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To obtain a well-defined path integral one often employs discretizations. In the case of gravity and

reparametrization-invariant systems, the latter of which we consider here as a toy example, discretizations

generically break diffeomorphism and reparametrization symmetry, respectively. This has severe impli-

cations, as these symmetries determine the dynamics of the corresponding system. Indeed we will show

that a discretized path integral with reparametrization-invariance is necessarily also discretization

independent and therefore uniquely determined by the corresponding continuum quantum mechanical

propagator. We use this insight to develop an iterative method for constructing such a discretized path

integral, akin to a Wilsonian RG flow. This allows us to address the problem of discretization ambiguities

and of an anomaly-free path integral measure for such systems. The latter is needed to obtain a path

integral, that can act as a projector onto the physical states, satisfying the quantum constraints. We will

comment on implications for discrete quantum gravity models, such as spin foams.
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I. INTRODUCTION

Discretizations have become a popular tool in classical
and quantum physics, on the one hand to allow for a
numerical treatment, on the other hand to regularize for
instance the path integral. Also a quite popular expectation
is that fundamental physics is based on discrete structures
rather than continuum space-time, a conjecture followed in
a number of quantum gravity approaches, for instance [1,2].

However, in discretizing a continuum theory one has to
face several issues. One issue, which is particularly rele-
vant for discrete quantum gravity approaches, is that the
symmetries of the continuum theory might be broken by
the discretization. Another issue is that discretizations are
typically never unique, and many different discrete models
might lead to the same continuum physics.1 This is not a
problem if discretization is just viewed as a tool for obtain-
ing continuum physics, but has to be addressed if the
discrete theory is claimed to be ‘‘fundamental’’.

These problems appear in one form or other in many
approaches to quantum gravity, where discretizations break
diffeomorphism symmetry [3]. This symmetry is deeply
entangled with the dynamics of the theory and hence its
breaking has particularly severe repercussions [4].

In the canonical framework diffeomorphism symmetry
leads to the Hamiltonian and diffeomorphism constraints,
satisfying the so-called Dirac algebra, a canonical version
of the group property of diffeomorphisms. These con-
straints are central to the (quantum and classical) dynam-
ics. A discretization violating diffeomorphism symmetry
leads however to a violation of the Dirac algebra and
inconsistencies in the dynamics [5,6]. Some of these issues

can be addressed in the consistent and uniform discretiza-
tion [7] and master constraint [8] approach, however there
the symmetries can only be regained in the continuum limit
(if at all) [9]. There is an anomaly-free quantization of the
Hamiltonian constraints [10] in Loop Quantum Gravity,
however it features many ambiguities whose significance is
not fully understood yet [11] and the status of the corre-
sponding Dirac algebra is not fully satisfactory [10,12].
Although one might suspect that in a covariant approach
the situation regarding diffeomorphism symmetry is much
better than in the canonical ones, this is not the case—
indeed the problems are closely connected [3,4,13,14]. So
far, we are lacking a path integral in which diffeomorphism
symmetry is realized on the discrete level. Related to this
issue is the lack of ‘‘discretization independent’’ (four-
dimensional gravity) models, as there are arguments [15]
that discretization independence should be the equivalent
to the diffeomorphism invariance of the continuum.
Indeed, we will present in Sec. II an argument involving
the dynamics of the theory, showing this equivalence for
the toy model of a one-dimensional reparametrization-
invariant system.
A proper (noncompact) gauge symmetry in a path inte-

gral leads to divergencies, as one integrates an invariant
amplitude over gauge orbits. If the symmetries are broken,
these divergencies do not necessarily appear on the discrete
level, but should reappear in the continuum limit. However,
these divergencies have to be distinguished from proper UV
divergencies which might also appear in a continuum limit.
Additionally in a perturbative approach to path integrals
broken symmetries might lead to inconsistencies [14].
In addition to the amplitudes for the path integral one

has to define an integration measure. Usually one would
like this integration measure to be anomaly free, i.e. to
respect the gauge symmetries of the action. Although there

1Although one of the main problems in many discrete quantum
gravity approaches is actually to extract large scale physics.
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is no discrete amplitude respecting diffeomorphism invari-
ance yet, there is some work [16–18] deriving invariance
conditions for the measure in spin foam models and in this
way fixing some of the ambiguities. These however do not
involve the full dynamics so far. Again we will show in the
context of the one-dimensional toy model that a symmetry
preserving measure can be found; this one, however, has to
involve the full dynamics of the theory.

There is a wide range of ideas to tackle these issues,
which we cannot all discuss here. We will rather illustrate
one approach, which is to obtain so-called perfect
discretizations via a Wilsonian renormalization procedure
[19–22], within the toy model of a one-dimensional
reparametrization-invariant system. The basic idea is
to ‘‘pull back’’ continuum physics onto the lattice.
Alternatively one can start with a discretization and subject
it to a renormalization group transformation, which maps
the physics of a fine discretization to a coarse grained one.
Iterating this procedure one should be able to find a fixed
point which makes the continuum physics exactly mirrored
onto the discretization.

Although the model we will consider in this work is
extremely simple compared to gravity, it displays many
features that we believe will also be relevant for gravity.
We will show that even for this simple system, a perfect
discretization cannot be simply guessed, but has to be
determined by solving the dynamics of the system. In
particular we will show that a full implementation of
reparametrization-invariance—the equivalent to diffeo-
morphism invariance in general relativity—into the dis-
crete path integral implies ‘‘discretization invariance’’, i.e.
the result of the path integral is independent of the number
of subdivisions, including the possibility to have none at
all. We expect that a similar feature will hold for gravity.
This ‘‘discretization invariance’’ actually means that the
basic discrete amplitude (and measure) already provides
the full quantum propagator of the system, also on a large
scale. Hence any free parameter in such a discretization
will influence macroscopic physics. In this sense, requiring
reparametrization-invariance for the discretization will re-
solve all discretization ambiguities. We can expect that
likewise many ambiguities for discrete quantum gravity
are fixed by requiring diffeomorphism invariance. The
crucial question is whether we are left with finitely or
infinitely many (relevant) parameters [23].

As will be explained in Sec. II for the one-dimensional
reparametrization-invariant systems, a perfect discretiza-
tion of the path integral is provided by the (continuum)
quantum propagator, i.e. the evaluation of the continuum
path integral. This is however not very helpful in the many
situations where such a continuum quantum propagator or
path integral is not available. In this case one typically has
to start rather with the discrete system and develop some
approximation methods. We therefore develop an iterative
method to evaluate the path integral, basically following a

Wilsonian renormalization approach. This approach will
automatically address the issue of discretization ambigu-
ities, as we do not consider a specific discretization but a
parameter space describing a certain class of discretiza-
tions, in which one determines the flow induced by a
renormalization group transformation.
A technical difficulty, which we address here, is to deal

with the broken gauge symmetries in the path integral. This
can be done by expanding around a special solution, for
which the symmetries are exact. (Typically the zero
solution qn � 0 for one-dimensional systems. For many
discretizations of gravity flat space is such a solution.) The
action (and measure) can then be improved order by order
such that the gauge symmetries are exact to the order
where one has to evaluate the path integral. Hence one
can either gauge fix or cleanly separate the (infinite) factor
arising from the integration over the gauge orbits.
To start wewill explain the basic ideas of the approach in

Sec. II. In particular we will show that for one-dimensional
systems reparametrization-invariance and discretization
independence for the discrete path integral are equivalent.
In the following Sec. III we will consider the parametrized,
discretized harmonic oscillator, and demonstrate the con-
cepts from Sec. II. Since in this case the time variable is
discrete as well, this is not a linear system anymore, and we
consider different linearizations in order to compute the
reparametrization-invariant propagator. In Sec. IV we will
treat the (quartic) anharmonic oscillator with the same
methods, computing the perfect propagator to first order
in the interaction parameter �. Finally, we will summarize
and discuss our findings in Sec. V, considering, in particu-
lar, the implications for discrete gravity and spin foam
models. Appendixes A, B, and C contain more technical
details on the uniqueness of the solutions to the recursion
relations describing the renormalization flow, and tech-
niques to solve such recursion relations.

FIG. 1. The refinement process of the propagator KðnÞ involves
subdividing the discretization intervals and integrating over the
new variables, obtaining a new propagator Kðnþ1Þ. This process
can be iterated, leading in the limit to the perfect propagator,
which is, in particular, invariant under refinement of the discre-
tization.
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II. REPARAMETRIZATION-INVARIANCE
IN THE DISCRETE AND DISCRETIZATION

INDEPENDENCE

Consider a one-dimensional mechanical system
defined by a Lagrangian Lðq; _qÞ. The variation of the
corresponding action S ¼ R

Lðq; _qÞ with respect to qðtÞ
will determine the solutions. Such a system can be made
reparametrization-invariant by adding the time parameter t
as a dynamical variable to the configuration variable q.
Time evolution is then with respect to an auxiliary parame-
ter s. One can define a new action (here 0 denotes the
derivative with respect to the auxiliary parameter s):

SðqðsÞ; tðsÞÞ ¼
Z

dsL

�
q;
q0

t0

�
t0 (2.1)

which is invariant under reparametrizations qðsÞ,
tðsÞ ! qðfðsÞÞ, tðfðsÞÞ of the trajectories. This new action
has to be varied with respect to qðsÞ and tðsÞ. The equation
of motion for tðsÞ will however be automatically satisfied,
if the equation of motion for qðsÞ is. Hence our system is
underdetermined as we have two variables but only one
independent equation of motion. Indeed, the solutions
qsðsÞ, tsðsÞ are not uniquely determined by the boundary
conditions, as given one such solution one can find a
family of (physically equivalent) solutions qsðfðsÞÞ,
tsðfðsÞÞ by reparametrizing the auxiliary evolution parame-
ter s ! fðsÞ. Performing a (singular) Legendre trans-
formation one will find instead of a proper Hamiltonian a
Hamiltonian constraint C ¼ pt þH (where H is the
Hamiltonian of the original system), which at the same
time is the generator of the gauge transformations, i.e. it
generates evolution in the auxiliary parameter s. This is
very similar to general relativity (where the role of
the auxiliary parameter is taken over by space-time
coordinates).

This reparametrization symmetry is typically broken if
we discretize the system. To this end we replace qðsÞ, tðsÞ
with s in some finite interval, by some finite set of variables
qn, tn with n ¼ 0; . . . ; N. One method of discretization is to
replace derivatives by difference quotients and to choose
some discretization for the potential term V, for instance

Sðqn; tnÞ :¼
XN�1

n¼0

Sn

:¼ XN�1

n¼0

�
1

2

�
qnþ1 � qn
tnþ1 � tn

�
2 þ 1

2
ðVðqnÞ þ Vðqnþ1ÞÞ

�

� ðtnþ1 � tnÞ: (2.2)

(Here and in the following we will consider Wick-rotated
actions in order to make the path integrals convergent. This
just changes the minus in front of the potential V to a plus
sign.) The factor ðtnþ1 � tnÞ arises from the integration
measure

R
dst0 in (2.1).

