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Abstract
We investigate the asymptotic behavior of spherically symmetric solutions to
scalar wave and Yang–Mills equations on a Schwarzschild background. The
studies demonstrate the astrophysical relevance of null infinity in predicting
radiation signals for gravitational wave detectors and show how test fields on
unbounded domains in black hole spacetimes can be simulated conveniently
by numerically solving hyperboloidal initial value problems.

PACS numbers: 04.25.Dm, 03.65.Pm, 04.30.−w

1. Introduction

The purpose of this paper is two-fold. First, we emphasize the astrophysical relevance of
null infinity in predicting gravitational radiation signals as they are expected to be detected by
gravitational wave detectors. It has been demonstrated in [40] that a suitable feature to estimate
the validity of the concept of null infinity when predicting detector signals is the tail behavior.
In this paper, we work out this idea further by discussing the observer dependence of tails for
solutions to scalar wave and Yang–Mills equations on a Schwarzschild background. Secondly,
it is demonstrated that test fields at null infinity can be conveniently studied numerically by
solving Cauchy problems once a suitable choice of gauge for the background spacetime has
been made.

The question about the astrophysical relevance of null infinity is a conceptual one.
Mathematically, it is only at null infinity that one can give an unambiguous definition of
gravitational radiation. Many physicists, however, are uncomfortable with the notion of null
infinity because the detectors are at a finite distance away from the source and move along
timelike curves while idealized observers at null infinity are infinitely far away from the
source and move along null curves. These issues are addressed within the paper on concrete
examples.
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Our aim is not to discuss the gauge dependence of radiation extraction or the influence of
finite distance boundary conditions on the numerical solution as has been done for example
in [35, 41]. We will rather numerically study a genuinely physical phenomenon, namely the
crucial dependence of a certain feature in the radiation signal on the observer’s distance from
the source [24, 40].

There is compelling evidence suggesting that, asymptotically with respect to an
appropriate time coordinate, the gravitational radiation flux from a perturbed black hole
decays polynomially in time [13, 15, 16, 25, 26, 39]. This polynomial decay can be regarded
as being due to back-scatter of gravitational radiation off the curved background spacetime.
The back-scattering effect is very small but it may, in principle, be detected by future generation
gravitational wave detectors [6]. The decay rate of the tail may be of particular interest in
testing fundamental predictions of general relativity because uniqueness theorems suggest
that all features of black holes other than mass, charge and angular momentum will decay
according to this rate independent of the details of the collapse process. The tail plays an
important role also in the mathematical discussion of stability of black hole spacetimes and
the cosmic censorship conjecture [15, 16].

It turns out that the gravitational radiation flux of a general perturbation has a faster decay
on the event horizon and on timelike surfaces than on null infinity [2, 3, 7, 10, 16, 25, 39].
This difference raises the question of which decay is the relevant one with respect to our
gravitational wave detectors. Pürrer et al have demonstrated in [40] that the relevant decay
rate in the so-called astrophysical zone [32] is the one measured at null infinity. Their study is
based on a characteristic approach and discusses critical collapse for self-gravitating massless
scalar fields in spherical symmetry.

We are interested in a detailed study of the observer dependence of decay rates including
null infinity and assume the background to be given. We compare a powerful mathematical
estimate on decay rates for scalar fields suggested in [42, 43] with numerical calculations and
check decay rates for scalar fields with non-vanishing angular momentum. We also study the
tail behavior for Yang–Mills fields where a breakdown of linear perturbation theory has been
demonstrated at future timelike infinity [5]. Our study indicates a similar breakdown of the
linear analysis along future null infinity.

