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1. Systems

L1 Introduction

The study of today’s compiex problems — whether they originate from
physics or engineering, from physiology or bioclogy or medicine, from
economics or industrial management, from psychology or sociology —
leads to a growing tendency of specialization toward different disciplines.
As a result we are able to build up an enormous amount of basic knowl-
edge in particular areas or disciptines. However, this specialization makes
the communication between the disciplines more and more difficult, or
often even impossible. Yet the need to solve real world problems, which
generally may be characterized by their strongly multi-disciplinary
character, demands a high degree of communication between these
disciplines. We are anxious, therefore, to develop one common language.
For this, the systems approach may serve, since in every scientific research
project we can recognize three essential, and very common phases:

(1) The study and formulation of real world problems, resulting in
one or another qualitative and/or quantitative model;

(2) The study of the model behavior; that is, the performance of a
sensitivity analysis of those factors which may influence the model
results, so that finally, on the basis of the modef, predictions can be made
In newly designed situations;

(3) The interpretation and translation of the model results to the
original real world problem.

For such communication, system theory can be very helpful because
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it can be considered as a universal tool in formulating and solving a
great variety of problems. Before we are able to explain the real contribu-
tion of system theory to experimental psychology we first must come to
a generally acceptable definition of what a system is. This is not easy,
because most definitions in literature have been restricted to a particular
field of interest. In general we may say that a system is a part of the real
world, separated from its environment, and that it may or may not
have a relation (o this environment. This means that the environment
may act on the system, and vice versa. The chosen boundaries of the
system are arbitrary, and are dependent on the investigator’s interests
and goals. System theory can contribute o the formulation of models
in order to describe the system behavior by supporting:
— Methods to formulate system models in completely different fields,
largely by recognizing analogies;
~ Methods for the analysis and identification of systems, and for the
quantification of the interactions between sysiem and environment;
- Methods to classify different systems.
We re-emphasize that system theory can contribute significantly to
model formulation. In particular by the analysis of input-output relations
we will be able to understand the structure, the parameters, and thus the
dynamics of the system under study.

1.2, General system definition

A more precise definition of a system is the following: A system is a
bounded part of the environment in which a certain structure is specified,
and which may have an interaction with its environment. We now define
the interaction between system and environment by inputs and outputs.
That means that the environment acts on the system by the inputs,
whereas the system acts on the environment by outputs. In the case
where the inputs and outputs are defined as a function of time, we call
them signals. Input signals can be divided into non-controllable inputs or
disturbances or noises, and conirollable inputs or control signals. The most
commonly used notations for the control signals, disturbances and
outputs are u(t), »{¢), and w(r), respectively (fig. 1).

We can represent a system by means of a block diagram. Here the
block represents the system itself, the control inputs are entering the
block from the left, the disturbances from above, and the outputs are
leaving the block to the right. In addition the initial conditions, that is the
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Fig 1. An example of a system with control input 1{t). disturbance u{f), output yiz}, and
initial condition y{t,).

condition of the system before the inputs acted upon it, enters the block
from the right.

In the context of this chapter we will only deal with causal systems,
that is, we will deal with systems where the outputs are the result of the
inputs. We will call those outputs responses.

1.3. Signal description

The description of systems can easily be reduced to the description of
signals and their mutual relations, without any loss of generality, since
the system simply transfers the input into an output. The system only
performs an operation on a signal. Therefore we will first describe the
different types of signals.

1.3.1, Signal characterization

The way we characterize signals is dependent on the properties of
interest. A possible breakdown is the following:

— Deterministic versus stochastic: A deterministic signal x{¢) is a func-
tion for which the amplitude is uniquely defined for each value of 1;
a stochastic signal X(r) is a function of time t which cannot be defined
in such a way; it is defined in terms of statistical properties such as
probability density functions or the moments derived herefrom (the
notation X(1) refers to a stochastic signal, whereas x(r) stands for a
deterministic one, fig. 2).

~ Continuous versus sampled: A continuous signal is defined for all
values of ¢, whereas a sampled one is just defined at particular instants
of time (fig. 3).
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Fig 2. An example of a deterministic and a stochastic signal.
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Fig, 3. Characterization of signals. In this example the mean values of the signals
are assumed to be zero,
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— Analogue versus discrete or binary: A signal is called analogue when
the signal amplitude can have an infinite number of values within a
certain limited interval, whereas a discrete signal will have a finite
number of values. A particular case of a discrete signal is the one that
has just two values; this is called a binary signal.

— Periodic versus non-periodic: A signal x(r) is said to be periodic
with a finite time period T when x(t) = x(t + T) for every value of ¢.
A non-periodic signal will not possess this property; we can consider it
as a periodic signal with a periodic time T equal to infinity (fig. 4).

x{t)
1 non-periodic signal
A 17 - == r--- periodic signaf
T L e L
L 1 i b 1
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Fig. 4 Example of a periodic signal and a non-periodic signal,

1.3.2. Decomposition of signals: The Fourier series

In order to describe the process of the decomposition of signals, we can
use the afore-mentioned distinction between deterministic and sto-
chastic signals. Since deterministic signais, such as the sinusoidal
function, the step function, the ramp function and the impulse function
(fig. 3), easily can be described as functions of time, these functions can
be approximated by the summation of a finite or infinite number of
subsignals. The special significance of such subsignals is that linear
systems all have the property that the response on the summaticn of a
set of subsignals equals the summation of the individual responses to
each of the subsignals. This extremely important property implies that

x(t) x(t) ut) x{t)

1 o 1

t, ——t '__ ty — =t
i sinusoidal step

Fig. 5. Some examples of often used deterministic signals.

ramp | impulse
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if the response of a system on a set of subsignals is known, the response
on any arbitrarily chosen input can be derived directly.

We also can consider the decomposition process as equivalent to
building a model of the signal, where by choosing the structure of the
model, that is by choosing the subsignals, a set of unknown parameters
must then be determined ({fig. 6b). The procedure of the decomposition
process is as follows: Assume that we will approximate the signal x(¢)
by the summation %(t} of a number of a priori chosen subsignals wu(t),
each provided with an unknown coefficient ¢,. Then it follows that:

N
=Y (). {n
k=0

Furthermore, let us assume that we would like to fit the approximation
over the interval [, t,] according to the criterion:

= f|x(r) — F)[” wit) dt. @)

Now, the optimal approximation X(t} of x(¢) can be found by minimizing
the criterion function, in which the function w{t) is called the weighting
Sunction, the function x({t) — X(¢) the error function, and the interval
[¢1,¢,] the approximation interval. The exponent p determines to what
extent the error contributes to the value of the criterion function. Most
often gquadratic criteria are used, that is p = 2, since in this form the
mathematical derivation is very simple. Then the optimal solution is

@ ®
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Fig. 6. Decomposition of a signal into subsignals.
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obtained by setting to zero the partial derivatives of the cost function J
with respect to the unknown parameters ¢, hence,

I

flo-

=

c,u,(t]]uk(t)w(t) dr =0;

[|]

k=01,...,N. (3)

The equation obtained in this way is called the normal equation; from
this the coefficients ¢, can be derived. Much dull and needless arithmetic
can be avoided in determining the coefficients ¢, by an intelligent choice
of the set of subsignals u,{t), as well as by choosing a reasonable weighting
function w(f). If we choose those according to:

J‘u,‘(t]u,(r)w{t) dt =0 fork #1I; 4)
=4, fork=1{

3]

where d, is a constant, it follows directly from the normal Eqs (3) that:
ta
1
= J Xt eywio) dir. (5)
k
1]

Functions u,(t) as given by the Eqs {4), where the weighting [unction
w(t) = 1, are called orthogonal over the interval [r, ¢, ]. A great variety
of functions will satisfy the Eqs (4), but it is indisputable that the most
commonly used one is the sinusoidal function, finally resulting in a
Fourier series. If we approximate a given signal x(f) over the finite
approximation interval [#o,t, + T] by X(¢), then it follows that:

() = f [a, cos kawt + by sin kot | (6)
k=0

with @ = 2n/T. The approximation (6) is called the Fourier series.
Following the procedure just mentioned with p = 2, wit) =1, and
cult) = @, cos kot + by sin kot, we obtain:
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tp+ T
1
dp = ? x(t‘) dt)
io
lo‘*ﬂT
a,‘—% x(Ncoskwtdt fork=1.2,...,
fo
1) +|“T (7}
b,‘=% x(tysinkotdr fork=1,2,...

W
to

By eliminating the coeflicients 4, and b,, that is by substituting the

Egs (7) into Eq. (6), we obtain the Fourier series. Without prool, the

following important properties of the Fourier series are to be mentioned:

- The coefficients a, and b, are dependent solely upon k.

- In choosing the approximation interval [t,, 1, + T, the initial time
{y is arbitrary.

- Extension of the approximation x,{t), based on the summation of
N subsignals, to %5, (1) will result in a lower value of the cost criterion
J. and thus in a better approximation; hence:

lim Jy = 0, and lim $.(t} = x(1).

N=wm N—x

In the literature, the Fourier series as given by Eq. {6) is often given in a
different way. Based on Euler’s formula,

. . 1 .
cos wt = He™* + e/ sinwt = Z—_(e*"‘" — g7, (8)
/

a complex version of the Fourier series can be formulated:

x

xi)= Y re* withw = 2u/T, )

=—x

o+ T

= — I x()e e, k=0,4+1,+2,..., (10)
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where the coefficients r, are defined as follows:

Fo = Qg
e =3a,—jb) k=12..., (th

l'_k=‘%(ﬂ*+jbk), k=l,2,.‘.