This action (2.2) does in general (an exception being the
free particle V � 0) not feature anymore any gauge sym-
metries. As a result, the equations of motion arising by
varying with respect to qn, tn, n ¼ 1; . . . ; N � 1 in fact
uniquely fix both qn and tn. Hence both q and t become
propagating (or physical) degrees of freedom in the
discrete theory. Only in the continuum limit does
reparametrization-invariance arise, so that t becomes a
gauge variable again. The broken symmetries lead to so-
called pseudo constraints in the canonical formalism
[3,7,14] instead of proper constraints. These are equations
of motion, i.e. equations between the canonical data of two
consecutive time steps n and nþ 1, which do however
only weakly depend on the data at nþ 1. (Proper con-
straints are equations of motion which do involve only data
of one time step n.)
This feature arises also for discretizations of

gravity, such as Regge calculus [3]. In this case, the dis-
cretization (i.e. the triangulation of space-time) breaks
reparametrization-invariance (i.e. four-dimensional diffeo-
morphism invariance) as well. Furthermore, in gravity
theories singling out an equivalent for t, i.e. identifying
the (pseudo) gauge degrees of freedom and separating
them from the truly physical ones, becomes hideously
complicated.
The breaking of gauge symmetries is a result of the

choice of discretization, however. In particular, there are
discrete actions in 1D which exhibit a discrete remnant of
the reparametrization-invariance, which lead to the correct
amount of physical degrees of freedom. Such perfect ac-
tions can be constructed by a refinement process. Starting
from a discrete action Sðqn; tnÞ, one improves it by refining
the discretization, solving the equations of motion for the
refined degrees of freedom, and evaluating the refined
action on that solution. By iterating this process, or by
directly considering the limit of sending the refined dis-
cretization to the continuum, one will find the perfect
action, which can be shown [3] to be given by
Hamilton’s principal function for the system, i.e.

Sperfðqn; tnÞ ¼
X
n

SHPFðqn; tn; qnþ1; tnþ1Þ (2.3)

where SHPFðqi; ti; qf; tfÞ is Hamilton’s principal function

(for the continuum system), i.e. the action evaluated on the
solution qðsÞ, tðsÞ with boundary conditions ðqi; ti; qf; tfÞ.
The perfect action does display a gauge symmetry for
every (inner) discretization point n, which we will call
vertex translation symmetry, as it is of the form (for finite
gauge parameter �)

tn ! tn þ � qn ! fðqn�1; tn�1; qn; tn; qnþ1; tnþ1Þ;
(2.4)

i.e. it translates the discretization point in time. Hence all
the tn can be seen as gauge parameters. Furthermore the
action is ‘‘discretization independent’’, i.e. Hamilton’s
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principal function SHPFðq0; t0; qN; tNÞ (being the classical
equivalent to the partition function or path integral, which
encodes all the dynamical information) computed from
Sperfðqn; tnÞ does not depend on the number of discretiza-

tion points used, and coincides with the one com-
puted from the continuum action SHPFðq0; t0; qN; tNÞ ¼
Sperfðq0; t0; qN; tNÞ. In particular we can choose N ¼ 1.

Note that to construct this action one needs to basically
solve the dynamics of the system. This can be seen as a
huge disadvantage of the method. However Hamilton’s
principal function provides actually the only discretization
featuring vertex translation symmetry [24]. Hence address-
ing the dynamics of the system cannot be avoided if
one wants to implement the symmetries of the system
(or even just ensure that these symmetries appear in the
continuum limit).

Instead of solving the dynamics at once, one can con-
sider various approximations and follow an iterative ap-
proach of constructing better and better actions. We will
follow this idea here and see that it is closely related to a
Wilsonian renormalization group approach. The perfect
actions then arise as fixed points of iterative (renormaliza-
tion group) transformations. Note that this also resolves
(at least in one dimension) all the discretization ambigu-
ities, as Sperf is the unique action, displaying (the discrete

remnant) of discretization invariance.
It has been shown that this procedure also works for 3D

Regge calculus with nonzero cosmological constant [25].
(For the first steps for dealing with 4D gravity in a pertur-
bative setup, see [22].)

This addresses the classical theory. An open issue is
whether a similar approach will work for the quantum
theory, here in a path integral approach. To evaluate path
integrals analytically we have to follow a perturbative
approach. However, for broken symmetries such a pertur-
bative ansatz may turn out to be inconsistent [14]. The
problems are exceptional solutions (such as qn � 0),
which are typically the only ones displaying symmetry
under vertex translations (i.e. the tn can be chosen arbi-
trarily, the qn remain zero). Perturbing around such solu-
tions one will not find a quadratic term for the time
variables, however these time variables will appear in the
higher order potential terms. This hinders the perturbative
evaluation of the path integral. A way out, suggested in
[14,22] and also followed up here, is to improve the action
perturbatively, so that gauge invariance can be obtained
order by order. This allows an evaluation of the path
integral to the corresponding order, either by gauge fixing
or by changing to gauge invariant variables.

In addition to the action, a path integral requires an
integration measure. In the presence of gauge symmetries
one would require this measure to be invariant under these
symmetries, otherwise one will obtain anomalies. Indeed
only if the measure is invariant, can the path integral serve
as a projector onto the states satisfying the constraints

(arising in a canonical quantization) [13]. We will argue
here that, similarly to having to solve the classical dynam-
ics to obtain the perfect action, one needs to solve the
quantum dynamics to obtain the ‘‘perfect measure’’2 and
with this a perfect discretization of the path integral:
Consider a discrete path integral with two time steps:

hq0; t0jq2; t2i :¼ Zðq0; t0; q2; t2Þ
:¼

Z
dq1dt1Kðq0; t0; q1; t1ÞKðq1; t1; q2; t2Þ

(2.5)

where we summarized amplitude and measure for
one discretization step into the discrete propagator
Kðqn; tn; qnþ1; tnþ1Þ. (We term this propagator as the per-
fect discretization given by the quantum propagator of
the system.) Now assume that the vertex translation invari-
ance (2.4) has been fully implemented into (2.5). As the
gauge symmetry just translates the time variable t1 we can

gauge fix to an arbitrary value t1 ¼ tf1 and drop the t1
integration. (The Fadeev-Popov determinant is trivial in
this case.) We obtain

Zðq0; t0; q2; t2Þ :¼
Z

dq1Kðq0; t0; q1; tf1ÞKðq1; tf1 ; q2; t2Þ:
(2.6)

As tf1 is arbitrary we can consider the limit tf1 ! t2. Now

the interpretation of Kðq1; tf1 ; q2; t2Þ is to give the ampli-
tude for a particle to propagate from q1 to q2 during the

time interval ðt2 � tf1Þ. In the limit tf1 ! t2 we should

therefore have Kðq1; tf1 ; q2; t2Þ ! �ðq1 � q2Þ. Hence we

will obtain that the right-hand side of (2.6) is equal to the

discrete propagator Kðq0; t0; q2; t2Þ and since tf1 can be

chosen arbitrarily we have shown that

Kðq0; t0; q2; t2Þ ¼
Z

dq1Kðq0; t0; q1; t1ÞKðq1; t1; q2; t2Þ:
(2.7)

Starting from the assumption that vertex translation invari-
ance has been realized for the path integral (2.5), we have
shown that the discrete propagator K needs to satisfy (2.7),
which is the usual convolution property for the propagator
kernel in quantum mechanics.
This actually proves that a path integral with vertex

translation invariance is also discretization invariant, i.e.
it does not depend on the number of subdivisions. Having
no subdivisions at all—which gives just the discrete propa-
gator K—should coincide with having infinitely many—
which gives the propagator in the continuum. Hence the
discrete propagator Kðqn; tn; qnþ1; tnþ1Þ is given by the

2The split of the path integral into amplitude and measure is
ambiguous and we will not insist on one particular splitting here.
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usual quantum mechanical propagator for the continuum
system.

On the other hand, if we have a discrete propagator
satisfying (2.7) (where we do not integrate over t), then
the corresponding path integral is invariant under vertex
translations, as one can integrate out and reinsert every
discretization point ðqn; tnÞ. This shows that for one-
dimensional reparametrization-invariant systems, finding
a discretization which respects this invariance and
discretization independence3 are equivalent. We conjecture
that this will also hold for discrete gravity, i.e. discretized
path integrals respecting diffeomorphism invariance
(which in its discrete form is also expected to be vertex
translation invariance, see the discussion in [22]) should
be also discretization independent. Again, this also
means that in order to construct such path integrals
one has to consider the dynamics of the discrete
(quantum) models.

To summarize the discussion, a perfect discretization of
the quantum mechanical path integral would be given by
the (continuum) propagator. This would however not be
very helpful for systems in which this propagator is not
known, such as quantum gravity. Therefore in this article,
we want to adopt the procedure of successively improving
the action of a classical discrete system to the quantized
case, as this approach might also be helpful for more
complicated cases. This will also introduce a method to
actually solve the path integral for the corresponding con-
tinuum system iteratively.

To improve the discrete propagator iteratively we start
from the propagator property (2.7) with a ‘‘naively discre-

tized’’ propagator Kð0Þ. This can be taken as

Kð0Þðqn; tn; qnþ1; tnþ1Þ ¼ �ð0Þ
n exp

�
� 1

ℏ
Sð0Þn

�
(2.8)

where Sð0Þ is the naive discretized action (2.2). We will see
that the classical part of the iteration equations (which is
the part without ℏ dependence) leads to the perfect discre-

tization for the action. The initial measure factor �ð0Þ
n

should be chosen such that Kð0Þ ! �ðqn � qn�1Þ for
ðtn�1 � tnÞ ! 0.

Refining the discretization and integrating out the inter-
mediate degrees of freedom will result in the improved

propagator Kð1Þ, and iterating the procedure will lead to the
perfect propagator satisfying (2.7). From the construction it
should be clear that one subdivision step will be sufficient
(as in Fig. 1), i.e. we define

Kðnþ1Þðq0; t0; q2; t2Þ
:¼

Z
dq1dt1K

ðnÞðq0; t0; q1; t1ÞKðnÞðq1; t1; q2; t2Þ: (2.9)

Here we included the integration over t1. In Sec. III we
will perturb around the solution qn � 0 which is
reparametrization-invariant also in the naive discretization
and introduce a method such that the t1 integration can be
dropped.
In order to find the perfect propagator, we will parame-

terize (some part of) the space of functions, allowing for
arbitrary couplings in the action and measure factors.
Equation (2.9) will then lead to recursion relations for the
coefficients, which are closely related to the renormaliza-
tion group flow of the system. We will find that not only
does the classical perfect action provide a fixed point of the
equations derived from (2.9), but also the measure factor �
will be determined, providing the quantum corrections to
the classical perfect action.

III. THE HARMONIC OSCILLATOR LINEARIZED
AROUND �qn ¼ 0

In the following, we will deal with the (Wick-rotated)
parameterized harmonic oscillator, the action for which is
given by

SðqðsÞ; tðsÞÞ ¼ 1

2

Z
ds

�
q0ðsÞ2
t0ðsÞ þ!2qðsÞ2t0ðsÞ

�
: (3.1)

By naively discretizing the action one replaces contin-
uum functions qðsÞ, tðsÞ by discretely many values
qn ¼ qðsnÞ, tn ¼ tðsnÞ, and derivatives by difference quo-
tients. For the discretization of the integral measure we use
ds ¼ snþ1 � sn. Hence we arrive at

Sð0Þðqn; tnÞ ¼
XN�1

n¼0

�
1

2

�
qnþ1 � qn
tnþ1 � tn

�
2 þ!2

2

�
q2n þ q2nþ1

2

��

� ðtnþ1 � tnÞ: (3.2)

As we have already indicated, because of the naive dis-
cretization, the action (3.2) does not contain gauge
symmetries, see for instance [3]. That has given
(general) boundary data ðq0; t0; qN; tNÞ both the qn and
the tn for n ¼ 1; . . .N � 1 and they are determined by
the equations of motion.
The action (3.2) is not quadratic and not even polyno-

mial in the tn-variables, and therefore not considered to be
a noninteracting system. The path integral is therefore
nontrivial, and we consider approximations to it which
will render it feasible. The approximation we are going
to perform here involves quantizing only the perturbations
around a background solution, i.e. we consider the per-
turbed variables

qn ¼ �qn þ xn (3.3)

3Where here we understand under discretization independence
the property (2.7), there we do not integrate over the time
variable, that is we consider already a gauge fixed version of
the path integral. Otherwise the integral would be divergent, if
vertex translation invariance is realized.
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tn ¼ �tn þ �n (3.4)

where �qn, �tn are to satisfy the equations of motion coming
from the discrete action. The path integral for this linear-
ized theory, containing the variables xn, �n, can be viewed
as a linear approximation to the path integral for the whole
theory. Of all the solutions to the equations of motion
derived from (3.2), the constant solution, i.e. �qn � 0, �tn
arbitrary, is special in that this solution still exhibits some
gauge symmetry (i.e. change in the �tn), which is a remnant
of the reparametrization-invariance of the continuum the-
ory. In this regard, it is analogous to the flat solution �t ¼ 0
in 4D Regge calculus [3,26], which still exhibits the vertex
displacement symmetry. We will consider linearization
around this solution first, before turning to linearization
around a general solution later.

