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This short paper should serve as a basis for further analysis of a previously found
new symmetry of the solutions of the wave equation in the gravitational field of a
Kerr black hole. Its main new result is the proof of essential self-adjointness of the
spatial part of a reduced normalized wave operator of the Kerr metric in a weighted
L?-space. As a consequence, it leads to a purely operator theoretic proof of the well
posedness of the initial value problem of the reduced Klein—Gordon equation in
that field in that Z2-space and in this way generalizes a corresponding result of Kay
[“The double-wedge algebra for quantum fields on Schwarzschild and Minkowski
spacetimes,” Commun. Math. Phys. 100, 57 (1985)] in the case of the Schwarzs-
child black hole. It is believed that the employed methods are applicable to other
separable wave equations. © 2009 American Institute of Physics.

[DOLI: 10.1063/1.3037327]

|l. GENERAL INTRODUCTION

The linearized stability of the Schwarzschild black hole follows by combining the Regge—
Wheeler—Zerilli-Moncrief decomposition of gravitational perturbations of the Schwarzschild
metric' " with a result by Kay and Wald'? that proves the boundedness of all solutions of the
wave equation corresponding to C”-data of compact support. The proof of the last rests on the
positivity of the conserved energy.

The question of the linearized stability of the Kerr black hole is still an open problem whose
outcome is of major importance to general relativity. In comparison to the case of the Schwarzs-
child black hole, the solution to this problem is considerably more complicated. Mainly, this is due
to two facts. First, a decomposition comparable to that of Regge—Wheeler—Zerilli-Moncrief does
not yet exist in this case, although the recent finding in Ref. 6 gives hope that such a decompo-
sition might exist. In contrast, a partial decomposition based on the Newman—Penrose formalism
depends on the choice of a tetrad field, i.e., is gauge dependent even under “small” coordinate
transformations.” Second, a conserved energy for the solutions of the wave equation exists, but the
energy density is negative inside the ergosphere. This fact excludes at least a direct application of
the so-called “energy methods” to a proof of stability of the solutions. The total energy could be
finite while the field still might grow exponentially in parts of the space-time. But recently a local
stability result has been proved that the restrictions of the solutions of the wave equation to
compact subsets K in space are elements of L{(K) with a norm converging to zero for t— .
Because of the absence of a decomposition of the Regge—Wheeler—Zerilli-Moncrief type, the
question of applicability of the last and other similar results to the question of linearized stability
of the Kerr metric is still open.

As mentioned above, Ref. 6 contains the surprising find of a new symmetry operator that
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commutes with a normalized' form of the wave operator in a Kerr background. Contrary to
previously known symmetry operators for the wave operator, this operator contains only a partial
time derivative of the first order, but not of higher order. As a consequence, in formulations of the
initial value problem for the wave equation in terms of first order systems of partial differential

equation and related formulations such as Ref. 4, this operator leads to an operator S that forrnally2
commutes with the infinitesimal generator G of time evolution and, therefore, is a candidate for

A

the generator of a strongly continuous semigroup or group of symmetries. In precise terms, S
should lead to an operator S that intertwines with the operators from the strongly continuous
one-parameter group T:[0,%0) —L(Y,Y) generated by G,>'? i.e., which is such that

ST(t) D T(1)S

for all t=0. Here Y denotes the space of data for the wave equation which is a complex Hilbert
space.4 The goal of the present note is to lay part of the foundation for a proof of the last in
providing the new proof of the essential self-adjointness of the spatial part of the reduced normal-
ized wave operator A, of the Kerr metric in a weighted L?-space. In addition, it is believed that the
employed method in this might be applicable to other separable wave equations. In this connec-
tion, it should be remarked that the operator A, is essentially different from the operator V
considered in Ref. 1. The differences are easily seen as a consequence of the different approaches
of both papers to the formulation of a well-posed initial value formulation for the Klein—Gordon
field on a Kerr background. In addition, unlike the case of Aj, the connection of the essential
self-adjointness of V to a well-posed initial value formulation for the Klein—Gordon equation is
still open. Finally, there are differences in the approaches of both papers in their proofs of essential
self-adjointness. Also, the method of proof in this paper is new.

