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A novel hierarchical search technique is presented for all-sky surveys for continuous gravitational-wave

sources, such as rapidly spinning nonaxisymmetric neutron stars. Analyzing yearlong detector data sets

over realistic ranges of parameter space using fully coherent matched-filtering is computationally

prohibitive. Thus more efficient, so-called hierarchical techniques are essential. Traditionally, the standard

hierarchical approach consists of dividing the data into nonoverlapping segments of which each is

coherently analyzed, and subsequently the matched-filter outputs from all segments are combined

incoherently. The present work proposes to break the data into subsegments shorter than the desired

maximum coherence time span (size of the coherence window). Then matched-filter outputs from the

different subsegments are efficiently combined by sliding the coherence window in time: Subsegments

whose timestamps are closer than coherence window size are combined coherently, otherwise incoher-

ently. Compared to the standard scheme at the same coherence time baseline, data sets longer by about

50–100% would have to be analyzed to achieve the same search sensitivity as with the sliding coherence

window approach. Numerical simulations attest to the analytically estimated improvement.
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I. INTRODUCTION

Rapidly rotating neutron stars are anticipated to emit
continuous gravitational-wave (CW) signals through vari-
ous plausible scenarios [1–6] due to asymmetries. While
the majority of such neutron stars eludes electromagnetic
observations, their population might potentially be probed
only by means of gravitational waves [7]. Currently, an
international network of laser-interferometric detectors
[8–11] is in operation. The observational upper limits
obtained from known radio pulsars [12,13] and all-sky
surveys [14–18] already constrain the physics of neutron
stars, and thus a detection of a CW signal from a spinning
neutron star would shed light on their currently rather
uncertain physics [19].

Extremely sensitive data analysis techniques are needed
to detect prior unknown CW sources because of their
expected low signal-to-noise ratios. A powerful method
has been derived [20] based on the principle of maximum
likelihood detection, leading to coherent matched filtering.
CW signals are quasimonochromatic with a slowly chang-
ing intrinsic frequency. However, the Earth’s motion rela-
tive to the solar system barycenter (SSB) generates a
Doppler modulation in amplitude and phase of the wave-
form at a terrestrial detector. As shown in [20], the coherent
matched-filtering statistic can be analytically maximized
over the amplitude parameters describing the signal’s
amplitude variation. The so-obtained coherent detection
statistic is referred to as the F -statistic, which can also
include multiple detector data streams [21]. Thus, an

explicit search (evaluating F ) is only done over the phase
parameters describing the signal’s phase evolution: the
source’s sky location, frequency, and frequency derivatives
(‘‘spindowns’’).
However, what ultimately limits the search sensitivity in

scanning the entire sky for previously unknown CW
sources is the finite computational resources. For yearlong
data sets, searching a realistic portion of parameter space
is computationally absolutely impractical [20,22]. This is
due to the apparently enormous number of template wave-
forms needed to discretely cover the search parameter
space, increasing as a high power of the coherent integra-
tion time. In consequence, viable all-sky fully coherent
F -statistic searches are restricted to much shorter coherent
integration times, despite that the F -statistic can be very
efficiently computed using the fast Fourier transform
(FFT) algorithm [20,23].
All-sky surveys sifting through yearlong data sets for

previously unknown isolated CW sources are accom-
plished by incoherently combining either excess power or
F -statistic values from shorter segments of data. In the
power-combining methods [14,15], the segment duration is
chosen short enough (typically, 30 minutes) so that the CW
signal power resides in a single frequency bin during each
segment. In contrast, so-called ‘‘hierarchical’’ F -statistic-
based methods [24–26] coherently track the CW signal
phase over longer segments (typically of the order of a
day or a few days).
In this work, the ‘‘standard’’ hierarchical detection

scheme refers to the following approach. Divide the data
into nonoverlapping segments of duration T. Then, for a
given point in search parameter space, the F -statistic is*Holger.Pletsch@aei.mpg.de
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computed separately for each segment, and subsequently
F values from all segments are summed. Thus T defines
the maximum time span of maintained phase coherence to
the signal. This approach is efficient, because computing
the coherent matched-filtering statistic F just over T al-
lows one to use a coarse grid of templates in phase pa-
rameter space, compared to one required for the entire data
set. Only when incoherently combining the F -statistic
results from all segments is a common fine grid of tem-
plates necessary.

Recent progress in understanding the global correla-
tions [27,28] of the F -statistic in the phase parameters
has lead to a substantially more sensitive hierarchical
search technique [26]. This method has addressed a
long-standing problem, namely, the design of, and link
between, the coarse and fine grids. A very useful geomet-
ric tool in this context is the concept of a metric, as first
investigated in [29,30], measuring the fractional loss in
expected F -statistic for a given signal at a nearby grid
point. While such a metric has been well studied for the
coherent stage [22,31,32], in [26] the first analytical met-
ric for the incoherent combination step has been found by
exploiting new coordinates on the phase parameter space.
This analytical ‘‘semicoherent metric’’ has lately been
further studied and extended to greater generality in
[33]. This technology is currently also implemented and
employed by EINSTEIN@HOME [18], a volunteer distrib-
uted computing project carrying out the most sensitive
all-sky CW surveys.