It follows that:

M) =Ag + 3 Aycoshat — o), (12)
k=1

Ay =a9, ®o=0,
A=/ + b, @ = arctg bja,. )

We can consider the components of the Fourier series as sinusoidal
subsignals with a radial frequency kw, and amplitude A4,, and a phase
shift ¢,. Usually the quantities 4, and ¢, are plotted as functions of the
radial frequency kw; the diagram obtained in this way is called the
spectrum of a signal. For periodic signals with a finite time period T, the
spectrum only exists for radial frequencies ko = k2n/T; such a spectrum
is called a line spectrum. The representation of the quantity r,, in the
form of |r,| and arg {r,} results in a line amplitude spectrum and a line
phase shift spectrum.

Finally, one other important property of the Fourier series should be
mentioned, namely the Theorem of Parceval. This theorem can be seen
as a direct conclusion of the combination of Eqs (6) through (13):

T

l o
- xHnydt = al + ¥ Hag + bl =
T E=1
to
= Y |nl*=43+ ) 4L (14)
k=~ k=1

The theorem shows that the mean squared value of x(f) at the interval
observed is equal to the summation of the squared Fourier coefficients,
hence the theorem symbolizes a power balance.
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1.3.3. The Fourier and Laplace transform

Based on the complex series, Egs (9)and (10}, valid for a finite approxi-
mation interval [t,, t, + T, we now can extend the intervai to infinity
by choosing t, = —37. and consequently by taking T — co. It then
follows that:

x(6) = J X(v) 2™ dp, (15)

X() = J x(t)ye 2w gy, (16)

-

where the quantity X(v)is called the Fourier transform of x{t). As explained
for the complex Fourier series, we can represent the Fourier transform
by the quantities | X(v)| and arg { X(v)} as a function of the frequency v.
The figure obtained in this way is called a continuous amplitude density
spectrum since:
- With the transition of T — o the spectral lines of magnitude c, spaced
at distances of 2n/T will become infinitesimally close to each other.
— The dimension of X{(v} will no longer be that of an amplitude, but that
of an amplitude density, since X(¥) = ¢,T = ¢/v.
Analogous to the Fourier series, the Fourier transform can be seen as the
decomposition of a signal into subsignals; however, we now deal with
the decomposition of non-periodic signals into sinusoidal subsignals.
Many methods in signal theory and system theory make use of these
transforms. By means of a one-to-one relation we transform the original
Junction into the transform image; we say that we transform from one
domain to another. In this case we call the domain of x{f) the time domain,
and that of the transform X(v) the frequency domain. Due to the one-to-
one relation between original function and transform image we also can
derive from the transform X(v) the original function x(r). This operation
is called the inverse transform. Thus we obtain for the Fourier transform:

+ 30

Fix()} = X(v) = j x(tye 2 gy, (16}

— o

and for the inverse Fourier transform:
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+ o

FUX() = xtt) = I X(v) ™ dv (15)

—an

The great importance of these transformation techniques can be ilius-

trated best by noting the following points:

— The transform or decomposition of the original function into sub-
signals often provides better insight into the original function.

— Particularly complicated and difficult calculations such as the solution
of integral equations can be performed much more easily in the newly
obtained domain. In spite of the fact that we now have to add a
transformation and an inverse transformation to our calculations,
we often gain significantly in time in following this procedure (fig. 7).

Complicated operations on

x(t); y (4 I S — xit) and yit}, with z{t} as -y z(t)
final result l—“
_ Fourier transform Time domain o Inverse Fourier _
of x{t) and yit) ?re:u;r—lcy dorn;nw 7| wanstorm of Z{v)

[

Y Simple operations on z
Xw): Vivl X{#) and Y (v}, with )
Ziv} as final result

Fig 7. Application of the Fourier transform in order to simplify particular mathematical
operations.

1t is important to specify under what conditions we are allowed to use
the Fourier transform, or, to say it in another way: For what kind of
original functions does the Fourier transform exist, so that the Eqs (15)
and (16) will converge at all times? It can be proven that a sufficient,
but not a necessary, condition for the existence of a Fourier transform

of the original function x{t) is, that this function is absolutely integrable,
thus,

+ o

j |x(¢)) dz < 0. (a7

a0
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The class of functions fulfilling this property is thus restricted to the
normal functions; this implies that a large number of very important
functions such as x{t) = ¢“ with ¢ > 0 will not have a Fourier transform.
This probiem can be solved by calculating the Fourier transform of the
function e~ *x(¢), with the constant 1 being a real constant. In the case
that the function x(f) does not converge for t — oo, but very strongly
converges for § - — o0, we now can make an intelligent choice for the
factor e %, so that the integral is forced to converge for t — 20 whereas
it still converges for ¢ - — 20. By introducing the complex quantity s,
called the complex frequency, s = A + 2av = 1 + jow, we obtain from
Eqs (16) and (15):

ao

La{x()} = Xuls) = j xt)e~Me I gt =

-l

o

= J x(ne % dt, (18)

— o

o

L' {Xq(s)} = x(t) = & J Xgls)e'*™ dv =

L

1

= E JJ Xals)e* ds. (19)

A=jao

This newly defined transform is called the two-sided Laplace transform.
The factor e~ * forcing the integral to converge is only effective at one
of the intervals ¢ > 0 or t < 0, whereas at the other interval the effect is
just the opposite; it will make the integral diverge. Thus, based upon the
original functions which converge after multiplication by the factor
¢~ ¥ with 1 > 0, the two-sided Laplace transform will exist. Unfortunate-
ly, only very few time-functions will meet this property. However, a very
important class of functions, namely the functions which are equal to
zero for t < 0 will do so. For those functions the factor e ~* will force the
integral at the interval ¢ > O to convergence, whereas the factor e
does not affect the integral in the interval ¢ < 0. In this way we obtain
the one-sided Laplace transform:



Systems 199

Lix(t}} = X(s) = J x(f)e > dt, (20)
L
A+ joo
L™ X(s)} = x(1) =2_l£j f X($)e" ds. 1)

A sufficient condition for the existence of the one-sided Laplace trans-
form is that the original functions are normal and exponential of the order
g for t > t,. That means jx(t) > ¢,| < M e*, where the quantities M
and ¢,, are arbitrary but finite constants. Analogous to our discussion
of the Fourier series and Fourier transform, we can consider the Laplace
transform as the decomposition of the original function into subsignals,
where the subsignals in this case are sinusoidal signals with increasing
amplitudes. This behavior is caused by the factor e*.

Until now we have only discussed the description of continuous
signals; the application of digital computers, however, forces us to
consider also the sampled signals. The treatment of the sampled signals
does not differ from those of the continuous ones. The direct extension
of continous signal theory to the discrete case is embodied in theory of
automata. Because of the fact that sampled signals have only been defined
at particular instants of time, the Laplace transform does not exist in the
way we discussed. A modified version of the Laplace transform called the
Z-transform was developed specifically to handle the sampled signals.

Within the scope of this handbook we believe it is better not to devote
too much space to all properties and calculation techniques for determin-
ing Fourier and Laplace transforms. We therefore only summarize the
most important properties in table 1. Because of its great importance in
system and signal theory two properties will be elucidated. We will start
with the convolution integral:

L{Ix;(t)xz(r -7 dt} = X ()X os),

0

l ot jwo
L{x(0x,0)} = g f X{0)X (s — o) do. (22)

c—joo
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Eq. (22) illustrates the importance of the transform techniques: A
convolution integral in one domain is, after transformation, a simple
multiplication in the other. The second important example is the
transform of the derivative of a function:

L{x"(1)} = s"X(s) — "7 'x(0) — ... — x" 1O} 23)

This equation is the basis for the solution of differential equations, and
thus for the description of systems, since a differential equation in time
domain becomes an algebraic equation in the frequency domain. The
solution of the differential equation with the help of the Laplace trans-
form will lead to the complete solution, including both the homogeneous
and the forced solution {integration interval [0, co]). The solution
obtained by the Fourier transform only will provide us the forced
solution (integration interval [ — o0, co]). In general we can conclude
that the Laplace transform is quite applicable to solving differential
equations, as well as to solving ordinary linear differential equations
either with constant or time-varying coeflicients, and to linear partial
differential equations. The Fourier transform is very suitable for the
decomposition of functions into subfunctions. By using the properties
given in table i and/or any book on transform techniques which gives
pairs of time functions and their transforms, we are able to transform
almost any ordinary function. Table 2, finally, summarizes those original
time functions and their transforms most commonly used in system
and signal theory.

1.3.4. Description of stochastic signals

In section 1.3.1 we indicated that stochastic signals are not explicitly
defined as functions of time; the description of such signals can only be
achieved in terms of probabilities. We will use for this the probability
density function, well-known in probability theory. Given a random
variable ®({) based on an ensembie ¢, we define the probability density
function as:

Jdx) = Jill‘lo Pr{x < X{) £ x + Ax}/Ax. (24)

The quantity fi(x)Ax indicates the probability that the random variable
X{{) has a value between x and x + Ax. If the random variable X({}
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Table 2
Original functions with corresponding iransforms.

