPs, passive sentences, subject and object relative clauses,

right-branching and center-embedded relative clause, a

lexical ambiguity (her as personal and possessive pronoun),

and an ill-formed sentence (violation of Subject-verb

agreement). Sentences T4 through T11 were taken from a

study by Caplan et al. (1985) on sentence comprehension by

aphasic patients. These sentences also played a role in our

implementation of U-Space2000. A set of parameter values

was judged to be suitable if SINUS yielded a correct parse

tree for all training sentences (including a ‘‘corrected’’ parse

tree for the ill-formed string).

A complete optimization run takes between 1.5 and

2 days of CPU time. This is the practical reason why we

refrained from introducing noise into the system—in con-

trast to what we did when implementing U-Space2000. In

order to obtain, for each member of the set of training

sentences, a reliable estimate of the number of times the

network settles down in a certain final state, the optimi-

zation procedure needs to run between 150 and 250 times.

This would have taken between 8 and 18 months of CPU

time. Hence, SINUS is fully deterministic: In case of

ambiguity, it always yields the same solution; and, given an

input sentence, it either always succeeds or always fails (no

fine-grained measure of parsing difficulty).

The resulting system parses successfully not only the

test sentences or sentences that embody the same syntactic

structures couched in different words. For instance, the

following sentences are parsed correctly as well:

S1 An elephant is an animal

S2 John gives a jukebox

S3 John is sweet

S4 He knows her small boy

S5 She knows the elephant hugs the sweet rabbit

S6 He sleeps

S7 Is John a man

S8 The elephant which sleeps hugs the rabbit

S9 The elephant hugs the rabbit which hits the monkey

In the following section, we focus on sentences that illus-

trate a number of important psycholinguistic phenomena.5

Parsing performance

SINUS can be characterized as an incremental, single-pass,

bottom-up, constraint-based syntactic parser. In this sec-

tion, we describe how, due to its internal dynamics, SINUS

can simulate some important properties of human syntactic

parsing. We start with three psycholinguistic phenomena

that have been covered by other symbolic or neural models:

effects of structural ambiguity, lexical ambiguity, and

structural complexity. Then we explain how SINUS sim-

ulates three aspects of parsing behavior that, as far as we

know, have not been addressed by other computational

(psycho)linguistic models: predictive parsing, error toler-

ance after unification failure, and parsing sentences with

unknown words.

Garden-path sentences and reanalysis

While processing garden-path sentences, SINUS sponta-

neously performs reanalysis, at least in case of mild gar-

den-paths. Sentence (4), which includes a local syntactic

ambiguity, is first analyzed as a simple main clause with

the monkey as Direct Object of sees. However, when the

5 A demonstration version of SINUS which runs on Apple Mac

computers under OSX, is available from the corresponding author.
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verb hits is consumed, this attachment is undone due to the

inhibition emitted by the Subject U-node that is activated

by the lexical frame of the latter verb. NP the monkey soon

adopts the Subject role in the Complement clause headed

by hits.

(4) The elephant sees the monkey hits the rabbit

Sentence (5a), which combines lexical and syntactic

ambiguity, illustrates SINUS’ sensitivity to the usage fre-

quencies of the various readings of an ambiguous lexical

item (cf. Ferreira and Clifton 1986). In English, the past-

participle form of regular verbs is identical to the past-tense

form. This fact occasions a well-know garden-path effect in

Reduced Relative Clauses (RRC), provided that the past-

participle form is infrequent or yields a locally implausible

interpretation. In (5a), for example, the verb examined

heads an RRC but, given the meaning of the preceding

Subject NP and the lower frequency of the past-participle

reading, there is a strong initial preference to interpret it as

the Main Verb (MV) of a finite past-tense clause, as is

correct in (5b).

(5a) The lawyer examined by the court was found guilty

(5b) The lawyer examined the evidence

The lexical frame associated with the finite forms of

English verbs forms includes a Subject branch, which is

absent from the lexical frame associated with infinitival

and participial verb forms. The lexical frame of passive

verbs includes a past participle as Head, an S-node as root,

and a special grammatical function for the by-phrase,

termed ‘‘Agentive Object’’ (AOBJ). The Agentive Object

branch has a PP node as foot. When SINUS is processing a

sentence with a word like examined, a PP headed by by in

one of the columns boosts the activation level of an AOBJ

Unification node, and indirectly the passive reading of

examined.

In our simulation of the RRC/MV ambiguity, we looked

at SINUS’ behavior when the initial activation of the less

frequent reading of the ambiguous verb form is varied

while the activation of the frequent version is kept at a high

value. When the ambiguous verb form enters a column,

both the active and the passive lexical frames send their

activation to the nodes that code for them, and incompat-

ible nodes start inhibiting each other. In particular, the

Subject and the Direct Object U-nodes both compete with

the Agentive Object U-node. The outcome of this compe-

tition is partly determined by the activation levels that the

two lexical frames and their components have when they

enter a SINUS column. As is often assumed, these levels

reflect—among other things—the usage frequencies of the

two readings and are copied from the Mental Lexicon.