As a consequence, we also arrive at a purely operator theoretic proof of the well posedness of
the initial value problem of the reduced normalized Klein—Gordon equation in the gravitational
field of a Kerr black hole in the weighted L2-space. The last space was already used in Ref. 4.
Also, the last reference gives such a proof, but under the assumption that physical boundary
conditions lead to the Friedrichs extension of the operator that is obtained from the spatial part of
the reduced normalized wave operator of the Kerr metric by restriction to C*-functions with
compact support. In particular, the results in this note prove that this assumption is justified.

Il. THE MATHEMATICAL SETTING
In Boyer-Lindquist coordinates,3 (t,r,0,¢) :Q— R4, the Kerr metric g is given by

2Mar sin®

3
S (dt®d<p+dgo®dl)—Zdr@dr—Edﬁ@dt‘)

2Mr
g= 1—? dr® dt +

AS
- Esin2 Ode ® deo,

where M is the mass, a € [0,M] is the rotational parameter, and

'In the following, the term “normalized” means multiplication from the left by the factor 1/g% in Boyer—Lindquist
coordinates. For instance, such a “normalization” takes place if the Klein—-Gordon equation is solved for the second order
time derivative of the unknown. Commonly, the last is a first step in the formulation of an initial value problem for the
solutions of Klein—-Gordon equations in curved space-times.

’That is, on the level of tuples of functions that are differentiable to sufficiently high order.

3See Ref. 7. If not otherwise indicated, the symbols ¢, 7, 6, ¢ denote coordinate projections whose domains will be obvious
from the context. In addition, we assume the composition of maps, which includes addition, multiplication, and so forth,
always to be maximally defined. For instance, the sum of two complex-valued maps is defined on the intersection of their
domains. Finally, we use Planck units where the reduced Planck constant 7, the speed of light in vacuum ¢, and the
gravitational constant v, all have the numerical value of 1.
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A= =2Mr+d® 3 :=r*+a®cos’ b,

= (> +a®)3 + 2Ma’r sin” 6 _ (r + a*)?
a A A

—a? sin’ 0,

roi=M+VM?—a?, Q=R X (r,,®) X (= m,m) X (0,7).

In these coordinates, the reduced wave equation, governing solutions of the form

Ylt,r, 0, 0) = exp(imo)u(t,r,0),

where m runs through all integers, is given by

Pu 1 [ 4mMardu 9 9 m*d® 1 g . 0 m*
| = _SAS - ———sinf—+——— |u=0 (1)
it 3 A ot Jr dr A sin 690 d6 sin” 6
The spatial part of the reduced normalized wave operator is given by
(0,0 md 1 4 g m? )
Dlf = —(— —A—- - —sin 6— + 2
=2 ar dr A sin 096 360 sin® @ / @

for every f e C*(Q),C). In particular, Df(, is singular since the continuous extensions of the coef-
ficients of its highest (second) order radial derivative vanish on the horizon {r,}X[0,7]. We
represent the operator Dfa as the operator A below in the weighted L>-space X defined by

X = Le(Q,8"V=g).

Here |g| denotes the determinant of the matrix g,,. Note that

g"V-|g|=Zsin 0

is singular at the horizon. Hence the elements of X vanish there in the mean. In the limit a — 0, this

weight reduces to the one that is commonly used in the stability discussion of the Schwarzschild
. 17,11

metric.

lll. PROPERTIES OF THE SPATIAL PART OF THE REDUCED NORMALIZED WAVE
OPERATOR

In the following, we prove that the operator A, defined below is linear, symmetric, and
essentially self—adjoint.4

Definition 1:

(1) We define the domain of A, to consist of all fe C2(Q,C)NX satisfying the conditions

(a)~(c).
(a) DlfeX.
(b)  There is R>0 such that f(r,0)=0 for all r>R and 6 e I,:=(0,m) .