The present work presents a novel hierarchical search
strategy which builds on the results of [26,33], while
further enhancing the search sensitivity. Previous hierarch-
ical search methods divide the data into nonoverlapping
segments whose length is equal to coherent time baseline
T. Here, a partitioning of the data into segments shorter
than the desired maximum coherence length T is consid-
ered, and subsequently one ‘‘slides’’ a coherence window
of size T over the segments. As a result, segments which
are closer than coherence window size T are coherently
combined and otherwise incoherently. This scheme also
ensures that the same semicoherent metric as derived in
[26,33] governs the template grid construction in phase
parameter space but considerably enhances the overall
search sensitivity.

Section II briefly recaps the continuous gravitational-
wave signal waveform. Section III describes the coher-
ent matched-filtering statistic F and what we refer to as
the ‘‘standard hierarchical search scheme.’’ The idea
behind the sliding coherence window approach is eluci-
dated in Sec. IV, along with an analytical sensitivity
estimation. The improved performance is demonstrated
in Sec. V by means of Monte Carlo simulations. In
addition, Sec. VI compares the estimated sensitivity at
fixed computational cost. Finally, concluding remarks
follow in Sec. VII.

II. CONTINUOUS GRAVITATIONAL-WAVE
SIGNALS

The dimensionless signal response function hðtÞ of an
interferometric detector to a weak plane gravitational wave
in the long-wavelength approximation is a linear combi-
nation of the form [20],

hðtÞ ¼ FþðtÞhþðtÞ þ F�ðtÞh�ðtÞ: (1)

The antenna pattern functions FþðtÞ and F�ðtÞ are given by
FþðtÞ ¼ aðtÞ cos2c þ bðtÞ sin2c ; (2a)

F�ðtÞ ¼ bðtÞ cos2c � aðtÞ sin2c ; (2b)

where c represents the polarization angle of the signal,
and the angle between the detector arms is assumed to be
�=2. For explicit expressions of the functions aðtÞ and bðtÞ,
the reader is referred to Ref. [20].
In the case of an isolated, rapidly rotating neutron star

with a nonaxisymmetric deformation and negligible proper
motion (cf. [34,35]), the waveforms corresponding to the
plus (þ) and cross (�) polarizations are

hþðtÞ ¼ Aþ sin�ðtÞ; h�ðtÞ ¼ A� cos�ðtÞ; (3)

where Aþ and A� are the constant plus and cross polariza-
tion amplitude parameters, respectively, and �ðtÞ is the
phase of the signal. The parameters Aþ and A� can be
expressed in terms of the gravitational-wave strain tensor
amplitude h0 and the inclination angle � as

Aþ ¼ h0ð1þ cos2�Þ=2; A� ¼ h0 cos�: (4)

The phase �ðtÞ of the CW signal at detector time t takes
the following form [20]:

�ðtÞ ¼ �0 þ�ðtÞ

¼ �0 þ 2�
Xs
k¼0

fðkÞðt0Þ
ðkþ 1Þ!

�
t� t0 þ ~rðtÞ � ~n

c

�
kþ1

; (5)

where �0 is the initial phase, fð0Þ � f denotes the fre-

quency, and fðk>0Þ is the kth frequency time derivative
(also called ‘‘spindown’’), evaluated at the SSB at refer-
ence time t0. The integer s > 0 denotes the number of
frequency time derivatives to be taken into account; there-

fore, it holds fðk>sÞ ¼ 0. The vector ~rðtÞ connects from the
SSB to the detector, c is the speed of light, and ~n is a
constant unit vector pointing from the SSB to the location
of the CW source. The source’s sky location is determined
by two independent coordinates, for example, one can use
equatorial coordinates of right ascension and declination,
denoted by � and �, respectively. In these coordinates:
~n ¼ ðcos� cos�; cos� sin�; sin�Þ. The collection of phase

parameters will be summarized by the vector p �
ðf; fð1Þ; . . . ; fðsÞ; �; �Þ.
Using Eqs. (2), (3), and (5), it is possible to rewrite

Eq. (1) as follows:
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hðtÞ ¼ X4
�¼1

A�h�ðtÞ; (6)

where the four amplitude parameters ðAþ; A�; c ;�0Þ
have been reparametrized by the 4-vector A �
ðA1;A2;A3;A4Þ, whose individual components are

A 1 ¼ Aþ cos2c cos�0 � A� sin2c sin�0;

A2 ¼ Aþ sin2c cos�0 þ A� cos2c sin�0;

A3 ¼ �Aþ cos2c sin�0 � A� sin2c cos�0;

A4 ¼ �Aþ sin2c sin�0 þ A� cos2c cos�0;

(7)

and the functions h�ðtÞ have been defined as

h1ðtÞ ¼ aðtÞ cos�ðtÞ; h2ðtÞ ¼ bðtÞ cos�ðtÞ;
h3ðtÞ ¼ aðtÞ sin�ðtÞ; h4ðtÞ ¼ bðtÞ sin�ðtÞ: (8)

III. STANDARD HIERARCHICAL
DETECTION SCHEME

At a given detector time t, the detector output data time
series is denoted by xðtÞ. In the absence of any signal, the
data contain only noise nðtÞ, which is assumed to be a zero-
mean, stationary, and Gaussian random process [36]. When
a signal hðtÞ is present, the noise is assumed to be additive,
so that xðtÞ ¼ nðtÞ þ hðtÞ.

For simplicity, in this work only a single-detector input
data stream is considered. However, based on the results of
[21] (and also [32]), it is straightforward to generalize the
proposed search technique to multiple-detector input data,
as well as to time-varying noise.