Expanding the action for one time step (neglecting all
orders of xn and �n higher than two), we arrive at

Sð0Þðx0; �0; x1; �1Þ ¼ 1

2

ðx1 � x0Þ2
T01

þ!2

4
ðx21 þ x20ÞT01

¼: �ð0Þ
1 ðT01Þðx20 þ x21Þ þ �ð0Þ

2 ðT01Þx0x1
(3.5)

with T01 :¼ �t1 � �t0. Note that here the �tn (hence the Tnm)
now play the role of parameters, since they are just the
background solution. The actual perturbed time variables
�n have disappeared from (3.5), mirroring the invariance
of the background solution �qn ¼ 0 under translations
of the �tn.

In the second line of (3.5) we introduced a general
parametrization of an action, quadratic in the variables
x0, x1 and symmetric under exchanging x0, x1. This allows
also for considering different discretizations in one go. We
will define a renormalization procedure (corresponding to
the so-called decimation procedure, where one just inte-
grates out some variables) on the space of such actions and
look for fixed points of the renormalization flow acting on
the parameter functions�k. Hence we can expect that some
choices for the initial discretization are not relevant, as
these different choices may flow to the same fixed point.

A difference in the usual discussions of renormalization
group transformations is that the parameters �kðT01Þ in the
action (3.5) are not just coupling constants but functions of
the time distance T01. The appearance of ‘‘coupling func-
tions’’ �ðT01Þ can be avoided by expanding these functions
in a suitable basis, for instance a power series in T01. In
general this will introduce infinitely many coupling pa-
rameters (which one could also treat perturbatively).
However the fixed point conditions (which are related
to the condition of discretization independence and
reparametrization-invariance) will fix almost all of these
coupling constants.

To define the iteration procedure we assume that the
one-step propagator has the form

Kðx0; x1; T01Þ ¼ �ðT01Þ exp
�
� 1

ℏ
ð�1ðT01Þðx20 þ x21Þ

þ �2ðT01Þx0x1Þ
�
; (3.6)

that is that the measure factor �ðT01Þ does only depend on
the background time difference and not for instance on the
x0, x1. This assumption is justified, as the form of the
propagator will be stable under iteration.
Since the perturbative variable �1 does not appear in the

action (3.5) the propagator for two time steps is

Kð1Þðx0; x2; T01 þ T12Þ
¼
Z

dx1d�1�
ð0ÞðT01Þ�ð0ÞðT02Þ exp

�
� 1

ℏ
ðSð0Þðx0; �0; x1; �1Þ

þ Sð0Þðx1; �1; x2; �2ÞÞ
�

(3.7)

leads to a divergent result.
This infinite factor represents the volume of the discrete

diffeomorphism group (in this case the actual placement of
the interior discretization point), which is the whole real
line. We will drop this infinite factor here, so we will not
integrate over �1, which will lead to a finite result.4

Having dropped the �1-integration in the path
integral, the remainder can be easily computed. Choosing
T :¼ T01 ¼ T12 for simplicity,5 we obtain for the propa-
gator

Kðnþ1Þðx0; x2; 2TÞ
¼ �ðnÞðTÞ2

Z
dx1 exp

�
� 1

ℏ

�
�ðnÞ
1 ðTÞðx20 þ 2x21 þ x22Þ

þ �ðnÞ
2 ðTÞðx0x1 þ x1x2Þ

��

¼: �ðnþ1Þð2TÞ exp
�
� 1

ℏ

�
�ðnþ1Þ
1 ð2TÞðx20 þ x22Þ

þ �ðnþ1Þ
2 ð2TÞx0x2

��
: (3.8)

This defines recursion relations for the coefficients �1,
�2 and � given by

4This is reminiscent of the Ponzano-Regge model, which also
needs to be gauge fixed in order to produce finite results. One
could argue that �1 should not range over the whole real line,
since t1 should always remain between t0 and t2. Indeed,
restricting the integration range appropriately would lead to a
finite result, just as a similar restriction within the Ponzano-
Regge model—which ensures that one only sums over diffeo-
morphisms which preserve the orientation everywhere—renders
the model finite. However, the finite result does not only not
agree with the Ponzano-Regge amplitude, it also leads to a
triangulation-dependent model, in which the diffeomorphism
symmetry is still broken [27]. We therefore do not adapt that
strategy here.

5It will turn out that this regular subdivision is sufficient to
regain the full symmetry under vertex translations and arbitrary
subdivisions, i.e. discretization independence.
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�ðnþ1Þ
1 ð2TÞ ¼ �ðnÞ

1 ðTÞ � �ðnÞ
2 ðTÞ2

8�ðnÞ
1 ðTÞ (3.9)

�ðnþ1Þ
2 ð2TÞ ¼ � �ðnÞ

2 ðTÞ2
4�ðnÞ

1 ðTÞ (3.10)

�ðnþ1Þð2TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

�ℏ

2�ðnÞ
1 ðTÞ

vuut �ðnÞðTÞ2: (3.11)

To find the perfect propagator, one can iterate the
Eqs. (3.9), (3.10), and (3.11), with initial values for the

�ð0Þ
i ðTÞ taken from (3.5). Alternatively we can directly look

for the fixed points. Considering the first two equations
involving only the� coefficients, a family of fixed points is
given by6

S�ðx0; x1; TÞ :¼ ��
1ðTÞðx20 þ x21Þ þ ��

2ðTÞx0x1
¼ ~!

2g

coshð ~!TÞðx20 þ x21Þ � 2x0x1
sinhð ~!TÞ : (3.12)

Note that this action is Hamilton’s principal function for
the harmonic oscillator with frequency ~! and a coupling
1=g in front of the action. These constants are determined
by the initial values for the action, which for our choice
(3.5) leads to ~! ¼ !, g ¼ 1. Indeed in Ref. [28], this
initial action converges to (3.12) under the iterations de-
fined by (3.9). That there is at least a two-parameter family
of fixed points parametrized by ~!, g can be easily deduced
from the iteration Eqs. (3.9). These are invariant under a
rescaling �k ! g�1�k. Furthermore if �kð�Þ is a fixed
point, so is �kð ~!� �Þ. In Appendix B we will show that
the action (3.12) provides the most general solution to the
fixed point conditions.

For the fixed point equation of the measure factor �ðTÞ
we can use the fixed point solution ��

1ðTÞ. A solution is
given by

��ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

~!

2�ℏg sinhð ~!TÞ

s
expð~�TÞ; (3.13)

where ~� is a free parameter. Again we will show in
Appendix B that this is the most general fixed point solu-

tion. The free parameter ~� describes the possibility to add a
constant potential term �T to the action (3.5).

Note that the iteration equation for the measure factor �
is not linear in �—rather we have � quadratically appear-
ing on the right-hand side of (3.11). Hence if we scale

the initial value �ð0Þ with a factor a we obtain a scaling

�ðnÞ � a2
n
for the n-th iteration. Therefore many initial

values will either diverge or converge to zero. However,
starting with e.g. the measure factor of the path integral

for the free particle �ð0ÞðTÞ ¼
ffiffiffiffiffiffiffiffiffi
1

2�gℏ

q
T�ð1=2Þ leads to a

nonvanishing convergent result [28]. This also satisfies
the normalization condition mentioned in Sec. II.
To summarize for the initial action (3.5) we obtain the

perfect quantum propagator:

Kðx0; x1; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏ sinhð!TÞ
r

� exp

�
�!

ℏ
coshð!TÞðx20 þ x21Þ � 2x0x1

2 sinhð!TÞ
�
:

(3.14)

Note that this propagator (3.14)—although calculated
for the linearized theory—coincides with the nonperturba-
tive quantum mechanical propagator for the harmonic
oscillator

Kðq0; t0;q1; t1Þ

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏsinhð!ðt1� t0ÞÞ
s

�exp

�
�!

ℏ
coshð!ðt1� t0ÞÞðq20þq21Þ�2q0q1

2sinhð!ðt1� t0ÞÞ
�
: (3.15)

This also gives the propagator for the parametrized har-
monic oscillator, which we obtain from our calculation for
the linearized theory by replacing the background parame-
ters �tn by the full dynamical variables tn and the perturba-
tions xn by qn.
Hence the propagator property

Kðq0; t0; q2; t2Þ ¼
Z

dq1Kðq0; t0; q1; t1ÞKðq1; t1; q2; t2Þ
(3.16)

is not only satisfied for equal step times ðt2 � t1Þ ¼
ðt1 � t0Þ (which holds due to the fixed point condition)
but also for arbitrary subdivisions into unequal time steps.7

Furthermore we achieved full ‘‘discretization indepen-
dence’’: if we use for the discrete propagator in the (dis-
cretized) path integral the perfect propagator the result will
not depend on the number of subdivisions we use.
As explained in Sec. II, related to this discretization

independence is the invariance of the path integral (3.16)
under ‘‘vertex translations’’, i.e. changing the value for t1
in (3.16).8 Again, we do not integrate over t1 (which in the
parametrized theory is a dynamical variable) in (3.16), as
this would just lead to an infinite factor.
The gauge symmetry in the path integral leads to a

constraint in the canonical theory. Indeed, the propagator
(3.15) satisfies the quantummechanical constraint equation

6The fixed point property is easy to check using sinhð2yÞ ¼
2 sinhðyÞ coshðyÞ and coshð2yÞ ¼ cosh2ðyÞ þ sinh2ðyÞ.

7This is not so surprising as we basically computed the path
integral iteratively. The fixed points correspond to taking the
(equal time step) discretization to the continuum limit.

8The gauge symmetry also involves a corresponding change in
q1, this can however be absorbed in a variable transformation for
q1 in the action. One can check that the Jacobian of this trans-
formation changes the measure factor accordingly, so that one
obtains the measure appropriate for the transformed t1.
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for the parametrized harmonic oscillator (which is just the
usual Wick-rotated Schrödinger equation if one reinter-
prets t as a nondynamical time parameter):

ĈKðq0; t0;q1; t1Þ

¼
�
ℏ

@

@t0
þℏ2

2

@2

@q20
þ!2

2
q20

�
Kðq0; t0;q1; t1Þ ¼ 0: (3.17)

Note that this constraint equation is only satisfied for the

fixed point (3.15) and not for any of the propagators KðnÞ
for finite n, which would correspond to some (nonperfect)
discretized version of the path integral. That is the fixed
point characterized by a symmetry, which is reflected in the
constraint in Eq. (3.17).

Linearized dynamics around a solution with �qn � 0

In this section we will linearize the discretized, parame-
trized harmonic oscillator around a classical solution (3.3)
with �qn � 0. Since in this case the background solution
does not exhibit gauge symmetry, neither does the linear-
ized theory [14]. Hence, the �n appear as variables and
have to be dealt with.

Expanding the action (3.2) into second order via (3.3),
one arrives at an action for the linearized variables xn, �n.
Since reparametrization symmetry is broken, there is no
obvious choice for a gauge variable (a role which was
fulfilled by the �n in the previous case, where the symme-
tries were present), so in the path integral the integrals over
both xn and �n have to be performed. Moreover, the
resulting propagator is not a projector on the physical
Hilbert space of the continuum theory.