. . One-sided
Original Fourier Laplace
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also is a function of time, hence X(¢; {) is a function of time t and ensemble
£, a set of ime functions arises which is called a stochastic process. The
realization X(¢; (o) of X(t; {) belonging to the element {; of the ensembie
{ is thus a time function; the stochastic process at a particular moment
1s a random variable (14, {). Probability theory is applied to random
variables, and thus can be applied also to a stochastic process at time ¢,.
In this case we obtain a probability density function as a function of
time ¢, hence:

fHx, 0 = Jj?o Pri{x < X(t;{) £ x + Ax}/Ax. (25

The stochastic process is said to be stationary if the probability density
function obtained for the ensemble does not depend on time, so that

S ) = flx, t + Ar) = f{x) for all At. (26)

From these probability density functions we can derive a number of
important statistical properties called moments, such as the first order
monient or mean value or mathematical expectation ng:

me= E{(x6;0) = | i dx @7)

g8

and the second order moment, such as the mean square error or variance o3

o = E{[%(t:{) - 0]} = J [x — nel Sl dx. {28)

The Eqs (27) and {28) give only static information of the siochastic
process; dynamic information such as frequency distribution and time
dependence can be derived from the joint probability density function
Jedx;, x2; T) of the stationary stochastic process at two different instants
of time ¢, and t;, + 1, thus from X{ty; {) and X(t, + 7;{):

Sfedx1. %5, 1) = .»J:imo Pr{x, < X(t;{) £ x, + Ax,,
14
Ax;-'O

X <X+ 6:0) € x; + Axy }/Ax,Ax,. (29)
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In the same way as in probability theory the correlation coefficient
between two random variables has been defined, we can define such a
coefficient between two stationary stochastic processes at a time dif-
ference ¢. Such a statistical quantity will provide us with information
about the interdependence of the two processes as a function of time
difference r. We can define three different second-order moments, being:
the average product function R J{t):

Redt) = E{X(t; Ox(t + ©;{)} = I J‘ x1%2 feslxy, X2, T) dx, dx;,
T® - (30)

the covariance function Cedt):

Cet) = E{[X(t; ) — n][X( + 7;0) — ]} =

= J‘ J. [x: — n:)[x2 — #2)feslxy, x25 1) dx, dx,, (31)

and finally the correlation function K o{t):
K1) = Cyylt)/oz. (32

The characterization of the stochastic process by Eqs (27) through (32) is
based on an averaging across the ensemble. In system and signal theory,
however, we deal with time functions or signals. We therefore have to
build a bridge between the statistical quantities obtained for the ensemble
and a description in the time domain. This is achieved by estimation
theory, by defining the following estimators of the stationary stochastic
process, These estimators are time-averages of realizations of the sto-
chastic process.

T

0 = Jim . [ s o4 3
-T
T

640 = im - | (56D — i dr, (4

2T

-3
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1

T X O + =; 0 ds, (35)

Redeid) = fm

1
o I R b

Calril) = Jim o J [¥4:0) — AO1[RE + 130 — D] &, (36)

Kelt30) = Codr: /630, (37)

=y

The estimators Eq. (33) through Eq. (37) can be associated with the

statistical properties Eq. (27) through Eq. (32), so that we finally obtain

a relation between ensemble average and time average (ergodicity).
When considering a stationary stochastic process with a mean value

Bs
E{4d0} = nz, (38)

and with a variance of the estimator s, Eq. (33), according to Eq. (39):
E{[ii0) — n:)*} = 0, (39)

we call that stochastic process ergodic with reference to the mean value.
If the estimator Eq. (33) satisfies the Eq. (38} the estimator is said to be
unbiased; if it also satisfies Eq. (39) the estimator is called consistent.
The same is true for the estimators Eq. (34) through Eq. (37). It can be
proven that all of the estimators considered here are consistent. In the
case that all estimators which can be defined for the process under
consideration satisfy similar equations as given by Eqgs (38) and (39), we
speak of a strictly ergodic stochastic process. It is important to realize
that an ergodic process implies that the process is stationary; the inverse
is certainly not true. The ergodic property of a stochastic process is the
basis for the description of time functions, since this property associates
the description of a signal in the time domain with the calculus of
statistical quantities in the ensemble domain.

The decomposition of stochastic signals in subsignals is not meaning-
ful in the present context. On the one hand a transformation of a sto-
chastic process X(t; {} is not possible because there does not exist a direct
relation between the process and the time ¢. On the other hand, the
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transformation of just one realization X(t;{;) of the stochastic process
%{t; {) at the interval {0, T] provides only information about that single
realization, and not about the stochastic process as a whole. A quantity
which certainly provides information about the complete stochastic
process is the so-called power density spectrum Sz(v) which is defined as
the Fourier transform of the average product function R A1):

S:v) = F{Rzd1)} = J Rod{r)e 2™ (g, (40)
Rod7) = F_l{Sﬁ(v)} = j Szelv) el gy {41}

= a0

The definition of the quantity 5;,(v) can be explained as follows. Accord-
ing to Eq. (42) the average product function R f7) of the stochastic
process X(t; {) can be rewritten as:

T
Re{1) = E{Iig,-,(r}} = E{ 11_1_1.1;10 ZLT Jf(t; Ot + 1; ) dz) 42)
-r

From the definition of the Fourier transform and Eq. (40) we can derive
that:

Sev) = F{Rssl0)} = E{ Jim |X(v;c)|2}, 43)

in which the quantity X{v;{), the Fourier transform of a particular
realization of the stochastic process X(t; (), means that:

an

Xv; 0 = I X(t; e 2 dy =

-

T

T
= lim jla‘o(t;{)e'jz"“ dt. (44)
S
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In other words, the quantity X(v;() is the amplitude density spectrum
of the realization X{¢; {). whereas ]X’ (v C)P represents the power density
as a function of the frequency v. The quantify Sz(v) then is an ensemble
average of the time average power density limg_ (1/27)|X(v; |2
Thus the power density spectrum S.(v) is a statistical property in the
frequency domain of the stochastic process X{¢; }; it indicates in what
way the power of the process is distributed over the frequency span.

Of course we should also define an estimator for the power density
function. It seems logical to base such an estimator on the average
product function, hence:

T
Sealv; ) = Hm J Reedr; e dr =
-7

T

2

iim —l,fl jf{t;{)e'jz"“ dt. . {45)
-T

]

T 2

It can be shown that this estimator is unbiased, so that E{S;{v; ()}
= S:(v), but, the estimator is not consistent. Assuming that the stochastic
process is normally distributed, the variance of the estimator is:

E{[Sedv; D) — E{Selvi O} 1%} = S&v) (46}

and thus differs from zero. For practical application therefore, we always

use the unbiased and consistent estimator $.4v; {} according to:
v+ Ay

v=— Ay Sfi(a; g) d“
2Av ’

Seelv; ) = with Av # 0 47

The estimator Eq. (47) is unbiased and consistent due to the averaging
of an infnite number of sinusoidal subsignals over a finite frequency
interval 2Av.

An example of the description of some signals either in the time domain
or the frequency domain is given in fig. 8.
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Fig. 8. Examples of deterministic, periodic and non-periodic, and stochastic signals in the
time and frequency domains.

14. System description

Having discussed the basis of signal theory, we now can proceed with
system theory. Therefore we will classify the different systems according
to their specific properties.

1.4.1. Classification of systems

Table 3 represents a classification of systems: In this table the proper-
ties listed in a row are mutually exclusive, those in a column, however,
are not mutually exclusive,

— Static versus dynamic, A static system is a system of which the output
W) at instant of time ¢, is only dependent on the value of the input u(t)
at that particular instant, and the instant of time ¢, itself. For a dynamic
system the output () at the moment ¢, is a function of the history of
ult) for ¢ < t,, and also of each t smaller than ¢,. Thus:
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static: e = flut,) e} (48)
dynamic: pt,} = f{u(t:14,8.), t; M)} (49)

The notation u(t: ¢, t,) means that the signal u(f) is considered over the
interval ¢, through ¢,. The quantity yp(t,) is called the initial condition.

— Concentrated versus distributed: A concentrated system is character-
ized by variables such as inputs and outputs which are dependent on
time as well as spatial coordinates. The input-output relations are
described by partial differential or difference equations. A concentrated
system has only inputs and outpuis which are functions of time; it is
described by an ordinary differential of difference equation.

— Constant versus time-varying: A system is described by input-
output relations, of which the structure as well as the system parameters
determine the system behavior. In the case that the system parameters
are time-dependent it is said that the system is constant; if the para-
meters are time-dependent the system is said to be time-varying. The
system response yt,) of a time varying system thus becomes:

W) = flult: to, 1)1 ito)); (50}
while that of a constant system is:
W) = fladt 14, 1); ¥tg)) (51)

Here it should be noted that an equal distinction can be made with
regard to the system structure.

Table 3

Classification of systems,

Classification Mutually exclusive properiies
static dynamic
concentrated distributed
constant time-varying

Non-mutually exclusive properties deterministic stochastic
linear non-linear
continuous discrete

scalar multi-variable
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— Deterministic versus stochastic: A deterministic system is a system
for which structure and parameters are explicitly defined as a function
of time, whereas for a stochastic system the structure and parameters can
be explained only in terms of probabilities.

- Linear versus non-linear: Let us assume that the response of a
system with initial condition y(t¢) and input ut:¢,,t,) is equal to
vit,), and that the response to initial condition y(f{t,) and input
un(t o, ,) is equal to y,y(z.). Then the system is said to be linear if:

- The system is linear with respect to the input:

Slemdt:to, t) 83 ¥te)] — Flenmudt: to, £ t5 Wto}] =

= fleae:to, 8} — eqtent s to, 8), £ 0, 2)
that is, the difference between the system response to the inputs
cuift to,8) and ¢yt :to, 1.} with equal initial conditions wi,)
should be the same as the system respomse to input cu(t:t,,t.)
— cptft 1 £, t,) with initial condition y(te) = 0.