To contrast with the sliding coherence window ap-
proach, this section describes the standard hierarchical
detection scheme which sums one F -statistic value
from each of N nonoverlapping segments of duration T.
For simplicity, in this presentation the data set is taken to
be contiguous, so that the total data time span is written
as Tdata ¼ NT. The individual segments are labeled by
the index j ¼ 1; . . . ; N. Let tj denote the time mid-

point of segment j, which thus spans the time interval
½tj � T=2; tj þ T=2�.

A. Coherent matched-filtering of one segment

1. The F -statistic

The likelihood ratio �j for the jth segment, deciding

between the hypothesis of a signal hðtÞ with amplitude
parametersA and phase parameters p, and no signal being
present, is written as [20],

ln�j ¼ ðxjhÞj � 1

2
ðhjhÞj; (9)

where the following inner product has been used [20],

ðxjyÞj � 2

S½j�n

Z tjþT=2

tj�T=2
xðtÞyðtÞdt; (10)

with S½j�n defined as the one-sided noise spectral density for
the jth segment. Since this work is concerned with narrow-

bandwidth signals, S½j�n is here taken as constant.
As was done in Ref. [20], the following inner products

are combined for every segment j into a 4� 4matrixM½j�
whose components are

M ½j�
�� � ðh�jh�Þj; (11)

where �; � ¼ 1; 2; 3; 4. To very good accuracy, one can
approximate [20],

ðh1jh3Þj � ðh1jh4Þj � ðh2jh3Þj � ðh2jh4Þj � 0; (12a)

ðh1jh1Þj � ðh3jh3Þj � 1

2
Aj; (12b)

ðh2jh2Þj � ðh4jh4Þj � 1

2
Bj; (12c)

ðh1jh2Þj � ðh3jh4Þj � 1

2
Cj; (12d)

with the definitions

Aj � ðajaÞj; Bj � ðbjbÞj; Cj � ðajbÞj: (13)

In addition, we abbreviate the linear correlations ðxjh�Þj
by the following compact notation:

x½j�� � ðxjh�Þj: (14)

Thus, Eq. (9) is rewritten as

ln�j ¼
X4
�¼1

A�x
½j�
� � 1

2

X4
�;�¼1

A�M
½j�
��A�: (15)

For every segment j the log-likelihood ratio of Eq. (15)
is analytically maximized over the amplitude parameters
A. The maximum likelihood (ML) estimators for A
obtained from the jth segment are denoted by

Â ½j� ¼ ðÂ½j�
1 ;Â½j�

2 ;Â½j�
3 ;Â½j�

4 Þ; (16)

are explicitly given by [20],

Â ½j�
1 ¼ 2

Bjx
½j�
1 � Cjx

½j�
2

Dj

; Â½j�
2 ¼ 2

Ajx
½j�
2 � Cjx

½j�
1

Dj

;

Â½j�
3 ¼ 2

Bjx
½j�
3 � Cjx

½j�
4

Dj

; Â½j�
4 ¼ 2

Ajx
½j�
4 � Cjx

½j�
3

Dj

;

(17)

where Dj � AjBj � C2
j , and Dj � 0 has been assumed.

Replacing the amplitude parameters A in ln�j of

Eq. (15) with their ML estimators Â½j�
given by

Eqs. (17) yields the so-called F -statistic for the jth
segment,
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F j �
Bj

Dj

ðx½j�21 þ x½j�
2

3 Þ þ Aj

Dj

ðx½j�22 þ x½j�
2

4 Þ

� 2Cj

Dj

ðx½j�1 x½j�2 þ x½j�3 x½j�4 Þ: (18)

This expression can be written compactly by using the
four-vector notation for the set of four linear correlations

x½j�� as

x½j� � ðx½j�1 ; x½j�2 ; x½j�3 ; x½j�4 Þ; (19)

such that Eq. (18) takes the form

F j ¼ 1

2
x½j�M½j��1x½j�T ; (20)

where the superscript T indicates the transpose. Therefore,
the F -statistic represents a quadratic form in terms of the

linear correlations x½j�� . It should be noted that in practice
F j can be efficiently computed using the FFT algorithm

when rewriting the four linear correlations x½j�� as two
complex integrals; further details are described in [20,23].

We find that the F -statistic can be equivalently formu-
lated as a quadratic form in terms of the ML estimators

Â½j�
� . Using Eqs. (17) to substitute the x½j�� in Eq. (18)

yields

F j ¼
Aj

4
ðÂ½j�2

1 þ Â½j�2
3 Þ þ Bj

4
ðÂ½j�2

2 þ Â½j�2
4 Þ

þ Cj

2
ðÂ1Â2 þ Â3Â4Þ; (21)

which is compactly rewritten as

F j ¼ 1

2
Â½j�M½j�Â½j�T ; (22)

showing that the F -statistic can also be viewed as qua-

dratic form in terms of the Â½j�
� with a coefficient matrix

being equal to M½j�. This formulation (22) of the
F -statistic is not common in the existing literature, but
closely related is the work of [38–40]. There, the matrix

M½j� is considered as a metric on the amplitude parameter
space A, and a norm of the four-vector A is defined by

kAk �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
AM½j�AT

p
. In this context, we see from

Eq. (22) that the F -statistic is simply half the squared

‘‘length’’ of the four-vector Â½j�
of amplitude ML estima-

tors: F j ¼ kÂ½j�k2=2.

