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1. Systems 

1.1. Introduction 

The study of today's complex problems - whether they originate from 
physics or engineering, from physiology or biology or medicine, from 
economics or industrial management, from psychology or sociology -
leads to a growing tendency of specialization toward different disciplines. 
As a result we are able to build up an enormous amount of basic knowl­
edge in particular areas or disciplines. However, this specialization makes 
the communication between the disciplines more and more difficult, or 
often even impossible. Yet the need to solve real world problems, which 
generally may be characterized by their strongly multi-disciplinary 
character, demands a high degree of communication between these 
disciplines. We are anxious, therefore, to develop one common language. 
For this, the systems approach may serve, since in every scientific research 
project we can recognize three essential, and very common phases: 

(1) The study and formulation of real world problems, resulting in 
one or another qualitative and/or quantitative model; 

(2) The study of the model behavior; that is, the performance of a 
sensitivity analysis of those factors which may influence the model 
results, so that finally, on the basis of the model, predictions can be made 
in newly designed situations; 

(3) The interpretation and translation of the model results to the 
original real world problem. 

For such communication, system theory can be very helpful because 
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it can be considered as a universal tool in formulating and solving a 
great variety of problems. Before we are able to explain the real contribu­
tion of system theory to experimental psychology we first must come to 
a generally acceptable definition of what a system is. This is not easy, 
because most definitions in literature have been restricted to a particular 
field of interest. In general we may say that a system is a part of the real 
world, separated from its environment, and that it may or may not 
have a relation to this environment. This means that the environment 
may act on the system, and vice versa. The chosen boundaries of the 
system are arbitrary, and are dependent on the investigator's interests 
and goals. System theory can contribute to the formulation of models 
in order to describe the system behavior by supporting: 
- Methods to formulate system models in completely different fields, 

largely by recognizing analogies; 
- Methods for the analysis and identification of systems, and for the 

quantification of the interactions between system and environment; 
- Methods to classify different systems. 
We re-emphasize that system theory can contribute significantly to 
model formulation. In particular by the analysis of input-output relations 
we will be able to understand the structure, the parameters, and thus the 
dynamics of the system under study. 

1.2. General system definition 

A more precise definition of a system is the following: A system is a 
bounded part of the environment in which a certain structure is specified, 
and which may have an interaction with its environment. We now define 
the interaction between system and environment by inputs and outputs. 
That means that the environment acts on the system by the inputs, 
whereas the system acts on the environment by outputs. In the case 
where the inputs and outputs are defined as a function of time, we call 
them signals. Input signals can be divided into non-controllable inputs or 
disturbances or noises, and controllable inputs or control signals. The most 
commonly used notations for the control signals, disturbances and 
outputs are u{t), v{t), and y{t), respectively (fig. 1). 

We can represent a system by means of a block diagram. Here the 
block represents the system itself, the control inputs are entering the 
block from the left, the disturbances from above, and the outputs are 
leaving the block to the right. In addition the initial conditions, that is the 
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Fig. 1. An example of a system with control input u(t), disturbance u(f), output y(f), and 
initial condition y(t0). 

condition of the system before the inputs acted upon it, enters the block 
from the right. 

In the context of this chapter we will only deal with causal systems, 
that is, we will deal with systems where the outputs are the result of the 
inputs. We will call those outputs responses. 

1.3. Signal description 

The description of systems can easily be reduced to the description of 
signals and their mutual relations, without any loss of generality, since 
the system simply transfers the input into an output. The system only 
performs an operation on a signal. Therefore we will first describe the 
different types of signals. 

1.3.1. Signal characterization 
The way we characterize signals is dependent on the properties of 

interest. A possible breakdown is the following: 
- Deterministic versus stochastic: A deterministic signal x(t) is a func­

tion for which the amplitude is uniquely defined for each value of r; 
a stochastic signal x(t) is a function of time t which cannot be defined 
in such a way; it is defined in terms of statistical properties such as 
probability density functions or the moments derived herefrom (the 
notation x(t) refers to a stochastic signal, whereas x(t) stands for a 
deterministic one, fig. 2). 

- Continuous versus sampled: A continuous signal is defined for all 
values of t, whereas a sampled one is just defined at particular instants 
of time (fig. 3). 
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Fig 2. An example of a deterministic and a stochastic signal. 

Fig. 3. Characterization of signals. In this example the mean values of the signals 
are assumed to be zero. 
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- Analogue versus discrete or binary: A signal is called analogue when 
the signal amplitude can have an infinite number of values within a 
certain limited interval, whereas a discrete signal will have a finite 
number of values. A particular case of a discrete signal is the one that 
has just two values; this is called a binary signal. 

- Periodic versus non-periodic: A signal x(t) is said to be periodic 
with a finite time period T when x(t) = x(t + T) for every value of t. 
A non-periodic signal will not possess this property; we can consider it 
as a periodic signal with a periodic time T equal to infinity (fig. 4). 

Fig. 4. Example of a periodic signal and a non-periodic signal. 

1.3.2. Decomposition of signals: The Fourier series 
In order to describe the process of the decomposition of signals, we can 

use the afore-mentioned distinction between deterministic and sto­
chastic signals. Since deterministic signals, such as the sinusoidal 
function, the step function, the ramp function and the impulse function 
(fig. 5), easily can be described as functions of time, these functions can 
be approximated by the summation of a finite or infinite number of 
subsignals. The special significance of such subsignals is that linear 
systems all have the property that the response on the summation of a 
set of subsignals equals the summation of the individual responses to 
each of the subsignals. This extremely important property implies that 
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if the response of a system on a set of subsignals is known, the response 
on any arbitrarily chosen input can be derived directly. 

We also can consider the decomposition process as equivalent to 
building a model of the signal, where by choosing the structure of the 
model, that is by choosing the subsignals, a set of unknown parameters 
must then be determined (fig. 6b). The procedure of the decomposition 
process is as follows: Assume that we will approximate the signal x(t) 
by the summation x(t) of a number of a priori chosen subsignals u(t), 
each provided with an unknown coefficient ck. Then it follows that: 

(1) 

Furthermore, let us assume that we would like to fit the approximation 
over the interval [tu t2] according to the criterion: 

(2) 

Now, the optimal approximation x(t) of x(t) can be found by minimizing 
the criterion function, in which the function w(t) is called the weighting 
function, the function x(t) — x(t) the error function, and the interval 
[/1,t2] the approximation interval. The exponent p determines to what 
extent the error contributes to the value of the criterion function. Most 
often quadratic criteria are used, that is p = 2, since in this form the 
mathematical derivation is very simple. Then the optimal solution is 
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obtained by setting to zero the partial derivatives of the cost function J 
with respect to the unknown parameters ck, hence, 

The equation obtained in this way is called the normal equation; from 
this the coefficients ck can be derived. Much dull and needless arithmetic 
can be avoided in determining the coefficients ck by an intelligent choice 
of the set of subsignals uk{t), as well as by choosing a reasonable weighting 
function w(t). If we choose those according to: 

where dk is a constant, it follows directly from the normal Eqs (3) that: 

1 

Functions uk(t) as given by the Eqs (4), where the weighting function 
w(f) = 1, are called orthogonal over the interval [t1, r2]- A great variety 
of functions will satisfy the Eqs (4), but it is indisputable that the most 
commonly used one is the sinusoidal function, finally resulting in a 
Fourier series. If we approximate a given signal x(t) over the finite 
approximation interval [t0, t0 + T] by x(t), then it follows that: 

x(t) = £ [at cos kat + bk sin kxat] (6) 
k = 0 

with a = 2n/T. The approximation (6) is called the Fourier series. 
Following the procedure just mentioned with p = 2, w(t) = 1, and 
ckuk(t) = ak cos kcot + bk sin kcot, we obtain: 
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(7) 

By eliminating the coefficients afc and b t , that is by substituting the 
Eqs (7) into Eq. (6), we obtain the Fourier series. Without proof, the 
following important properties of the Fourier series are to be mentioned: 

The coefficients ak and bk are dependent solely upon k. 
- In choosing the approximation interval [t0, t0 + T] , the initial time 

/0 is arbitrary. 
- Extension of the approximation xN{t), based on the summation of 

N subsignals, to xN+ v(t) will result in a lower value of the cost criterion 
J, and thus in a better approximation; hence: 

lim JN = 0, and lim xN(t) = x{t). 
N-* ao N-» oo 

In the literature, the Fourier series as given by Eq. (6) is often given in a 
different way. Based on Euler's formula, 

cos cot = $(eJc" + e-jv"); sin cof = - (d°" - e'^'), (8) 
2/ 

a complex version of the Fourier series can be formulated: 
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x(t) = A0 + Y, Akcos(kcot — <pk), (12) 
* = i 

A0 = a0, (p0 = 0, | 

Ak = Ja2
k + b\, q>k = arctg b,Jak. j 

We can consider the components of the Fourier series as sinusoidal 
subsignals with a radial frequency kco, and amplitude Ak, and a phase 
shift q>k. Usually the quantities Ak and <pk are plotted as functions of the 
radial frequency ka>; the diagram obtained in this way is called the 
spectrum of a signal. For periodic signals with a finite time period T, the 
spectrum only exists for radial frequencies kco = k2n/T; such a spectrum 
is called a line spectrum. The representation of the quantity rk, in the 
form of |rfc| and arg {rk} results in a line amplitude spectrum and a line 
phase shift spectrum. 