(c)

d
lim —]t;(r, 0)=0

r—ry

“Note that the following operator A, corresponds to the operator Ay+C in Ref. 4.

Downloaded 09 Mar 2009 to 194.94.224.254. Redistribution subject to AIP license or copyright; see http://jmp.aip.org/jmp/copyright.jsp



012502-4 Horst R. Beyer J. Math. Phys. 50, 012502 (2009)

for all 6el,
(ii)  For every f in the domain of A, , we define

Aof = D}f.
Lemma 2: A, is a densely defined, linear, and symmetric operator in X. In addition, A is
semibounded from below with lower bound

m’a’

-—.
AM?r .
Proof: In the following, { | ) denotes the scalar product on X. Obviously, the domain of A is
a subspace of X that contains C(z)(Q,‘C). Since the last is a dense subspace of X, that domain is a
dense subspace of X. Further, A, is obviously linear. In particular, it follows for f, g from the
domain of A that

- J af\* d J af\* J —
> sin Gf*AOg:;{A sin 0[(&_{) g—f"&—‘ﬂ} +&—0{sin 0[((9—];) g—f*a—é;}} +2 sin 6(Ayf)"g

and hence by Green’s theorem that

(flAog) = f S sin Of*Apgdrdf= f S sin O(Aqf) gdrd 8= (Ayflg).
9] 9)

Hence, A, is symmetric. Further, it follows for f from the domain of A that

2 2

S sin Of*(Ag— @)f = - %(A sin Hfg—{) —%(sin ﬁf*j—(j;> + sin H{A j—]: Z—J;

- m*a*  m? ) ) a( 0f) a( .af)
— — >_ — A 3 = | - — -
+< a2 - =+ o I G\ sin o) = 2lsin 00 )

where it has been used that

am zri

EzA

Hence it follows by Green’s theorem that

<f|(A0—CY)f>=J S sin 0f*(Ag— ) fdrd8=0
Q

and, finally, that A is semibounded from below with lower bound a. O

Remark 3: We note that the domain of A, contains all products f& (P}'e cos), where f
€ C%(I,,‘C) and PI":(=1,1)—R is the generalized Legendre polynomial corresponding to m €7,
and l e{|m|,|m|+1,...} .

Theorem 4: A is essentially self-adjoint.

Proof: According to a well-known criterion for essential self—adjointness,5 it follows that A is
essentially self-adjoint if there is A <—a such that the range of Aj—A\ is dense in X. The existence
of such \ will be shown in the following. For this, we note that the elementary inequalities

*For example, see Sec. X.1 in Vol. II of Ref. 15.
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2 4
s
A

2
ry

3)

S

imply that the underlying sets of X and L%(Q,r4 sin §/A) are equal and that the corresponding
norms that are induced on that common set are equivalent. These facts are basic for the following.

In a first step, we note that the following holds for arbitrary A € C and arbitrary f in the
domain of A:

1 ( g 9 mda* 1 9 . 9 m
- - —sinf_—+——
ar Jr A sin 60960 40 sin” 6

A\ T R, ) -A- )\T(Ai/rA)—I:|f’

(4)

where T,4,53), T(a5)4)-1 denote the maximal multiplication operators in X with the functions

(Ag—N)f = Tr“/(Ai)[

r*/(AY) and (AS/r*) -1, respectively. As a consequence of (3), T,4a3) is defined on the whole of
X as well as bounded and bijective. In addition, as a consequence of

az
—1=5a

*‘*| Eh

0=

it follows that T,5,,4); is a bounded positive self-adjoint operator on X. Motivated by (4), we
define an auxiliary operator H in L2({),7* sin /A) whose domain D(H) coincides with the do-
main of Ay and that is defined by

1 ( g 9 ma* 1 9 | ) g m? )f
=7 -—A—- - —sin 60— +
AIAN 9r ar A sin 096 90 sin® 6

for every f e D(H). Utilizing H, the identity (4) is equivalent to

(Ag—N)f = TrA/(Ai)(H— A— 7\T(Ai/r4)—1)f (5)

for every fe D(H). Note that, differently to A,, H can be obtained by “separation” from an
operator which is in a certain sense “spherically symmetric.” This fact significantly simplifies the
study of the properties of H.