—~ The system is linear with respect to the initial condition:

Flult ctg, 80, t; cyyilte)] — FLE: to. ), 15 crynlty)] =

= [0, £; cwyilte) — cuyilto)}: 9
or, the difference between the system response to equal inputs u(t: ¢, £,),
but different initial conditions ¢;y{to) and cyyg(to) should be the same
as the response on an input w(t:fy,t.) =0 and an initial condition
enlto) — cpynlto)-

A linear system must satisfy both properties for every value of pt,),
wt: Lo, t,), to, t, and c. If a system does not satisfy either or both of these
properties it is called a non-linear system.
~ Continuous versus discrete: Continuous systems are systems whose

inputs and outputs are continuous, while discrete systems have sampled

inputs and outputs. Continuous systems are described by differential
equations, discrete systems by difference equations,

= Scalar versus multi-variable. A scalar system is a single-input, single-
output system. A system with more than one input and/or output is
said to be multivariable (fig. 9). For convenience vectorial variables
are often introduced. The description of a multi-variable system with

r inputs and m outputs,
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u{t) y(t}
ot (500
uylt - Jyolt
u{l)l lar y(t) 2- - :E-rli;ble _2_.." y_(t) multi- y(t)
' xtem - : system . —m{ variable ——
u ) Yoo t) system
L | m

Fig 9. Block diagram of a scalar and multi-variable system.
yl{te) = fl[ul(r : 109 Ite)s e ur(t . t[h te): £ }’1“0} e ym(l!))]s
ym{;"e] = fm[ul(t . "-01 tejv Ty ur(t . 509 te)’ £ yl(t{)) e Ym(f'o)], (54)

can now be casily formulated as follows:

) = flude 20, 2,), 05 Yeo)) (55)

This formulation is the basis for the state vector description.

A particular class of dynamic systems is that of constant discrete
systems. These systems are commonly called automata, and they are
related to the grammars discussed in the second part of this chapter.

The classification into finear and nen-linear systems is by far the most
important one, The description of linear systems can be achieved in a
closed analytical way. In general this is not possible for non-linear
systems and it will differ from system to system. We will therefore discuss
linear systems in more detail.

14.2. Linear systems

The two linearity properties, Eqs (52) and {53), together form the
superposition principle, a most important principle. The superposition
prisiciple teaches us that the response of a linear combination of sub-
signals is equal to the corresponding combination of the responses to
these subsignals {fig. 7). This property is true for the inputs as well as for
the initial conditions. As a consequence the principle shows us that a
linear system can be characterized by just one function: the impulse
response hlt; ty) to the impulse function 8t — £,).

14.2.1. Description by means of impulse response. The system response
can principally be determined by forcing a system with an impulse. In
practice this is actually not possible, since a pure impulse does actually



Systems 213

not exist and can only be approximated. However, in theory this is a
very satisfactory way of describing a linear system in the time domain
(fig. 10), and therefore it is often used. From the definition of causal
systems it follows directly that the impulse response h(t;t,) = 0 for
t < . If in addition the system is constant we obtain h(t; tg) = bt — 1,).

slt:t) hit:t,)
T impulse t impulse
function response
1 N
D to —=t 0 to —_—t

Fig 10. The impulse response.

An important property, derived from the definition of the impulse
function, is

f) = j w(r)d(z — 1) dz, (56)

which says that any input to a system can be considered to be composed
of the summation of impulse functions each having an area u(t) dz. This
means that according to the superposition principle the output of a
linear system can be written as:

W) = j w(oh(e — 7)de. 57
Thus for causal systems we obtain:
o) = J WOt — 7)de = J ut — OH(r) de = whi). (58)

Equations such as Eq. (58) are called convolution integrals. According to
Eq. (22) we can transform this equation into a product of the Laplace
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transforms U(s) and H(s). Based on the Eqgs (57) and (58}, for any lincar
system the system response to an arbitrary but deterministic input can
be achieved, since by measuring the output y(r) of an input (f) we are
able to calculate with Eqs (57) and (58) the impulse response. In the case
that the inputs are stochastic we cannot simply apply the Eqgs (57) and
(58} since the input #¢; {) is not explicitly known as a function of time.
However, of course, Eq. (57} is also valid for a constant system with a
stochastic input #(¢; £); hence:

e ) = '[ #t — 8; h(6) db. (59

By multiplying both the members of Eq. {59} with the term %t — 1;{),
and by taking the mathematical expectation, using the definition of the
average product function, we obtain:

Rustt) = J Ralt — OW(6)df = Replx)eh(z), (60)

Here, we call the function Rg(7) the average cross product function:

Rt} = E{@{t; Ot + ©;{)} = J J uyfes(ts, y; 1) dudy. (61)

-—w —w@

The function Rt} represents the relation between the stochastic
processes T(t; ) and F(t + 1;{) as a function of the time difference .
In the same way it can be shown that Ry{tr) = Ry(7)sh(z), so that:

Rys(t) = Re(t)eh( —2)wh(z). (62)

R--{1) t t
biel iy u{t) y(t)

—wdty(-T} f——— ——w hit) —

Fig 11. System description by means of the impulse response for deterministic and
stochastic imputs.
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14.2.2. Description by means of differential equations. The determina-
tion of the system response y(f) can also be achieved by solving the
differential equation which gives the relation between input and output
of the system. In general a linear concentrated system is given by the
following ordinary differential equation:

d"we) d"~ 'y dyn) B
ar +ﬂn_1—a};:l— ...+alT+aﬂy(t]*—
(63)
L dm) dit)
= f(t) = bmd—tm’ +...+b; E-_ + boir).

For time-varying systems the coefficients afi =0,1,...,n) and
b{j =0,1,...,m) will be functions of time; for constant systems those
coefficients will be time-independent. In general physical systems will
satisfy the relation m < n. The integer n is said to be the order of the
system. The solution of the differential equation will provide us the
total response. If the function f(t) = 0, we obtain the natural response.
If the initial conditions are equal to zero we obtain the forced solution.
The most general method and, incidentally, the easiest, makes use of the
Laplace transform. The calculation ¢an be summarized as follows:

— Assume that f(1) = 0, and determine the Laplace transform of Eq. (63).
As a result we obtain the Laplace transform Y(s), so that after calculat-
ing the inverse Laplace transform we obtain the natural response.

~ In the case that f(¢) # 0, and with zero initial conditions, we obtain
after transformation of Eq. (63)

[a,s" + a, ;"' + ...+ ais + ao]Y(s) =

=[bs® + b,_ 15"+ .. 4 bys + b ]U(s) (64)
From Eq. (64) the response y(t) can be calculated by taking the inverse
transformation of Laplace transform ¥(s).

- The total response is now achieved by adding the forced response to
the natural response.

Often the response is split up in a different way, namely the transient
and the steady state solution. The transient phenomenon is that part of the
total response that converges to zero as t ~» co; the part that does not
equal zero for t — oo is said to be the steady state solution,

Finally we show the relation between the impulse response and the
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solution of the differential equation. According to Eq. (58) a causal
linear constant system can be described by:

) = j ut — h(z)dr, (65)
]

where 1«¢) is the input. After Laplace transformation and using Eq. (22)
it follows that:

Y(s) = H{s)U(s), (66)

where the function H(s) is said to be the Laplace transform of the impulse
response h{t). This function is called the transfer function. From Eq. (64)
we learn with regard to the forced respounse that if Eq. (64) equals Eq. {66}
we obtain:

L Y() b+ by .+ bys + by
TUG) as"ta, " Fas+ay

H(s) (67)

In this equation the polynomial (a,s" + a,_ ;8" ' + ... + a;5 + g} is
said to be the characteristic equation. It can be shown that, indeed,
Eq. (67) holds, and thus that the transfer function is:

H(s) = L{ht)} = I hitye™* dt. (68)
o
The same equation can be dertved for the Fourier transform, be it that
the initial conditions are left out:

Y(») = HU(W), (69}

with:

HG) = F{p)} = I h(t) e~ ar. (70)
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—a{H{y) |—a ——— = H{y) o H{-v) [——=

Fig. 12, Description of linear constant cavsal systems by means of transfer functions.

1.4.2.3. Description by means of the transfer function. Eqs (66) and (69)
describe a linear constant causal system with deterministic inputs (fig.
12); this is a description in the frequency domain, The description of a
system with stochastic inputs follows directly by applying the Fourier
transformation to Egs (60) and (62):

Sz(v) = H(v)Sglv), {71)
Sp5(v) = Sg(MH(—v) = Sx(MHWH(—v) = |HW)|* Sg(v). (72)

Here it should be mentioned that Eq. {71) gives phase as well as amplitude
mformation of the transfer function H(v), whereas Eq. (72) contains just
amplitude information. The transfer function H(v) may also be considered
as a frequency response, obtained by the response to a sinusoidal input
u(t} = acos 2zvt. It can be shown that the ratio between the amplitudes
of input and output of the linear constant system is equal to |H(v)|,
whereas the phase difference between input and output equals arg H(v).

14.24. Stability. The stability of a system is determined by its dyna-
mics. On the basis of the impulse response we can define the stability of
asystem as follows: A system is stable if, and only if, the impulse response
tends to zero for ¢ — 0. Thus from

h([):L_l{H(S)}=L_l{bwsn+bm_lsm_l+”'+bls+50}’ (73)

as"+ a, " V4. +as+a
it follows that the roots of the characteristic equation

as"+a,_ "'+ ...+ ais+ag=afs —5)s —sy)... (6 —5)=0
(74)

must have a negative real part: R(s) = A4, <O0fori=1,2,...,n

14.25. Complex systems. The boundary of a system is arbitrarily
chosen; often a combination of many subsystems forms a single new
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system. By means of a block diagram the structure of such a new system
can clearly be explained. A number of different structures can be re-
cognized,

— Cascade series of subsystems: In a cascade series the output of the
first subsystem is the input of the second subsystem (fig. 13). The impulse
function k{1} of the complex system obtained in this way then becomes;

h(t) = h,(t)shyl), (75)
8o that for the transfer function H(s) results:

H(s) = H,(9)H,(s). (76)

— e e — 1 2
U]{s) H1(5) Y1 {s) =U2 {s} H2(5] ths} U-|(S) H($)=H1{$)H2{9) Yz{‘)

Fig. 13. Cascade series of subsystems.