We fixated the initial activation level of the past-tense

form at the maximum value of 1.0 and varied the

corresponding level of the past-participle reading between

.15 and .25. SINUS analyzes both sentences in (5) correctly

for past-participle values in the range between .18 until .22.

With lower initial past-participle activation, SINUS cannot

parse the RRC version (5a) correctly, and with values

above that range, it fails on the MV version (5b). For

values within the range, SINUS has a short-lived prefer-

ence for the RRC analysis (due to a relatively strong pre-

activation of a postnominal modifier), but the MV analysis

soon gains the upper hand—already before the next word

(the or by) is seen. Figure 9 shows how long the Subject

U-node stays dominant as a function of the activation level

of the past-participle lexical frame. The more active the

past-participle reading, the sooner the MV parse starts

degrading.

Complexity effects and embedded clauses

The training set includes sentences with a single embedded

relative clause. The embeddings are of two different types:

center-embedding (T10, T11) and right-branching (T4, T5,

T7). After training, SINUS parses the two types in roughly

the same time. It is well-known that human language users

experience less difficulty with doubly embedded right-

branching clauses than with doubly embedded center-

embedded ones. SINUS displays the same contrast by

succeeding on sentence (6a) and (6b) but failing miserably

on (6c).

Fig. 9 Duration of the MV analysis of garden-path sentence (5a) as a

function of the input activation level of examined as a past-participle.

The vertical axis plots the time interval during which the (ultimately

incorrect) MV analysis holds up, that is, the interval between the

cycle in which the critical verb is entered, and the first cycle which

delivers a parse tree that does not flawlessly represent an MV analysis

of the input string consumed thus far. This interval ends after about 40

cycles, or 2 words, for a past-participle activation of .25, i.e., when

the second article is being processed. When this activation is set to

.15, it lasts considerably longer, until was is being processed
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(6a) [S The elephant hits the monkey [S which hugs the

rabbit [S which shoots the dog]]]

(6b) [S The elephant [S which hugs the rabbit [S which

shoots the dog]] hits the monkey]

(6c) [S The elephant [S which the monkey [S which hits

the rabbit] hugs] shoots the dog]

Error tolerance in case of feature mismatch

The activation of a Unification Node does not only depend

on the activation of its root and foot nodes, but also on

whether or not their feature matrices unify. In example (1),

the person and number features of money and counts agree,

so there is no penalty for the Subject U-node in the form of

inhibition. However, had we changed the verb to the plural

form count, then the outcome would have been different.

Figure 10 shows the consequence. When the verb is

introduced, the Subject U-node in the money column has

low activation. Now, if the matrices of NP and S unify (the

leftmost curve), the Subject U-node quickly reaches the

maximum activation level, but if unification fails (the

rightmost curve), it is suppressed by inhibition from other

U-nodes. Nonetheless, it continues to receive activation

from the verb, and after some time it manages to overcome

the inhibition. The resulting analysis is identical to that of

the correct sentence, but takes more time.

Interestingly, not only does SINUS reconstruct the

intended parse tree when Subject-verb agreement is

missing, it also settles down in a state that is similar to the

final state reached after parsing the well-formed counter-

part. At the end of the parsing process, the activation level

of the feature node coding for third-person singular has

reached a level that is comparable to that of the nodes

coding for other number/person combinations. Hence, in a

sense, the system not only recovers from an input error, it

also comes close to correcting it. Apparently, in contrast to

usual assumptions, the tasks of assembling syntactic

structure and of monitoring the integrity of the resulting

structures need not be consigned to distinct processing

components.

Predictive parsing

SINUS offers the possibility of provisionally assigning a

grammatical function to a root node before a suitable

unification partner becomes available (cf. section ‘‘Flow of

activation and inhibition’’). Although NP money, taken in

isolation, can function not only as Subject but also as

Direct, Indirect, Prepositional or Agentive Object, in sen-

tence (1) it is immediately analyzed as Subject, before the

verb has entered. This is a consequence of feedback from

the Linear Order layer and (indirectly) from the Topology

layer, where the Subject NP is ‘‘expected’’ to be positioned

in the Forefield. This feedback is added to the bottom-up

activation the Subject U-node receives from NP money,

and helps this U-node to win the competition with the other

grammatical functions. However, a U-node that receives

activation from only one unification partner reaches a much

lower activation level than one receiving activation from

two partners. This makes these early assignments relatively

easy to overcome.