Performing one refinement step therefore amounts to
evaluating

Kðnþ1Þðx0; �0; x2; �2Þ
¼
Z
dx1d�1K

ðnÞðx0; �0; x1; �1ÞKðnÞðx1;�1; x2;�2Þ (3.18)

withKð0Þðx0; �0; x1; �1Þ ¼ �ð0Þ expð�Sð0Þðx0; �0; x1; �1Þ=ℏÞ.
In this case �ðnÞ and the action SðnÞ depend furthermore on
the background variables �qi, �ti. It should be noted that, for
one refinement step, the background solution �q1, �t1 has to
be chosen such that it is a solution to the equations of

motion of the discretized action SðnÞ with boundary values
�q0, �t0, �q2, �t2.
The integral (3.18) is actually finite in most cases,9

despite the �1 integration actually being carried out. This

is a result of the broken symmetries of the linearized
theory: the �n are actually propagating degrees of freedom,
corresponding to a small but nonvanishing eigenvalue in
the Hessian of the action.
Because of �1 being present, there are many more co-

efficients in the action SðnÞ, leading to more complicated
recursion relations coming from (3.18). These have been
derived in [28], and we report on the findings in what
follows:
The recursion relations for the coefficients coming from

the action SðnÞ converge to a fixed point which is given by

S ¼ !

2

coshð!TÞð �q20 þ �q21Þ � 2 �q0 �q1
sinhð!TÞ

þ !

2 sinhð!TÞ ðcoshð!TÞðx20 þ x21Þ � 2x0x1Þ (3.19)

þ!2ð �q0 � coshð!TÞ �q1Þ
sinh2ð!TÞ x0ð�0 � �1Þ

þ!2ð �q1 � coshð!TÞ �q0Þ
sinh2ð!TÞ x1ð�0 � �1Þ

�!4ð �q0 � coshð!TÞ �q1Þð �q1 � coshð!TÞ �q0Þ
2sinh4ð!TÞ ð�20 þ �21Þ

(3.20)

with T ¼ �t1 � �t0. Not surprisingly, the action (3.20) is
actually the perfect action of the harmonic oscillator
expanded up to second order in the linearized variables
(3.3). More interesting is the behavior of the measure

factor �ðnÞ. One can separate the measure factor into two
contributions:

�ðnÞ ¼ AðnÞBðnÞ; (3.21)

where AðnÞ arises as prefactor from the integration over the

x1, and BðnÞ from the integration over �1 in (3.18). It is not
hard to show that in the limit of infinite refinement

AðnÞ !
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏ sinhð!TÞ
r

; (3.22)

which coincides with the measure factor for the linearized

case (3.14). However, despite BðnÞ being finite for every n,
in the limit it actually diverges, leading to a diverging
propagator.
This is also not surprising if one keeps in mind that in the

continuum theory � is actually the gauge variable, and
therefore should not be integrated over in the path integral.
The breaking of symmetry in the discrete theory has led to
a finite integral, however in the perfect limit the integration
over �1 coincides with an integral over the volume of the
gauge group. This volume is infinite, since it corresponds
to the placement of the intermediate point �n, which can be
put everywhere on the real line.
Hence, in the perfect limit, the gauge symmetry can also

be recognized by the volume of the gauge group still being

9Note however that even in theWick-rotated framework the path
integral for the linearized theory (3.18) is not necessarily always
convergent. The reason is that, depending on the (background)
boundary values q0, t0, qN , tN , the Hessian matrix of second
derivatives, which arises as inverse propagator for the xn, �n due
to the expansion (3.3), might not be positive definite, rendering the
Gaussian integral divergent. This is also an effect of the broken
gauge symmetries. There is, however, good control over which
boundary values lead to a positive definite Hessian [28], and we
assume that such a choice has been made in what follows.
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present in the path integral. This could have been remedied
in the first place by not integrating over �1, but rather gauge
fixing it to a definite value, e.g. �1 ¼ ð�0 þ �2Þ=2, which
also coincides with the classical solution to the equations
of motion of the linearized system. In the case of gravity
such a split is not so easy to obtain. In this case one has to
consider the eigenmodes of the Hessian of the action and
the corresponding eigenvalues. The eigenvalues of the
pseudo gauge modes will converge to zero in the perfect
limit and will lead to a divergence of the measure.

Dropping the infinite volume of the gauge group, one
arrives at the perfect propagator:

Kðx0;�0; x1; �1Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏ sinhð!TÞ
r

exp

�
� 1

ℏ
Sðx0; �0; x1; �1Þ

�
(3.23)

where S is given by (3.20). It is straightforward to check
that the propagator (3.23) satisfies the constraint

ĈKðx0;�0; x1;�1Þ

¼
�
ℏ

@

@�1
þℏ2

2

@2

@x21
þ!2

2
x21

�
Kðx0; �0; x1; �1Þ ¼ 0; (3.24)

i.e. K is a projector on the physical Hilbert space.
Furthermore, writing explicitly the dependence of K on
the background solution �qi and �ti, K also satisfies

Kðx0; �0; x2; �2; �q0; �t0; �q2; �t2Þ
¼
Z

dx1Kðx0; �0; x1; �1; �q0; �t0; �q1; �t1Þ
� Kðx1; �1; x2; �2; �q1; �t1; �q2; �t2Þ (3.25)

for every �q1, �t1 that satisfy

�q 1 ¼ �q0
sinhð�t2 � �t1Þ
sinhð�t2 � �t0Þ þ �q2

sinhð�t1 � �t0Þ
sinhð�t2 � �t0Þ ; (3.26)

i.e. that satisfy the equations of motion of the (Wick-
rotated) continuum harmonic oscillator. In this sense the
perfect propagator is independent of the actual discretiza-
tion, i.e. for N ¼ 2 of which actual background solution
one is perturbing around.

IV. THE ANHARMONIC OSCILLATOR

In Sec. III we dealt with the harmonic oscillator line-
arized around the background solution with �qn ¼ 0. Here
the linearization effectively lead to omitting the fluctua-
tions �n in the time variables. Indeed, treating these ex-
plicitly in the path integral is quite complicated, as the time
variables appear nonpolynomially in the action.

To discuss a truly interacting theory we will now con-
sider the quartic anharmonic oscillator, so that we need to
expand the action to at least fourth order. We have to face
the problem that the �n appear in the third and fourth order
of the expansion. Nevertheless we will see that also in this
case we can avoid the integration over the fluctuations �n
by perturbing around the perfect propagator for the har-
monic oscillator.

To start with, a discretization for the quartic anharmonic
oscillator is given by the following action for one time step:

S01 ¼ 1

2

ðq1 � q0Þ2
ðt1 � t0Þ þ!2

4
ðq21 þ q20Þðt1 � t0Þ

þ �

2 � 4! ðq
4
0 þ q41Þðt1 � t0Þ: (4.1)

In a path integral approach we can treat such actions only
perturbatively. For instance we can expand as before
around the background solution �qn ¼ 0 and �tn arbitrary.
To second order in the perturbation variables xn, �n we
recover the harmonic oscillator, treated in Sec. III. In
particular, there the perturbations �n did not appear and
we could just ignore the integration over these variables in
the path integral.
However, to capture the anharmonic term, we need to

expand to higher order in the variables, which introduces a
dependence on the �n. Even worse, the lowest order terms
in which the �n appear, are linear in the �n, which cannot be
directly dealt with in the path integral.
Classically one can show [14] that a perturbative treat-

ment of actions with broken symmetries, which are how-
ever expanded around a background solution with exact
symmetries, is in general inconsistent in higher-than-linear
order. The problem is that the background gauge parame-
ters (here the �tn) are free to lowest order in perturbation
theory but are fixed by (nonlinear) consistency conditions
to higher order. That is, if the �tn are not already chosen such
that these consistency equations are satisfied, the ansatz
tn ¼ �tn þ ��n is not justified as the solutions for the �n will
involve terms �n � ��1.
To avoid this issue one can improve the action order by

order. That is, one would start with the quadratic order of
the action and find the perfect action to this order. To this
one adds the (naively discretized) third order term. For this
third order action the problem above does not appear (to
lowest nonlinear order), i.e. the background gauge parame-
ters �tn remain free. This third order action has to be
improved again, after which one can add the fourth order
term and so on.
This solves the consistency problem on the classical

level. It also solves the problem in the path integral: the
action (and measure) being perfect up to a certain order
will be also gauge invariant to this order. Hence one can
either apply gauge fixing, or rewrite the action into gauge
invariant variables, such that the path integral need only be
performed over these variables.
As explained in Sec. III, in the case of the harmonic

oscillator the perfect action for the quadratic approxima-
tion already gives us the full nonperturbative perfect ac-
tion, if we just replace the background time parameters �tn
with the full variables tn. We therefore do not need to
perform the perfection procedure to third order. To fourth
order we have a contribution from the anharmonic poten-
tial term. So we will start from the action
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S01 ¼ !

2

�
coshð!ðt1 � t0ÞÞðq20 þ q21Þ � 2q0q1

sinhð!ðt1 � t0ÞÞ
�

þ �

2 � 4! ðq
4
0 þ q41Þðt1 � t0Þ: (4.2)

We will again consider the case with two time steps, so
that we always need to integrate only over one variable pair
q1, t1, that is we consider

S ¼ S01ðq0; t0; q1; t1Þ þ S12ðq1; t1; q2; t2Þ: (4.3)

Applying the expansion qn ¼ 0þ xn, tn ¼ �tn þ �n we
would actually encounter third and fourth order terms
(from the expansion of the perfect part of the action) in
which the �1 appear. We know however that the perfect
action is exactly gauge invariant; hence there exist a vari-
able transformation ðq1; t1Þ ! ðQ1; T1Þ such that this per-
fect part only depends on Q1. Indeed with T1 ¼ t1 and

Q1 :¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

sinhð!ðt2 � t0ÞÞ
sinhð!ðt1 � t0ÞÞ sinhð!ðt2 � t1ÞÞ

s

�
�
q1 � sinhð!ðt2 � t1ÞÞ

sinhð!ðt2 � t0ÞÞq0 �
sinhð!ðt1 � t0ÞÞ
sinhð!ðt2 � t0ÞÞq2

�

(4.4)

we find

S01þS12¼!

2
Q2

1þ
!

2

�
coshð!ðt2� t0ÞÞðq20þq22Þ�2q0q2

sinhð!ðt2� t0ÞÞ
�

þ �

2 �4!ððq
4
0þq41ðQ1;q0;q2ÞÞðt1� t0Þ

þðq41ðQ1;q0;q2Þþq42Þðt2� t1ÞÞ: (4.5)

In the last line q1 has to be expressed as a linear
combination of Q1, q0 and q2 (with tn dependent coeffi-
cients) by inverting (4.4). Note that the second term in the
action (4.5) is just Hamilton’s principal function for the
harmonic oscillator, coinciding with the perfect action for
the time step t2 � t0. We now expand the action (4.5)
in Q1 ¼ 0þ X1, qn ¼ 0þ xn for n ¼ 0, 2 and in tn ¼
�tn þ �n. Indeed we see that �1 does not appear in an
expansion up to fourth order in the variables. We can
therefore drop the �1-integration in the path integral just
as in the case of the harmonic oscillator. A similar argu-
ment can be applied if we consider the path integral
involving any number N of steps. Again one can find a
transformation from the q1; . . . ; qn�1; t1; . . . ; tn�1 to varia-
blesQ1; . . . ; QN�1; t1; . . . ; tN�1 such that the harmonic part
of the action depends only on the Qk. We can therefore
ignore the fluctuation variables �k also in the iteration
process (which computes the N ¼ 2M path integral itera-
tively) below.10

This allows us to compute iteratively the perfect
propagator for the anharmonic oscillator to first order
in �. As for the harmonic case we have to choose a
parametrization for the propagator. To this end con-
sider the first iteration step, i.e. integrating out Q1 from
(4.5), where again we assume T ¼ �t2 � �t1 ¼ �t1 � �t0:

Kð1Þðx0; x2; 2TÞ
¼
Z

dQ1ð�ðTÞÞ2 exp
�
� !