2. Statistical properties

The four linear correlations x½j�� for a given segment j are
Gaussian distributed random variables, whose expectation
values and variances, respectively, are in absence of a
signal, when xðtÞ ¼ nðtÞ, obtained as

En½x½j�� � ¼ 0; En½x½j�� x½j�� � ¼ M½j�
��: (23)

Therefore, in this case, the probability density function of
2F j is a central �

2 distribution with 4 degrees of freedom

[20]. Hence, 2F j has the following expectation value and

variance, respectively:

En½2F j� ¼ 4; �2
2F j;n

¼ 8: (24)

When a signal is present, which perfectly matches the
template waveform hðtÞ, then the expectation values cor-
responding to Eqs. (23) are obtained as

Eh½x½j�� � ¼ ðhjh�Þj; (25)

Eh½x½j�� x½j�� � ¼ M½j�
�� þ ðhjh�Þjðhjh�Þj: (26)

Thus, as first noted in [20], the covariance matrix for

the Gaussian random variables x½j�� is the same whether a

signal is present or not, and it is exactly equal to M½j�. It
should also be noted that the inverse ofM½j� is equal to the
covariance matrix of the ML estimators Â½j�

� . Thus, in this

case, 2F j has noncentral �
2 distribution with 4 degrees of

freedom and a noncentrality parameter 	2
j � ðhjhÞj, where

	j is commonly referred to as the ‘‘optimal’’ signal-to-

noise ratio (S/N). Thus, the expectation value and variance
of 2F j in this perfect-match case are

Eh½2F j� ¼ 4þ 	2
j ; �2

2F j;h
¼ 8þ 4	2

j ; (27)

where 	2
j is explicitly obtained as

	2
j ¼ Aj

A2
1 þA2

3

2
þ Bj

A2
2 þA2

4

2

þ CjðA1A2 þA3A4Þ
¼ AM½j�AT; (28)

with A representing the 4-vector of the signal’s ampli-
tude parameters, A ¼ ðA1;A2;A3;A4Þ. Comparing
Eq. (28) to Eq. (22), we find that twice the F -statistic
can be interpreted as the ML estimator for the squared
S=N: 2F j ¼ 	̂2

j .

B. Incoherent combination of coherently
analyzed segments

1. The standard hierarchical detection statistic

We denote the standard hierarchical detection statistic

by �F , which, as used in [24,26,33], represents the sum of
one F -statistic value F j from each segment j,

�F ¼ XN
j¼1

F j ¼ 1

2

XN
j¼1

x½j�M½j��1x½j�T ; (29)

evaluated at a given fine-grid point in phase parameter

space. Therefore, �F also represents a quadratic form in

terms of the linear correlations x½j�� , and one can compactly
rewrite Eq. (29) as
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�F ¼ 1

2
x �M�1xT; (30)

where the 4N-vector x collects all the x½j� as

x ¼ ðx½1�; x½2�; . . . ; x½N�Þ; (31)

and the 4N � 4N matrix �M is defined to have the form

�M ¼
M½1�

M½2�
. .
.

M½N�

0
BBBB@

1
CCCCA: (32)

Hence, the standard hierarchical scheme, using the detec-

tion statistic �F , represents the incoherent combination of
epochwise coherent matched-filter outputs, where each

epoch has duration T. Recall that, using Eq. (22), �F can
equivalently be rewritten as a quadratic form in terms of

the amplitude ML estimators Â½j�
, leading to

�F ¼ 1

2

XN
j¼1

Â½j�M½j�Â½j�T ¼ 1

2
Â �MÂT; (33)

where Â denotes the 4N-vector Â ¼ ðÂ½1�;Â½2�; . . . ;
Â½N�Þ.

The problem of efficiently selecting the best coarse-grid
F j value in every segment for a given fine-grid point has

been studied in previous work [26,33], and hence for rest of
this paper it is assumed that such an efficient link between
the coarse and fine grids is available.

2. Statistical properties

In absence of a signal, it is straightforward to show that

the probability density function of 2 �F is a central �2

distribution with 4N degrees of freedom [24,35]; hence,
�F has the expectation value and variance, respectively,

En½2 �F � ¼ 4N; �2
2 �F ;n

¼ 8N: (34)

On the other hand, if a signal hðtÞ is present, perfectly
matching the template-waveform phase parameters, then
�F has a noncentral �2 distribution with 4N degrees of
freedom and noncentrality parameter �	2. The expectation

value and variance of �F , respectively, are obtained as

Eh½2 �F � ¼ 4N þ �	2; �2
2 �F ;h

¼ 8N þ 4 �	2; (35)

where �	 is given by

�	 2 � XN
j¼1

	2
j ; (36)

recalling that 	j as of Eq. (28) denotes the optimal S=N for

the jth segment.
It is interesting to note that �	 of Eq. (36) is actually

equal to the fully coherent optimal S=N for the entire data
set. The apparent difference in search sensitivity results

from the different underlying probability distributions.
In the standard hierarchical scheme, there are N times as
many degrees of freedom as compared to the fully coherent
case.

IV. SLIDING COHERENCE WINDOWAPPROACH

The central idea behind the sliding coherence window
scheme is to use a window the size of the coherence time
baseline T and to ‘‘slide’’ it over the data set in steps
smaller than T to combine the coherent matched-filter
outputs from each sliding step. This effectively amounts
to the incoherent combination of coherent matched-filter
outputs from overlapping segments of length T, which
remarkably improves the search sensitivity compared to
the standard hierarchical scheme. There, only coherent
matched-filter outputs from nonoverlapping segments of
coherence length T are combined, omitting to coherently
correlate large parts of the data which still lie within the
coherence time baseline T, as illustrated in Fig. 1.