— Parallel series of subsystems: In a parallel series of subsystems the
input drives both the subsystems, after which the responses are added
(fig. 14). It can be shown that the overall response of the system will be:

h(r} = hy(r) + ha(2), (77

H(s) = Hy(s) + H, (). (78)

bt} AL

Hyis) Yy is)

ult) mytt | %21 g0 vty @it i) [otenineny |
uis) Hals) [viish s vis)av,fshav,is) Ute) | Hish=Hyfst+H s} [y

Fig. 14. Parallel series of subsystems,

— Closed loop systems: For a closed loop system we feed back the
output y,(t) of the subsystem H ,(s) in the forward loop via the feedback
loop with subsystem H,(s). We now can derive that (fig. 15):

HGs) = H (s)

=+ B with H(s) = H,(s)H ,(s). (79)
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The transfer function H(s) is called the open loop gain. After applying the
inverse Laplace transformation we obtain:

_ His)
= 1
o 1 fs 2oL @)
-1
o) + () [m(D Wy | PR 1G] S I
M Ty e e —12 [
‘I+H.lls)H2{s}
()
H2(s) i

Fig 15. A closed loop system.

14.3. Non-linear systems

As mentioned before, a non-linear system is defined as a system that is
not linear, that is, it does not satisfy the superposition principle. This
definition is a very poor one, however, since it only excludes the possi-
bility that a particular system possesses a certain property, be it an
important one; it specifies no other property. The behavior of non-linear
systems is described by non-linear algebraic, differential or difference
equations. Rarely are we able to find a closed amalytical solution; a
generally applicable method to solve these non-linear equations may
be expected never 1o be found. In system theory, however, we mainly
are interested in the behavior of a system around a certain operating
point, so that by linearization around the operating point a useful descrip-
tion can be derived. In this way we obtain a linear description of the
non-linear system, valuable around a particular operating point. This
approach makes it possible to apply the theory of linear systems to
non-linear systems.

A more profound study of non-linear systems wiil teach us that:
~ The behavior, static as well as dynamic, will depend strongly on the

input.
- In general the system will generate higher harmonics of the forcing

input; sometimes even the fundamental frequency will disappear in

the output.

14.3.1. Linearization of comstant static systems. Linearization of a
non-linear system around an operating point leads to a linear descrip-
tion. Observe now the constant static non-linear system:
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) = gluit)}, (81

where the function g{u(t)} represents a non-linear, continuous, and
differentiable function. Then, according to the Taylor series around the
operating point gl#,}. we obtain:
&g 2
[ute) — #.] + Lo [w®) - +..., (82
Hu

2
u Hu

- dg

By neglecting the higher harmonics, it follows that:

_ dg
W) = gln + 4 . [u(® — 1) (83)

thus for small variations around g{#,} we obtain the relation:

d
k) =2

du ®9)

Hu

The gain kiy,) is a function of the operating point g(n,) of the non-
linearity, or, with reference to the input it is a function of the mean value
n, of input u(t). Here we should note that this linearization technique
can be applied in a significant way only if the variations in u(z) around the
mean value #, are relatively small, such as in closed-loop systems. For
open-loop systems these variations may often be too large, so that such
a simple linearization technique leads to too great a simplification. In
those cases it is worthwhile to apply the method of the statistical lineariza-
tion or the method of Booton. This method is based on the following
philosophy. Assume that the input #(¢; {) has a mean value equal to zero,
and that we can approximate the linear system by an equivalent gain
k{0, o), that is, a linear constant system. Then, by minimization of the
difference between the output 3(¢; {) = g{u(t; {)} of the non-linear static
system and the output 7*(¢; {) = kul(t; {) of the equivalent linear system
according to a quadratic criterion, we obtain the least-square estimate
of the equivalent gain (fig. 16). It can be shown that with:

2 B{[g(8: ) — k) = 0 )
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uitr) v yit:2}
system
- _—
- Y {tir) *e(t.z}
system

Fig. 16. Statistical linearization of a constant static non-linear system.

we obtain the following relation for k40, o;):

o0

I ug(y) f{u) du ®
k0, o) = = = J ug(u) fo{u) du. {86)
.[ wlf{u) du T

A number of remarks should be made here.

- Eq. (86) shows that the equivalent gain k{0, o3) is a function of the
variance o7; in fact one should know the probability density function
JAw) in order to be able to determine &,(0, oz). The method discussed
here is not restricted to inputs with a mean value equal to zero,
although for ny # 0 the calculation becomes much more complicated.

- Because of the fact that the equivalent gain is only a constant sysiem,
the method is restricted to non-linear constant static systems.

- The methodology followed in obtaining the optimal equivalent gain
is similar to that applied to the decomposition of signals into sub-
signals; it is of interest to compare figs 6 and 16.

14.3.2. Describing function method. 1n order to describe non-linear
constant dynamic systems, one often uses the describing function method.
This method is based on the idea that the non-linear system can be
replaced by a lincar dynamic system with a transfer function G(v).
If now the non-linear system is driven by an input #(t) = A cos 2z,
we can describe the output by a series of sinusoidal subsignals with the
help of the Fourier series, Eq. (6). By comparing the input with the out-
put’s fundamental harmonic, the first term of the Fourier series, we can
define a transfer function, the describing function. Also, this method is a
linearization around a certain operating point; a linear relation between
the input and the output’s higher harmonics, the other terms of the
Fourier series, does not exist. The method can be applied to systems with
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nlt:p)
i) - yite) uitzy) g yit:g)
utty m:?a, yitg uity o) Y 3 +£+ 4

Fig. 17. The describing function: A linear description of a non-linear constant dynamic
system.

deterministic as well as stochastic inputs. In the latter case the non-linear
system is thought to be approximated by a linear dynamic system to
which output a signal #(t; {), called the remnant, is added (fig. 17). This
remnant is thus the difference between the outputs 3; &) and y*(t; {) of
the non-linear and equivalent system, respectively. The optimal dynamic
gain G(v) again is achieved by minimization of the variance of the remnant
with respect to the parameters of the transfer function G(v). It can be
shown that minimization of this variance o7 vields a result for which the
remnant 7(; {) is uncorrelated with the input @(¢; £}, and thus R(tj = 0
for any value of 1. It can be derived that:

Sarlv) = Sgp(v) = G(V)Sg(v), 87
Siv) = |G(V)|? Sgv) + Sealv). (88)
Eq. (87) provides us the describing function G(v), so that by substituting

|G(v)| into Egq. (88) the spectral density Sg(v) of the remnant can be
obtained.
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Fig 18, The describing function method applied in a closed system.

The method as formulated by Egs (87) and (88) can only be applied if
the non-linear element is not linked up in a closed loop sysiem, since for
closed loop systems (fig. 18) the remnant #{¢; ), due to the feedback, is
always linearly correlated with input &t;{) to the non-linear element;
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thus R {tr) # 0 for all values of =. The describing function G{v) can be
determined in two different ways:

— Indirect method:

G(v}H(v)

SFF(V) = G o V)SzhV), with GV} = Wﬁ(v—) (89)
- Direct method:
G(v) = SaAv)/Sglv). (50)

The indirect method only can be applied if the linear sysiemn H(v) is
known; this method is certainly the easiest one.

The describing function method is of great importance in the mathe-
matical description of the human operator’s behavior in manual control
{see vol. I1, chapter 10),

1.4.4. Description by means of state variables

The description of systems by means of state variables has been
mentioned already in the discussion of scalar and muiti-variable systems.
This approach has become very popular in the last decade, on the one
hand because the description method is conceptually simple for describ-
ing very complex systems, and on the other hand because this method
can be ecasily applied when digital computers are used. The basic
philosophy is that any dynamic linear system can be described by a set
of first-order linear differential equations.

If for a given system the input u(f) is known over the interval { — 0, ¢},
then we can determine the output y(¢). If the input (), however, is known
over only the finite interval {t,, t], the output y(t) can only be determined
if we have knowledge of the initial condition p{(¢,) (except for constant
static systems). Hence, we can define the state of a system as follows:
The state of a system at a particular time instant t, is the set of numbers
which, together with the input signal over the interval [y, 1], determines
the output of a system at the time instant t. From this definition we obtain
the following relation, called the output equation of the system:

WO = f{x(tohult: te, 0} 1 > tg. {31)

In this equation the quantity y(¢) represents the output vector, the quantity
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u(t: iy, t) the inpur vector over the imterval [to.1]. and x(t,) the state
vector, defined at the instant of time ¢,. From the definition it is clear that
the state vector also could be defined at the time instant ¢,, in which
case it easily can be shown that for £, > ¢, the state x(¢,) is completely
defined by x{t,} and u(t:ty,¢,). We formulate this by means of the
state equation (92):

x(t) = g{x(to) u(t: £o, 1)} t > 1. 92)

Eqgs (91} and {92) can be used to describe all of the different classes of
systems mentioned before, except for the distributed systems.

In the context of this Handbook it is impossible to discuss the descrip-
tion by means of state variables in a general way; we will restrict our-

selves to the differential systems, which are those systems where the
Eqs (91) and (92) can be rewritten as:

x(t) = g{x(r), u(t). t} 93)
YO = f{x(e), ult), t}. 04)

The system equations (93) and (94) are much simpler if we derive them
for linear systems, obtaining:

X(6) = A@O)x(t) + Blyult) 53)
w5 = Cx(r) + Dit)u(r) (96)

where A(r) is said to be the system matrix, B{t) the input matrix, C(¢) the
output matrix, and Dit) the direct transfer matrix. For linear constant
systems the matrices of Egs (95) and (96) become independent of time,
so that it follows: '

X(£) = Ax(¢) + Bu(r) 97
1) = Cxlt) + Duft). 98)

The meaning of the matrices A4, B, C, and D can be elucidated by means
of the block diagram of fig. 19:

— Matrix 4 is placed in the feedback loop, and thus acts on the state
variable x(f) which is fed back to the integrators. The matrix A entirely
determines the dynamic behavior of the system.