Finally, one other important property of the Fourier series should be 
mentioned, namely the Theorem of Parceval. This theorem can be seen 
as a direct conclusion of the combination of Eqs (6) through (13): 

The theorem shows that the mean squared value of x(t) at the interval 
observed is equal to the summation of the squared Fourier coefficients, 
hence the theorem symbolizes a power balance. 

where the coefficients rk are defined as follows: 

(11) 

It follows that: 

(14) 
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1.3.3. The Fourier and Laplace transform 
Based on the complex series, Eqs (9) and (10), valid for a finite approxi­

mation interval [r0, t0 + T], we now can extend the interval to infinity 
by choosing f0 = — jT, and consequently by taking T-» GO. It then 
follows that: 

where the quantity X(v) is called the Fourier transform of x(t). As explained 
for the complex Fourier series, we can represent the Fourier transform 
by the quantities \X(v)\ and arg {X(v)} as a function of the frequency v. 
The figure obtained in this way is called a continuous amplitude density 
spectrum since: 
- With the transition of T -» oo the spectral lines of magnitude ck spaced 

at distances of 2n/T will become infinitesimally close to each other. 
- The dimension of X(v) will no longer be that of an amplitude, but that 

of an amplitude density, since X(v) = ckT = cjv. 
Analogous to the Fourier series, the Fourier transform can be seen as the 
decomposition of a signal into subsignals; however, we now deal with 
the decomposition of non-periodic signals into sinusoidal subsignals. 

Many methods in signal theory and system theory make use of these 
transforms. By means of a one-to-one relation we transform the original 
function into the transform image; we say that we transform from one 
domain to another. In this case we call the domain of x(t) the time domain, 
and that of the transform X(v) the frequency domain. Due to the one-to-
one relation between original function and transform image we also can 
derive from the transform X(v) the original function x(t). This operation 
is called the inverse transform. Thus we obtain for the Fourier transform: 

and for the inverse Fourier transform: 
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(15) 

The great importance of these transformation techniques can be illus­
trated best by noting the following points: 
- The transform or decomposition of the original function into sub-

signals often provides better insight into the original function. 
- Particularly complicated and difficult calculations such as the solution 

of integral equations can be performed much more easily in the newly 
obtained domain. In spite of the fact that we now have to add a 
transformation and an inverse transformation to our calculations, 
we often gain significantly in time in following this procedure (fig. 7). 

Fig. 7. Application of the Fourier transform in order to simplify particular mathematical 
operations. 

It is important to specify under what conditions we are allowed to use 
the Fourier transform, or, to say it in another way: For what kind of 
original functions does the Fourier transform exist, so that the Eqs (15) 
and (16) will converge at all times? It can be proven that a sufficient, 
but not a necessary, condition for the existence of a Fourier transform 
of the original function x(t) is, that this function is absolutely integrable, 
thus, 

+ 00 

I |x(t)| dt < oo. (17) 
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The class of functions fulfilling this property is thus restricted to the 
normal functions; this implies that a large number of very important 
functions such as x(t) = e" with a > 0 will not have a Fourier transform. 
This problem can be solved by calculating the Fourier transform of the 
function e~ux(t), with the constant X being a real constant. In the case 
that the function x(t) does not converge for t -* oo, but yery strongly 
converges for t ->• — oo, we now can make an intelligent choice for the 
factor e_JU, so that the integral is forced to converge for t -* oo whereas 
it still converges for t -* — oo. By introducing the complex quantity s, 
called the complex frequency, s = X + j2nv = X + jio, we obtain from 
Eqs(16)and(15): 

This newly defined transform is called the two-sided Laplace transform. 
The factor e~k' forcing the integral to converge is only effective at one 
of the intervals t > 0 or t < 0, whereas at the other interval the effect is 
just the opposite; it will make the integral diverge. Thus, based upon the 
original functions which converge after multiplication by the factor 
e~M with X > 0, the two-sided Laplace transform will exist. Unfortunate­
ly, only very few time-functions will meet this property. However, a very 
important class of functions, namely the functions which are equal to 
zero for t < 0 will do so. For those functions the factor e~x' will force the 
integral at the interval t > 0 to convergence, whereas the factor e~At 

does not affect the integral in the interval t < 0. In this way we obtain 
the one-sided Laplace transform: 

(18) 

(19) 
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A sufficient condition for the existence of the one-sided Laplace trans­
form is that the original functions are normal and exponential of the order 
q for t > tm. That means \x{t) > tm\ ^ Me9', where the quantities M 
and tm are arbitrary but finite constants. Analogous to our discussion 
of the Fourier series and Fourier transform, we can consider the Laplace 
transform as the decomposition of the original function into subsignals, 
where the subsignals in this case are sinusoidal signals with increasing 
amplitudes. This behavior is caused by the factor eA'. 

Until now we have only discussed the description of continuous 
signals; the application of digital computers, however, forces us to 
consider also the sampled signals. The treatment of the sampled signals 
does not differ from those of the continuous ones. The direct extension 
of continous signal theory to the discrete case is embodied in theory of 
automata. Because of the fact that sampled signals have only been defined 
at particular instants of time, the Laplace transform does not exist in the 
way we discussed. A modified version of the Laplace transform called the 
Z-transform was developed specifically to handle the sampled signals. 

Within the scope of this handbook we believe it is better not to devote 
too much space to all properties and calculation techniques for determin­
ing Fourier and Laplace transforms. We therefore only summarize the 
most important properties in table 1. Because of its great importance in 
system and signal theory two properties will be elucidated. We will start 
with the convolution integral: 
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Eq. (22) illustrates the importance of the transform techniques: A 
convolution integral in one domain is, after transformation, a simple 
multiplication in the other. The second important example is the 
transform of the derivative of a function: 

L{x{n\t)} = s"X(s) -s"- !x(0) - . . . - x("-^(O). (23) 

This equation is the basis for the solution of differential equations, and 
thus for the description of systems, since a differential equation in time 
domain becomes an algebraic equation in the frequency domain. The 
solution of the differential equation with the help of the Laplace trans­
form will lead to the complete solution, including both the homogeneous 
and the forced solution (integration interval [0, oo]). The solution 
obtained by the Fourier transform only will provide us the forced 
solution (integration interval [ — 00,00]). In general we can conclude 
that the Laplace transform is quite applicable to solving differential 
equations, as well as to solving ordinary linear differential equations 
either with constant or time-varying coefficients, and to linear partial 
differential equations. The Fourier transform is very suitable for the 
decomposition of functions into subfunctions. By using the properties 
given in table 1 and/or any book on transform techniques which gives 
pairs of time functions and their transforms, we are able to transform 
almost any ordinary function. Table 2, finally, summarizes those original 
time functions and their transforms most commonly used in system 
and signal theory. 

1.3.4. Description of stochastic signals 
In section 1.3.1 we indicated that stochastic signals are not explicitly 

defined as functions of time; the description of such signals can only be 
achieved in terms of probabilities. We will use for this the probability 
density function, well-known in probability theory. Given a random 
variable x(£) based on an ensemble £, we define the probability density 
function as: 

Mx) = lim Prix < x(0 S x + Ax}/Ax. (24) 

The quantity fyxjAx indicates the probability that the random variable 
x(0 has a value between x and x + Ax. If the random variable x(Q 
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Table 2 
Original functions with corresponding transforms. 
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also is a function of time, hence x(t; 0 is a function of time t and ensemble 
C, a set of time functions arises which is called a stochastic process. The 
realization x(t; £0) of x(r; £) belonging to the element Co of the ensemble 
C is thus a time function; the stochastic process at a particular moment 
is a random variable x(t0, Q. Probability theory is applied to random 
variables, and thus can be applied also to a stochastic process at time r0. 
In this case we obtain a probability density function as a function of 
time t, hence: 

fJ^x, t) = lim Pr{x <x(t;0 ^ x + Ax}/Ax. (25) 
Ajc-»0 

The stochastic process is said to be stationary if the probability density 
function obtained for the ensemble does not depend on time, so that 

Mx, t) = f^x, t + At) = Mx) for all At. (26) 

From these probability density functions we can derive a number of 
important statistical properties called moments, such as the first order 
moment or mean value or mathematical expectation ns: 

00 

r,x = E{x(t;0}= J xMx)dx (27) 
- 0 0 

and the second order moment, such as the mean square error or variance a\: 

00 

4 = E{{x(t; 0 - r,,-]2} = j [x - n^VUx)dx. (28) 