FIG. 1. Schematic comparison of the standard hierarchical
search scheme and the sliding coherence window approach for
the same coherence time baseline T. Each box represents one

product of the linear correlations x½k�� x½‘�� , obtained from the
subsegments k and ‘, respectively. In this example, the indices
take the values k; ‘ ¼ 1; . . . ; 16. The light grey boxes represent
the set of products selected in the standard hierarchical search
scheme, for N ¼ 4 coherent segments of duration T. The dark
grey boxes are the products additionally selected by the sliding
coherence window technique to enhance the search sensitivity. In
this example, T is subdivided into q ¼ 4 subsegments (implying
a coherence overlap of 
 ¼ 75% between successive sliding
steps). In contrast, a fully coherent search over the entire data set
would have to include all boxes shown.
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The number of templates to discretely cover the phase
parameter space searched is of great importance, since this
is what ultimately limits the overall search sensitivity at the
finite computing power available. Therefore, it should also
be emphasized that the sliding coherence window tech-
nique employs the same number of templates in phase
parameter space as the standard scheme. The combination
of overlapping coherent integrations alters neither the co-
herence time baseline T nor the total data time span Tdata.
Hence, it is obvious that the same semicoherent metric as
previously studied in [26,33] can also be used in combina-
tion with the here-proposed sliding coherence window
technique [41].

A. Detection statistic

For computational efficiency, the sliding coherence win-
dow approach subdivides every data segment of duration T
into q ‘‘subsegments,’’ as adumbrated in Fig. 1. Hence,
each subsegment is of duration Tq ¼ T=q, which repre-

sents the step size between each sliding iteration of the
coherence window.

The subsegments are labeled by k ¼ 1; . . . ; qN.
Thus, in analogy to Eq. (19), we define the four-vector

x½k� for the kth subsegment as x½k� ¼ ðx½k�1 ; x½k�2 ; x½k�3 ; x½k�4 Þ.
In this context, similarly to Eq. (31), the 4qN-vector

now collects all the x½k�, x ¼ ðx½1�; x½2�; . . . ; x½qN�Þ. Analo-
gously, the same notation also applies to the 4qN ampli-

tude ML estimators Â½k�
� .

As sketched in Fig. 1, the central goal of the sliding
coherence window strategy is to combine a larger number

of distinct pairs fx½k�� ; x½‘�� g [44], while still restricting the
maximum difference between their timestamps tk and t‘ to
at most the coherent time baseline T. Hence, the resulting
selection condition is jtk � t‘j � T.

To achieve this goal, in principle, an appropriate
4qN � 4qN coefficient matrix U needs to be constructed,
constituting the following quadratic form Z,

Z ¼ 1

2
xUxT; (37)

which represents the detection statistic of the sliding co-
herence window search technique.

In order to simplify the construction of U, we exploit
the fact that the constants Ck are typically much smaller
than the values of Ak and Bk, and therefore terms involving
Ck are neglected [45]. With this approximation, Eq. (37)
should explicitly read as

Z ¼ XqN
k;‘¼1

QTðtk � t‘Þ
�
x½k�1 x½‘�1 þ x½k�3 x½‘�3ffiffiffiffiffiffiffiffiffiffiffi

AkA‘

p

þ x½k�2 x½‘�2 þ x½k�4 x½‘�4ffiffiffiffiffiffiffiffiffiffiffi
BkB‘

p
�
; (38)

where the step function QTðxÞ selects the pairs of linear
correlations according to their time difference and the
predefined coherent time baseline T,

QTðxÞ �
�
1 jxj � T
0 jxj> T

: (39)

As with �F , the detection statistic Z can also be equiva-
lently reformulated as a quadratic form in terms of the

amplitude ML estimators Â½k�
� . For practical convenience,

in what follows we use x½k�� as in Eq. (38). However, note

that in the above approximative case, x½k�� / Â½k�
� , thus

making the interchange between x½k�� and Â½k�
� simple if

desired.
When q ¼ 1, it is obvious that Z coincides with the

standard hierarchical detection statistic �F . However, if one
chooses q > 1, the detection statistic Z is able to improve

performance compared to �F , as will be described in what
follows.
Moreover, a useful quantity is denoted by 
, which

defines the average ‘‘coherence overlap’’ between succes-
sive sliding steps. For the case of a contiguous data set [46],
as considered in this presentation, 
 is related to q simply
via 
 ¼ 1� 1=q.

B. Statistical properties and sensitivity estimation

To analytically estimate the sensitivity of the sliding
coherence window search, the underlying statistical prop-
erties are examined. Recall that, for simplicity, the data set
has been taken as free of gaps, such that one can write the
time span of the entire data set as Tdata ¼ NT ¼ qNTq.