Additionally, we show how test fields on black hole spacetimes can be studied numerically
by including null infinity while solving Cauchy problems. Accurate studies of fields on black
hole spacetimes including null infinity have been restricted to the characteristic approach
until now [12, 25, 31]. The characteristic approach, however, has certain difficulties mainly
due to problems related to the rigidity in the choice of the underlying gauge [44]. The
method presented in this paper is quite flexible and allows us to use standard discretization
techniques commonly applied in numerical relativity. The feature that makes the accuracy of
our calculations possible is that the numerical outer boundary coincides with null infinity so
that, in the continuum problem, no boundary conditions are required and no resolution loss
appears in the physical part of the conformal extension [1, 17, 30, 46].

2. The conformal method

We want to study solutions to the scalar wave equation

�̃�̃ = 0, (1)

for a scalar field �̃ in a Schwarzschild spacetime. To include null infinity in the computational
domain in a manifestly regular fashion, we apply the conformal method introduced by Penrose
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[36–38] (see also [19, 21, 28, 29]). A conformal rescaling g = �2g̃ of the physical metric g̃

with a conformal factor � > 0 implies the transformation(
� −1

6
R

)
� = �−3

(
�̃ − 1

6
R̃

)
�̃, with � = �̃

�
,

where R and R̃ are the Ricci scalars of the rescaled and the physical metrics g and g̃ respectively.
Equation (1) with respect to the rescaled metric then becomes

�� − 1
6R� = 0. (2)

We are also interested in solutions to the Yang–Mills equations,

D ∗ F := d ∗ F + A ∧ F = 0, (3)

where F = dA + A ∧ A is the Yang–Mills curvature and A is the Yang–Mills connection.
The Yang–Mills equations are conformally invariant. We can therefore study the system (3)
directly in a conformally rescaled spacetime.

Schwarzschild spacetime is weakly asymptotically simple, implying that a suitably
rescaled metric is smoothly extendable through null infinity. We can solve the equations (2)
and (3) in a conformally extended Schwarzschild spacetime by allowing the conformal factor
to vanish in a certain way provided that the initial data have sufficiently fast fall-off [23].

To solve an initial value problem for (2) and (3) numerically on a Schwarzschild spacetime,
we need to choose a coordinate system that is suitable for numerical calculations and covers
that part of the Schwarzschild–Kruskal manifold we are interested in, namely the domain
extending from a neighborhood of the event horizon up to future null infinity. Our coordinates
should also be adapted to a natural family of observers, each being thought of as representing
gravitational wave detectors at constant distances away from the black hole.

A convenient foliation covering the extended Schwarzschild spacetime up to future null
infinity satisfying the above requirements can be found in the class of spherically symmetric
constant mean curvature (CMC) foliations of Schwarzschild spacetime [9, 22, 33]. The
transformation from the standard Schwarzschild time coordinate to the time coordinate of a
spherically symmetric CMC foliation can be written as

t = t̃ − h(r̃), (4)

where r̃ is the standard Schwarzschild area radius, h(r̃) is the height function and t̃ is the
standard Schwarzschild time coordinate. The derivative of the height function is given by

h′(r̃) =
K̃r̃3

3 − C(
1 − 2m

r̃

)
P̃ (r̃)

, (5)

with

P̃ (r̃) :=
√(

K̃r̃3

3
− C

)2

+

(
1 − 2m

r̃

)
r̃4.

The mass of the Schwarzschild black hole is denoted by m. The foliation parameters are the
mean extrinsic curvature K̃ , and a constant of integration C. The global behavior of CMC-
surfaces depends on the foliation parameters. We choose the parameters such that the surfaces
of the foliation come from future null infinity, pass the event horizon above the bifurcation
sphere and run into the future singularity as depicted in figure 1.

