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FROM AMPLITUDES TO FORM FACTORS IN THE N=4 SYM

THEORY

L. V. Bork,∗ D. I. Kazakov,∗† and G. S. Vartanov‡

We discuss the latest progress in understanding the infrared behavior of inclusive cross sections and the

form factors for the so-called half-BPS operators in the N=4 SYM theory. In both cases, we observe

the exponentiation of the infrared divergences while the finite parts do not have such a simple behavior.

We show how the infrared divergences cancel in inclusive cross sections when the emission of soft and

collinear quanta is taken into account. We calculate the finite parts of the form factors in the two-loop

approximation. They are rather complicated and are expressed in terms of generalized polylogarithms of

several variables. But the principle of maximal transcendentality is nevertheless still satisfied.

Keywords: N=4 maximally supersymmetric Yang–Mills theory, form factor, N=1 superspace, infrared-
finite observable, maximally helicity-violating amplitude

1. Introduction

In the past few years, much attention has been given to studying the planar limit for the scattering
amplitudes in the N=4 supersymmetric Yang–Mills (SYM) theory. It is believed that the hidden symme-
tries responsible for integrability properties of the N=4 SYM theory completely fix the structure of the
amplitudes (the S-matrix of the theory) [1]. In particular, this is manifested in the fact that the answers for
the amplitudes are expressed in terms of pseudoconformal integrals in the momentum space [2]. Moreover,
the so-called dual conformal symmetry in the weak-coupling regime can be extended to the N=4 super-
symmetric version and together with the usual N=4 superconformal symmetry forms the so-called Yangian
symmetry, which is governed by the Yangian infinite-dimensional algebra. Another remarkable property of
the considered amplitudes is the amplitude/Wilson loop duality [3], [4].

In the strong-coupling regime, the amplitudes in the N=4 SYM theory can be obtained using the
AdS/CFT correspondence by computing the open-string scattering amplitudes in the AdS5 space with
strings ending on the D3 brane positioned at some fixed value z �= 0 of the radial AdS5 coordinate in
the semiclassical regime [3]. This problem can be reformulated as the problem of finding the minimum
surface in the AdS5 space with a special boundary condition and was recently reduced to solving a set
of functional equations for conformally invariant cross ratios as functions of the spectral parameters, the
so-called Y -systems [5]. The Y -systems usually appear in integrable systems, and this is another hint that
the N=4 amplitudes contain an integrable structure.

The hidden symmetries of the amplitudes of the theory in the planar limit1 were first established for
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the so-called maximally helicity-violating (MHV) amplitudes,2 which are color-ordered and defined through
the group structure decomposition

A1−loop
n = gn−2λl

∑

perm

Tr
(
T aρ(1) · · ·T aρ(n)

)
A(l)

n

(
pρ(1), . . . , pρ(n)

)
,

where An are the physical n-point amplitudes, An are the color-ordered amplitudes, T a(i) are the generators
of the gauge group SU(Nc), aρ(i) is the color index of the ρ(i)th external particle, pρ(i) is its momentum,
and λ = g2Nc/16π2. These amplitudes are ultraviolet (UV) finite but have infrared (IR) divergences. Bern,
Dixon, and Smirnov (BDS) recently formulated an ansatz [6] for the all-loop n-point MHV amplitudes, which
was confirmed at the three-loop level for the four-point amplitude and in the framework of dimensional
regularization has the form
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where γcusp(g) =
∑

l λ
lγ

(l)
cusp is the so-called cusp anomalous dimension [7] and G0(g) =

∑
l λ

lG
(l)
0 is the

coupling constant function depending on the IR regularization. These functions completely define the IR
behavior of the amplitude.