In the next step, we show that H is a densely defined, linear, symmetric, and essentially
self-adjoint operator in LZ(€),7* sin /A) which is semibounded from below with lower bound

In this, { | ) denotes the scalar product of L2(Q),7* sin 6/A). Indeed, it follows for f, g € D(H),
that

¥ , d (0f)* g d (&f)* dg P .
—sin fHg=—"YAsin 0| | — | g-f— —\sinb| | = | g-f— —sin O(Hf)"
A f Hg ar| 2 \ar) 8 f&r 0" 0 \0) 8 fae A (Hf)"s
and hence by Green’s theorem that

4 4
(f|Hg)=f rZsin Of Hgdrd 0= rZsin O(Hf)*gdrd 0= (Hf|g).
Q Q

Hence, H is symmetric. Further, it follows for f e D(H) that
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4 2 4
ay af . af\ df. 0f> . af ( r

—sin Of (H- B)f=— —|Asin 6f"— | - — Of — | +sin 6} A| — +|-B—
Asm I ( Bf &r( sin fk&r) ag(sm f*(w sin { o BA

m*a* mz) ) a( af) a( af)
- =_ Z(Asin gL | - = sin g2 ).
IR G\ A s O =\ sin 0 o

Hence it follows by Green’s theorem that

4
(H= B =J %sm o (H - B)fdrd6= 0
[0

and, finally, that H is semibounded from below with lower bound . Hence it follows that H is
essentially self-adjoint if there is A <3 such that the range of H—N\ is dense in L2(€), 7" sin 6/A).
This fact will be proved by application of the theory of Sturm-Liouville operators. For this, we
define I,:=(r,,),

X, := L3(I,,r*/A),

and for every [ € {|m|,|m|+1,...} the Sturm—Liouville operators A,,,;, A,,.;0 in X, by

)

1

A ::__AII
rml()f F4/A(f)’

1 2.2 1 1
Apnif = m{— (AF)' + [— Tl 1>H == O 4 S0+ DA =il

for every f e C(z)(I,,‘C). Obviously, A,,,.i0, A, are both densely defined, linear, and symmetric. The
equation (Af’)" =0 has nonvanishing constants as solutions. Since these are not in X, at both ends
of I,, it follows that A, is in the limit point case at r, and at +%. Hence A, is essentially
self-adjoint (see, e.g., Ref. 18). Further, since [I(/+1)A-m?a*]/r* is bounded and real-valued, it
follows from that by the Rellich—Kato theorem, e.g., see Theorem X.12 in Vol. II of Ref. 15 that

A, 1s also essentially self-adjoint, and that the domains of the closures of A,,,;0 and A,,,.;; A0

and A,,,,;, respectively, coincide. Obviously, A,,,; is semibounded from below with lower bound .
Hence it follows that the range,

Ran(ArmZ - )\) >

of A,,,;—\ is dense in X, for A < . In the following, we assume that A < 8. We note that for every
feCy1,,C) and [ € {|m|,|m|+1,...},

s

(H=M[f & (P]"°cos)|=[(A,,; = Nf] ® (P" cos). (6)

Also, we denote by D the span of the elements of D(H) of the form

f® (P"ocos),

where f e C3(I,,C) and [ € {|m|,|m|+1,...}. That (H=\)D, and hence also Ran(H—\), is dense in
Lé(Q,r4 sin 6/A) can be concluded as follows. For this, let ¢q,e,... be some Hilbert basis of X,.
Since P"fn|°cos,P"fn‘+locos,... is a Hilbert basis of L2(I,,sin), where I,:= (0, ), the family

(ex ® S ety e Nx{lml fml+1.... }
is a Hilbert basis of LZ(€),7* sin 6/A), where

fi:=PJ"ocos

for every [ € {|m|,|m|+1,...}. Since Ran(A,,,,—\) is dense in X,, it follows by (6) that

>
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€k®f[ S (H—)\)D

for every (k,l)e Nx{|m|,|m|+1,...}. Since the span of the last family is dense in
L2(Q,r* sin §/A), this implies that (H—\)D is dense in LA(Q),7* sin #/A). Hence H is also essen-
tially self-adjoint.