The detection statistic Z of Eq. (38) is explicitly written as

Z ¼ XqN
k¼1

�
x½k�

2

1 þ x½k�
2

3

Ak

þ x½k�
2

2 þ x½k�
2

4

Bk

þ 2
Xkþq�1

‘¼kþ1

�
x½k�1 x½‘�1 þ x½k�3 x½‘�3ffiffiffiffiffiffiffiffiffiffiffi

AkA‘

p þ x½k�2 x½‘�2 þ x½k�4 x½‘�4ffiffiffiffiffiffiffiffiffiffiffi
BkB‘

p
��
:

(40)

Since the actual probability density function of Z is cum-
bersome to work with, we approximate it here by a
Gaussian distribution, which is well justified based on the
generalized central limit theorem (provided N � 1), as
done similarly in previous work [25]. Thus, we proceed
by computing the mean and variance of Z.
When the data consist of zero-mean stationary Gaussian

noise only, the expectation value of 2Z is obtained as

En½2Z� ¼ 4qN; (41)

and the variance of 2Z is given by

�2
2Z;n ¼ 8qNð2q� 1Þ: (42)
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It is straightforward to show that for Gaussian noise,
a certain false alarm probability PFA corresponds to a
threshold Zth via

Z th ¼ En½Z� þ �Z;n

ffiffiffi
2

p
erfc�1ð2PFAÞ; (43)

where erfc denotes the complementary error function.
Provided the presence of a signal hðtÞ whose phase

parameters perfectly match the template, then the expec-
tation value of 2Z is given by

Eh½2Z� ¼ 4qN þ 	2
Z; (44)

where we defined 	Z as

	2
Z � A2

1 þA2
3

2

�XqN
k¼1

�
Ak þ 2

Xkþq�1

‘¼kþ1

ffiffiffiffiffiffiffiffiffiffiffi
AkA‘

p ��

þA2
2 þA2

4

2

�XqN
k¼1

�
Bk þ 2

Xkþq�1

‘¼kþ1

ffiffiffiffiffiffiffiffiffiffiffi
BkB‘

p ��
: (45)

The probability of detection PDET for Gaussian noise is
given by

PDET ¼ 1

2
erfc

�
Zth � Eh½Z�ffiffiffi

2
p

�Z;h

�
: (46)

For current ground-based detectors, the expected CW sig-
nals are extremely weak, so that the small-signal situation
(h 	 n) is well justified. Thus, we approximate �Z;h by

using �Z;n and, by means of Eqs. (42)–(45), one obtains

from Eq. (46) the following relation:

	2
Z ¼ E

ffiffiffi
2

p
�Z;n; (47)

where E has been defined as

E � erfc�1ð2PFAÞ � erfc�1ð2PDETÞ: (48)

The minimum detectable gravitational-wave strain tensor
amplitude h0 can be determined from Eq. (47), because
h20 / 	2

Z as follows from Eq. (45).

To obtain the estimated sensitivity scaling of the sliding
coherence window search in terms of the most relevant
parameters, the noise floor Sn is taken as constant through-
out the data set. In addition, we replace the constants Ak

and Bk by effective average values as Ak � 2Tq

Sn
�A, and

Bk � 2Tq

Sn
�B, and define �� as

�� � �Að �A1
2 þ �A3

2Þ þ �Bð �A2
2 þ �A4

2Þ; (49)

where the �A� are the same as the A� apart from the

factor h0,
�A� � A�=h0. Thus, Eq. (45) simplifies to

	2
Z ¼ h20 ��

T

Sn
Nð2q� 1Þ: (50)

In turn, using Eq. (50) to substitute 	2
Z in Eq. (47) and

solving for h0 yields

h0 ¼ 2
ffiffiffi
E

p
ffiffiffiffi
��

p
ffiffiffiffiffi
Sn
T

s
N�1=4

�
2� 1

q

��1=4
; (51)

revealing the estimated sensitivity scaling of the sliding
coherence window search. One may further rewrite
Eq. (51) as

h0 ¼ 2
ffiffiffi
E

p
ffiffiffiffi
��

p
ffiffiffiffiffi
Sn
T

s
½Nð1þ 
Þ��1=4; (52)

using the previously introduced average coherence
overlap 
.

C. Comparison of sensitivity with standard scheme

Equation (52) also reveals the estimated sensitivity im-
provement of the sliding coherence window technique
compared to the standard hierarchical search under the
same assumptions. The standard hierarchical scheme is
recovered for 
 ¼ 0 (i.e., q ¼ 1). Therefore, the sliding
coherence window approach is more sensitive than
the standard hierarchical search scheme by the factor

ð1þ 
Þ1=4. In terms of q, the sensitivity improvement

factor is ð2� 1=qÞ1=4, which is shown in Fig. 2.
The coherence overlap 
 enhances the search sensitivity

effectively as if increasing the number of segments in the
standard method. In other words, to achieve the same
sensitivity as with the sliding coherence window technique
at given T, using the standard hierarchical search method,

FIG. 2 (color online). Estimated sensitivity improvement
factor of the sliding coherence window technique over the
standard hierarchical search strategy, shown as a function of q
(number of subsegments). The curve is explicitly given by
ð2� 1=qÞ1=4. The horizontal dashed-dotted line indicates the
constant value 21=4 � 1:19.
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effectively 
 ¼ 1þ 1=q more segments have to be
analyzed (hence 50–100% more data).

In practice, the choice of q (or equivalently 
) will
generally have to be optimized in terms of search sensi-
tivity at the given computational constraints and code
implementation at hand, as well as for the detector data
available. Further investigation in this direction will be
presented in Sec. VI, comparing the estimated search
sensitivity at fixed computational cost.