It is unsurprising that all IR divergences of the amplitudes are factorable and exponentiate [8]. It is
much less obvious that this is also true for the finite part. According to the BDS ansatz, the finite part of
the amplitude is defined by the cusp anomalous dimension and a function of kinematic parameters specified
at the one-loop level. For a four-gluon amplitude, we have

F
(1)
4 (0) =

1
2

log2

(
−t

s

)
+ 4ζ2. (1)

For n = 4, 5, the BDS ansatz passed several nontrivial tests: the amplitudes were calculated up to
four loops for four gluons and up to three loops for five gluons. But it fails starting from n = 6, although
the abovementioned duality with the Wilson loop still holds. The finite part Fin[logMn] for the four- and
five-point amplitudes is totally fixed by the dual conformal symmetry; it is a solution of the anomalous
Ward identities for this symmetry [9],

n∑

i=1

(2xν
i xi∂i − x2

i ∂
ν
i )Fin[logMn] =
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2
γcusp

n∑

i=1

log
x2

i,i+2

x2
i−1,i+1
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where xμ
i,i+1 = xμ

i − xμ
i+1 = pμ

i . For a number of legs greater than five, the solution of the anomalous Ward
identities in addition to the BDS terms contains a function of cross ratios of kinematic variables. The exact
form of this function is still unknown.

While all the UV divergences in the N=4 SYM theory are absent from the scattering amplitudes,
the IR divergences remain but presumably cancel in properly defined physical observables. Regularized
expressions thus serve as a kind of scaffolding that should be absent from the final answer. Just the

2The MHV amplitudes are the amplitudes where all particles are outgoing and the total helicity is equal to n− 4, where n
is the number of particles. For gluon amplitudes, MHV amplitudes are defined as the amplitudes in which all but two gluons
have positive helicities.
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physical observables are the goal of our calculation. Although the Kinoshita–Lee–Nauenberg theorem [10]
in principle tells how to construct such observables, this procedure is not simple to realize explicitly, and
various possibilities can be considered. In particular, we can consider the so-called energy flow functions
defined in terms of the energy–momentum tensor correlators considered in the weak-coupling regime in [11]
and in the strong-coupling regime in [12]. We concentrated on the inclusive cross sections [13], [14], hoping
that they retain the factorization properties present in the amplitudes. Similar questions were discussed
in [15], where IR-safe observables of the type of the inclusive cross section in the N=4 SYM theory were
constructed. Here, we consider the IR structure of the MHV gluon amplitudes in the planar limit for the
N=4 SYM theory in the next-to-leading-order approximation. We show the explicit cancellation of the IR
divergence in properly defined inclusive cross sections in the N=4 SYM theory theory and calculate the
finite parts of the amplitudes analytically. Unfortunately, in contrast to the virtual corrections, the finite
parts do not reveal any simple structure and are not obviously factorable.

In the strong-coupling regime, the natural generalization of the Y -system for the amplitudes is the
Y -system for the form factors [16], i.e., the matrix elements of the form

〈0|O|pλ1
1 , . . . , pλn

n 〉, (2)

where O is a gauge-invariant operator acting on the vacuum and producing some state |pλ1
1 , . . . , pλn

n 〉 with
the momenta p1, . . . , pn and helicities λ1, . . . , λn. In the dual string theory, this matrix element can be
described using the amplitudes of strings with ends on the D3 brane positioned at some fixed value of the
radial AdS5 coordinate z in the presence of closed strings [16].

It is interesting to understand whether these objects in the weak-coupling region have the same features
as the amplitudes or, in other words, whether form factors are governed by the Yangian symmetry (or its
analogue) and whether they are determined by it. In [17], we established that up to the second order of
the perturbation theory, all the answers are expressed in terms of the pseudoconformal integrals, and this
hints at a hidden integrability.