The transformation (4) implies that the coordinates of the foliation are adapted to time
symmetry in the sense that the timelike Killing vector field is given by ∂t . To keep this
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Figure 1. Penrose diagram of a CMC foliation in Schwarzschild spacetime with m = 1/2, C =
1, K̃ = 2. The dashed lines represent Killing observers.

property for the conformally rescaled metric, we perform the conformal compactification such
that the conformal factor is time-independent which we refer to as conformal fixing. The
Schwarzschild metric in a CMC foliation and a conformal fixing gauge can be written as [46]

g = −
(

1 − 2m�

r

)
�2 dt2 − 2(K̃r3/3 − C�3)

P (r)
dt dr + +

r4

P 2(r)
dr2 + r2 dσ 2, (6)

where dσ 2 is the standard metric on the unit sphere,

P(r) :=
√(

K̃r3

3
− C�3

)2

+

(
1 − 2m(1 − r)

r

)
�2r4,

and � = 1 − r . Note that conformal fixing on a hyperboloidal foliation implies scri-fixing,
that is, the coordinate location of null infinity in a conformal fixing gauge is independent of
the time coordinate. The compactifying coordinate r is related to the standard Schwarzschild
area-radius r̃ via

r̃ = r

1 − r
= r

�
. (7)

The timelike curves with constant spatial coordinates can be regarded as worldlines of
natural observers at constant distances away from the source. As can be seen from figure 1
and from g(∂t , ∂t )|I + = 0, the worldline of such observers becomes null at null infinity.

3. The initial value problem

3.1. The continuum problem

We write the metric (6) as

g = (−α2 + γ 2β2) dt2 + 2γ 2β dt dr + γ 2 dr2 + r2 dσ 2.

The lapse α, the shift β and the spatial metric function γ read

α = P(r)

r2
, β =

(
− K̃r

3
+

C�3

r2

)
α, γ = 1

α
. (8)
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We apply the method of separation of variables to (2). We write �(t, r, ϑ, ϕ) =
φ(t, r)Ylm(ϑ, ϕ) with Ylm being the usual spherical harmonics and define the auxiliary variables

ψ := ∂rφ and π := γ

α
(∂tφ − β∂rφ). (9)

Then the following linear, symmetric hyperbolic system of evolution equations for φ(t, r) is
obtained as

∂tφ = α

γ
π + βψ, ∂tψ = ∂r

(
α

γ
π + βψ

)
,

∂tπ = 1

r2
∂r

(
r2

(
α

γ
ψ + βπ

))
− αγ

(
1

6
Rφ − l(l + 1)

r2
φ

)
.

(10)

The Ricci scalar of the metric (6) reads

R = 12�

r2
(r + m(2r − 1)).

For the Yang–Mills equations (3) we consider the gauge group SU(2) and make the following
spherically symmetric ansatz for the connection [4, 14]:

A = (φ + 1)σ1 dϑ + (cos ϑσ3 + (φ + 1) sin ϑσ2) dϕ,

where σi are Pauli matrices and φ = φ(t, r). With the above choice, a vacuum state for the
Yang–Mills field is given by φ = 0. The auxiliary variables are defined as in (9). The only
difference to the system (10) is the equation for the time derivative of π which becomes

∂tπ = ∂r

(
α

γ
ψ + βπ

)
− αγ

r2
φ(1 + φ)(2 + φ). (11)

We choose an approximately outgoing, compactly supported Gaussian pulse for initial data.
On the initial hypersurface such data satisfy

∂t (rφ) + c+∂r(rφ) = 0,

where c+ is the outgoing characteristic speed given by c+ = −β + α/γ . The data read for
r < rout = const < 1 as follows,

φ(0, r) = a e−(r−rc)
2/σ 2

, ψ(0, r) = −2(r − rc)

σ 2
φ(0, r),

π(0, r) = −ψ(0, r) − φ(0, r)

r

(
1 − βγ

α

)
,

(12)

where rc is the center of the Gaussian pulse, a is its amplitude and σ is its width. The data are
set to zero for r � rout.

The initial hypersurface is hyperboloidal, meaning that it is a smooth spacelike
hypersurface extending through null infinity. The problem consisting of initial data given
on a hyperboloidal surface and evolution equations is called a hyperboloidal initial value
problem [20]. Note that no boundary conditions are needed in the continuum problem.