2ℏ
Q2

1 �
1

ℏ
Sharmðx0; x2; 2TÞ

�

�
�
1� �

ℏ
ðIð0Þ01 ðTÞ þ Ið0Þ12 ðTÞÞ þOð�2Þ

�

¼: �ð2TÞ exp
�
� 1

ℏ
Sharmðx0; x2; 2TÞ

�

�
�
1� �

ℏ
Ið1Þ02 ð2TÞ þOð�2Þ

�
: (4.6)

The action Sharm is the perfect action for the harmonic
oscillator appearing in (4.5). It does not depend on Q1;
hence this exponential factor can be pulled out of the
integral.
We have chosen a measure factor of

�ðTÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏ sinhðT!Þ
r �

sinhðT!Þ
2 coshðT!Þ

�
1=4

(4.7)

which corresponds to the perfect measure for the harmonic
oscillator for the Q1 variable. The second factor is (the
square root of) the Jacobian of the transformation from q1
to Q1. To zeroth order in � this measure factor remains
indeed invariant under iteration. (First order corrections
in � to the measure can be absorbed into the interaction
term I02.)

The interaction terms Ið0Þ01 , I
ð0Þ
12 are polynomials of up to

fourth order in X1. The coefficients of the X1 in these
polynomials depend on x0, x2 in such a way that all terms
are fourth order if we add up the powers in x0, X1, and x2.

Performing the integration11 in (4.6) one will find that Ið1Þ02

will contain all even powers in x0, x2 up to fourth order
including a constant term. We therefore adopt the follow-
ing parametrization for the interaction term:

I01 ¼ �0ðTÞðx40 þ x41Þ þ �1ðTÞðx30x1 þ x0x
3
1Þ þ �2ðTÞx20x21

þ 	0ðTÞðx20 þ x21Þ þ 	1ðTÞx0x1 þ 
ðTÞ: (4.8)

From the iteration

Kðnþ1Þðx0; x2; 2TÞ
¼
Z

dX1K
ðnÞðx0; x1ðX1Þ; TÞKðnÞðx1ðX1Þ; x2; TÞ þOð�2Þ

(4.9)

with

10Alternatively, [28] introducing the variableQ1 one can expand
first the action in qn ¼ 0þ xn, tn ¼ �tn þ �n for n ¼ 0, 1, 2 to
fourth order and then define a coordinate transformation x1 ! ~X1

such that the action to fourth order only depends on ~X1 and not on
�1. This leads to the same results as the approach presented here. 11RdXX2k expð�aX2Þ ¼ a�ðkþð1=2ÞÞ�ðkþ 1

2Þ.
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KðnÞðx0; x1; TÞ ¼ �ðTÞ exp
�
� 1

ℏ
Sharmðx0; x1; TÞ

�

�
�
1� �

ℏ
IðnÞ01 ðTÞ þOð�2Þ

�
(4.10)

we obtain recursion relations for the coefficients �, 	, and

. This is a straightforward exercise involving only the
transformation from x1 to X1 given by (4.4), just replacing
q1, Q1 by x1, X1 and performing the integration over X1.

By expanding in powers of ℏ these recursion relations
can be divided into a classical part and quantum correc-
tions. The classical part of the recursion relations coincides
with the recursion relations one would obtain by extrem-
izing

Sharmðx0; x2; 2TÞ þ �Iðnþ1Þðx0; x2; 2TÞ
¼ Sharmðx0; x1; TÞ þ Sharmðx1; x2; TÞ

þ �IðnÞðx0; x1; TÞ þ �IðnÞðx1; x2; TÞ þOð�2Þ (4.11)

with respect to x1. A solution to the corresponding
fixed point equations is given by Hamilton’s principal
function (for the corresponding continuum action),
which can be readily obtained to first order in �, see
Appendix A.
We will see that the classical part coincides with the

homogeneous part of the recursion relations. As will be
explained in Appendix C, the inhomogeneous recursion
relations can be easily brought into a standard form once
the fixed point solutions to the homogeneous part is known.
Hence it helps very much to have the classical system
solved, in order to obtain the full quantum mechanical
solution.
The recursion relations for the �i-coefficients are a

closed system as these correspond to the classical problem
with just an x4 order interaction term:

�ðnþ1Þ
0 ð2TÞ ¼ 1

8cosh4ðT!Þ
�
ð1þ 8cosh4ðT!ÞÞ�ðnÞ

0 ðTÞ þ ð4cosh3ðT!Þ þ coshðT!ÞÞ�ðnÞ
1 ðTÞ þ 2cosh2ðT!Þ�ðnÞ

2

�

�ðnþ1Þ
1 ð2TÞ ¼ 1

2cosh4ðT!Þ
�
�ðnÞ
0 ðTÞ þ ðcosh3ðT!Þ þ coshðT!ÞÞ�ðnÞ

1 ðTÞ þ cosh2ðT!Þ�ðnÞ
2

�

�ðnþ1Þ
2 ð2TÞ ¼ 1

4cosh4ðT!Þ
�
3�ðnÞ

0 ðTÞ þ 3 coshðT!Þ�ðnÞ
1 ðTÞ þ 2cosh2ðT!Þ�ðnÞ

2 ðTÞ
�
:

(4.12)

One fixed point of these equations is provided by the perfect action for the anharmonic oscillator (to linear order in �),
determined in Appendix A:

��
0ðTÞ ¼

~�

768!sinh4ðT!Þ
�
12T!� 8 sinhð2T!Þ þ sinhð4T!Þ

�

��
1ðTÞ ¼

~�

192!sinh4ðT!Þ
�
�12T! coshðT!Þ þ 9 sinhðT!Þ þ sinhð3T!Þ

�

��
2ðTÞ ¼

~�

64!sinh4ðT!Þ
�
2T!ð2þ coshð2T!ÞÞ � 3 sinhð2T!Þ

�
:

(4.13)

The fixed point equations are invariant under a rescaling �i ! ~��i, and hence we have ~� as a free parameter for the
solutions. This is easy to understand as the freedom to rescale the interaction term is by an arbitrary constant, redefining the
coupling constant �. As for the ambiguities g, ~! appearing in the fixed points for the harmonic oscillator, the final coupling
constant is determined by the initial conditions for the iteration procedure.

The solution (4.13) is actually not the most general one. We will explain in Appendix B that the most general solution
has two further free parameters, which determine the couplings to terms _x4 and _x2x2 in the corresponding continuum
Lagrangian. In the following we will however set these couplings to zero, that is consider the standard quartic anharmonic
oscillator with a perturbation term x4.

Next we consider the recursion relations for the 	i, which are given by

	ðnþ1Þ
0 ð2TÞ ¼ 	ðnÞ

0 ðTÞ
�
1þ 1

2cosh2ðT!Þ
�
þ 	ðnÞ

1 ðTÞ 1

2 coshðT!Þ
þ ℏ

!

�
3 tanhðT!Þ
2cosh2ðT!Þ�

ðnÞ
0 ðTÞ þ 3 tanhðT!Þ

4 coshðT!Þ�
ðnÞ
1 ðTÞ þ tanhðT!Þ

2
�ðnÞ
2 ðTÞ

�

	ðnþ1Þ
1 ð2TÞ ¼ 	ðnÞ

0 ðTÞ 1

cosh2ðT!Þ þ 	ðnÞ
1 ðTÞ 1

coshðT!Þ þ
ℏ
!

�
3 tanhðT!Þ
cosh2ðT!Þ �

ðnÞ
0 ðTÞ þ 3 tanhðT!Þ

2 coshðT!Þ�
ðnÞ
1 ðTÞ

�
: (4.14)
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Equations (4.14) have a homogenous part which is inde-
pendent of ℏ, and an inhomogeneity proportional to ℏ
depending on the �i, i.e. the fourth order potential. To
any solution of the full recursion relations one can add
an arbitrary multiple of the solutions to the homogeneous
part of the recursion relations. Hence to find all solutions
one has to determine also the solutions to the homogeneous
part. As this part is of the order of ℏ0 it is again equivalent
to the classical iteration relations one would obtain if one
considers an interaction term quadratic in x added to the
perfect action for the harmonic oscillator. A solution for
the homogeneous fixed point equations is hence again
given by the perfect action for the harmonic oscillator:
Take (3.19) and replace there ~!, g ! !þ �~�, 1þ � ~�
and expand to first order in �, resulting in

	h
0ðTÞ ¼ � cothðT!Þ � �T!

sinh2ðT!Þ
	h

1ðTÞ ¼ �
2T! coshðT!Þ
sinh2ðT!Þ ��

2

sinhðT!Þ :
(4.15)

(Here we reparametrized � ¼ 1
2 ð~��! ~�Þ and � ¼ 1

2 ~�.)
Again we find a two-parameter ambiguity corresponding to
the ambiguities g and ~! that we found for the harmonic
oscillator.

For the inhomogeneous equations we can assume that
the �i are given by their fixed point values (4.13). There is
a general strategy with which one can attempt to find the
fixed points for the inhomogeneous equations, which re-
quires the knowledge of the homogeneous equations. We
will demonstrate this in Appendix C as an example. The
general solution is given by

	�
0ðTÞ ¼ � cothðT!Þ � �T!

sinh2ðT!Þ þ
~�ℏ

32!2sinh2ðT!Þ
� ð2þ cosh2ðT!Þ � 3T! cothðT!ÞÞ

	�
1ðTÞ ¼ �

2T! coshðT!Þ
sinh2ðT!Þ ��

2

sinhðT!Þ
þ

~�ℏ
32!2sinh3ðT!Þ ð4T!þ 2T! coshð2T!Þ

� 3 sinhð2T!ÞÞ: (4.16)

Finally the recursion relations for 
 are given by


ðnþ1Þð2TÞ ¼ 2
ðnÞðTÞ þ ℏ tanhðT!Þ
!

	ðnÞ
0 ðTÞ

þ 3ℏ2tanh2ðT!Þ
2!2

�ðnÞ
0 ðTÞ: (4.17)

Again we have a homogeneous part corresponding to a
classical iteration procedure. This corresponds to having a
constant potential added to the perfect action for the har-
monic oscillator. It is easy to see that under the classical
recursion relations such a constant term is just multiplied
by 2 corresponding to changing the time interval from T to
2T. Hence a (family of) fixed points for the homogeneous
part of the relations is just given by 
�ðTÞhom ¼ �T.
The fixed points for 
�ðTÞ for the full recursion relations

can be readily found with methods shown in Appendix C.
These are given by


�ðTÞ ¼ �T � ℏ
!

�
�� �T! cothðT!Þ

�

�
~�ℏ2

64!3

�
3 cothðT!Þ � T!ð2þ 3

sinh2ðT!ÞÞ
�
:

(4.18)

To summarize, the fixed point propagator is

Kð�;�;�;~�Þðx0; x1; TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

!

2�ℏ sinhðT!Þ
r

exp

�
� 1

ℏ
Sharmðx0; x2; TÞ

�
�
�
1� �

ℏ
�
� ~�

768!sinh4ðT!Þ ð12T!� 8 sinhð2T!Þ

þ sinhð4T!ÞÞðx40 þ x41Þ þ
~�

192!sinh4ðT!Þ ð�12T! coshðT!Þ þ 9 sinhðT!Þ þ sinhð3T!Þ
�

� ðx30x1 þ x0x
3
1Þ þ

~�

64!sinh4ðT!Þ ð2T!ð2þ coshð2T!ÞÞ � 3 sinhð2T!ÞÞx20x21

þ
�
� cothðT!Þ � �T!

sinh2ðT!Þ þ
~�ℏ

ð2þ cosh2ðT!Þ � 3T! cothðT!ÞÞ
32!2sinh2ðT!Þ

�
ðx20 þ x21Þ

þ
�
�
2T! coshðT!Þ
sinh2ðT!Þ ��

2

sinhðT!Þ þ
~�ℏ

ð4T!þ 2T! coshð2T!Þ � 3 sinhð2T!ÞÞ
32!2sinh3ðT!Þ

�
x0x1

þ �T � ℏ
!
ð�� �T! cothðT!ÞÞ �

~�ℏ2

64!3

�
3 cothðT!Þ � T!