Inspired by the two-loop calculation of the form factor associated with the operator VX from the
energy–momentum tensor superconformal multiplet of the N=4 SYM theory performed long ago by van
Neerven [15], we systematically study the simplest types of form factors in the planar N=4 SYM theory
in the weak-coupling regime for the half-BPS operators O(n)

I and the Konishi operator K. Our results
resemble the answers obtained for the amplitudes. In particular, the form factor for the operator with three
legs is similar to the six-point amplitude, and so on. Similar problems were discussed in [18] using the
unitary-based technique and extending the amplitude/Wilson loop duality to the case with form factors.

2. IR-safe observables in the N=4 SYM theory

Our aim is to evaluate the next-to-leading-order correction to the inclusive differential cross section of
polarized scattering in the weak-coupling regime in the planar limit of the N=4 SYM theory in an analytic
form and to obtain the cancellation of the IR divergences.

We start with the 2→2 MHV scattering amplitude with two incoming positively polarized gluons
and two outgoing positively polarized gluons and consider the differential cross section dσ2→2(g+g+ →
g+g+)/dΩ as a function of the scattering solid angle. The total cross section is divergent at the angle zero.
Treating all the particles as outgoing in this amplitude, we let (− − ++) denote the MHV amplitude. At
the tree level, the cross section is given by

dσ2→2

dΩ13
=

1
J

∫
dφ2 |M(tree)

4 |2S2, (3)
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where J is the flux factor (J = s in our case), s is the standard Mandelstam variable, and the phase volume
of a two-particle process (we the use dimensional regularization D = 4 − 2ε) is

dφ2 =
dDp3 δ+(p2

3)
(2π)D−1

dDp4 δ+(p2
4)

(2π)D−1
(2π)DδD(p1 + p2 − p3 − p4).

In accordance with (3), Sn (n = 2 in this case) is the so-called measurement function and specifies the
detected state. In this particular case,

S2 = δ+,h3δ
D−2(ΩDet − Ω13),

where δD−2(ΩDet − Ω13) means that our observable is the differential cross section dσ2→2/dΩ13, dΩ13 =
dφ13 d cos θ13, θ13 is the scattering angle of the particles with the momenta p3 with respect to p1 in the
center-of-mass frame, and δ+,h3 means that we detect a particle with positive helicity.3 The matrix element
is obtained from the color-ordered amplitudes by summation

|M(tree)
4 |2 = g4

∑

colors

|A(tree)
4 |2 = g4N2

c (N2
c − 1)

∑

σ∈P3

∣∣A(tree)
4

(
p1, pσ(1), . . . , pσ(3)

)∣∣2,

where Pn is the set of all permutations of n objects (n = 3 in this case), and hence
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c (N2
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∑
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s4
12

s1σ(1)sσ(1)σ(2)sσ(2)σ(3)sσ(3)1
, (4)

where we take sij = (pi + pj)2 in all expressions.
In dimensional regularization (reduction), the cross section is

(
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c
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(
s4

t2u2
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s2
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)(
μ2

s

)ε

=
α2N2

c

E2

(
μ2

s

)ε 4(3 + c2)
(1 − c2)2

,

where s, t, and u are the Mandelstam variables, E is the total energy in the center-of-mass frame, α =
g2Nc/4π, c = cos θ13, and μ and ε are the parameters of the dimensional regularization (reduction). In the
center-of-mass frame, the Mandelstam variables satisfy the usual relations s = E2, t = −(E2/2)(1− c), and
u = −(E2/2)(1 + c).

The next step is to calculate the next-to-leading-order corrections, which includes calculating the virtual
and real parts together with the splitting counterterms, which appear because of the indistinguishability of
the collinear particles in the initial and final states.

Virtual part. We start with the virtual contribution. To obtain the one-loop contribution to the
differential cross section, we use the already known expression for the one-loop color-ordered amplitude

M1−loop
4 (ε) =

A1−loop
4

A
(tree)
4

= −1
2
st I1−loop

4 (s, t),

where I
(1)
4 (s, t) is the scalar “box” diagram

I1−loop
4 (s, t) = − 2
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−t

)ε)
+

1
2

log2

(
s

−t

)
+

π2

2

]
+ O(ε).