— oo 

The Eqs (27) and (28) give only static information of the stochastic 
process; dynamic information such as frequency distribution and time 
dependence can be derived from the joint probability density function 
fxs^Xi, x2; x) of the stationary stochastic process at two different instants 
of time t0 and t0 + x; thus from x(t0; Q and 5c(t0 + x; £): 

fs^xl,x2,x) = lim Pr{Xi < x(t;Q g xx + Axu 
Axi-»0 
Ax2-»0 

x2 < x(t + x; Q ^ x2 + Ax2}/Ax!Ax2. (29) 
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In the same way as in probability theory the correlation coefficient 
between two random variables has been defined, we can define such a 
coefficient between two stationary stochastic processes at a time dif­
ference T. Such a statistical quantity will provide us with information 
about the interdependence of the two processes as a function of time 
difference t. We can define three different second-order moments, being: 
the average product function Rxl£c): 

and finally the correlation function K^z): 

K«M = C^T)/al (32) 

The characterization of the stochastic process by Eqs (27) through (32) is 
based on an averaging across the ensemble. In system and signal theory, 
however, we deal with time functions or signals. We therefore have to 
build a bridge between the statistical quantities obtained for the ensemble 
and a description in the time domain. This is achieved by estimation 
theory, by defining the following estimators of the stationary stochastic 
process. These estimators are time-averages of realizations of the sto­
chastic process. 
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T 

RSS(T;Q= Hm \ x(t;Qx{t + r;0df, (35) 
r->oo 2T J 

-T 

T 

C^r; 0 = lim - I - f [x(t; Q ~ U01 [x(t + x; Q - «k(Q] dt, (36) 
T-oo 27 J 

- T 

K,Je(T;0 = ejrj,(T;0/ffKO. (37) 

The estimators Eq. (33) through Eq. (37) can be associated with the 
statistical properties Eq. (27) through Eq. (32), so that we finally obtain 
a relation between ensemble average and time average (ergodicity). 

When considering a stationary stochastic process with a mean value 
Is' 

E{U0} = n*, (38) 

and with a variance of the estimator rjx, Eq. (33), according to Eq. (39): 

£{W5(C)-%]2} = o, (39) 

we call that stochastic process ergodic with reference to the mean value. 
If the estimator Eq. (33) satisfies the Eq. (38) the estimator is said to be 
unbiased; if it also satisfies Eq. (39) the estimator is called consistent. 
The same is true for the estimators Eq. (34) through Eq. (37). It can be 
proven that all of the estimators considered here are consistent. In the 
case that all estimators which can be defined for the process under 
consideration satisfy similar equations as given by Eqs (38) and (39), we 
speak of a strictly ergodic stochastic process. It is important to realize 
that an ergodic process implies that the process is stationary; the inverse 
is certainly not true. The ergodic property of a stochastic process is the 
basis for the description of time functions, since this property associates 
the description of a signal in the time domain with the calculus of 
statistical quantities in the ensemble domain. 

The decomposition of stochastic signals in subsignals is not meaning­
ful in the present context. On the one hand a transformation of a sto­
chastic process x(t; £) is not possible because there does not exist a direct 
relation between the process and the time t. On the other hand, the 
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transformation of just one realization x(£;Q of the stochastic process 
x{t; 0 at the interval [0, T] provides only information about that single 
realization, and not about the stochastic process as a whole. A quantity 
which certainly provides information about the complete stochastic 
process is the so-called power density spectrum Sys(v) which is defined as 
the Fourier transform of the average product function K J S (T) : 

(40) 

The definition of the quantity S^v) can be explained as follows. Accord­
ing to Eq. (42) the average product function R^T) of the stochastic 
process x(t; Q can be rewritten as: 

T 

K„(T) = £{iW*)} = 4 Um ^ [ x(t; Qx(t + T; 0 dr}. (42) 
- T 

From the definition of the Fourier transform and Eq. (40) we can derive 
that: 

Svfy) = F{Ua(T)} = fij Urn ^ |X(v; 0 | 2 | , (43) 

in which the quantity X(v; Q, the Fourier transform of a particular 
realization of the stochastic process x(t; Q, means that: 

(41) 

(44) 
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In other words, the quantity X(v;Q is the amplitude density spectrum 
of the realization x(t; Q, whereas |Z(v; £)|2 represents the power density 
as a function of the frequency v. The quantity Ssi(v) then is an ensemble 
average of the time average power density limr_>0O(l/2T)|X(v;0|2. 
Thus the power density spectrum S^v) is a statistical property in the 
frequency domain of the stochastic process x(t; Q; it indicates in what 
way the power of the process is distributed over the frequency span. 

Of course we should also define an estimator for the power density 
function. It seems logical to base such an estimator on the average 
product function, hence: 

(45) 

It can be shown that this estimator is unbiased, so that E{iSssAv;£)} 
= SS3E(v), but, the estimator is not consistent. Assuming that the stochastic 
process is normally distributed, the variance of the estimator is: 

(46) 

(47) 

The estimator Eq. (47) is unbiased and consistent due to the averaging 
of an infinite number of sinusoidal subsignals over a finite frequency 
interval 2Av. 

An example of the description of some signals either in the time domain 
or the frequency domain is given in fig. 8. 

and thus differs from zero. For practical application therefore, we always 
use the unbiased and consistent estimator Ss^y; Q according to: 



Fig. 8. Examples of deterministic, periodic and non-periodic, and stochastic signals in the 
time and frequency domains. 

1.4. System description 

Having discussed the basis of signal theory, we now can proceed with 
system theory. Therefore we will classify the different systems according 
to their specific properties. 

1.4.1. Classification of systems 
Table 3 represents a classification of systems: In this table the proper­

ties listed in a row are mutually exclusive, those in a column, however, 
are not mutually exclusive. 

- Static versus dynamic. A static system is a system of which the output 
y(t) at instant of time te is only dependent on the value of the input u(t) 
at that particular instant, and the instant of time te itself. For a dynamic 
system the output y(i) at the moment te is a function of the history of 
"(0 for t ^ te, and also of each t smaller than te. Thus: 
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static: y\te) = f{u(te), te] 

dynamic: y(te) = f{u(t:t0, te), t;y(t0)}. 

(48) 

(49) 

The notation u(t: f0, te) means that the signal u(t) is considered over the 
interval t0 through te. The quantity y(t0) is called the initial condition. 

- Concentrated versus distributed: A concentrated system is character­
ized by variables such as inputs and outputs which are dependent on 
time as well as spatial coordinates. The input-output relations are 
described by partial differential or difference equations. A concentrated 
system has only inputs and outputs which are functions of time; it is 
described by an ordinary differential of difference equation. 

- Constant versus time-varying: A system is described by input-
output relations, of which the structure as well as the system parameters 
determine the system behavior. In the case that the system parameters 
are time-dependent it is said that the system is constant; if the para­
meters are time-dependent the system is said to be time-varying. The 
system response y(te) of a time varying system thus becomes: 

y(Q =/[«(«: t0,te),t;y(t0)]; 

while that of a constant system is: 

(50) 

(51) 

Here it should be noted that an equal distinction can be made with 
regard to the system structure. 
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- Deterministic versus stochastic: A deterministic system is a system 
for which structure and parameters are explicitly defined as a function 
of time, whereas for a stochastic system the structure and parameters can 
be explained only in terms of probabilities. 

- Linear versus non-linear: Let us assume that the response of a 
system with initial condition y,(t0) and input u,(t:t0, te) is equal to 
y,(te), and that the response to initial condition yn{t0) and input 
uu(t: t0, te) is equal to yn(te). Then the system is said to be linear if: 
- The system is linear with respect to the input: 

f[cMt • t0, te), t; y{toy] - f[cnuu(t: t0, te), t; X«o)] = 
(52) 

= /[c,M,(t: t0, te) - <?„«„(! •• t0, a t; 0], 

that is, the difference between the system response to the inputs 
c,w,(r: t0, te) and CnU^t.tcQ with equal initial conditions y(t0) 
should be the same as the system response to input c,«i(f: t0, te) 
- c,,«!,(£: t0, te) with initial condition y(t0) = 0. 

- The system is linear with respect to the initial condition: 

f\At: t0, g , t; c,y,(t0)] - f[u(t: t0, te), t; Cn}^,,)] = 
(53) = /[0,t;c ly I(£o)-c I Iy1I(£o)], 

or, the difference between the system response to equal inputs u(t: t0, te), 
but different initial conditions cxyi{t0) and cuyB(t0) should be the same 
as the response on an input u{t.t0,te) = 0 and an initial condition 
ciyi('o) - cnya(t0). 

A linear system must satisfy both properties for every value of y(t0), 
u(t: t0, te\ t0, te and c. If a system does not satisfy either or both of these 
properties it is called a non-linear system. 
- Continuous versus discrete: Continuous systems are systems whose 

inputs and outputs are continuous, while discrete systems have sampled 
inputs and outputs. Continuous systems are described by differential 
equations, discrete systems by difference equations. 