�
2þ 3

sinh2ðT!Þ
���

þOð�2Þ
�
:

(4.19)
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For the initial data used in (4.6) the propagator takes on a
simplified form, as in this case ~� ¼ 1 and� ¼ � ¼ � ¼ 0.
Nevertheless the result is quite complicated: even to guess
the correct reparametrization-invariant measure (i.e. all
terms proportional to ℏ and ℏ2 in square brackets) in case
the perfect classical action is given, without actually solv-
ing the dynamics, seems to be quite impossible in general
situations.

From the infinitely many parameters �iðTÞ, 	iðTÞ, and

ðTÞ in our initial parametrization we are left with the

couplings ~�, �, �, and � (and a further two couplings
corresponding to adding terms _x4 and _x2x2 to the contin-
uum Lagrangian, see Appendix B). These parameters char-
acterize the continuum Lagrangian (and Hamiltonian, see
below), i.e. all discretization ambiguities are resolved by
requiring reparametrization-invariance for the discretized
path integral.

Again, although for the recursion Eqs. (4.9) we have set

t1 ¼ t0þt2
2 , the fixed points of the recursion equations sat-

isfy a stronger condition, namely

Kðx0;x2;T1þT2Þ¼
Z
dx1Kðx0;x1;T1ÞKðx1;x2;T2ÞþOð�2Þ

(4.20)

for arbitrary positive T1, T2. In other words, the perfect
propagator Kðx0; x1; TÞ leads to a path integral which for
N > 1 has become independent—to first order in �—on
the actual placement of the intermediate discretization
points, which correspond to the discretized choice of tðsÞ in
(3.1). It therefore mimics exactly the gauge symmetry of
the continuum theory. Also (4.20) shows that the model
defined by the propagator (4.19) is discretization indepen-
dent (up to terms of order �2), i.e. the discrete path integral
defined by the amplitude (4.19) does not depend on the
number of discretization points.

The invariance under a gauge symmetry leads to a con-
straint, which is satisfied by the propagator (4.19)

Ĉð�;�;�;~�Þ :¼ ℏ
@

@T
þ ð1þ 2ð���ÞÞℏ

2

2

@2

@x21

þ x21
2
ð!2 þ 2ð�þ�ÞÞ þ

~��

4!
x41 þ � (4.21)

such that

Ĉ ð�;�;�;~�ÞKðx0; x1; TÞ ¼ Oð�2Þ: (4.22)

This constraint equation characterizes the fixed points, it

would not be satisfied by the KðnÞ for finite n.

V. SUMMARYAND DISCUSSION

In order to obtain a well-defined path integral one
often utilizes discretizations. This may however lead to a
breaking of (gauge) symmetries, which in the case of
general relativity are central for the dynamics of the

system. We addressed this problem here in the context of
reparametrization-invariant systems. Despite being ex-
tremely simple compared to gravity, these systems share
the property that the gauge symmetry determines the dy-
namics of the system [29].
Indeed we could show in Sec. II that requiring the

implementation of reparametrization-invariance for the
discretized path integral—where it assumes the form of
vertex translations (2.4)—uniquely fixes the discrete
propagator. Namely the propagator has to coincide with
the quantum mechanical continuum propagator of the sys-
tem under consideration. Furthermore such a discretized
path integral is automatically discretization independent,
i.e. the propagator does not depend on the number of
subdivisions. This is just the convolution property (2.7)
of the continuum quantum mechanical propagator. The
number of subdivisions can be taken to zero, in which
case one obtains the discrete propagator itself, even for
large time steps. This (fixed point) discrete propagator is
furthermore characterized by satisfying the constraint
equations.
We conjecture that similar properties will also hold for

discrete gravity: a full implementation of diffeomorphism
invariance in the form of a symmetry under vertex trans-
lations [22] should lead to discretization independence.
Similar to the example of reparametrization-invariance,
the discretization can then be taken to be a very coarse
one; hence one would expect that many discretization
ambiguities will be fixed (as free parameters in the discrete
propagator have an effect on macroscopic scales). It would
be interesting to have proof for more general cases, in
analogy to the arguments presented here. One important
difference to the one-dimensional case is that a perfect
action or perfect discretization for higher dimensional
theories will include nonlocal couplings [20–22].
The implementation of vertex translation symmetry into

the discretized path integral will also ensure that this path
integral satisfies constraints [13], which can be taken as a
characterization of the fixed point. Again, an important
difference to the one-dimensional case is that such con-
straints will involve nonlocal couplings, and are therefore
not explicitly known. These constraints would however be
free of anomalies.
Coming back to reparametrization-invariant systems, we

can take the requirement of discretization independence in
the form of the convolution property (2.7) as a starting
point to define an iterative procedure. This iterative proce-
dure improves the discrete propagator, so that in the limit it
satisfies the convolution property (2.7) and defines a dis-
cretization in which reparametrization-invariance is real-
ized in the form of vertex translations. Some points we
wish to emphasize, are the following:
(i) Quite naturally, one is led to consider not one

specific discretization, but an entire class of
discrete models. The iterative procedure defines a
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renormalization group flow within this class. This
allows a discussion of all possible fixed points.
Indeed, here we found not only the solutions to the
(an-) harmonic oscillator, but to the most general
Lagrangian involving even powers in q and _q up to
order 4. Hence to study the relevance of discretiza-
tion ambiguities in gravity models [11], it might be
essential to study the behavior of these models
under coarse graining. Note also that the relevant
parameters—which fix the corresponding continuum
Lagrangian—are all determined by the lowest orders
in an expansion of the discrete propagator in the time
variable, that is by the behavior of the propagator for
short times. The higher order coefficients in this
expansion can indeed be understood as proper dis-
cretization ambiguities, which are fixed by requiring
reparametrization-invariance of the discrete propa-
gator. This might be an interesting point for spin
foam models, as one often rather concentrates there
on the limit of having large building blocks (with an
amplitude that would correspond to what we termed
naive discretization, as it has not been subject to any
coarse graining procedure).

(ii) Even for the simple case of the anharmonic oscil-
lator, the reparametrization-invariant discrete path
integral (4.19) is quite complicated, and it would
probably be impossible to guess it without actually
solving the dynamics. Similarly, to find an anomaly-
free measure for spin foammodels [16–18], it seems
to be unavoidable to address the dynamics of the
system, in particular, the behavior under coarse
graining. Even to just ensure anomaly-freeness in
the continuum limit (which is the only thing one
might realistically expect), a study of the coarse
graining properties might be valuable. As we have
seen, the choice of initial data for the iterative
procedure of the measure factor had to be done
carefully in order to obtain a convergent result.
The behavior of the amplitudes under (dynamically)
trivial subdivisions [16,18] are nevertheless inter-
esting as first steps in this direction. These might
actually be important in order to show that vertex
translation symmetry implies discretization inde-
pendence for gravity, in analogy to the one-
dimensional case.

(iii) Path integrals with (properly implemented) gauge
symmetries act as projectors onto the space of
physical states [13]. Indeed spin foams are often
mentioned as a tool to obtain physical states, or to
define the physical inner product, for loop quantum
gravity. As we have seen in the toy example of
reparametrization-invariant systems, to obtain a
propagator satisfying the quantum constraints, it
was necessary to take the fixed point propagator,
that is the perfect or continuum limit of the

(naively) discretized path integral. On the other
hand the constraints can be expressed as conditions
on the fixed point coefficients ��

i ðTÞ; . . . ; 
�ðTÞ.
For future work it would be interesting to explore
the relation between these conditions encoding
reparametrization-invariance, and the fixed point
conditions encoding discretization independence.

(iv) Finally, the methods applied in this work—basi-
cally a version of Wilsonian Renormalization
Group flow—might be actually useful in order to
find solutions to quantum mechanical path inte-
grals. It would also be interesting to apply these
techniques to reparametrization-invariant systems
arising in minisuperspace reductions of gravity,
for instance for loop quantum cosmology [30].
The path integral for the anharmonic oscillator is
usually used to derive the corrections to the energy
levels of the harmonic oscillator [31], for which one
just needs to obtain the T ! 1 behavior of the
propagator. Here we derived the full propagator
for arbitrary T, as this is needed to define a perfect
discretization of the path integral, and with this an
anomaly-free (with respect to vertex translation
symmetry) path integral measure. We also want to
point out the work [32], where the authors also
discussed a perfect path integral for the anharmonic
oscillator. The difference to the work presented
here is that [32] uses a different coarse graining
procedure, namely, averaging instead of decimation
as applied here. We employed decimation as
this seems to be the only method to obtain
reparametrization-invariance.
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APPENDIX A: HAMILTON’S
PRINCIPAL FUNCTION FOR THE
ANHARMONIC OSCILLATOR

Here we give Hamilton’s principle function for the
anharmonic oscillator to first order in �, as this will provide
a fixed point for the recursion relations for �i (4.12).
In [3] it was shown that for a 1D system the perfect

action coincides with Hamilton’s principal function for the
given boundary values, i.e.

Sperfðq0; t0; q1; t1Þ ¼
Z

ds

�
1

2

ðq0Þ2
t0

þ!2

2
q2t0 þ �

4!
q4t0

�
(A1)

where qðsÞ and tðsÞ are solutions to the continuum equa-
tions of motion with boundary values q0, t0, q1, and t1. To
find Hamilton’s principal function to first order in � we
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would need to find the solutions at most to first order in �,
and then perform the integral in (A1), i.e. we expand

qðsÞ ¼ �qðsÞ þ �xðsÞ þOð�2Þ (A2)

tðsÞ ¼ �tðsÞ þ ��ðsÞ þOð�2Þ (A3)

where �q, �t are solutions to the harmonic oscillator.
However to first order in � we do not need the explicit
form of the solutions xðsÞ, �ðsÞ: These would only appear in
the harmonic oscillator part of the action (A1). This con-
tribution vanishes however due to the (harmonic oscillator)
equations of motion for the background solution �qðsÞ, �tðsÞ.
Hence we just need to evaluate the integral (A1) on the
harmonic oscillator solution. One finds

Sperfðq0;t0;q1; t1Þ

¼!

2

coshðT!Þðq20þq21Þ�2q0q1
sinhðT!Þ

þ �

768!sinh4ðT!Þ
��

12T!�8sinhð2T!Þ

þsinhð4T!Þ
�
ðq40þq41Þþ

�
�48T!coshðT!Þ

þ36sinhðT!Þþ4sinhð3T!Þ
�
ðq0q31þq30q1Þ

þ
�
24T!ð2þcoshð2T!ÞÞ�36sinhð2T!Þ

�
q20q

2
1

�
: (A4)

Similarly one can obtain Hamilton’s principal function to
first order in � for the harmonic oscillator with perturbation
terms � _q4 and _q2q2. As explained in the next section, these
terms arise in the most general fixed point solution to the
recursion relations (4.12).

APPENDIX B: ON THE UNIQUENESS
OF THE FIXED POINT SOLUTIONS

Here we will discuss the uniqueness of the solutions to
the fixed point Eqs. (3.9), (3.10), and (4.12) in the main
text. In all cases we assume that the solutions can be
represented by a power series

P1
n¼n0

cnT
n, which starts

with some finite lowest power Tn0 , that can also be
negative.