3More accurately, in dimensional regularization (reduction), we have dΩε
13 = dφ13 sin φ−2ε

13 d cos θ13 sin θ−2ε
13 .
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The square of the matrix element (|M1−loop
4 |2 =

∑
colors(A

(tree)
4 A1−loop∗

4 + c.c.)) is

|M1−loop(−−++)
4 |2 = − g4N2

c (N2
c − 1)

(
g2Nc

16π2

)
×

×
[

s4

s2t2
stI1−loop

4 (s, t) +
s4

s2u2
suI1−loop

4 (s, u) − s4

t2u2
tuI1−loop

4 (−t, u)
]
. (5)

Real emission. The next step is to calculate the amplitude with three outgoing particles. Here, we
must define which is the process of interest. There are several possibilities for three particles in the final
state:

1. Three gluons with positive helicities, g+g+ → g+g+g+: this is the MHV amplitude.

2. Two gluons with positive helicities and the third gluon with negative helicity, g+g+ → g+g+g−: this
is the anti-MHV amplitude.4

3. One of three final particles is the gluon with positive helicity and the other two are the quark-antiquark
pair, g+g+ → g+q−q̄ + or g+g+ → g+q+q̄ −: this is an anti-MHV amplitude.5

4. One of three final particles is the gluon with positive helicity and the other two are scalars, g+g+ →
g+ΛΛ: this is an anti-MHV amplitude.

If we fix one gluon with positive helicity scattered at the angle θ and sum over all the other particles,
then all the abovementioned processes contribute. In the case where we fix two gluons with positive helicity
and seek the rest, only the first two processes are allowed.

The cross section of these processes can be written as

dσ2→3

dΩ13
=

1
J

∫
dφ3 |M(tree)

5 |2S3, (6)

where dφ3 is the three-particle phase volume. It can be written in a form more convenient for our calcula-
tions,

dφ3 =
dDp3 δ+(p2

3)
(2π)D−1

dDp4 δ+
(
(p4 − k)2

)

(2π)D−1

dDk δ+(k2)
(2π)D−1

(2π)DδD(p1 + p2 − p3 − p4),

and S3 is the measurement function that constrains the phase space and defines a particular observable.
To simplify the integration in what follows, we choose the universal measurement function

S3(p3, p4, p5) = Θ
(

p0
3 −

1 − δ

2
E

)
δD−2(ΩDet − Ω3), (7)

where we take δ = 1/3 in the case of identical particles and δ = 1 in the other cases. Therefore, the
registration of one fastest gluon corresponds to δ = 1/3 for the MHV and anti-MHV amplitudes and δ = 1
for the matter–antimatter amplitude, while the registration of two fastest gluons corresponds to δ = 1/3
for the MHV amplitude and δ = 1 for the anti-MHV amplitude.6 We verified that the IR and collinear
divergences cancel in observables for any value of δ.

4There is also a g+g+ → g+g−g+ helicity configuration, but the amplitude in this case is the same. We let (− − + + −)
denote both configurations.

5The N=4 supermultiplet consists of a gluon g, four fermions (quarks) qA, and six real scalars ΛAB , where A and B
are SU(4)R indices and Λ is an antisymmetric tensor. It is implied that all squared amplitudes with quarks and scalars are
summed over these indices.

6These are not precisely the needed requirements but are pretty close to them. Satisfying the exact requirements for the
fastest particles is technically more involved but does not change the general picture.
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Splitting. Taking the emission of additional soft quanta into account allows canceling the IR diver-
gences (double poles in ε), but the single poles originating from collinear divergences remain. Indeed, in the
case of massless particles, the asymptotic states (both the initial and final states) are ill defined because
massless quanta can split into two parallel quanta indistinguishable from the original one. To take this into
account, we introduce the notion of distribution of the initial particle (gluon) with respect to the fraction
of the carried momentum z: g(z). Then the initial distribution corresponds to g(z) = δ(1 − z), and the
emission of a gluon leads to a splitting: the gluon carries the fraction of momentum equal to z, while the
collinear gluon carries 1 − z. The probability of this event is given by the so-called splitting functions
Pgg(z) [19]. For a final-state gluon, this corresponds to the fragmentation of the gluon into a pair of gluons
or quarks or scalars.