Once activated, a node in one column can spread acti-

vation to nodes in the next-higher or next-lower layer, not

only of its own column but also of other columns. For

instance, the Lexical Frame and Linear Order layers can

feed into the Unification layers of subsequent columns and

pre-activate one or more grammatical functions there.

Simultaneously, inhibition from active U-nodes suppresses

already active functions. This dynamic interplay between

partly converging and partly opposing forces may be

illustrated in terms of example (1). Suppose that, in the

SINUS lexicon, count has been coded as an intransitive

verb. After this verb has entered column 2 and its activa-

tion has reached the Topology node coding for slot M1,

feedback from this node via the Linear Order Layer will

reach U-nodes in subsequent columns—U-nodes coding

for grammatical functions that may occupy the Midfield of

a clause, in particular Direct and Indirect Object, and

Modifier. However, none of these U-nodes receives bot-

tom-up support from the intransitive verb counts in column

2: The lexical frame of this verb sends feedforward acti-

vation only to the Subject U-nodes in subsequent columns.

These Subject U-nodes, however, are inhibited by the

already active Subject-U-node in column 1. Consequently,

the Modifier U-nodes will gain the highest level of acti-

vation (albeit a very modest level). Thus, SINUS may the

be said to ‘‘expect’’ a Modifier after the intransitive counts,

not a Direct or Indirect Object. If the second input word

were the transitive verb corrupts instead, then the

Fig. 10 Delayed unification due to missing Subject-verb agreement.

Simulation with a lexicon where count and counts are represented as

intransitive verbs
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activation pattern in the next column would be somewhat

different: This verb also pre-activates Direct Object

U-nodes (via feedforward connections), which in fact

would become the highest activated U-nodes in the pre-

activated column. This state represents the prediction of an

upcoming Direct Object (in addition to a weaker expecta-

tion of a Modifier, which receives only top–down support).

The pre-activation mechanism enables SINUS to simu-

late, at least in a rudimentary fashion, a behavioral effect

that recently has been accounted for in terms of ‘‘surprisal’’

(Hale 2003; see Levy 2008, for extensive discussion). The

surprisal of a word is proportional to the negative log-

probability of that word in its sentential context (Levy, o.c.,

p. 1130). Eye-movement studies have shown that a Head

word is easier to process if it is preceded by more depen-

dent constituents (Konieczny 2000; Konieczny and Döring

2003). When the number of dependent constituents

increases, the Head is expected more and more strongly,

that is, its surprisal values decreases. SINUS can be shown

to simulate this effect when parsing a simple NP such as A

sweet rabbit. The pre-activation in the Lexical Frame layer

of an NP root node (which represents the expectation of an

upcoming noun heading an NP lexical frame) increases

substantially when going from one (only a Determiner) to

two preceding dependents (a determiner and a prenominal

adjectival Modifier), as depicted in Fig. 11. With more

dependents preceding, the surprisal value gets lower, and

due to the already high level of pre-activation, the noun can

be processed more easily.

Jabberwocky

Human comprehenders are able to reconstruct the syntactic

structure of sentences that contain a high proportion of

nonwords, especially if these nonwords have an internal

structure reminiscent of the morphological structure of

normal words, like in Lewis Carroll’s Jabberwocky. Since

SINUS has no morphological component, we cannot

expect it to parse Jabberwocky. However, SINUS has a

limited capability to parse sentences that include one or a

few nonwords, purely on the basis of their position in an

otherwise grammatically well-formed sentence. Sentence

(6), with a single nonword, is one of the lines of Carroll’s

poem. Equipped with the syntactic properties of only the

real English words, SINUS does not crash when parsing

this sentence but delivers a virtually complete parse tree.

The only elements missing are the word class and the

phrasal node of vorpal. However, SINUS does attach the

nonword as a prenominal Modifier of sword. Interestingly,

if we replace vorpal by an adjective (e.g., mighty), the same

parse tree results, but attaching mighty takes six processing

cycles less than attaching vorpal.

(7) He took his vorpal sword in hand

In both the vorpal and the mighty version, the PP in

hand is analyzed as a postnominal Modifier of sword rather

than as a prepositional Modifier of took. This is a conse-

quence of SINUS’ preference for ‘‘recent attachment’’ and

the absence of conceptual and idiomatic knowledge. Both

took and sword compete for the PP but the latter wins

because its activation level is higher than that of took,

which in the meantime has decayed considerably.

Discussion

We have shown that SINUS fulfills quite a few important

criteria that any neurocognitive model of the syntactic

aspects of human sentence comprehension should meet.

We hasten to add, though, that the coverage of psycho-

linguistic phenomena is smaller than that of U-Space2000,

the predecessor. This shortcoming is compensated, we

belief, by the fact that SINUS has a higher level of neu-

rocognitive plausibility (being able to represent the online

construction of syntactic trees in the form of patterns of

activation in a localist neural net), and that it can simulate,

at least qualitatively and rudimentarily, several psycholin-

guistic phenomena that are beyond reach of U-Space2000,

viz. graceful degradation (error-tolerance) and predictive

parsing.