~ Matrix B determines to what extent and in what way the input
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ult)

Fig. 19. The state description of a linear constant systen.

u{f) controls the system. In conjunction with matrix A, matrix B detet-
mines whether the system is controllable or not. A fully controliable
system is a system where from an arbitrary initial state x(¢) any other
final state x{t,) can be reached by forcing the system with a certain input
ult : ty, t,) where the interval {¢,, ¢,] must be {inite with 1, > 1,

~ Contrary to the idea of controllability is the idea of observability.
Observability is determined by the matrices 4 and C. R is said that a
system is fully observable if from the state vector x(f,} and the output
Wt ty, t,) over the finite interval [to,t,} the state vector x{r,) can be
determined uniquely (¢, < t,).

- The direct transfer matrix D determines to what extent and in what
way the input affects the output without passing through the closed loop.

The ideas of observability and controilability will be used in the sub-
sequent sections on avtomata and grammars.

Without proof we state that the solution of the set of differential
equations (97) and (98) with initial state vector x{t,) will be:

1) = e““""x(e) + Je‘“'"’B:_:{r) dz 99

to

W) = Cet¢ 9x(t,) + CJe‘““"Bg(r) dr + Duf), (100)

to

where e is called the transient matrix. The Eqs (99) and (100) give the
response y(t) of the system on an input u(f) in the time domain.

As was the case for scalar systems, a description in the frequency
domain can here be derived again. By applying the Laplace transforma-
tion to Eq. (97) we obtain:

5X(s) — x(to) = AX(s} + BU(s), (101)
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and thus:
X(s) = (sT — A)"'xlty) + (I — A)'BU(s). {102)

The matrix (sI — A)"*B is said to be the transfer matrix from U(s) to
X(s). Transforming Eq. (98) and substituting the result into Eq. (102) it
follows:

Y(s) = C(sI — Ay 'x(ty) + [C(st — A)"'B + DU(s). (103

The matrix C(sf — A)"'B + D is called the transfer matrix from U{s)
to Y(s). This matrix can be compared with the well-known transfer
function H(s) as discussed in section {.4.2.3.

Recent developments in the field of the description of the human
operator’s behavior in manual as well as supervisory contrel often are
based on description in terms of state variables (see vol. 11, chapter 10V

L5, Models and parameter estimation techniques

A major goal of using system theory is to model real world probiems;
that is, we try to formulate mathematical models on the basis of which
predictions can be made under a variety of circomstances. In the fore-
going we almost implicitly assumed that just a little or no information
at all was available. In such cases systems can be described by impulse
responses, transfer functions and averaged product functions. Often,
however, we have some knowledge of the system under study, which
makes it possible that we define the structure of the system at hand in
advance. In that case the problem of identifying a system is reduced to
the determination of a set of parameters given a certain model structure.

The choice of the structure of the model is of great importance; this
choice, among other factors, depends on:

- The objectives to be realized in determining the model.

— The insights and ideas of the investigator.

— The information available about the system under study.

— The required accuracy of the model.

— The observability of the system under study.

Determination of the unknown parameters is mostly achieved according
to a standardized pattern (fig. 20). A model of the system under study is
proposed; the structure is chosen and the parameters o; must then be
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determined. Given a certain input @(t;{), the output y*(¢;{; «;) of the
model is compared with the output 3it; ) of the system under study.
According to a certain criterion we now minimize the error between
¥(&; {) and y*(¢; {; o) by varying the parameters ;. It follows that:

52-‘5 I wt) [Je: {) ~ PHEs (50| de = O, (104)

where the quantity w{t) is called a weighting function, and where the
exponent p mostly is chosen to be two. The minimization of the cost
function, Eq. (104), can be achieved analytically or by an iterative
procedure. In general, the solution of Eq. (104) will generate a set of
equations which are non-linear in the parameters. Only with w(t) = 1,
and p = 2 the set of equations will be linear, and thus solvable in an
analytical way. It should be noted that the method, as illustrated in
fig. 20, can only be applied to open loop systems. Variants of this
method have been developed in order to be able to handle closed loop
systems. Finally one very important remark should be made. In general
the definition of a model is based on certain assumptions; this means
that the application of the model is limited to situations for which the
assumptions are valid. We should therefore always check whether the
circumstances in which we plan to apply the model satisfy these assump-
tions.

l it}

a{t:k) yit.r)
system -

e, &) :
model e —————m]  criterion

model parameters

Fig. 20. Parameter estimation of the model parameters in an open loop system.
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2. Automata and grammars

Automalta are dynamic systems which are discrete and constant. They
are dynamic, because their behavior is not only dependent on the last
value of the input signal, but also on the series of preceding input signals.
They are discrete systems, since they have a discrete time axis £ = @, 1,
2,...; they are constant since both system parameters and structure are
independent of t. Furthermore, automata have guantized signals: signal
values are elements of a finite set.

We shall first discuss some automata of increasing complexity (2.1).
The choice is determined by the relations these automata are enter-
taining to the grammars that are treated in 2.2. All automata to be
discussed are observable systems (cf section 1.4.4), for which it is
inconsequential whether the discription proceeds from the state, or
from the output signal. As we will proceed from the state, the notion
‘output signal’ will not be used anymore.

2.1. Some automata

2.1.1. Finite automata

A finite automaton is a system characterized by the foilowing five
entities. X is a finite non-empty set of states. At any moment the auto-
maton must be in just one of these states, One of these states, xg, is
called the initial state, and F, a non-empty subset of X, constitutes the
set of final states. The possible values of the input signal form a non-
empty finite set V; this set is also called the automaton’s vocabulary.
Finaily, there is a (state) transition function, 8, which indicates how the
automaton changes state under influence of particular input signals:
8(x;, v;)= x, means that the automaton in state x; changes to state x, at
input of vocabulary element v;. Figure 21a shows the transition-diagram
of a finite automaton with two states x, and x;, where ¥ is binary
(0 or 1), and with transition function &x,, 1) = x,, 3x,, 0} = x,, and
Hx,, 01 = x,.

In order to explain the workings of this as well as the other automata
in this section, we shall use the notion ‘controllability’, which was intro-
duced in section 1.4.4. There, a system was called *fully controilable” il
there is always an input signal sach that the system can make a transition
from any initial state x(t,) to any final state x(z,). In the theory of auto-
mata full controliability (i.e. from any initial state) is irrelevant. Important
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Fig. 21. Transition diagram for deterministic (a) and non-deterministic (b} finite auto-
maton,

is controllability from one defined initial state x,. This state is called
controllable, if there exists a string of input elements s (a signal) which
can bring the automaton from there to a final state x, € F. If such is the
case, the automaton is said to accept input string 5. This can be written
as follows &(x,, 5) = x;, where s V* (the set of strings of vocabulary
elements), and x; € F. For example, fig. 21a shows that one can proceed
from x, to x, by presenting vocabulary element 1, but also by presenting
strings 01, 001, 101, etc. The language accepted by automaton A4 is the
set of accepted strings: T(4) = {s|8(x,, s) € F}; these are the strings by
which the initial state is controllable. The automaton of fig. 21a is
controllable with any string consisting of an arbitrary number of
O-elements, followed by an arbitrary number of sequences, 10, followed
by 1;inshort: T = {0%(10)*1}. Two automata, A, and A,, are equivalent
if T(A,) = T{A,). The languages accepted by finite automata are called
regular languages.

Apart from deterministic finite automata, as in fig. 21a, there are also
non-deterministic ones. The transition function of these automata gives
a set of possible transitions for any pair of state and vocabulary elements:
&(x;, v)) = {x,,...,%). Fig. 21b gives an example. There &x,,1)
= {xg4, %, }. From x,, the automaton can ¢ither go to x, or x, at the
input of t. Each input string therefore corresponds to a set of paths in
the tramsition diagram. The automaton accepts a string if there is at
least one path from x, to a final state for that string. One can prove that
for each non-deterministic finite automaton there is an equivalent
deterministic automaton (the inverse is trivially true). It follows that the
non-deterministic finite automata generate the same class of regular
languages as deterministic finite automata, A probabilistic finite auto-
maton is a generalization of the non-deterministic finite automaton,
where a probability is assigned to every possible transition. It is a
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stochastic system as defined in section 1.4.1. Markov sources are a
subclass of probabilistic finite automata.

The input strings in V* which are not accepted by the automaten form
the complement CT of the language T. The complement of a regular
tanguage is itself reguiar, i.e. for every finite automaton A, there is another
finite automaton A4', such that CT{A) = T(A").

2.1.2. Push-down automata

A push-down automaton (PDA) is a system which, other than the
finite automaton, has an infinite set of states X. In order to describe this
set, one may factorize X into two parts: a finite set T = {#o,1,,...,6,}
of ‘states” in a stricter sense, plus a memory store of infinite size. This
store can contain strings (¢, ¥, o,...) of so-called memory symbols
taken from a finite push-down vocabulary T = {y¢,7,,...,7,}. This
push-down store can be conceived of as operating in the following way:
The automaton always starts with just y, in the store. New memory
symbols are put on top of old ones, ‘pushing’ them ‘down’, so that only
the top-element is removable: it is not allowed to add or remove elements
at other places in the stack.