- Scalar versus multi-variable. A scalar system is a single-input, single-
output system. A system with more than one input and/or output is 
said to be multivariable (fig. 9). For convenience vectorial variables 
are often introduced. The description of a multi-variable system with 
r inputs and m outputs, 



212 Chapter 4: Systems, automata, and grammars 

Fig. 9. Block diagram of a scalar and multi-variable system. 

yi(te) = / i [«i( ' : t0, te\ ...,ur(t: tQ, te), t;yt(t0)... ym(t0)~\, 

yJt.) = /m[«i(*: ^ Q,..., ur(t: t0, te), f; yi(t0)... ym(t0)l (54) 

can now be easily formulated as follows: 

y_(0 =£\jdf • t0, a t; yjLt0J}. (55) 

This formulation is the basis for the state vector description. 
A particular class of dynamic systems is that of constant discrete 

systems. These systems are commonly called automata, and they are 
related to the grammars discussed in the second part of this chapter. 

The classification into linear and non-linear systems is by far the most 
important one. The description of linear systems can be achieved in a 
closed analytical way. In general this is not possible for non-linear 
systems and it will differ from system to system. We will therefore discuss 
linear systems in more detail. 

1.4.2. Linear systems 
The two linearity properties, Eqs (52) and (53), together form the 

superposition principle, a most important principle. The superposition 
principle teaches us that the response of a linear combination of sub-
signals is equal to the corresponding combination of the responses to 
these subsignals (fig. 7). This property is true for the inputs as well as for 
the initial conditions. As a consequence the principle shows us that a 
linear system can be characterized by just one function: the impulse 
response h{t; t0) to the impulse function b\t — t0). 

1.4.2.1. Description by means of impulse response. The system response 
can principally be determined by forcing a system with an impulse. In 
practice this is actually not possible, since a pure impulse does actually 
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not exist and can only be approximated. However, in theory this is a 
very satisfactory way of describing a linear system in the time domain 
(fig. 10), and therefore it is often used. From the definition of causal 
systems it follows directly that the impulse response h(t; t0) = 0 for 
t < t0. If in addition the system is constant we obtain h(t; t0) = h(t — t0). 

Fig. 10. The impulse response. 

An important property, derived from the definition of the impulse 
function, is 

(56) 

which says that any input to a system can be considered to be composed 
of the summation of impulse functions each having an area U(T) dr. This 
means that according to the superposition principle the output of a 
linear system can be written as: 

(57) 

(58) 

Equations such as Eq. (58) are called convolution integrals. According to 
Eq. (22) we can transform this equation into a product of the Laplace 
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transforms U(s) and H(s). Based on the Eqs (57) and (58), for any linear 
system the -system response to an arbitrary but deterministic input can 
be achieved, since by measuring the output yit) of an input u(t) we are 
able to calculate with Eqs (57) and (58) the impulse response. In the case 
that the inputs are stochastic we cannot simply apply the Eqs (57) and 
(58) since the input u(t; 0 is not explicitly known as a function of time. 
However, of course, Eq. (57) is also valid for a constant system with a 
stochastic input «(t; 0 ; hence: 

By multiplying both the members of Eq. (59) with the term w(t — T; 0, 
and by taking the mathematical expectation, using the definition of the 
average product function, we obtain: 

00 

J?_(T) = f Rjj - 8)h(8) d<9 = RJfrhto, (60) 
— 00 

Here, we call the function R ^ T ) the average cross product function: 

CO 00 

R^r) = E{u(t; Qy(t + r; 0} = J J uyfrfu, y; t) du Ay. (61) 

— oo — co 

The function R^i) represents the relation between the stochastic 
processes «(r; 0 and y{t + x; 0 as a function of the time difference T. 
In the same way it can be shown that R^(z) = Ry,J[T:)*h(r), so that: 

Rrfr) = RJLTW-ZWT). (62) 

Fig. 11. System description by means of the impulse response for deterministic and 
stochastic imputs. 
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1.4.2.2. Description by means of differential equations. The determina­
tion of the system response y(t) can also be achieved by solving the 
differential equation which gives the relation between input and output 
of the system. In general a linear concentrated system is given by the 
following ordinary differential equation: 

d»y(t) d-VO) ^ dj<«) 
a"~W + a"~l I F ^ + • • • + fll IT + a°y{t) = 

= fit) = bm—^ + ... + br - ^ + fc0«W. dtm At 

For time-varying systems the coefficients at(i = 0, 1, . . . , n) and 
bj(j = 0 , 1 , . . . , w) will be functions of time; for constant systems those 
coefficients will be time-independent. In general physical systems will 
satisfy the relation m ^ n. The integer n is said to be the order of the 
system. The solution of the differential equation will provide us the 
total response. If the function f{f) — 0, we obtain the natural response. 
If the initial conditions are equal to zero we obtain the forced solution. 
The most general method and, incidentally, the easiest, makes use of the 
Laplace transform. The calculation can be summarized as follows: 
- Assume that/(t) = 0, and determine the Laplace transform of Eq. (63). 

As a result we obtain the Laplace transform Y(s), so that after calculat­
ing the inverse Laplace transform we obtain the natural response. 

- In the case that fit) ^ 0, and with zero initial conditions, we obtain 
after transformation of Eq. (63) 

\_ans" + fl^iS"-1 + ... + ats + ao]Y(s) = 

= |>«s" + b^s"-1 + ... + blS + b0-]U(s). ( 6 4 ) 

From Eq. (64) the response y{t) can be calculated by taking the inverse 
transformation of Laplace transform Y(s). 

- The total response is now achieved by adding the forced response to 
the natural response. 
Often the response is split up in a different way, namely the transient 

and the steady state solution. The transient phenomenon is that part of the 
total response that converges to zero as t -» oo; the part that does not 
equal zero for t -> oo is said to be the steady state solution. 

Finally we show the relation between the impulse response and the 
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solution of the differential equation. According to Eq. (58) a causal 
linear constant system can be described by: 

where w(r) is the input. After Laplace transformation and using Eq. (22) 
it follows that: 

Y(s) = H(s)U(s), (66) 

where the function H(s) is said to be the Laplace transform of the impulse 
response h(t). This function is called the transfer function. From Eq. (64) 
we learn with regard to the forced response that if Eq. (64) equals Eq. (66) 
we obtain: 

Ms) = 1 ^ = bmSm + bm-i^~l + ••• + V + frp 
U{s) a„s" + a„_ 1s"~ l + ... + ays + a0 ' 

In this equation the polynomial (a„s" + a,,-!^ -1 + . . . + ats + a0) is 
said to be the characteristic equation. It can be shown that, indeed, 
Eq. (67) holds, and thus that the transfer function is: 

The same equation can be derived for the Fourier transform, be it that 
the initial conditions are left out: 

Y(v) = H(v)[/(v), (69) 

with: 
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Fig. 12. Description of linear constant causal systems by means of transfer functions. 

1.4.2.3. Description by means of the transfer function. Eqs (66) and (69) 
describe a linear constant causal system with deterministic inputs (fig. 
12); this is a description in the frequency domain. The description of a 
system with stochastic inputs follows directly by applying the Fourier 
transformation to Eqs (60) and (62): 

S^v) = H{v)SJy), (71) 

S^v) = S^v)H( - v) = SJy)H{v)H( - v) = |ff(v)|2 SJLv). (72) 

Here it should be mentioned that Eq. (71) gives phase as well as amplitude 
information of the transfer function H(v), whereas Eq. (72) contains just 
amplitude information. The transfer function H(v) may also be considered 
as a frequency response, obtained by the response to a sinusoidal input 
u(t) = a cos 2nvt. It can be shown that the ratio between the amplitudes 
of input and output of the linear constant system is equal to |ff(v)|, 
whereas the phase difference between input and output equals arg H(v). 

1.4.2.4. Stability. The stability of a system is determined by its dyna­
mics. On the basis of the impulse response we can define the stability of 
a system as follows: A system is stable if, and only if, the impulse response 
tends to zero for t -*• oo. Thus from 

it follows that the roots of the characteristic equation 

ans" + a„ - i s " _ 1 + . . . + a t s + a0 = a„{s - st)(s - s2).. .(s - s„) = 0 
(74) 

must have a negative real part: Re(si) = A,- < 0 for i = 1,2,. . . , n. 

1-4.2.5. Complex systems. The boundary of a system is arbitrarily 
chosen; often a combination of many subsystems forms a single new 
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system. By means of a block diagram the structure of such a new system 
can clearly be explained. A number of different structures can be re­
cognized. 

- Cascade series of subsystems: In a cascade series the output of the 
first subsystem is the input of the second subsystem (fig. 13). The impulse 
function h(t) of the complex system obtained in this way then becomes: 

h{t) = h^hM 

so that for the transfer function H(s) results: 

H(s) = HiW^s). 

(75) 

(76) 

- Parallel series of subsystems: In a parallel series of subsystems the 
input drives both the subsystems, after which the responses are added 
(fig. 14). It can be shown that the overall response of the system will be: 

- Closed loop systems: For a closed loop system we feed back the 
output y^i) of the subsystem H^s) in the forward loop via the feedback 
loop with subsystem H2(s). We now can derive that (fig. 15): 

H^ = i ^ S v w i t h **& = Hi(s)H2(s). 1 + H(s) 
(79) 
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The transfer function iJ(s) is called the open loop gain. After applying the 
inverse Laplace transformation we obtain: 

1.4.3. Non-linear systems 
As mentioned before, a non-linear system is defined as a system that is 

not linear, that is, it does not satisfy the superposition principle. This 
definition is a very poor one, however, since it only excludes the possi­
bility that a particular system possesses a certain property, be it an 
important one; it specifies no other property. The behavior of non-linear 
systems is described by non-linear algebraic, differential or difference 
equations. Rarely are we able to find a closed analytical solution; a 
generally applicable method to solve these non-linear equations may 
be expected never to be found. In system theory, however, we mainly 
are interested in the behavior of a system around a certain operating 
point, so that by linearization around the operating point a useful descrip­
tion can be derived. In this way we obtain a linear description of the 
non-linear system, valuable around a particular operating point. This 
approach makes it possible to apply the theory of linear systems to 
non-linear systems. 