We start our considerations with the relations (3.9),
(3.10), and (3.11) for the discretized action of the harmonic
oscillator, which we rewrite into

0 ¼ ��
1ð2TÞ��

1ðTÞ � ��
1ðTÞ2 þ

1

8
��
2ðTÞ2 (B1)

0 ¼ ��
2ð2TÞ��

1ðTÞ þ
1

4
��
2ðTÞ2: (B2)

Making the ansatz

�iðTÞ ¼
X1
n¼n0

�i;nT
n (B3)

one will find the following equation arising from the co-
efficients to the lowest power T�2n0 in the Eq. (B1):

0 ¼ ð2n0 � 1Þð�1;n0Þ2 þ
1

8
ð�2;n0Þ2

0 ¼ 2n0�1;n0�2;n0 þ
1

4
ð�2;n0Þ2:

(B4)

It is easy to see that this equation can be only solved for
n0 ¼ �1, in which case we obtain

�2;�1 ¼ 
1; �1;�1 ¼ � 1

2

1 (B5)

where 
1 is a free parameter. After having fixed the lowest
order, one can convince oneself that if one iteratively
solves the higher order equations for the coefficients of
T�2þkþ1, then these equations are linear (inhomogeneous)
equations for the coefficients �i;k, i.e. are of the formX

j

Aij�j;k ¼ hi: (B6)

Here the matrix A is given by

A ¼ 2k�1 � 3
4 � 1

4� 1
2 2k�1 � 1

2

 !
(B7)

and hi represents the inhomogeneous terms. The matrix
has only vanishing determinant for k ¼ 1 (and k ¼ �1,
which we already discussed). Indeed, the equations for �i;1

add a further free parameter 
2, as one will find the
solutions

�2;1 ¼ 
2; �1;1 ¼ �
2: (B8)

Since the matrix A has nonvanishing determinant for all
other k’s one will have unique solutions for all the other
coefficients depending on the two free parameters 
1, 
2.
The solution obtained in this way agrees with the one
(3.12) presented in the main text, with an appropriate
choice of the two free parameters g, ~! there.
One will find the same matrix A appearing in the recur-

sion relations (4.14) for the 	-coefficients in the anhar-
monic oscillator case. This is not surprising, as these arise
by adding a perturbation to the harmonic oscillator qua-
dratic in the variables x0, x1. Since the determinant of the
matrix A is only vanishing in two cases k ¼ �1; 1, one will
again find at most solutions with two free parameters,
which is indeed the case for the solutions (4.16).
We will now discuss the solutions to the fixed point

Eqs. (3.11)
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��ð2TÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�ℏ sinhð ~!TÞ
2 coshð ~!TÞ

s
��ðTÞ2

¼
�
T1=2

X1
k¼0

c2kT
2k

�
��ðTÞ2: (B9)

Here we used in the fixed point solution (3.11) and ex-
panded the prefactor appearing in the first equation into a
power series. As we have to choose for our initial measure

�ð0Þ a functional dependence �ð0Þ � T�1=2, we start with
the assumption that �� is of the form

��ðTÞ ¼ T�1=2
X1
n¼n0

�nT
n (B10)

with some finite, not necessarily positive number n0. Using
this form in the fixed point conditions (B9), it is easy to see
that we must have n0 ¼ 0 and that the first coefficient �0 is
given by

�0 ¼ 2�1=2c�1
0 : (B11)

Using (B11), one will find that the coefficient equation for

the power of T1�1=2 in (B9) leaves �1 as a free parameter.
Indeed for the coefficients �k with k > 0, the equations are
of the form

ð2k � 2Þ�k ¼ fkð�l; l < kÞ; (B12)

with f1 ¼ 0. Hence�1 remains a free parameter, determin-
ing all other coefficients uniquely. The additional parame-
ter corresponds to adding a constant potential term to the
Lagrangian for the harmonic oscillator. The full solution is
given in (3.13).

Now we will turn to the recursion relations (4.12)

��
0ð2TÞ ¼

1

8cosh4ðT!Þ
�
ð1þ 8cosh4ðT!ÞÞ��

0ðTÞ
þ ð4cosh3ðT!Þ þ coshðT!ÞÞ��

1ðTÞ
þ 2cosh2ðT!Þ��

2

�

��
1ð2TÞ ¼

1

2cosh4ðT!Þ
�
��
0ðTÞ þ ðcosh3ðT!Þ

þ coshðT!ÞÞ��
1ðTÞ þ cosh2ðT!Þ��

2

�

��
2ð2TÞ ¼

1

4cosh4ðT!Þ ð3�
�
0ðTÞ þ 3 coshðT!Þ��

1ðTÞ
þ 2cosh2ðT!Þ��

2ðTÞÞ (B13)

for the x4 terms in the discretized action of the anharmonic
oscillator. This case is even easier to treat than the
relations (B1) as we have a system linear in the variables.
We assume again an ansatz

�iðTÞ ¼
X1
n¼n0

�i;nT
n (B14)

with a lowest order Tn0 . Since the coshðT!Þ�l functions
appearing in (B13) can be expanded in a Taylor series (i.e.
there are no negative powers of T appearing), the equation
for the lowest order coefficients �i;n0 will beX

j

Aij�j;n0 ¼ 0 (B15)

where

A ¼
9
8 � 2k 5

8
1
4

1
2 1� 2k 1

2
3
4

3
4

1
2 � 2k

0
B@

1
CA: (B16)

The determinant of this matrix is only vanishing for
k ¼ �3, �1 and k ¼ 1 and for these cases the matrix
has rank 2. Hence we can expect three linearly independent
solutions. For the higher order coefficients one has the
same equation as in (B15), just that inhomogeneous terms
(arising from the lower order coefficients) have to be added
to the right-hand side. As the determinant of A is non-
vanishing except for the three cases mentioned above, we
do not have any further free parameters than the three
parameters from the three linearly independent solutions.
The solutions with lowest order n0 ¼ 1 is the one (4.13)

displayed in the main text. The most general solution is

�0ðTÞ ¼ 1

768!sinh4ðT!Þ
�
4ð3~��3 � ~��1 þ 3~�1ÞT!

þ 8ð~��3 � ~�1Þ sinhð2T!Þ
þ ð~��3 þ ~��1 þ ~�1Þ sinhð4T!Þ

�
(B17)

�1ðTÞ
¼� 1

192!sinh4ðT!Þ
�
4ð3 ~��3� ~��1þ 3~�1ÞT!coshðT!Þ

þ ð11~��3þ ~��1� 9~�1ÞsinhðT!Þ
þ ð3~��3þ ~��1� ~�1Þ sinhð3T!Þ

�
(B18)

�2ðTÞ ¼ 1

192!sinh4ðT!Þ
�
4ð3~��3 � ~��1 þ 3~�1ÞT!

þ 2ð3~��3 � ~��1 þ 3~�1ÞT! coshð2T!Þ
þ 3ð5~��3 þ ~��1 � 3~�1Þ sinhð2T!Þ

�
: (B19)

These coefficients describe Hamilton’s principal function
corresponding to a perturbation term (as this is still first
order in �):

�

4!

�~��3

!4
_x4ðtÞ þ

~��1

!2
_x2ðtÞx2ðtÞ þ ~�1x

4ðtÞ
�

(B20)

added to the Lagrangian for the harmonic oscillator. The
solutions that start with n0 ¼ �3, n0 ¼ �1 correspond to
terms _x4 and _x2x2 added to the Lagrangian.
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Applying the same techniques to the last recursion
Eq. (4.17) reveals that there is only one free parameter �
for the solutions, which does appear in the solution (4.18).

To summarize, we have found all the solutions to the
fixed point equations under the (physically justifiable)
assumption that all the solutions can be expanded into a
power series in T starting with some lowest, not necessarily
positive, order. The free parameters that do appear in the
solutions can be all interpreted in terms of ‘‘large scale’’
physics. Hence there are no discretization ambiguities left,
if we require reparametrization-invariance to hold.

APPENDIX C: RECURSION RELATIONS
FOR THE �i

Here we want to shortly explain how one can tackle the
recursion relations (4.14)

	ðnþ1Þ
0 ð2TÞ¼	ðnÞ

0 ðTÞ
�
1þ 1

2cosh2ðT!Þ
�

þ	ðnÞ
1 ðTÞ 1

2coshðT!Þþ
ℏ
!

�
3tanhðT!Þ
2cosh2ðT!Þ�

ðnÞ
0 ðTÞ

þ3tanhðT!Þ
4coshðT!Þ�

ðnÞ
1 ðTÞþ tanhðT!Þ

2
�ðnÞ
2 ðTÞ

�

(C1)

	ðnþ1Þ
1 ð2TÞ ¼ 	ðnÞ

0 ðTÞ 1

cosh2ðT!Þ þ 	ðnÞ
1 ðTÞ 1

coshðT!Þ
þ ℏ

!

�
3 tanhðT!Þ
cosh2ðT!Þ �

ðnÞ
0 ðTÞ

þ 3 tanhðT!Þ
2 coshðT!Þ�

ðnÞ
1 ðTÞ

�
: (C2)

These recursion relations have a homogeneous part:

	ðnþ1Þ
0 ð2TÞ ¼ 	ðnÞ

0 ðTÞ
�
1þ 1

2cosh2ðT!Þ
�

þ 	ðnÞ
1 ðTÞ 1

2 coshðT!Þ (C3)

	ðnþ1Þ
1 ð2TÞ ¼ 	ðnÞ

0 ðTÞ 1

cosh2ðT!Þ þ 	ðnÞ
1 ðTÞ 1

coshðT!Þ ;
(C4)

to which an inhomogeneity is added. Hence there will be at
least one ambiguity, as to every solution of the inhomoge-
neous equations one can add an arbitrary multiple of the
solutions to the homogeneous solutions. One therefore
needs to determine the solutions to the homogeneous equa-
tions, if one wants to find the full space of solutions. These
solutions can be obtained as explained in the main text, or
alternatively, by subsequently transforming the variables to
simplify and decouple the equations. Another general
method is the expansion in a power series in T, which

replaces the ‘‘coupling functions’’ 	0ðTÞ, 	1ðTÞ by infi-
nitely many coupling constants 	k

0, 	
k
1.

Assume we are being given the solution 	h
0 , 	

h
1 to the

homogeneous equations, in our case

	h
0ðTÞ ¼ � cothðT!Þ � �

T!

sinh2ðT!Þ
	h

1ðTÞ ¼ �
2T! coshðTÞ
sinh2ðTÞ ��

2

sinhðTÞ :
(C5)

We want to introduce new variables ~	0, ~	1 such that the
recursion relations (C1) decouple and simplify. To this end
we can use the solutions (C5). To decouple the equations

we choose the new variables such that ~	0 �� and ~	1 � �
for the solutions in the new variables:

~	 0ðTÞ :¼ 2 coshðT!Þ	0ðTÞ þ 	1ðTÞ
~	1ðTÞ :¼ 	0ðTÞ þ 1

2
coshðT!Þ	1ðTÞ:

(C6)

Indeed we find for the (homogeneous) fixed point
conditions

~	 �
0ð2TÞ ¼ 2 coshðT!Þ ~	�

0ðTÞ ~	�
1ð2TÞ ¼ 2 ~	�

1ðTÞ:
(C7)

The homogeneous solutions in the new variables are
now

~	 h
0ðTÞ ¼ 2� sinhðT!Þ (C8)

~	 h
1ðTÞ ¼ �T!: (C9)

To write the fixed point equations into the form fð2TÞ �
fðTÞ ¼ gðTÞ with gðTÞ representing the inhomogeneous
terms, we apply another transformation:

�	 0ðTÞ :¼
~	0ðTÞ

sinhðT!Þ (C10)

�	 1ðTÞ :¼
~	1ðTÞ
T

: (C11)

This will lead to the following inhomogeneous fixed

point conditions (where we replaced the �ðnÞ
k by the fixed

point (4.13)):
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�	�
0ð2TÞ� �	�

0ðTÞ
¼ ℏ

32!2sinh4ð2T!Þ ½coshðT!Þð10T!þ 2T!coshð4T!Þ
� 4sinhð2T!Þ� sinhð4T!ÞÞþ 2ð�6T!coshð2T!Þ
þ sinhð2T!Þþ sinhð4T!ÞÞ�

�	�
1ð2TÞ� �	�

1ðTÞ

¼ ℏsinh2ðT!2 Þ
32T!2sinh3ð2T!Þ ½�8T!� 6T!coshðT!Þ
� 2T!coshð2T!Þþ 2T!coshð3T!Þ
þ sinhðT!Þþ 3sinhð2T!Þþ sinhð3T!Þþ sinhð4T!Þ�:

(C12)

The fixed point condition for both recursion relations is
now of the form fð2TÞ � fðTÞ ¼ gðTÞ where gðTÞ is some
known function of T. For this one can use an ‘‘integration
table’’, see below. Alternatively a power series expansion
of the solution can be easily given: If g ¼ P

n�0gnT
n then

fðTÞ ¼ X
n�0

gn
2n � 1

Tn: (C13)

Note that it would be inconsistent to have a constant term
�T0 in gðTÞ. An arbitrary integration constant can be
added to the solution fðTÞ. This ambiguity in the solutions
corresponds however to adding an arbitrary multiple of the
homogeneous solutions (which here are the constants) to
one solution of the inhomogeneous recursion relations.