In factorized form, the initial state x, of the PDA is the pair (¢, yo)
where t, is now called the initial state {in the strict sense). F € T'is the set
of final states. The automaton is a system (V, T, T, 4, yo. F, 6), where 6
denotes the set of transition rules, These transition rules determine what
happens in a given state, and with given top element, when a new input
element appears, i.e. the rules determine the next state, and the memory
change. They are written as (z;, v;. ) = {f,, ), which means that at the
input of v;, with v, as top clement in memory, the state changes from
t; to t,, and vy, is replaced by the string {(or better: stack) of memory
elements y {this may be the null-string, which amounts to simply
removing 7,). A string s of input elements is accepted by the automaton
if a final state £,eF is reached from {t,,7,) The language T(PDA),
accepted by the push-down automaton is the set of accepted strings:
T(PDA) = {s|6(to, s, vo) = (t;. X), t; € F, x € T*}. The languages accepted
by PDA’s are called deterministic languages. The complement of 2
deterministic language is also deterministic. Regular languages form a
strict subset of deterministic languages.

Analogous to the non-deterministic finite automata, one can design
non-deterministic push-down automata (NPDA). Such automata can,
for each state, top element, and input element, ‘choose’ from a set of
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transitions. This type of automaton is more powerful than the deter-
ministic automaton. The languages accepted by NPDA’s are called
context-free languages. They include deterministic languages as a strict
subset. The question whether the complement of a context-free language
is also context-free has been proven to be unsolvable, but in any case the
complement is context-sensitive (see next section),

2.1.3. Linear-bounded automata

The linear-bounded automaton (LBA) can be conceived of as a tape
with a movable reading and writing head, which can be in any of a
number of states {cf. fig. 22). The tape is used to write down the input
string, and also serves as memory space. It is characteristic for the LBA
that this ‘working space’ on the tape is exactly the same size as the input
string: for small inputs there will be little memory space, for large inputs
there will be much memory space, i.e. there are no intrinsic bounds on
memory size.

@[ ]--- - - | 4]

Fig 22. A linear-bounded automalen.

The LBA, which is characterized by the entities V, T, T, ¢,, F, §,and #,
starts reading the tape at the left, i.e. at the first input symbol; the LBA
is then in state ¢,. Depending on what is read, it will change state, and it
can replace the element that has been read by another one. This may
be an element of V, or an additional memory element (from the finite
memory vocabulary I'). Also, it will select a new position k, i.e. it may go
one position to the right (k = +1), one position to the left (£ = —1),
or remain unchanged (k = 0). Thus, each pair of state and tape symbol
will cause three changes: a change of state, a change of tape symbol, and
a change of position. For each pair of state and tape symbol the transition
rules & describe what these three changes will be. The LBA is said to
accept an input string if it reaches the right boundary symbol {#), and
then enters a final state (¢ F). LBA’s are always non-deterministic: for
every combination of state and tape symbol a ser of transitions is
specified. The languages accepted by LBA's are called context-sensitive
languages. 1t is still unknown whether their complements are also con-
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text-sensitive. Context-free languages form a strict subset of context-
sensitive languages.

2.14. Turing machines

A Turing machine TM differs in only one respect from the LBA: the
tape for reading and writing is of infinite length to the left and to the right.
The transition rules, however, are the same as for the LBA: for each pair
of tape symbol and state they determine the new tape symbol (to be
written), the new state, and the new reading position (k = — 1,0, or +1).
Apart from non-deterministic TMs there are also deterministic ones.
1t is also true that each non-deterministic TM is equivalent to a deter-
ministic one.

In view of its very simple structure, it is surprising that TM’s can do
any operation a modern digital computer can do. The inverse is even not
the case, except if one assumes that the computer firm can make un-
limited amounts of additional memory space available. A Turing machine
can perform any explicit symbol operation, it seems. In fact, this is even
possible on a TM with no more than two states, 1, and t,. Therefore,
nowadays, the notion of (‘effective’ or ‘mechanical’) procedure is defined
as ‘capable of being carried out by a Turing machine’. Lack of space
forbids further discussion of this important notion of procedure, see
however Minsky (1967).

A TM is said to accept an input string s if this string brings the auto-
maton from initial state ¢, to a final state ¢, € F. The languages accepted
by Turing machines are called recursively enumerable languages. This
name indicates that the strings or ‘sentences’ of such a language can be
‘enumerated’, i.e. there is a procedure by which the sentences of language
T (and no other strings) are successively generated in such a way that
cach sentence of T will be enumerated after a finite number of elementary
operations. (The complete enumeration of an infinite language will
nevertheless take an infinite number of operations!). Assume one has a
TM, with language T(TM), and an arbitrary string sic V*). If se T(TM)
this fact can be determined by means of a finite number of operations,
due to the recursive enumerability of T. One says that s can be recognized.

All Janguages mentioned earlier are recursively enumerable as well,
but there are recursively enumerable languages which are not context-
sensitive (or context-free, or regular). The complement CT(TM) of a
T(TM), moreover, is not necessarily recursively enumerable. This means
that if s € CT(TM), there is no guarantee that this fact can be recognized
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by a Turing machine. Or stated otherwise: it is not true that for all
recursively enumerable languages there exists a procedure to decide for
an arbitrary string s whether that string belongs to T or not. Languages
for which such a procedure does exist are called decidable or recursive.
These are recursively enumerable languages that have a complement
which is also recursively enumerable.

2.2, Grammars and automata

2.2.1. Grammars and Turing machines

A recursively enumerable language can not only be described by a
Turing machine, but also by means of a grammar. A grammar G can be
characterized by the entities V, H, P, and S. ¥V is a {inite terminal voca-
bulary (with terminal elements a, b, ...}; H is a finite nonterminal voca-
bulary (with auxiliary symbols, or variables A, B,..) with a special
start symbol S. And P, finally, is a finite set of production rules. V and H
are disjoint: ¥ n H = ¢, whereas their union, ¥V v H =T, is sometimes
called the grammar’s (unspecified) vocabulary. The rules of P are ordered
pairs of strings (a, f), mostly written as o — 8, where the first string (2)
consists of one or more elements of I, and the second (B) of zero or more
elements of I'. To put it differently: ¢ e I'* (the strings of positive length
over ), and BeT™* {the strings over T, including the null siring 1)
Thus PcI't xI'*

The rule « — § means that string « can be replaced by string # in any
context. Such a replacement is indicated by =. So, for instance, given
rule o — §, one can replace string ya.d by yB3; this is written as yad = yf4.
More generally one writes ¢ % (s is a derivation of &) if there is a
sequence of zero or more replacements by which £ can be transformed
i (zero replacements if £ = ). A sentence generated by grammar G
is any string of terminal elements, which can be derived from S by
production rules of G. Thus, string ¢ is a sentence generated by G if there
is a derivation S £ o, with ¢ & V* The language L(G), generated by G
is the set of generated senmtences, or I{G) = {a|S % ¢}. Example: let
G = (V,H,P,S), with ¥ = {a(pes), iHake), c(akes}}, H = {N(oun), VP
(verb phrase), MV(main verb), S(entence)}, and with production rules
P={SNVP,VP->MVN, VP->MV, N>a N-c, MV - b},
then one can make the following derivation from S:S=NVP,
NVP=aVPaVP=aMVN,aMV N = abN,abN = abc,orinshort:
S % abc. Since a,b, and ¢ are terminal elements, the string a, b, ¢, or
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apes bake cakes, is a sentence in L{G). The reader can verify that the other
sentences in L{G) are: apes bake, cakes bake, and cakes bake apes.

It can be proven that the grammars defined in this way generate the
class of recursively enumerable languages: For each recursively enumer-
able language T(TM), there is a grammar G such that L{G) = T(TM),
while each language L(G) ¢ ecursively enumerable, Thus, each Turing
machine has an equivalent grammar, and inversely.

Chomsky has proposed to distinguish some progressively restrictive
classes of grammars. We follow his classification.

2.2.2. Context-sensitive grammars and linear-bounded automata

The first restriction on the production rules is that ‘shortening’ rules
are excluded. If the length of string « is written as |a] (thus, for instance,
|abc| = 3), this restriction means that for all production rules « — 8
in P it should be the case that |af < |]. Grammars which satisfy this
restriction are called type-1 or context-sensitive grammars. Any language
which can be generated by a context-sensitive grammar is a ‘context-
sensitive’ or ‘type-1’ language.

We saw earlier that linear-bounded automata accept just the context-
sensitive languages. It has been proven that context-sensitive grammars
are equivalent to LBA's. This can be grasped intuitively if one realizes
that, during the generation of a sentence by means of a context-sensitive
grammar, one <an never obtain a string which is longer than the final
sentence {otherwise one would need shortening rules to arrive at that
sentence). In the same way, the LBA can never produce a string on its
tape which is longer than the input sentence. Thus essentially the same
restriction holds for both systems.

2.2.3. Context-free grammars and push-down automata

The second restriction is somewhat stronger. Apart from |«| < |8]
moreover o € H; consequently, « is a single auxiliary symbol. In this
way we have a type-2, or context-free, grammar, Its rules appear as
A — B, where A is a variable, and f a string in I'". Any language which
can be generated by a context-free grammar is called a context-free
language. A derivation by means of a context-frec grammar can be
easily made visible in the form of a derivation-tree, or phrase marker.