Despite these achievements, much remains to be desired.

Most urgent is the addition of a parallel conceptual process-

ing component—maybe operating on similar principles—

Fig. 11 Expectation-based parsing of NP A sweet rabbit. The curves

show the development of the pre-activation of the NP node (in the

pre-activated column) during processing the Determiner (lower curve)

and the Modifier (upper curve). The higher the pre-activation level of

the NP node, the stronger the expectation of an upcoming NP lexical

frame. This expectation is relatively weak while the Determiner is

being processed, and gets stronger while processing the Modifier. The

jagged shape of the curves is a consequence of oscillatory feedback

from mutually inhibiting U-nodes
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that can evaluate syntactically proposed unifications against

criteria of word meaning and world knowledge, and

depending on the outcome, transmit excitatory or inhibitory

signals to the U-nodes involved. Such a combination could

help SINUS to succeed on longer sentences than the ones we

have worked with thus far. Moreover, it would shift the

criterion of success from delivery of a complete and gram-

matically correct parse tree for the input sentence to faithful

reconstruction of the (or an) underlying communicative

intention.

But staying within the syntactic domain, we would

advocate a re-implementation where the relation between

the topologies and the information represented there is less

tightly linked to the information in the individual columns,

so that linear-order constraints can have more impact.

Presently, we have incipient ideas on how to accomplish

this. Another fond wish is to extend the coverage of the

parser with syntactic structures that—in terms of genera-

tive grammar—embody cross-clausal movement, as in

Which elephant did you say hugged the dog? Performance

Grammar analyzes these phenomena in terms of unification

of left-peripheral slots in clausal topologies (Kempen and

Harbusch 2003; Kempen 2009), but this part of PG has not

yet been incorporated into SINUS. Finally, we would

welcome attempts to implement SINUS-like parsers for

languages other than English and German (as for the latter,

see Vosse and Kempen 2008), especially for non-Germanic

languages that have been targeted in empirical sentence

comprehension research.
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Appendix: Parameters

Each layer has its own set of parameters, and their values

may differ from layer to layer.

General

Three general parameters are: number of cycles per word,

number of wrap-up cycles (extra processing cycles after the

final input word) and influence of feature mismatch on

feedforward strength. The first two were fixed at 20 cycles.

The third parameter, estimated by Simulated Annealing,

reduces the amount of activation transmitted to a U-node

from the unification partners (root and foot node) when

unification fails. The reduced amount is a percentage of the

amount that would have been transmitted in case of suc-

cessful unification.

Input

Input nodes have two parameters: their default activation

level at input, and the duration of their activation (fixated at

three cycles). We assume that decay is absent during these

cycles.

Word category

The nodes in the Word Category layer have three param-

eters: feedforward, feedback, and decay.

Lexical frame

This layer has five parameters: current activation, feedback

from its involvement in unifications as root, feedback from

its involvement in unifications as foot, inhibition, and

decay.

Unification

The unification level has the highest number of parame-

ters: 14 in total. They can be grouped under two head-

ings: ‘‘backward looking’’ and ‘‘forward looking.’’ The

former concern unifications with a node in a word column

to the left of the current column; the latter concern uni-

fications with nodes in columns to the right. The rationale

behind this split is that backward looking unifications

yield an attachment to an already active node whereas the

unification partner of a forward looking unification is

dormant.

The seven parameters in each group are: feedforward,

feedback, decay, inhibition, shape (k) of the feedforward

mapping function m, balance between root and foot acti-

vation levels, and distance between root and foot. Feed-

forward is the summed activation of the phrasal nodes that

license the unification, mapped through the non-linear

function m. The activation of the root and the foot node

involved in a unification is weighted via the balance

parameter: At balance = 0, the influence from the root is

nullified; at balance = 1, only influence from the root

counts; and at balance = .5, the influence from both root

and foot count equally. The distance between root and foot

influences the total amount of activation negatively, thus

favoring short distance attachments.
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Linear order

Nodes in this layer have eight parameters. Four of them

determine the dynamics of the node: feedforward, the

shape (k) of the feedforward mapping m, decay, and inhi-

bition. The fifth parameter determines the relative influence

of to-be-placed U-nodes. The three remaining parameters

ensure that the temporal order in which a topology slot is

assigned to U-nodes, agrees with their left-to-right order in

the topology (See also the paragraph on Linear Order nodes

in section ‘‘Connectivity.’’).

Topology

Topology nodes are controlled by three parameters: feed-

forward, decay, and one that determines the shape (k) of

the mapping function m.
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