In this way one can find all solutions to the fixed point
equations for the 	iðTÞ:

	�
0ðTÞ ¼�cothðT!Þ��T!

1

sinh2ðT!Þþ
~�ℏ

32!2sinh2ðT!Þ
�
�
2þ cosh2ðT!Þ� 3T!cothðT!Þ

�

	�
1ðTÞ ¼ �

2T!coshðT!Þ
sinh2ðT!Þ ��

2

!2 sinhðT!Þþ
~�ℏ

32sinh3ðT!Þ
�
�
4T!þ 2T!coshð2T!Þ� 3sinhð2T!Þ

�
:

(C14)

[1] F. Dowker, in Causal Sets and Discrete spacetime, AIP
Conf. Proc. No. 861 (AIP, New York, 2006).

[2] T. Konopka, F. Markopoulou, and L. Smolin,
arXiv:hep-th/0611197.

[3] B. Bahr and B. Dittrich, Classical Quantum Gravity
26, 225011 (2009); B. Bahr and B. Dittrich, in
Proceedings of the XXV Max Born Symposium "The
Planck Scale", edited by J. Kowalski-Glikman et al.,
AIP Conf. Proc. No. 1196 (AIP, New York, 2009)
pp. 10–17.

[4] B. Dittrich, Adv. Sci. Lett. 2, 151 (2009).
[5] T. Piran and R.M. Williams, Phys. Rev. D 33, 1622

(1986); J. L. Friedman and I. Jack, J. Math. Phys. (N.Y.)
27, 2973 (1986); R. Loll, Classical Quantum Gravity 15,
799 (1998).

[6] R. Loll, Living Rev. Relativity 13, 1 (1998), http://
relativity.livingreviews.org/Articles/lrr-1998-13/.

[7] R. Gambini and J. Pullin, Phys. Rev. Lett. 90, 021301
(2003); C. Di Bartolo, R. Gambini, R. Porto, and J. Pullin,
J. Math. Phys. (N.Y.) 46, 012901 (2005); R. Gambini
and J. Pullin, Int. J. Mod. Phys. D 15, 1699 (2006);
M. Campiglia, C. Di Bartolo, R. Gambini, and J. Pullin,

Phys. Rev. D 74, 124012 (2006).
[8] T. Thiemann, Classical Quantum Gravity 23, 2211 (2006);

B. Dittrich and T. Thiemann, Classical Quantum Gravity
23, 1025 (2006).

[9] R. Gambini and J. Pullin, Classical Quantum Gravity 26,
035002 (2009).

[10] T. Thiemann, Classical Quantum Gravity 15, 1207
(1998).

[11] A. Perez, Phys. Rev. D 73, 044007 (2006).
[12] J. Lewandowski and D. Marolf, Int. J. Mod. Phys. D 7, 299

(1998); R. Gambini, J. Lewandowski, D. Marolf, and J.
Pullin, Int. J. Mod. Phys. D 7, 97 (1998).

[13] J. J. Halliwell and J. B. Hartle, Phys. Rev. D 43,
1170 (1991); C. Rovelli, Phys. Rev. D 59, 104015 (1999).

[14] B. Dittrich and P.A. Hoehn, Classical Quantum Gravity
27, 155001 (2010).

[15] H. Pfeiffer, Phys. Lett. B 591, 197 (2004); arXiv:gr-qc/
0404088.

[16] M. Bojowald and A. Perez, Gen. Relativ. Gravit. 42, 877
(2009).

[17] E. Bianchi, D. Regoli, and C. Rovelli, Classical Quantum
Gravity 27, 185009 (2010).

TABLE I. The following table can be used to obtain a more
explicit solution for fðTÞ.

fðTÞ gðTÞ ¼ fð2TÞ � fðTÞ
T T

coth2T � cosh2T
sinh22T

� 1
2sinh2T

cothT 1
sinh2T

T
sinh2T

�2T coth2T
sinh2T

tanhT tanhT
cosh2T

T cothT T tanhT
T

sinh2T 2T 1�coshT
sinh2T

T tanhT T tanh2T þ T tanhT
cosh2T

lnsinhT lnð2 coshTÞ
� 2

T cothT 1
T

�
1

sinhð2TÞ þ cothðTÞ
�

Tf0ðTÞ Tg0ðTÞ

BAHR, DITTRICH, AND STEINHAUS PHYSICAL REVIEW D 83, 105026 (2011)

105026-18

http://arXiv.org/abs/hep-th/0611197
http://dx.doi.org/10.1088/0264-9381/26/22/225011
http://dx.doi.org/10.1088/0264-9381/26/22/225011
http://dx.doi.org/10.1103/PhysRevD.33.1622
http://dx.doi.org/10.1103/PhysRevD.33.1622
http://dx.doi.org/10.1063/1.527224
http://dx.doi.org/10.1063/1.527224
http://dx.doi.org/10.1088/0264-9381/15/4/008
http://dx.doi.org/10.1088/0264-9381/15/4/008
http://relativity.livingreviews.org/Articles/lrr-1998-13/
http://relativity.livingreviews.org/Articles/lrr-1998-13/
http://dx.doi.org/10.1103/PhysRevLett.90.021301
http://dx.doi.org/10.1103/PhysRevLett.90.021301
http://dx.doi.org/10.1063/1.1823030
http://dx.doi.org/10.1142/S0218271806009042
http://dx.doi.org/10.1103/PhysRevD.74.124012
http://dx.doi.org/10.1088/0264-9381/23/7/002
http://dx.doi.org/10.1088/0264-9381/23/4/001
http://dx.doi.org/10.1088/0264-9381/23/4/001
http://dx.doi.org/10.1088/0264-9381/26/3/035002
http://dx.doi.org/10.1088/0264-9381/26/3/035002
http://dx.doi.org/10.1088/0264-9381/15/5/010
http://dx.doi.org/10.1088/0264-9381/15/5/010
http://dx.doi.org/10.1103/PhysRevD.73.044007
http://dx.doi.org/10.1142/S0218271898000231
http://dx.doi.org/10.1142/S0218271898000231
http://dx.doi.org/10.1142/S0218271898000103
http://dx.doi.org/10.1103/PhysRevD.43.1170
http://dx.doi.org/10.1103/PhysRevD.43.1170
http://dx.doi.org/10.1103/PhysRevD.59.104015
http://dx.doi.org/10.1088/0264-9381/27/15/155001
http://dx.doi.org/10.1088/0264-9381/27/15/155001
http://dx.doi.org/10.1016/j.physletb.2004.04.026
http://arXiv.org/abs/gr-qc/0404088
http://arXiv.org/abs/gr-qc/0404088
http://dx.doi.org/10.1007/s10714-009-0892-9
http://dx.doi.org/10.1007/s10714-009-0892-9
http://dx.doi.org/10.1088/0264-9381/27/18/185009
http://dx.doi.org/10.1088/0264-9381/27/18/185009


[18] B. Bahr, Classical Quantum Gravity 28, 045002 (2011); B.
Bahr, F. Hellmann, W. Kaminski, M. Kisielowski, and J.
Lewandowski, arXiv:1010.4787.

[19] K. G. Wilson and J. B. Kogut, Phys. Rep. 12, 75 (1974);
T. L. Bell and K.G. Wilson, Phys. Rev. B 10, 3935 (1974).

[20] P. Hasenfratz and F. Niedermayer, Nucl. Phys. B414, 785
(1994); P. Hasenfratz, Nucl. Phys. B, Proc. Suppl. 63, 53
(1998).

[21] W. Bietenholz, Int. J. Mod. Phys. A 15, 3341 (2000).
[22] B. Bahr, B. Dittrich, and S. He, arXiv:1011.3667.
[23] M. Reuter and F. Saueressig, arXiv:0708.1317; E.

Manrique and M. Reuter, Ann. Phys. (N.Y.) 325, 785
(2010).

[24] J. E. Marsden and M. West, in Acta Numerica 2001
(Cambridge University Press, Cambridge, England,
2001), Vol. 10, p. 215.

[25] B. Bahr and B. Dittrich, Phys. Rev. D 80, 124030 (2009);
New J. Phys. 12, 033010 (2010).

[26] M. Rocek and R.M. Williams, Phys. Lett. B 104, 31
(1981); Z. Phys. C 21, 371 (1984).

[27] J.W. Barrett and I. Naish-Guzman, Classical Quantum
Gravity 26, 155014 (2009); R. J. Dowdall, H. Gomes,
and F. Hellmann, J. Phys. A 43, 115203 (2010).

[28] S. Steinhaus, Ph. D. thesis, Universität Potsdam, 2010.
[29] S. A. Hojman, K. Kuchar, and C. Teitelboim, Ann. Phys.

(N.Y.) 96, 88 (1976).
[30] M. Bojowald, Living Rev. Relativity 11, 4 (2008); A.

Ashtekar, Gen. Relativ. Gravit. 41, 707 (2009); A.
Ashtekar, M. Campiglia, and A. Henderson, Classical
Quantum Gravity 27, 135020 (2010).

[31] R. MacKenzie, arXiv:quant-ph/0004090; H. Kleinert, Path
Integrals in Quantum Mechanics, Statistics, Polymer
Physics, and Financial Markets (World Scientific,
Singapore, 2004).

[32] W. Bietenholz and T. Struckmann, Int. J. Mod. Phys. C 10,
531 (1999).

PERFECT DISCRETIZATION OF REPARAMETRIZATION . . . PHYSICAL REVIEW D 83, 105026 (2011)

105026-19

http://dx.doi.org/10.1088/0264-9381/28/4/045002
http://arXiv.org/abs/1010.4787
http://dx.doi.org/10.1016/0370-1573(74)90023-4
http://dx.doi.org/10.1103/PhysRevB.10.3935
http://dx.doi.org/10.1016/0550-3213(94)90261-5
http://dx.doi.org/10.1016/0550-3213(94)90261-5
http://dx.doi.org/10.1016/S0920-5632(97)00696-8
http://dx.doi.org/10.1016/S0920-5632(97)00696-8
http://arXiv.org/abs/1011.3667
http://arXiv.org/abs/0708.1317
http://dx.doi.org/10.1016/j.aop.2009.11.009
http://dx.doi.org/10.1016/j.aop.2009.11.009
http://dx.doi.org/10.1103/PhysRevD.80.124030
http://dx.doi.org/10.1088/1367-2630/12/3/033010
http://dx.doi.org/10.1016/0370-2693(81)90848-0
http://dx.doi.org/10.1016/0370-2693(81)90848-0
http://dx.doi.org/10.1007/BF01581603
http://dx.doi.org/10.1088/0264-9381/26/15/155014
http://dx.doi.org/10.1088/0264-9381/26/15/155014
http://dx.doi.org/10.1088/1751-8113/43/11/115203
http://dx.doi.org/10.1016/0003-4916(76)90112-3
http://dx.doi.org/10.1016/0003-4916(76)90112-3
http://dx.doi.org/10.1007/s10714-009-0763-4
http://dx.doi.org/10.1088/0264-9381/27/13/135020
http://dx.doi.org/10.1088/0264-9381/27/13/135020
http://arXiv.org/abs/quant-ph/0004090
http://dx.doi.org/10.1142/S0129183199000413
http://dx.doi.org/10.1142/S0129183199000413