Additional contributions from collinear particles in the initial and final states to inclusive cross sections
have the respective forms

dσIn Split
2→2 =

α

2π

1
ε

(
μ2

Q2
f

)ε ∫ 1

0

dz Pgg(z)
∑

i,j=1,2,
i�=j

dσ2→2(zpi, pj , p3, p4)SIn Split
2 (z) (8)

and

dσFn Split
2→2 =

α

2π

1
ε

(
μ2

Q2
f

)ε

dσ2→2(p1, p2, p3, p4)
∫ 1

0

dz
∑

l=g,q,Λ

Pgl(z)SFn Split
2 (z), (9)

where the scale Q2
f , sometimes called the factorization scale, belongs to the definition of the coherent asymp-

totic state and restricts the value of transverse momenta. The dependence of the parton distribution on
Q2

f is governed by the DGLAP equation [19], [20]. The splitting function Pij for each helicity configuration
can be obtained as a collinear limit of the corresponding partial amplitude.

Final result. In the next-to-leading-order approximation, there are two sets of amplitudes (MHV and
anti-MHV amplitudes) that contribute to the observables. The leading-order four-gluon amplitude is both
MHV and anti-MHV, and we split it into two parts. We can then construct three types of IR-safe quantities
in the next-to-leading order:

1. the purely gluonic MHV amplitude

AMHV =
1
2

(
dσ2→2

dΩ13

)(−−++)

Virt

+
(

dσ2→3

dΩ13

)(−−+++)

Real

+
(

dσ2→3

dΩ13

)(−−+++)

In Split

+
(

dσ2→3

dΩ13

)(−−+++)

Fn Split

,

2. the purely gluonic anti-MHV amplitude

BantiMHV =
1
2

(
dσ2→2

dΩ13

)(−−++)

Virt

+
(

dσ2→3

dΩ13

)(−−++−)

Real

+
(

dσ2→3

dΩ13

)(−−++−)

In Split

+
(

dσ2→3

dΩ13

)(−−++−)

Fn Split

,

3. the anti-MHV amplitude with fermions or scalars, which together with gluons form the full N=4
supermultiplet,

CMatter =
(

dσ2→3

dΩ13

)(ggg,qq̄+ΛΛ)

Real

+
(

dσ2→3

dΩ13

)(ggg,qq̄+ΛΛ)

In Split

.

We again stress that in each expression, all IR divergences cancel for arbitrary δ and only the finite part
remains.

Defining the physical condition for the observation, we now obtain several IR-safe inclusive cross
sections:
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1. registration of two fastest gluons of positive helicity

AMHV
∣∣
δ=1/3

+ BantiMHV
∣∣
δ=1

, (10)

2. registration of one fastest gluon of positive helicity

AMHV
∣∣
δ=1/3

+ BantiMHV
∣∣
δ=1/3

+ CMatter
∣∣
δ=1

, (11)

3. the anti-MHV cross section
BantiMHV

∣∣
δ=1

+ CMatter
∣∣
δ=1

. (12)

The relative simplicity of virtual contribution (1), which contains logarithms and no other special
functions, suggests a similar structure of the real part. But this is not the case. While the singular
terms are sufficiently simple and cancel completely, the finite parts are usually cumbersome and contain
polylogarithms. The only expression where they cancel corresponds to the δ=1 case, which is possible
only for the last set of observables, namely, for anti-MHV cross section (12). Choosing Qf = E as the
factorization scale, we obtain