In the final step, we use (5) to prove that

Ran(Ay—\)
is dense in X. Since H—\ is essentially self-adjoint such that H—\ is bijective and since

= AT(aS/4)-1

is a positive bounded self-adjoint operator, it follows by the Rellich—Kato theorem that the densely
defined, linear, and symmetric operator

H—=N= AT (35,41

is essentially self-adjoint and that the closure of this operator is bijective. Hence the range of this
operator is dense in L%(Q,r4 sin /A) as well as in X. Finally, since T,4,,5) defines a bijective
bounded linear operator in X, it follows by help of (5) that

Ran(Ay—\)
is dense in X. Since A < 8= a, the last implies that A is essentially self-adjoint. O

IV. THE CASE OF THE KLEIN-GORDON EQUATION

In the case of a Klein—Gordon field of mass u=0, the equation corresponding to (1) is given

by
Fu 1 <.4mMar(9u g 9 mla® 1 9 . o 1% m? 22) 0 )
—+—|i ———A—- - —sin — + + u=0.
ar* s A o9t oJr dr A sin 896 30  sin® @ H
Hence in this case, the operator corresponding to A is defined by
AO,(L = A() + Th’
where T}, denotes the maximal multiplication operator in X by the real-valued function / defined
by
3
h= u?—.

Since the last is also bounded, 7}, is a bounded self-adjoint operator on X. Hence it follows by the
Rellich-Kato theorem that A, is essentially self-adjoint if and only if A, is essentially self-
adjoint. Since the last is the case, A, is essentially self-adjoint, too.

V. CONSEQUENCES

As a consequence of the essential self-adjointness of A, the objects X, A, _,,.==A,—a+e,
B, and C:—(—a+¢) are easily seen to satisfy Assumptions 1 and 4 of Ref. 3.° Here A, denotes the
closure of A,y and £>0 is assumed to have the dimension [72. The exact value of & does not
influence the results in any essential way. In addition, B denotes the maximal multiplication
operator in X by the function multiplying idu/dr in (7). Since that function is bounded and
positive real-valued, B is a bounded linear and positive self-adjoint operator on X given by

fSee also Sec. 5.1 on “Damped wave equations” in Ref. 5.
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4mMar
—f
A3
for every f e X. Hence, application of the results of Ref. 3 give, in particular, the following

well-posed formulation of the initial value problem for (7).514
Theorem 5:

(@i By

Bf=

Y:=DA'"? )xXX

M—a+E

and

(ém) = <A;L/,2_a+s§1 |A1L/,2_a+s771> +(&|m)

for all £=(&,,&) , n=(n,,m) €Y, there is a defined complex Hilbert space (Y,(])) .

(ii)  The operators G and —G defined by

G(f, 77) = (_ 77’A,u,§+ iB 7])

for all £ D(A,) and neD(Allf_Ms) are infinitesimal generators of strongly continuous
semigroups T,:[0,0) — L(Y,Y) and T_:[0,°)—L(Y,Y) , respectively.
(iii)  For every tye R and every £ D(A,) X D(AY2 )| there is a uniquely determined differ-

M—a+E
entiable map u:R—Y such that

u(ty) = ¢
and
u' (1) =— Gu(t)
orallte R . Here “' ” denotes differentiation of functions assuming values in Y . Moreover,
8

this u is given by

_ T.()¢ for t=0
u(®) = T_(-1)é& for t<0

forallteR .
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