A more profound study of non-linear systems will teach us that: 
- The behavior, static as well as dynamic, will depend strongly on the 

input. 
- In general the system will generate higher harmonics of the forcing 

input; sometimes even the fundamental frequency will disappear in 
the output. 

1.4.3.1. Linearization of constant static systems. Linearization of a 
non-linear system around an operating point leads to a linear descrip­
tion. Observe now the constant static non-linear system: 
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y{t) = g{u(t)}, (81) 

where the function g{u(t)} represents a non-linear, continuous, and 
differentiable function. Then, according to the Taylor series around the 
operating point g{//„}, we obtain: 

(83) 

(84) 

The gain k(riu) is a function of the operating point g(nu) of the non-
linearity, or, with reference to the input it is a function of the mean value 
nu of input u(t). Here we should note that this linearization technique 
can be applied in a significant way only if the variations in u(t) around the 
mean value nu are relatively small, such as in closed-loop systems. For 
open-loop systems these variations may often be too large, so that such 
a simple linearization technique leads to too great a simplification. In 
those cases it is worthwhile to apply the method of the statistical lineariza­
tion or the method of Booton. This method is based on the following 
philosophy. Assume that the input u{t; Q has a mean value equal to zero, 
and that we can approximate the linear system by an equivalent gain 
ke(0, <x5), that is, a linear constant system. Then, by minimization of the 
difference between the output y(t; £) = g{u{t; Q} of the non-linear static 
system and the output y*(t; Q = keli(f, Q of the equivalent linear system 
according to a quadratic criterion, we obtain the least-square estimate 
of the equivalent gain (fig. 16). It can be shown that with: 

dk. 
E{[_g{u{t;O-keu(f,QY}=0 (85) 

By neglecting the higher harmonics, it follows that: 

thus for small variations around g{r\u) we obtain the relation: 
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Fig. 16. Statistical linearization of a constant static non-linear system. 

we obtain the following relation for fcc(0, aa): 

(86) 

A number of remarks should be made here. 
- Eq. (86) shows that the equivalent gain fce(0, os) is a function of the 

variance a\; in fact one should know the probability density function 
f^u) in order to be able to determine ke(0, ag). The method discussed 
here is not restricted to inputs with a mean value equal to zero, 
although for ns ^ 0 the calculation becomes much more complicated. 

- Because of the fact that the equivalent gain is only a constant system, 
the method is restricted to non-linear constant static systems. 

- The methodology followed in obtaining the optimal equivalent gain 
is similar to that applied to the decomposition of signals into sub-
signals; it is of interest to compare figs 6 and 16. 

1.4.3.2. Describing function method. In order to describe non-linear 
constant dynamic systems, one often uses the describing function method. 
This method is based on the idea that the non-linear system can be 
replaced by a linear dynamic system with a transfer function G(v). 
If now the non-linear system is driven by an input w(t) = A cos 2nvt, 
we can describe the output by a series of sinusoidal subsignals with the 
help of the Fourier series, Eq. (6). By comparing the input with the out­
put's fundamental harmonic, the first term of the Fourier series, we can 
define a transfer function, the describing function. Also, this method is a 
linearization around a certain operating point; a linear relation between 
the input and the output's higher harmonics, the other terms of the 
Fourier series, does not exist. The method can be applied to systems with 
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Fig. 17. The describing function: A linear description of a non-linear constant dynamic 
system. 

deterministic as well as stochastic inputs. In the latter case the non-linear 
system is thought to be approximated by a linear dynamic system to 
which output a signal n(t; 0, called the remnant, is added (fig. 17). This 
remnant is thus the difference between the outputs y\t; £) and y*(t; Q of 
the non-linear and equivalent system, respectively. The optimal dynamic 
gain G(v) again is achieved by minimization of the variance of the remnant 
with respect to the parameters of the transfer function G(v). It can be 
shown that minimization of this variance oj yields a result for which the 
remnant n(t; Q is uncorrelated with the input u(t; Q, and thus R^i) = 0 
for any value of T. It can be derived that: 

S^v) = SBF*(v) = G(v)SfiS(v), 

S^v) = |G(v)|2 S^v) + SJy). 

(87) 

(88) 

Eq. (87) provides us the describing function G(v), so that by substituting 
|G(v)| into Eq. (88) the spectral density S^v) of the remnant can be 
obtained. 

Fig 18. The describing function method applied in a closed system. 

The method as formulated by Eqs (87) and (88) can only be applied if 
the non-linear element is not linked up in a closed loop system, since for 
closed loop systems (fig. 18) the remnant n(t; (), due to the feedback, is 
always linearly correlated with input e(t;Q to the non-linear element; 
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thus R^t) # 0 for all values of x. The describing function G(v) can be 
determined in two different ways: 

- Indirect method: 

Srfy) = GJv)SJy), with GJiv) = } ^ " ^ y (»>) 

- Direct method: 

G(v) = S^y)/S^v). (90) 

The indirect method only can be applied if the linear system H(v) is 
known; this method is certainly the easiest one. 

The describing function method is of great importance in the mathe­
matical description of the human operator's behavior in manual control 
(see vol. II, chapter 10). 

1.4.4. Description by means of state variables 
The description of systems by means of state variables has been 

mentioned already in the discussion of scalar and multi-variable systems. 
This approach has become very popular in the last decade, on the one 
hand because the description method is conceptually simple for describ­
ing very complex systems, and on the other hand because this method 
can be easily applied when digital computers are used. The basic 
philosophy is that any dynamic linear system can be described by a set 
of first-order linear differential equations. 

If for a given system the input u(t) is known over the interval [ — oo, f], 
then we can determine the output y(t). If the input w(r), however, is known 
over only the finite interval [t0, t], the output y(t) can only be determined 
if we have knowledge of the initial condition y(t0) (except for constant 
static systems). Hence, we can define the state of a system as follows: 
The state of a system at a particular time instant t0 is the set of numbers 
which, together with the input signal over the interval [t0, t~\, determines 
the output of a system at the time instant t. From this definition we obtain 
the following relation, called the output equation of the system: 

)>(*) =f{x{t0),u(t: t0, t)};t> t0. (91) 

In this equation the quantity v(t) represents the output vector, the quantity 
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u{t:t0,t) the input vector over the interval [t0, G and x(t0) the state 
vector, defined at the instant of time t0. From the definition it is clear that 
the state vector also could be defined at the time instant tlt in which 
case it easily can be shown that for tt > t0 the state x(ti) is completely 
defined by x(t0) and u{t: t0, tj). We formulate this by means of the 
state equation (92): 

x(t) = g{x(t0), u(t: t0, t)};t> t0. (92) 

Eqs (91) and (92) can be used to describe all of the different classes of 
systems mentioned before, except for the distributed systems. 

In the context of this Handbook it is impossible to discuss the descrip­
tion by means of state variables in a general way; we will restrict our­
selves to the differential systems, which are those systems where the 
Eqs (91) and (92) can be rewritten as: 

x(t) = g{x(t),u(t),t] (93) 

y{t)=J{x(t),u(t),t}. (94) 

The system equations (93) and (94) are much simpler if we derive them 
for linear systems, obtaining: 

x(t) = A(t)x(t) + B(t)u(t) (95) 

y(t) = C(t)x(t) + D(t)u(t) (96) 

where A(t) is said to be the system matrix, B(t) the input matrix, C(t) the 
output matrix, and D(t) the direct transfer matrix. For linear constant 
systems the matrices of Eqs (95) and (96) become independent of time, 
so that it follows: 

x(t) = Ax(t) + Bu(t) (97) 

y(t) = Cx{t) + Du(t). (98) 

The meaning of the matrices A, B, C, and D can be elucidated by means 
of the block diagram of fig. 19: 

- Matrix A is placed in the feedback loop, and thus acts on the state 
variable x{t) which is fed back to the integrators. The matrix A entirely 
determines the dynamic behavior of the system. 

- Matrix B determines to what extent and in what way the input 
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Fig. 19. The state description of a linear constant system. 

u(t) controls the system. In conjunction with matrix A, matrix B deter­
mines whether the system is controllable or not. A fully controllable 
system is a system where from an arbitrary initial state x(t0) any other 
final state x(te) can be reached by forcing the system with a certain input 
u(t: t0, te) where the interval [t0, te] must be finite with te > t0. 