Fig. 23 presents the production rules of a context-free grammar G,
and a derivation of the sentence abcd. Next to it the corresponding
derivation tree is shown. One should notice that there is also another
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production rules: derivation tree:
5=>AB A-+a H
S—+CD B-—+Sd A/ >B
S-be C-aS o’ 4 g
D-—+d b/ [

leftmost derivation: S= A8 = aB = aSd = abed

Fig. 23. Derivation of abcd with corresponding derivation tree.

derivation for the same sentence which corresponds to the same tree-
diagram, namely S — AB — ASd — Abcd — abcd. Each variable is
rewritten in the same way in both derivations (i.e. by the same rule),
the only difference is that the rewriting is somewhat earlier or later. The
derivation given in fig. 23 is called a left-most derivation of abed, since
at each step the left-most variable is rewritten. Each derivation tree
corresponds to one and only one left-most derivation (if there is one in
the grammar). Sentence abcd, however, has yet another left-most deriva-
tion by the rules in fig. 23. This must correspond, therefore, to a different
derivation tree. Derivation and tree are presented in fig. 24.

leftrmost. derivation: derivation tree:
S = CD = aSD = abcD = abcd C/S\D
VAR AN
a /S\ d
b c

Fig 24. Alternative derivation of abed with derivation tree.

If a context-free grammar allows for two or more left-most derivations
(phrase structures) for a sentence, as is the case in the grammar G under
concern, that grammar is ¢alled ambiguous. H a context-free grammar
is non-ambiguous, it will generate a deterministic language. Such a non-
ambiguous contexi-free grammar is also called a “LR(k)}-grammar’.
A language is ambiguous if all of its grammars are ambiguous.

It has been shown that context-free grammars are equivaient to non-
deterministic push-down automata. For every T(NPDA) there is a
context-free grammar CFG for which L{(CFG) = T(NPDA), and con-
versely, A similar equivalence exists between PD A’s and LR(k)-grammars.

There are many other formal systems for the description of context-
free languages. Examples are categorical grammars and dependency
grammars, which will not be treated here.
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2.2.4. Regular grammars and finite qutomata

The third and last restriction concerns § in the context-free rule
A = B In this case f§ can have one of two forms only: eV, ie fisa
single terminal element, or § = aB, with ae Vand Be H, in other words
a terminal element followed by a variable.

The grammars resulting from this restriction are called type-3 or
regular grammars (also: finite state grammars). Its rules thus have the
forms A —a or A — aB. It has been proven that regular grammars
generate regular languages. Regular grammars are equivalent to finite
automata: They define the same class of languages. Every finite language
(i.e. with a finite number of sentences} can be generated by a regular
grammar, and is, therefore, regular.

23. Chomsky’s hierarchy of languages

Fig. 25 gives the relations of strict inclusion between the languages
defined by Chomsky.

languages
recursively enumerable or type-0 languages

context-sensitive or type-1 languages
context-free or type-2languages
regular or

Fig. 25.

In this section a brief discusston will be given of the areas indicated
by L, I1, HI1, and 1V, ie. languages which are context-freec but not regular
(I}, context-sensitive but not context-free (II), etc,

Area 1. What is characteristic of a language which is not regular, ie.
which cannot be generated by a regular grammar? In contrast with
regular languages, these languages are self-embedding. This requires
some explanation. A grammar is called self-embedding if there is a
variable B in H for which B % aBy, where ¢ # 4, and y # 1. In words:
The rules of the grammar are such that there is a variable B from which
a string can be derived which coniains B, but not at the left or right
extreme. A language is calied self-embedding if every grammar generating
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the language is self-embedding. An example of a self~embedding language
is {wwRlweV*, V = {a,b}}, i.e. a language consisting of symmetrical
sentences, such as aa, abba, baab, abbbba, abaaba, eic. This is called a
‘mirror-image’ language. Another example is the language {a"b"|n 2 1},
consisting of sentences beginning with n ¢’s, followed by n b's, Chomsky'’s
proof that natural languages are not regular, and therefore not acceptable
by finite automata (or Markov sources for that matter), was based on
the demonstration that natural languages are self-embedding.

Area II. Context-sensitive, non-context-free languages are not so
uniformly characterizable, It has been shown, however, that various
languages belong to this category. An example is {a"b"c"|n = 1}, strings
of a’s, followed by an equal number of b's, followed by equally many ¢'s.
Another example is the language consisting of string repetitions: {ww},
where w is any string of terminal elements, and sentences therefore
consist of repetitions of such strings. These examples have been used to
prove that natural languages are non-context-free {Levelt, 1974).

Area I11. This category contains especially the non-decidable (or
non-recursive) type-G languages. These are recursively enumerable
languages with complements that are not recursively enumerable. There
are, however, decidable or recursive type-0 languages which still are not
context-sensitive. Transformational grammars (see vol. 11, chapter 7)
are type-0 grammars: they can contain string-shortening production
rules. It has been proven that Chomsky's transformational grammars
generate at least the class of recursively enumerable languages, whereas
natural languages are hopefully of a more restrictive sort. Other trans-
formational grammars are more restrictive, Joshi’s adjunction grammars,
for instance, generate decidable languages (see Levelt, 1974).

Area 1V, Not all sets of strings over a finite vocabulary (i.e. languages)
can be described by means of a grammar. Saying that a natural language
is type-0, or generable by a Chomskyan transformational grammar, is
saying no more than that the language has a grammar.

2.4. Probabilistic grammars

The notion of grammar can be generalized by assigning probabilities
to the production rules, In this way one obtains the so-caited proba-
bilistic grammars. This principle has been worked out especially for
regular and for context-free grammars. A probabilistic grammar defines
a probability distribution over the sentences of a language. One can
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derive conditions for which the language is ‘normalized’, i.e. has a total
probability of 1. The probabilistic grammar is a powerful instrument for
the analysis of the so-called corpus, i.e. a set of observed strings (sentences,
behavior sequences, etc.). Inferring a grammar from a corpus and
estimating the probabilistic parameters for a given grammar constitute
the subject of the theory of grammatical inference.

2.5. Grammaticality and comrollability

A string s is called ‘grammatical’, given type-i grammar G, if s € L(G);
it is ‘ungrammatical’ if s e CL(G). Also, and in view of the equivalence
relations between grammars and automata discussed in the previous
sections, one can say that s is grammatical if it is accepted by its equi-
valent automaton. Therefore, just those strings are grammatical by
which the automaton can be controlled from the initial state. The
linguistic notion of grammaticality, therefore, is closely related to the
systems notion of controllability. In the same way, the system theoretical
notion of observability is closely connected to grammatical inferability
(cf. Levelt, 1975).

2.6. Psychological applications and schematic overview

The theory of automata and grammars has not only been applied in
psycholinguistics (¢f. vol 11, chapter 7), but also in the (ethological)
analysis of behavioral sequences (see for instance Bodnmar and Van
Baren-Kets, 1974), in pattern recognition research (cf two issues of
Pattern Recognition, vol. 3(4) (1971), and vol. 4(1} (1972)}, in the analysis
of learning theories (Suppes, 1969), in the psychology of thinking
(Suppes, 1973), and in memory research (Anderson and Bower, 1973).

Table 4, finally, summarizes the most important grammars, automata,
languages and their complements. For the column ‘language’ there is
strict inclusion from bottom to top: Every finite language is regular,
every regular language is deterministic, etc., whereas the converse does
not hold. For the column ‘grammar’ the same strict inclusions hold,
with one exception: There exist ‘ambiguous’ regular grammars which
are, therefore, not LR(k); these grammars, however, do not generate
ambiguous languages.
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Scheme of grammars, language and automata.
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Grammar Equivalent Language Complement of
automaton language
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free (resp. depen-
dency, categorical)

LR(¥)

type-3, or regular
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Lyst of symbols

a, — k* Fourier cocfficient

9, ~ coefficients of differential equation
4, - amplitude

Alg) - system matrix

b, — ¥* Fourier cocflicient

B(r) - input matrix

cr - complement of language T

Cloy - oulput matrix

Clsi-Ay 'B+ D
Cyin)

]

transfer matrix from U(s) to Y{(s)
covariance function
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Crft) - estimator of covariance function Cg({t)

D — direct transfer matrix

e - base of natural logarithm

At — transient matrix

E{} - mathematical expectation

Sx) - probability density function

SeelXps %357 - joint probability density function

F ~ Fourier transform

F=t — inverse Fourier transform

gilul)} - non-linear system

G(v) — transfer function of the linear model of the non-linear system
g {ur)}

G - grammar

AL, o) - impulse response of linear time-dependent system

ht) — impuise response of linear constant system

His) - transfer function

H - finite non-terminatl vocabulary

I — matrix

i — index for the imaginary part

J - criterion function

belns) - gain

k0, 65) — gain according to Booton

K {7) — correlation function

L - one-sided Laplace transform

! — inverse one-sided Laplace transform

LBA - linear-bounded automaton

nit) - remnant

NPDA — non-deterministic push-down antomaton

Pr - probability

PDA — push-down automaton

P - finite set of production rules

R - average ptoduct function

5 - start symbol of grammar

) — Laplace operator of complex lrequency

(sf-4)"1 ~ transfer matrix from U(s) to x(s)

Seelv) ~ power density spectrum

t — time

tin - ramp function

T - lime period

A - language accepled by automaton 4

™ - Turing machine

uit) - control or input signal

u,(t) — orthogonal signal

uit) - input vector

Uity ~ unit step function

i) ~ noise
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- terminal vocabulary of grammar, vocabulary of automaton

— criterion weighting lunction

- deterministic signal

- stochastic signal

- stochastic process

— random variable

- stafe vector

— ipitial state

— Fourier transform of x{1)

- {one-sided) Laplace transform of x(f)

— output signal

— initial condition

~ model parameters

- push-down vocabulary, memory vocabulary of LBA, vocabulary
of grammar

— impulse function

— state function

- domain of ensemble

— average value of ut. {)

- convergence abscis, null string

— frequency

- variance ol @¢; {)

— time constant or time difference

- phase of the &* component

— radial frequency