V. SENSITIVITY PERFORMANCE
DEMONSTRATION

The performance improvement of the sliding coherence
window technique is illustrated through realistic
Monte Carlo simulations. In particular, receiver operating
characteristic (ROC) curves are obtained to compare the
standard hierarchical search scheme that is q ¼ 1 (corre-
sponding to 
 ¼ 0) and the sliding coherence window
strategy for q ¼ 2 (corresponding to 
 ¼ 50%).

The simulated data set refers to the two LIGO 4-km
detectors (H1 and L1) and spans a time interval of 5000 h.
To provide a realistic comparison, a typical value is taken
for the coherent time baseline of T ¼ 50 h, which results
in N ¼ 100. The software tools used are part of LALAPPS

[47] and employ accurate barycentering routines with tim-
ing errors below 4 �s [48].

In this study, the phase parameter space considered is
four dimensional using one spindown parameter, as in
current all-sky surveys for prior unknown CW sources
[15–17]. Thus a point in phase parameter space is labeled

by p ¼ ðf; _f; �; �Þ.
The false alarm probabilities are found from thousands

of different realizations of stationary Gaussian white noise

with
ffiffiffiffiffi
Sn

p ¼ 3:25� 10�22 Hz�1=2. To obtain the detection
probabilities, distinct CW signals with fixed gravitational-
wave strain tensor amplitude of h0 ¼ 1:0� 10�24 are
added. The remaining parameters of the signal population
are randomly drawn from uniform distributions in c ,
cos�, �0, in the entire sky, frequencies in the interval
f 2 ½155:12; 155:16� Hz, and spindowns over the range

of _f 2 ½�2:64; 0:264� nHz=s.
Figure 3 compares the resulting ROC curves for the

different search techniques. The ROC curves are computed
from 6000 different realizations. The 1� errors shown in
Fig. 3 are based on a jackknife estimate as in [49,50] using
100 subsets. As expected, the sliding coherence window
technique with q ¼ 2 is substantially more ‘‘powerful’’
than the standard scheme (retrieved for q ¼ 1), yielding
a higher probability of detection for the same false alarm
probability.

Furthermore, the numerical results in Fig. 3 attest to
the analytically estimated gain in sensitivity obtained in
Eq. (51). For example, at fixed false alarm probability
of PFA ¼ 1%, the achieved detection probability of the
sliding coherence window technique is PDET ¼ 0:427,

whereas the standard hierarchical scheme gives PDET ¼
0:356. To compare these values with the theoretical expec-

tation, note that Eq. (51) yields
ffiffiffi
E

p / ð2� 1=qÞ1=4, where
E has been defined in Eq. (48) and solely depends on PFA

and PDET. Thus, for q ¼ 2, the predicted increase (com-

pared to q ¼ 1) in
ffiffiffi
E

p
is ð3=2Þ1=4 � 10:7%. The above

values obtained from the numerical simulations of Fig. 3

yield a corresponding increase in
ffiffiffi
E

p
of about 9.7%, which

is in agreement with the theoretical prediction at the sub-
percent level.

VI. COMPARISON AT FIXED COMPUTING COST

In Sec. IVB, Eq. (51) presented the sensitivity estimate
of the sliding coherence window technique for a given
(finite) amount of data, disregarding aspects of computa-
tional cost and essentially assuming unlimited computing
power available. The present section investigates the con-
trary case, finding the amount of data which can be ana-
lyzed at limited (fixed) computational resources and a
given (fixed) coherence time baseline T.

The computing cost � ð1Þ of a standard two-stage hier-
archical search per a certain volume of phase parameter
space searched can always be written as a sum in terms of
implementation-specific constants �COH and �INCOH per-
taining to the coherent and incoherent combination stage,
respectively, as

� ð1Þ ¼ ð�COH þ �INCOH

ð1ÞÞNð1Þ; (53)

FIG. 3 (color online). ROC curves comparing at fixed
gravitational-wave amplitude h0 the standard hierarchical search
technique (lower solid curve) and the sliding coherence window
method (upper solid curve) with q ¼ 2 implying a coherence
overlap of 
 ¼ 50%. The dashed curves on either side of the
solid curves represent estimated 1� errors. The black dotted
curve is the so-called line of no discrimination.
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where 
ð1Þ denotes the so-called refinement factor [33] of

the incoherent combination stage, and Nð1Þ are the number
of segments coherently analyzed.

The computational cost � ðqÞ of the sliding coherence
window technique involves q times more summations at
the incoherent combination stage, thus,

� ðqÞ ¼ ð�COH þ �INCOH

ðqÞqÞNðqÞ: (54)

The total amount of data which can be analyzed at the
fixed computational expense using the standard hierarch-

ical search scheme is taken as Tð1Þ
data ¼ TNð1Þ. In analogy,

the amount of data that can be searched at given computing
cost using the sliding coherence window approach is

TðqÞ
data ¼ TNðqÞ, for the same coherent time baseline T.
The sensitivity of the standard hierarchical search

scheme follows hð1Þ0 / ðTð1Þ
dataTÞ�1=4. Accordingly, the sen-

sitivity of the sliding coherence window technique given in

Eq. (51) scales as hðqÞ0 / ðTðqÞ
dataTÞ�1=4ð2� 1=qÞ�1=4. Thus,

we define the sensitivity ratio by r � hð1Þ0 =hðqÞ0 , which takes

the form

r ¼
�
TðqÞ
data

Tð1Þ
data

�
1=4

�
2� 1

q

�
1=4

: (55)

At equal total computing cost, � ðqÞ ¼ � ð1Þ ¼ � , inverting

Eqs. (53) and (54) for Tð1Þ
data and TðqÞ

data, respectively, one

obtains

r ¼
�
2

q
� 1

q2

�
1=4

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4q�

p � 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4�

p � 1

�
1=4

; (56)

where the constant � has been defined as

� � ��INCOH
�2COH

; (57)

and the refinement factors have been approximated by


ðqÞ � NðqÞ, assuming the search includes at most one
spindown parameter (cf. Ref. [33]).