- Contrary to the idea of controllability is the idea of observability. 
Observability is determined by the matrices A and C. It is said that a 
system is fully observable if from the state vector x(t0) and the output 
y(t:t0,te) over the finite interval [r0, te] the state vector x(te) can be 
determined uniquely (t0 < te). 

- The direct transfer matrix D determines to what extent and in what 
way the input affects the output without passing through the closed loop. 

The ideas of observability and controllability will be used in the sub­
sequent sections on automata and grammars. 

Without proof we state that the solution of the set of differential 
equations (97) and (98) with initial state vector x(t0) will be: 

(99) 

(100) 

where em is called the transient matrix. The Eqs (99) and (100) give the 
response ^ 0 of the system on an input u(t) in the time domain. 

As was the case for scalar systems, a description in the frequency 
domain can here be derived again. By applying the Laplace transforma­
tion to Eq. (97) we obtain: 

(101) 
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and thus: 

X(s) = (si - Ay^xito) + (si - A^Bilis). (102) 

The matrix (5/ — A)~1B is said to be the transfer matrix from U(s) to 
X(s). Transforming Eq. (98) and substituting the result into Eq. (102) it 
follows: 

Y(s) = C(sl - A)'1^) + lC(sI - Ar'B + D]U(s). (103) 

The matrix C(sl — A)~iB + D is called the transfer matrix from U(s) 
to Y(s). This matrix can be compared \yjth the well-known transfer 
function H(s) as discussed in section 1.4.2.3. 

Recent developments in the field of the description of the human 
operator's behavior in manual as well as supervisory control often are 
based on description in terms of state variables (see vol. II, chapter 10). 

1.5. Models and parameter estimation techniques 

A major goal of using system theory is to model real world problems; 
that is, we try to formulate mathematical models on the basis of which 
predictions can be made under a variety of circumstances. In the fore­
going we almost implicitly assumed that just a little or no information 
at all was available. In such cases systems can be described by impulse 
responses, transfer functions and averaged product functions. Often, 
however, we have some knowledge of the system under study, which 
makes it possible that we define the structure of the system at hand in 
advance. In that case the problem of identifying a system is reduced to 
the determination of a set of parameters given a certain model structure. 

The choice of the structure of the model is of great importance; this 
choice, among other factors, depends on: 
- The objectives to be realized in determining the model. 
- The insights and ideas of the investigator. 
- The information available about the system under study. 
- The required accuracy of the model. 
- The observability of the system under study. 
Determination of the unknown parameters is mostly achieved according 
to a standardized pattern (fig. 20). A model of the system under study is 
proposed; the structure is chosen and the parameters a, must then be 

file:///yjth
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determined. Given a certain input u(t;Q, the output )>*(*; £;<x,) of the 
model is compared with the output y(t; Q of the system under study. 
According to a certain criterion we now minimize the error between 
y(t; Q and y*(t; £; a,) by varying the parameters a;. It follows that: 

(104) 

where the quantity w(t) is called a weighting function, and where the 
exponent p mostly is chosen to be two. The minimization of the cost 
function, Eq. (104), can be achieved analytically or by an iterative 
procedure. In general, the solution of Eq. (104) will generate a set of 
equations which are non-linear in the parameters. Only with w{t) = 1, 
and p = 2 the set of equations will be linear, and thus solvable in an 
analytical way. It should be noted that the method, as illustrated in 
fig. 20, can only be applied to open loop systems. Variants of this 
method have been developed in order to be able to handle closed loop 
systems. Finally one very important remark should be made. In general 
the definition of a model is based on certain assumptions; this means 
that the application of the model is limited to situations for which the 
assumptions are valid. We should therefore always check whether the 
circumstances in which we plan to apply the model satisfy these assump­
tions. 

Fig. 20. Parameter estimation of the model parameters in an open loop system. 
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2. Automata and grammars 

Automata are dynamic systems which are discrete and constant. They 
are dynamic, because their behavior is not only dependent on the last 
value of the input signal, but also on the series of preceding input signals. 
They are discrete systems, since they have a discrete time axis t = 0,1, 
2, . . . ; they are constant since both system parameters and structure are 
independent of t. Furthermore, automata have quantized signals: signal 
values are elements of a finite set. 

We shall first discuss some automata of increasing complexity (2.1). 
The choice is determined by the relations these automata are enter­
taining to the grammars that are treated in 2.2. All automata to be 
discussed are observable systems (cf. section 1.4.4), for which it is 
inconsequential whether the discription proceeds from the state, or 
from the output signal. As we will proceed from the state, the notion 
'output signal' will not be used anymore. 

2.1. Some automata 

2.1.1. Finite automata 
A finite automaton is a system characterized by the following five 

entities. X is a finite non-empty set of states. At any moment the auto­
maton must be in just one of these states. One of these states, x0, is 
called the initial state, and F, a non-empty subset of X, constitutes the 
set of final states. The possible values of the input signal form a non­
empty finite set V; this set is also called the automaton's vocabulary. 
Finally, there is a (stare) transition function, 5, which indicates how the 
automaton changes state under influence of particular input signals: 
<5(x„ vj) = xk means that the automaton in state x, changes to state xk at 
input of vocabulary element vj. Figure 21a shows the transition-diagram 
of a finite automaton with two states x0 and x,, where V is binary 
(0 or 1), and with transition function 8(x0,1) = xu d(x0,0) = x0, and 
^(xl50) = x0. 

In order to explain the workings of this as well as the other automata 
in this section, we shall use the notion 'controllability', which was intro­
duced in section 1.4.4. There, a system was called 'fully controllable' if 
there is always an input signal such that the system can make a transition 
from any initial state x(r0) to any final state x(fe). In the theory of auto­
mata full controllability (i.e. from any initial state) is irrelevant. Important 
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0 1 

Fig. 21. Transition diagram for deterministic (a) and non-deterministic (b) finite auto­
maton. 

is controllability from one defined initial state x0. This state is called 
controllable, if there exists a string of input elements s (a signal) which 
can bring the automaton from there to a final state xf e F. If such is the 
case, the automaton is said to accept input string s. This can be written 
as follows o\x0, s) = xf, where seV* (the set of strings of vocabulary 
elements), and xf e F. For example, fig. 21a shows that one can proceed 
from x0 to x t by presenting vocabulary element 1, but also by presenting 
strings 01, 001, 101, etc. The language accepted by automaton A is the 
set of accepted strings: T(A) = {s|<5(x0,s)e.F}; these are the strings by 
which the initial state is controllable. The automaton of fig. 21a is 
controllable with any string consisting of an arbitrary number of 
0-elements, followed by an arbitrary number of sequences, 10, followed 
by 1; in short: T = {0*(10)*1}. Two automata, At and A2, are equivalent 
if T(^j) = T(A2). The languages accepted by finite automata are called 
regular languages. 

Apart from deterministic finite automata, as in fig. 21a, there are also 
non-deterministic ones. The transition function of these automata gives 
a set of possible transitions for any pair of state and vocabulary elements: 
S(xh Vj) = {xh, ...,xk}. Fig. 21b gives an example. There <5(x0,1) 
= {xo^i}. From x0, the automaton can either go to x0 or x t at the 
input of 1. Each input string therefore corresponds to a set of paths in 
the transition diagram. The automaton accepts a string if there is at 
least one path from x0 to a final state for that string. One can prove that 
for each non-deterministic finite automaton there is an equivalent 
deterministic automaton (the inverse is trivially true). It follows that the 
non-deterministic finite automata generate the same class of regular 
languages as deterministic finite automata. A probabilistic finite auto­
maton is a generalization of the non-deterministic finite automaton, 
where a probability is assigned to every possible transition. It is a 
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stochastic system as defined in section 1.4.1. Markov sources are a 
subclass of probabilistic finite automata. 

The input strings in V* which are not accepted by the automaton form 
the complement CT of the language T. The complement of a regular 
language is itself regular, i.e. for every finite automaton A, there is another 
finite automaton A', such that CT(A) = T(A'). 

2.1.2. Push-down automata 
A push-down automaton (PDA) is a system which, other than the 

finite automaton, has an infinite set of states X. In order to describe this 
set, one may factorize X into two parts: a finite set T = {t0,t1,...,tm} 
of 'states' in a stricter sense, plus a memory store of infinite size. This 
store can contain strings (x, ty, (o,...) of so-called memory symbols 
taken from a finite push-down vocabulary r = {y0,y1,...,yn}. This 
push-down store can be conceived of as operating in the following way: 
The automaton always starts with just y0 in the store. New memory 
symbols are put on top of old ones, 'pushing' them 'down', so that only 
the top-element is removable: it is not allowed to add or remove elements 
at other places in the stack. 