3.2. The numerical method

We may solve hyperboloidal initial value problems for scalar wave and Yang–Mills equations
using standard numerical techniques. I used the method of lines with fourth order Runge-Kutta
time integration and finite differencing with sixth order accurate stencils. The inner boundary
is chosen to be a spacelike surface inside the event horizon so that one can use an excision
technique. The outer boundary is at null infinity where one-sided finite differencing is applied.
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Figure 2. Convergence in the L2-norm for numerical solutions to (10). The convergence factor Q

is calculated by Q = log2
‖φlow−φmed‖
‖φmed−φhigh‖ .

The lack of outer boundary conditions makes the numerical implementation simpler than in
the case where an artificial timelike outer boundary is introduced.

The convergence of the code can be seen in figure 2. For this plot, a three-level convergence
analysis has been performed with 1010, 2020 and 4040 grid cells. The Courant factor �t/�r

is chosen to be 0.5. The convergence in the L2-norm has been plotted for a solution to the
hyperboloidal initial value problem for the scalar wave equation. The corresponding plot for
the Yang–Mills system is similar. We see that the code switches from fourth- to sixth-order
convergence after a short time. This seems to be due to the initially dominating error from the
fourth-order time integration, and indeed, choosing a Courant factor 10 times smaller results in
the dashed curve which indicates sixth-order convergence from the start. As we are interested
in long time evolutions, the larger Courant factor is chosen. The convergence factors in the
maximum and the L1-norms behave similarly.

For the results presented below the number of grid cells is chosen to be 10 020. The
spatial simulation domain in grid coordinates is given by r ∈ [0.499, 1]. The Courant factor
is 0.2. The parameters of the spacetime and the foliation are m = 0.5, K̃ = 0.5, C = 1.

4. Results

4.1. Tails for the scalar wave equation

The late-time decay of a solution to the scalar wave equation is expected to have the form

lim
t→∞ φ(r, t) = Ctp,

where C depends on r only and p is the decay rate with p < 0. For a solution with vanishing
angular momentum, that is, l = 0, we expect along the event horizon and along timelike
surfaces a decay rate p = −3 [39]. At null infinity, however, the decay rate is expected to be
p = −2 [7, 25]. We would like to know which decay rate is the relevant one in the context
of astrophysical predictions and have a quantitative understanding of the dependence of the
decay rate on the observer’s location [40].
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Figure 3. Comparison between the mathematical pointwise estimate (13) and a numerical
calculation. Each curve depicts the function p(t, R) calculated as in (14) for the following
values R/m = (∞, 40 000, 20 000, 10 000, 4000, 2000, 1000, 400, 200, 100).

4.1.1. Comparison between mathematical and numerical results. Recently, an optimal
pointwise decay estimate has been suggested, but not yet proven, for small spherically
symmetric solutions to nonlinear wave equations with a potential [42, 43]. Applying this
estimate to our linear problem gives

|φ̃| � C1

(C2 + t̃ + r̃∗)(C3 + t̃ − r̃∗)2
, (13)

where (C1, C2, C3) are constants, r̃∗ := r̃ + 2m log(r̃−2m) and t̃ is the standard Schwarzschild
time coordinate. This estimate captures the asymptotic behavior of the solution near null
infinity as well as at finite distances from the black hole. The corresponding decay rates can
easily be read off from (13). We want to compare the mathematical estimate with the numerical
calculation with respect to the prediction of the decay rate. We calculate the function

p(t, r̃) = d ln|φ(t, r̃)|
d ln t

, (14)

which becomes asymptotically the exponent of the polynomial decay of the solution. For
the comparison, we need to write the mathematical estimate (13) in the coordinates of our
numerical calculation. The coordinate transformation is given by (4). The height function
in this transformation is not given in explicit form, but as we are mainly interested in the
asymptotic behavior of the solution in the far-field zone we can use a Taylor expansion of (5)
as r̃ → ∞. We get up to a constant

h(r̃) = r̃∗ +
1

r̃

(
9

2K2
− 4m2

)
− 4m3

r̃2
+ O

(
1

r̃3

)
.