Figure 4 illustrates the sensitivity ratio r of Eq. (56) as a
function of � and for different values of q. Two regimes are
identified where r is slowly changing: when � is either very
small or very large. This can be understood as follows. The
specific value of � depends on the code implementation,
manifested in the two constants �COH and �INCOH. Thus, in
the two extreme cases where one constant is much larger
than the other, the two different limits of r result.

First, if the implementation is such that the coherent part
dominates the computing cost (�COH � �INCOH), this im-
plies that � is very small. Then the sensitivity ratio is
described by

lim
�!0

r ¼
�
2� 1

q

�
1=4 ¼ ð1þ 
Þ1=4; (58)

which is the same improvement factor as given by Eq. (52).

On the other hand, if the incoherent part is the most
computationally intensive (�INCOH � �COH), � takes a very
large value. In this case, the sensitivity ratio is described by

lim
�!1

r ¼
�
2� 1

q

�
1=4

q�1=8: (59)

It is interesting to note that, only for q ¼ 2, the sensi-
tivity ratio is always greater than 1, implying that in this
case the sliding coherence window technique should al-
ways be more sensitive than the standard scheme at given T
and fixed computational cost.
In the current EINSTEIN@HOME [18] analysis, � is ap-

proximately of order 10�2. Thus, the situation in this case
is rather comparable to the regime described by Eq. (58).
Hence, the EINSTEIN@HOME search sensitivity will cer-
tainly benefit from employing the sliding coherence win-
dow technique.

VII. CONCLUSION

In summary, a novel hierarchical strategy to search for
prior unknown continuous gravitational-wave sources has
been presented, exploiting a sliding coherence window.
The standard hierarchical search scheme divides the data
into N nonoverlapping segments that are coherently ana-
lyzed, and subsequently matched-filter outputs are com-
bined incoherently. Thereby, the duration of one segment
defines the maximum time span of coherence. In contrast,
the presented sliding coherence window approach divides

FIG. 4 (color online). Estimated sensitivity ratio r as intro-
duced in Eq. (57) of the standard hierarchical search and the
sliding coherence window technique at fixed total computational
cost and given T, shown as a function of � defined in Eq. (57).
The different curves correspond to different values of q (number
of subsegments) as indicated by the shaded [color] bar. The
dashed horizontal line corresponds to q ¼ 1, for which the
search methods coincide.
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each of the N data segments into q subsegments, which are
thus shorter than the desired maximum coherence length T
(size of the coherence window). This permits the efficient
combination of matched-filter outputs from all subseg-
ments in a ‘‘sliding-window’’ fashion: If subsegments are
closer than T, they are combined coherently; otherwise,
they are combined incoherently.

As a result, the estimated search sensitivity of the sliding
coherence window approach is considerably superior com-
pared to the standard hierarchical scheme, while using the
same number of coarse- and fine-grid templates to cover
the search parameter space. At a given value of T, the
sensitivity improvement in terms of minimum detectable
gravitational-wave amplitude h0 scales with the fourth root
of Nð2� 1=qÞ for a contiguous data set. Since for the
standard hierarchical method q ¼ 1, to achieve the same
sensitivity as the sliding coherence window technique
between 50–100% more data (to increase N accordingly)
would have to be analyzed. Realistic Monte-Carlo simula-
tions have been carried out confirming the sensitivity
enhancement.

The sensitivity improvement can also be expressed in
terms of the average coherence overlap 
 between succes-
sive sliding steps. In particular, if the data set has gaps in
time, 
 can be a useful figure of merit. The estimated
sensitivity improvement of the sliding coherence window
technique over the standard scheme scales as the fourth
root of (1þ 
).

In addition, the sensitivity has also been compared at
fixed computational cost. When the computing cost of
the coherent stage dominates, the above sensitivity im-
provement holds. In the case where the computational
cost of the incoherent stage dominates, the sensitivity
improvement can fade away, depending on the search

setup. However, it is estimated that, when the chosen
coherence window is equal to the length of 2 subseg-
ments, the sensitivity is always superior to the standard
method at about the same computational expense. In
general, the search setup (including the choice of q)
will have to be sensitivity optimized at the given com-
putational resources and the software at hand, as well as
for the data available.
However, further topics are planned to be investigated in

future work. One of these aspects concerns the efficient
implementation of the proposed technique while exploiting
the FFT algorithm. Moreover, an optimal weighting
scheme between the coherent matched-filter outputs from
different subsegments could be further studied, taking into
account correlations between these.
The sliding coherence window approach is envisioned to

be employed by the EINSTEIN@HOME [18] project to further
improve the search sensitivity of all-sky surveys for un-
known isolated CW sources [26]. The proposed approach
should also be extensible to CW searches for sources in
binary systems [51]. With suitable modification, the
method might also have applicability in further related
areas, for instance, regarding computationally limited
searches for prior unknown radio [52], X-ray [53], and
gamma-ray pulsars [54–57].
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