In factorized form, the initial state x0 of the PDA is the pair (t0, y0), 
where t0 is now called the initial state (in the strict sense). FeTis the set 
of final states. The automaton is a system (V, T, T, t0,y0, F, 5), where S 
denotes the set of transition rules. These transition rules determine what 
happens in a given state, and with given top element, when a new input 
element appears, i.e. the rules determine the next state, and the memory 
change. They are written as (tt, vp yk) = (t,, %), which means that at the 
input of Vp with yk as top element in memory, the state changes from 
t, to t„ and yk is replaced by the string (or better: stack) of memory 
elements % (this may be the null-string, which amounts to simply 
removing yk). A string s of input elements is accepted by the automaton 
if a final state tfeF is reached from (t0, y0). The language T(PDA), 
accepted by the push-down automaton is the set of accepted strings: 
T(PDA) = {s\b\t0, s, y0) = (tf, x), rr e F, x e T*}. The languages accepted 
by PD/4's are called deterministic languages. The complement of a 
deterministic language is also deterministic. Regular languages form a 
strict subset of deterministic languages. 

Analogous to the non-deterministic finite automata, one can design 
non-deterministic push-down automata (NPDA). Such automata can, 
for each state, top element, and input element, 'choose' from a set of 
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transitions. This type of automaton is more powerful than the deter­
ministic automaton. The languages accepted by NPDA's are called 
context-free languages. They include deterministic languages as a strict 
subset. The question whether the complement of a context-free language 
is also context-free has been proven to be unsolvable, but in any case the 
complement is context-sensitive (see next section). 

2.1.3. Linear-bounded automata 
The linear-bounded automaton (LBA) can be conceived of as a tape 

with a movable reading and writing head, which can be in any of a 
number of states (cf. fig. 22). The tape is used to write down the input 
string, and also serves as memory space. It is characteristic for the LB A 
that this 'working space' on the tape is exactly the same size as the input 
string: for small inputs there will be little memory space, for large inputs 
there will be much memory space, i.e. there are no intrinsic bounds on 
memory size. 

The LB A, which is characterized by the entities V, T, T, t0, F, S, and # , 
starts reading the tape at the left, i.e. at the first input symbol; the LB A 
is then in state t0. Depending on what is read, it will change state, and it 
can replace the element that has been read by another one. This may 
be an element of V, or an additional memory element (from the finite 
memory vocabulary T). Also, it will select a new position k, i.e. it may go 
one position to the right (k = +1), one position to the left (k = —1), 
or remain unchanged (k = 0). Thus, each pair of state and tape symbol 
will cause three changes: a change of state, a change of tape symbol, and 
a change of position. For each pair of state and tape symbol the transition 
rules 8 describe what these three changes will be. The LB A is said to 
accept an input string if it reaches the right boundary symbol (#), and 
then enters a final state (eF). LBA's are always non-deterministic: for 
every combination of state and tape symbol a set of transitions is 
specified. The languages accepted by LBA's are called context-sensitive 
languages. It is still unknown whether their complements are also con-
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text-sensitive. Context-free languages form a strict subset of context-
sensitive languages. 

2.1.4. Turing machines 
A Turing machine TM differs in only one respect from the LB A: the 

tape for reading and writing is of infinite length to the left and to the right. 
The transition rules, however, are the same as for the LB A: for each pair 
of tape symbol and state they determine the new tape symbol (to be 
written), the new state, and the new reading position {k = — 1,0, or +1). 
Apart from non-deterministic TMs there are also deterministic ones. 
It is also true that each non-deterministic TM is equivalent to a deter­
ministic one. 

In view of its very simple structure, it is surprising that TM's can do 
any operation a modern digital computer can do. The inverse is even not 
the case, except if one assumes that the computer firm can make un­
limited amounts of additional memory space available. A Turing machine 
can perform any explicit symbol operation, it seems. In fact, this is even 
possible on a TM with no more than two states, t0 and tx. Therefore, 
nowadays, the notion of ('effective' or 'mechanical') procedure is defined 
as 'capable of being carried out by a Turing machine'. Lack of space 
forbids further discussion of this important notion of procedure, see 
however Minsky (1967). 

A TM is said to accept an input string s if this string brings the auto­
maton from initial state t0 to a final state tf e F. The languages accepted 
by Turing machines are called recursively enumerable languages. This 
name indicates that the strings or 'sentences' of such a language can be 
'enumerated', i.e. there is a procedure by which the sentences of language 
T (and no other strings) are successively generated in such a way that 
each sentence of Twill be enumerated after a finite number of elementary 
operations. (The complete enumeration of an infinite language will 
nevertheless take an infinite number of operations!). Assume one has a 
TM, with language T(TM), and an arbitrary string s(e V*). If se T(TM) 
this fact can be determined by means of a finite number of operations, 
due to the recursive enumerability of T. One says that s can be recognized. 

All languages mentioned earlier are recursively enumerable as well, 
but there are recursively enumerable languages which are not context-
sensitive (or context-free, or regular). The complement CT(TM) of a 
T(TM), moreover, is not necessarily recursively enumerable. This means 
that if s e CT(TM), there is no guarantee that this fact can be recognized 
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by a Turing machine. Or stated otherwise: it is not true that for all 
recursively enumerable languages there exists a procedure to decide for 
an arbitrary string s whether that string belongs to T or not. Languages 
for which such a procedure does exist are called decidable or recursive. 
These are recursively enumerable languages that have a complement 
which is also recursively enumerable. 

2.2. Grammars and automata 

2.2.1. Grammars and Turing machines 
A recursively enumerable language can not only be described by a 

Turing machine, but also by means of a grammar. A grammar G can be 
characterized by the entities V, H, P, and S. V is a finite terminal voca­
bulary (with terminal elements a,b,...); H is a finite nonterminal voca­
bulary (with auxiliary symbols, or variables A, B,...) with a special 
start symbol S. And P, finally, is a finite set of production rules. V and H 
are disjoint: V r>H = <p, whereas their union, V \J H = T, is sometimes 
called the grammar's (unspecified) vocabulary. The rules of P are ordered 
pairs of strings (a, ff), mostly written as a -* /?, where the first string (a) 
consists of one or more elements of r , and the second (/?) of zero or more 
elements of T. To put it differently: a e T+ (the strings of positive length 
over T), and /JeF* (the strings over T, including the null string A). 
Thus P <= T+ x r*. 

The rule a -»• /? means that string a can be replaced by string ft in any 
context. Such a replacement is indicated by =>. So, for instance, given 
rule a -* /?, one can replace string ya.5 by yfiS; this is written as yaS => y/id. 
More generally one writes £ ^ «/> ($ is a derivation of E) if there is a 
sequence of zero or more replacements by which £ can be transformed 
in i/r (zero replacements if ^ = i/0- A sentence generated by grammar G 
is any string of terminal elements, which can be derived from S by 
production rules of G. Thus, string a is a sentence generated by G if there 
is a derivation S =*> a, with a e V*. The language Lifi), generated by G 
is the set of generated sentences, or L(G) = {a\S =&• a). Example: let 
G = (V,H,P,S), with V = {a(pes), fe(ake), c(akes)}, H = {N(oun), VP 
(verb phrase), M7(main verb), S(entence)}, and with production rules 
P = {S -» N VP, VP -> MV N, VP -* MV, N -+ a, N - c, MV -* b}, 
then one can make the following derivation from S:S=> N VP, 
NVP^>aVP,aVP^> aMVN,aMVN=> abN,abN => abc, or in short: 
S =*> abc. Since a, b, and c are terminal elements, the string a, b, c, or 
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apes bake cakes, is a sentence in L(G). The reader can verify that the other 
sentences in Ufi) are: apes bake, cakes bake, and cakes bake apes. 

It can be proven that the grammars defined in this way generate the 
class of recursively enumerable languages: For each recursively enumer­
able language T(TM), there is a grammar G such that L(G) = T(TM), 
while each language L(G); ecursively enumerable. Thus, each Turing 
machine has an equivalent grammar, and inversely. 

Chomsky has proposed to distinguish some progressively restrictive 
classes of grammars. We follow his classification. 

2.2.2. Context-sensitive grammars and linear-bounded automata 
The first restriction on the production rules is that 'shortening' rules 

are excluded. If the length of string a is written as |a| (thus, for instance, 
\abc\ = 3), this restriction means that for all production rules a. -* fi 
in P it should be the case that |a| ^ |/?|. Grammars which satisfy this 
restriction are called type-l or context-sensitive grammars. Any language 
which can be generated by a context-sensitive grammar is a 'context-
sensitive' or 'type-1' language. 

We saw earlier that linear-bounded automata accept just the context-
sensitive languages. It has been proven that context-sensitive grammars 
are equivalent to LBA's. This can be grasped intuitively if one realizes 
that, during the generation of a sentence by means of a context-sensitive 
grammar, one can never obtain a string which is longer than the final 
sentence (otherwise one would need shortening rules to arrive at that 
sentence). In the same way, the LBA can never produce a string on its 
tape which is longer than the input sentence. Thus essentially the same 
restriction holds for both systems. 

2.2.3. Context-free grammars and push-down automata 
The second restriction is somewhat stronger. Apart from |a| ^ |j?| 

moreover <xeH; consequently, a is a single auxiliary symbol. In this 
way we have a type-2, or context-free, grammar. Its rules appear as 
A -> f}, where A is a variable, and j8 a string in T+. Any language which 
can be generated by a context-free grammar is called a context-free 
language. A derivation by means of a context-free grammar can be 
easily made visible in the form of a derivation-tree, or phrase marker. 