The comparison has been plotted in figure 3. Each curve in the figure gives the function
p(t, R) for a constant value of R. The dashed lines represent the mathematical estimates which
have been fitted at late times to some representative data points from the numerical simulation.
We set C1 = C2 = 1 and treat C3 as a fitting parameter along each curve. Considering that
formula (13) is only an estimate and not an approximation to the solution, we can say that it
is remarkable how well the qualitative behavior of the asymptotic decay is captured by it.
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4.1.2. Astrophysical relevance of null infinity for the decay rate. Now we can discuss the
question of which decay rate is the relevant one for gravitational wave detectors. We think of
each curve in figure 3 as representing the measurement made by a detector at some constant
distance away from the source. In a Schwarzschild spacetime we have a length scale at our
disposal given by m, the mass of the black hole, so that we can gain an intuition for the scales
by considering the distances of some typical astronomical object in terms of geometric units.
The closest candidate for a supermassive black hole is Sgr A∗ at the center of our galaxy.
Its mass is about 3.7 × 106M	 and it is about 26 000 light years away. In geometric units,
this corresponds to roughly 1010 m. Another close example is the first serious candidate for
a stellar-size black hole, namely the compact object in the binary system Cygnus X-1. The
total mass of the binary system is about 50M	 and its distance to the Earth is about 8000 light
years. This gives in geometric units a distance of roughly 1015 m. Now consider in figure 3
the curve that is closest to what has been calculated along I +. Its distance to the black hole in
geometric units is 4 × 104 m. While this is quite far for numerical calculations, it is obviously
still very close compared to astronomical distances. Even for such comparably small distances
we see that the relevant decay rate is the one measured at null infinity.

One can of course argue that the decay rate along any timelike surface at a finite distance
will eventually approach −3 if one waits long enough. It is clear from figure 3 and from
the estimate (13) that the time scale for this to happen depends on the distance of the source.
If we have a source that is, for example, 1000 light years away from the Earth, then the
decay rate will come close to −3 only after about 10 000 years. This is in accordance with
the argument that the mathematical idealization of the region r̃ 
 t̃ for radiative properties
of fields corresponds to null infinity while for t̃ 
 r̃∗ the correct idealization is timelike
infinity [18, 32, 40]. Figure 3 depicts the transition zone between these two regions. We
should mention that it is extremely unlikely that the polynomially weakening tail signal can
be followed for such a long time that the decay rate at timelike infinity will be relevant. It is
rather likely that if ever the tail decay rate is measured by direct observation, the measurement
will be possible only for a short time.

The above discussion recapitulates that I + is the appropriate idealization for an observer’s
location in an asymptotically flat spacetime. One should, however, be aware that future
generation detectors will observe variations in the radiation signal due to cosmological effects
when the sources are considerably far away in comparison to the size of the known universe. In
this case, one might reconsider the relationship between the different idealizations of isolated
systems and cosmological spacetimes.

4.1.3. Construction of a physically motivated time coordinate. In our discussions and
conclusions we use the coordinate time t. In this subsection we want to briefly elaborate that
the same conclusions can be drawn with respect to a physically motivated time coordinate.

We have chosen our foliation suitably such that worldlines of natural observers of
gravitational radiation are represented by timelike coordinate lines. The parametrization of
these curves by t, however, can be regarded as being arbitrary. There are two steps to be taken
in the construction of a more physically motivated time coordinate. First, we can synchronize
our observers by an outgoing light pulse so that they have a common starting time for their
measurements. This starting time tR for an observer located at r̃ = R can be calculated by∫ T

tR

dt = T − tR =
∫ ∞

R

c+(r̃) dr̃ ,

where T is the time at infinity and c+ is the outgoing speed of light rays. It does not matter
whether c+ is calculated with respect to the physical or the conformally rescaled metric because
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Figure 4. Grid diagram depicting outgoing null curves on the grid. To synchronize observers from
100 m to infinity, we need to take care of the shift in time given by the height of the thick curve.
The diagram shows that the required shift is negligible in comparison to the time scales we are
interested in.