Fig. 23 presents the production rules of a context-free grammar G, 
and a derivation of the sentence abed. Next to it the corresponding 
derivation tree is shown. One should notice that there is also another 
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production rules: derivation tree: 

S -» AB A -* a S 

S->CD B - S d A / \ 

S->bc C-*aS e/ S ^ \ j 

leftmost derivation: S =» AB — aB =» aSd =»abcd 

Fig. 23. Derivation of afccd with corresponding derivation tree. 

derivation for the same sentence which corresponds to the same tree-
diagram, namely S -* AB -* ASd -* Abed -*• abed. Each variable is 
rewritten in the same way in both derivations (i.e. by the same rule), 
the only difference is that the rewriting is somewhat earlier or later. The 
derivation given in fig. 23 is called a left-most derivation of abed, since 
at each step the left-most variable is rewritten. Each derivation tree 
corresponds to one and only one left-most derivation (if there is one in 
the grammar). Sentence abed, however, has yet another left-most deriva­
tion by the rules in fig. 23. This must correspond, therefore, to a different 
derivation tree. Derivation and tree are presented in fig. 24. 

leftmost derivation: derivation tree: 

S=»CD=»aSD=»abcD=»abcd S 

A \ 
b c 

Fig. 24. Alternative derivation of abed with derivation tree. 

If a context-free grammar allows for two or more left-most derivations 
(phrase structures) for a sentence, as is the case in the grammar G under 
concern, that grammar is called ambiguous. If a context-free grammar 
is non-ambiguous, it will generate a deterministic language. Such a non-
ambiguous context-free grammar is also called a 'LR(fc)-grammar'. 
A language is ambiguous if all of its grammars are ambiguous. 

It has been shown that context-free grammars are equivalent to non-
deterministic push-down automata. For every T(NPDA) there is a 
context-free grammar CFG for which UCFG) = T(NPDA), and con­
versely. A similar equivalence exists between PDA's and LR(fc)-grammars. 

There are many other formal systems for the description of context-
free languages. Examples are categorical grammars and dependency 
grammars, which will not be treated here. 
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2.2.4. Regular grammars and finite automata 
The third and last restriction concerns /} in the context-free rule 

A -» p. In this case j8 can have one of two forms only: j8 e V, i.e. /? is a 
single terminal element, or j8 = aB, with a s Vand B e H, in other words 
a terminal element followed by a variable. 

The grammars resulting from this restriction are called type-3 or 
regular grammars (also: finite state grammars). Its rules thus have the 
forms A -»a or A -* aB. It has been proven that regular grammars 
generate regular languages. Regular grammars are equivalent to finite 
automata: They define the same class of languages. Every finite language 
(i.e. with a finite number of sentences) can be generated by a regular 
grammar, and is, therefore, regular. 

2.3. Chomsky's hierarchy of languages 

Fig. 25 gives the relations of strict inclusion between the languages 
defined by Chomsky. 

languages 

IV 

Fig. 25. 

In this section a brief discussion will be given of the areas indicated 
by I, II, III, and IV, i.e. languages which are context-free but not regular 
(I), context-sensitive but not context-free (II), etc. 

Area I. What is characteristic of a language which is not regular, i.e. 
which cannot be generated by a regular grammar? In contrast with 
regular languages, these languages are self-embedding. This requires 
some explanation. A grammar is called self-embedding if there is a 
variable B in H for which B =£• aBy, where a # k, and y ¥= A. In words: 
The rules of the grammar are such that there is a variable B from which 
a string can be derived which contains B, but not at the left or right 
extreme. A language is called self-embedding if every grammar generating 
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the language is self-embedding. An example of a self-embedding language 
is {ww*jwe V+, V = {a, b}}, i.e. a language consisting of symmetrical 
sentences, such as aa, abba, baab, abbbba, abaaba, etc. This is called a 
'mirror-image' language. Another example is the language {a"b"\n ^ 1}, 
consisting of sentences beginning with n a's, followed by n b's. Chomsky's 
proof that natural languages are not regular, and therefore not acceptable 
by finite automata (or Markov sources for that matter), was based on 
the demonstration that natural languages are self-embedding. 

Area II. Context-sensitive, non-context-free languages are not so 
uniformly characterizable. It has been shown, however, that various 
languages belong to this category. An example is {anb"c"\n ^ 1}, strings 
of a's, followed by an equal number of b's, followed by equally many c's. 
Another example is the language consisting of string repetitions: {ww}, 
where w is any string of terminal elements, and sentences therefore 
consist of repetitions of such strings. These examples have been used to 
prove that natural languages are non-context-free (Levelt, 1974). 

Area HI. This category contains especially the non-decidable (or 
non-recursive) type-0 languages. These are recursively enumerable 
languages with complements that are not recursively enumerable. There 
are, however, decidable or recursive type-0 languages which still are not 
context-sensitive. Transformational grammars (see vol. II, chapter 7) 
are type-0 grammars: they can contain string-shortening production 
rules. It has been proven that Chomsky's transformational grammars 
generate at least the class of recursively enumerable languages, whereas 
natural languages are hopefully of a more restrictive sort. Other trans­
formational grammars are more restrictive. Joshi's adjunction grammars, 
for instance, generate decidable languages (see Levelt, 1974). 

Area IV. Not all sets of strings over a finite vocabulary (i.e. languages) 
can be described by means of a grammar. Saying that a natural language 
is type-0, or generable by a Chomskyan transformational grammar, is 
saying no more than that the language has a grammar. 

2.4. Probabilistic grammars 

The notion of grammar can be generalized by assigning probabilities 
to the production rules. In this way one obtains the so-called proba­
bilistic grammars. This principle has been worked out especially for 
regular and for context-free grammars. A probabilistic grammar defines 
a probability distribution over the sentences of a language. One can 
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derive conditions for which the language is 'normalized', i.e. has a total 
probability of 1. The probabilistic grammar is a powerful instrument for 
the analysis of the so-called corpus, i.e. a set of observed strings (sentences, 
behavior sequences, etc.). Inferring a grammar from a corpus and 
estimating the probabilistic parameters for a given grammar constitute 
the subject of the theory of grammatical inference. 

2.5. Grammaticality and controllability 

A string s is called 'grammatical', given type-i grammar G, if s e L(G); 
it is 'ungrammaticaF if s e CL{G). Also, and in view of the equivalence 
relations between grammars and automata discussed in the previous 
sections, one can say that s is grammatical if it is accepted by its equi­
valent automaton. Therefore, just those strings are grammatical by 
which the automaton can be controlled from the initial state. The 
linguistic notion of grammaticality, therefore, is closely related to the 
systems notion of controllability. In the same way, the system theoretical 
notion of observability is closely connected to grammatical inferability 
(cf. Levelt, 1975). 

2.6. Psychological applications and schematic overview 

The theory of automata and grammars has not only been applied in 
psycholinguistics (cf. vol. II, chapter 7), but also in the (ethological) 
analysis of behavioral sequences (see for instance Bodnar and Van 
Baren-Kets, 1974), in pattern recognition research (cf. two issues of 
Pattern Recognition, vol. 3(4) (1971), and vol. 4(1) (1972)), in the analysis 
of learning theories (Suppes, 1969), in the psychology of thinking 
(Suppes, 1973), and in memory research (Anderson and Bower, 1973). 

Table 4, finally, summarizes the most important grammars, automata, 
languages and their complements. For the column 'language' there is 
strict inclusion from bottom to top: Every finite language is regular, 
every regular language is deterministic, etc., whereas the converse does 
not hold. For the column 'grammar' the same strict inclusions hold, 
with one exception: There exist 'ambiguous' regular grammars which 
are, therefore, not LR(k); these grammars, however, do not generate 
ambiguous languages. 
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Lyst of symbols 

ak - Uf Fourier coefficient 
a„ - coefficients of differential equation 
Ak - amplitude 
4(f) - system matrix 
bk - k' Fourier coefficient 
B(t) - input matrix 
CT - complement of language T 
c(t) - output matrix 
C(sI~Ay' B + D - transfer matrix from U.(s) to Y(s) 
CXS(T) - covariance function 
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estimator of covariance function C^x) 
direct transfer matrix 
base of natural logarithm 
transient matrix 
mathematical expectation 
probability density function 
joint probability density function 
Fourier transform 
inverse Fourier transform 
non-linear system 
transfer function of the linear model of the non-linear system 
9 {"«)} 
grammar 
impulse response of linear time-dependent system 
impulse response of linear constant system 
transfer function 
finite non-terminal vocabulary 
matrix 
index for the imaginary part 
criterion function 
gain 
gain according to Booton 
correlation function 
one-sided Laplace transform 
inverse one-sided Laplace transform 
linear-bounded automaton 
remnant 
non-deterministic push-down automaton 
probability 
push-down automaton 
finite set of production rules 
average product function 
start symbol of grammar 
Laplace operator of complex frequency 
transfer matrix from U(s) to x(s) 
power density spectrum 
time 
ramp function 
time period 
language accepted by automaton A 
Turing machine 
control or input signal 
orthogonal signal 
input vector 
unit step function 
noise 
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