the null cone structure is invariant under conformal rescalings. We depict in figure 4 null curves
on our grid. We see that the difference in the initial time shift required for the synchronization
is almost negligible for observers sufficiently far away. The reason for this is the fact that
surfaces of a future hyperboloidal foliation follow closely outgoing null surfaces. Note that in
a Cauchy-type foliation, the synchronizing shift in time would be calculated with respect to
a far away observer at a finite distance. The required shift would then be on the order of the
distance of that observer.

The next step for the construction of a physically motivated time parameter would be
the reparametrization of the time coordinate so that the measurement by a given observer is
plotted in proper time. The relation of the proper time of a Killing observer at r̃ = R to the
coordinate time is given by

�s =
∫ √−g̃tt dt =

(
1 − 2m

R

)1/2

�t.

We see that at infinity proper time corresponds to coordinate time. The rescaling makes only
a small difference for observers far away.

A transformation of the results presented in this paper according to the choice of such a
physically motivated time coordinate does not change the conclusions for far away observers.
Therefore, and because of simplicity, the plots will be given in the local time coordinate of the
numerical solution. Note, however, that we do not plot the decay rates for observers near the
horizon in our diagrams although our coordinates do allow this as well.

4.1.4. A remark on finite distance extractions. In numerical calculations where an artificial
timelike outer boundary is introduced, one extracts gravitational radiation information from the
numerical solution at finite distances away from the source. When the extracted information
does not vary in an unexpected manner with extraction radius or algorithm, one suggests that
the calculation delivers a reliable answer. This practice can be regarded as safe as long as
one has a theoretical understanding of the expected radiation signal which delivers tests of the
result, such as the peeling behavior, conservation of mass or waveforms from approximation
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Figure 5. Observer dependence of the tail decay rates at subsequent times. The thick curve
corresponds to T = 20 000 m.

methods to compare with [8, 27]. A naive interpretation of finite distance extractions without
theoretical knowledge, however, can be misleading in terms of results as well as error estimates.

The decay rates at late times provide an example for a case which demands caution. In
figure 5 we present a different way of looking at the same data as given in figure 3. Here,
decay rates at different finite distances have been plotted on subsequent time steps. The thick
curve corresponds to the observer dependence of the decay rates at late times. We see that a
direct Richardson extrapolation based on finite distance decay rates would not only deliver a
wrong result, but also a wrong error estimate.

4.1.5. Scalar field with angular momentum. The difference in the expected tail behavior
at null infinity and finite distances becomes larger with l. At finite distances one expects
the exponent to be p = −2l − 3, whereas at null infinity p = −l − 2. In figure 6 we plot
the decay rates for l = 1 after the quasinormal mode ringing is over and the tail part of the
solution remains. In this case, there is no conjecture of an optimal pointwise decay estimate
yet available in the literature, so we only plot the result of the numerical calculation.

The qualitative behavior depicted in figure 6 is similar to that depicted in figure 3 which
suggests that an estimate similar to (13) with modified exponents can be expected also for
higher multipoles.

4.2. Tails for the Yang–Mills equation

The conformal method can be applied to study other fields as well. The basic requirements
are that the equations transform in a well-defined manner under conformal rescalings of the
metric and the fields have suitable asymptotic behavior. Yang–Mills equations are conformally
invariant so that we can study them directly with the conformal method.

The tail behavior for Yang–Mills equations has been studied in [11] using linear
perturbation analysis. They predict p = −5 at future timelike infinity and p = −3 at
future null infinity. Bizon et al showed in [5] that the linear perturbation theory applied
in [11] does not capture the correct tail behavior for Yang–Mills equations where nonlinear
terms appear (11). Instead they argued and numerically demonstrated that the tail exponent at
timelike infinity is p = −4 both for Minkowski and for Schwarzschild spacetimes.
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Figure 6. Decay rates for a solution to the scalar wave equation on a Schwarzschild background
with l = 1 plotted for the same observers as for figure 3. This plot covers a shorter time than figure 3
due to the faster fall-off of the field.
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Figure 7. Decay rates for a solution to Yang–Mills equations on a Schwarzschild background.
Each curve depicts the function p(t, R) calculated as in (14) for the following values R/m =
(∞, 40 000, 20 000, 10 000, 4000, 2000, 1000, 400, 200, 100).

We plot in figure 7 the observer dependence of decay rates for a solution of the Yang–
Mills equations. Near future timelike infinity at a decay rate of p = −4 is observed in
accordance with [5]. One might expect that the prediction of [11] at future null infinity will
also be wrong at the same rate which indeed seems to be the case. As seen in figure 7, the
numerical calculation suggests a decay rate of p = −2 for Yang–Mills fields at null infinity
on a Schwarzschild background.

5. Conclusions

We investigated the asymptotic behavior of spherically symmetric solutions to scalar wave and
Yang–Mills equations on a Schwarzschild background. The investigation develops an idea
presented in [40] where, among others, decay rates have been used to estimate the validity
of the concept of null infinity for predicting detector signals. Our investigation focuses on
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the observer dependence of decay rates. In the case of scalar fields with vanishing angular
momentum, a powerful mathematical estimate presented in [42, 43] could be compared with a
numerical solution. For scalar fields with angular momentum, no such estimate is yet available,
but the numerical results suggest that a similar estimate with modified exponents should be
valid. For Yang–Mills fields the decay rates near timelike infinity and null infinity have been
studied. The breakdown of linear perturbation theory for predicting decay rates near timelike
infinity in case of Yang–Mills fields as discovered in [5] could be numerically supported also
for decay rates along null infinity.

On the example of the above studies, we emphasized the astrophysical relevance of null
infinity. The examples are intended to contribute to the clarification of the question of to what
extent null infinity can be regarded as a good idealization for far away observers. The studies
also deliver a cautious remark against naive interpretations of finite distance extractions. One
needs to be careful in wave extraction not only due to gauge issues in extraction methods
and influences from the outer boundary, but also due to the fact that the extraction radius
in standard numerical calculations is very small in comparison with astronomical distances.
While the tail is certainly a special feature in that respect, there might be other features in
the radiation signal that show a non-trivial dependence on the extraction surface. Advanced
numerical studies including null infinity should be carried out to clarify this issue as has been
initiated within the characteristic approach [24].

The numerical studies of null infinity presented in this paper have been performed by
solving hyperboloidal initial value problems [20, 23]. This method seems to be quite powerful
to study radiative properties of test fields at null infinity once a suitable class of gauges has
been chosen [1, 17, 30]. It also promises to be more general than the characteristic approach
due to the large freedom involved in the choice of hyperboloidal gauges. In comparison to the
standard initial boundary value problem, the numerical implementation is quite simple because
one does not need to mathematically construct or numerically implement boundary conditions
and data. In addition, the conclusions that can be drawn from the numerical simulation are
more powerful as radiative properties of fields can be studied all the way up to null infinity.

In future work, the hyperboloidal initial value problem should be further studied, for
example, for different test fields or on different backgrounds such as on Kerr spacetime using a
conformal fixing gauge as presented in [46]. The most important challenge in numerical studies
of hyperboloidal initial value problems is to devise a successful numerical implementation of
the conformally compactified Einstein equations including null infinity. While there are some
recent ideas on how to treat a hyperboloidal initial value problem for the Einstein equations
directly [1, 30, 34, 45], they have not yet been implemented numerically for interesting cases.
Studies of test fields might give further insight into this challenging problem.
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