(
dσ

dΩ13

)

antiMHV

=
4α2N2

c

E2

{
3 + c2

(1 − c2)2
−

− α

4π

[
2
(c4 + 2c3 + 4c2 + 6c + 19) log2

(
(1 − c)/2

)

(1 − c)2(1 + c)4
+

+ 2
(c4 − 2c3 + 4c2 − 6c + 19) log2

(
(1 + c)/2

)

(1 − c)4(1 + c)2
−

− 8
(c2 + 1) log

(
(1 + c)/2

)
log

(
(1 − c)/2

)

(1 − c2)2
+

6π2(3c2 + 13)− 5(61c2 + 99)
9(1 − c2)2

−

− 2
(11c3 − 31c2 − 47c − 133) log

(
(1 − c)/2

)

3(1 + c)3(1 − c)2
+

+ 2
(11c3 + 31c2 − 47c + 133) log

(
(1 + c)/2

)

3(1 − c)3(1 + c)2

]}
.

It can be seen that even this expression does not repeat the form of the Born amplitude and lacks a simple
structure. The reason for this might be that in constructing the IR-finite observable, we mix the MHV and
anti-MHV amplitudes and thus lose the fine properties of the former. Another reason might be that the
MHV amplitudes themselves for a number of legs exceeding five lack the exponentiation property for the
finite parts.

3. Form factors

We now consider the Lagrangian LN=4(W) for the N=4 SYM theory theory coupled to an external
classical current J by a gauge-invariant local operator O[W ],

LN=4(W) → LN=4(W) + O[W ]J,

where W denotes the whole N=4 on-shell multiplet. We tacitly assume the planar limit in the further
calculations.
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Fig. 1. The Feynman diagram for the form factor with the operator O.

We consider process (2), where O acts on the vacuum and produces some state |pλ1
1 , . . . , pλn

n 〉 with the
momenta p1, . . . , pn and helicities λ1, . . . , λn. It is shown schematically in Fig. 1. In the language of the
dual string theory, this process can be described as an insertion of some closed-string state (corresponding
to the local operator O) on the worldsheet in addition to n open-string states (corresponding to the state
|pλ1

1 , . . . , pλn
n 〉 in the dual theory).

For further calculations, we consider the set of gauge-invariant operators CIJ = Tr(φIφJ ) and VJ
I =

Tr(φ̄JφI) with the naive mass dimension Δ0 = 2, which coincides with the conformal dimension because
of the absence of quantum corrections. These operators can be viewed as the lowest members of the
energy–momentum tensor multiplet

T AB = Tr
(

WAWB − 1
6
δABWCWC

)
,

where A, B, C = 1, . . . , 6 are the SO(6)R � SU(4)R indices, I, J = 1, 2, 3 are the indices of the SU(3)
subgroup of SU(4)R, and WA is some constrained chiral superfield in the N=4 superspace containing all
physical fields of the N=4 supermultiplet.

The other set of operators that we consider are the half-BPS operators O(n)
I = Tr(φn

I ), whose naive mass
dimension coincides with the conformal dimension Δ0 = n, being protected from the quantum corrections,
and the lowest component of the Konishi supermultiplet

K =
3∑

I=1

Tr(φ̄IφI)

with the naive mass dimension Δ0 = 2 and a nonzero anomalous dimension because of the presence of UV
divergences. The mass dimension of the Konishi operator has radiation corrections, and the corresponding
form factors consequently contain UV divergences. This means that we must consider the renormalized
form factor 〈0|KR|pλ1

1 , . . . , pλn
n 〉, where KR = Z−1

K KB. Here, ZK is the renormalization constant, which
appears because of the UV divergences and should be calculated to the same order of the perturbation
theory as the form factors. After such a UV renormalization, only the IR divergences remain. All the
statements concerning the Konishi operator hold for the renormalized operator. The same is true for other
operators that acquire UV divergences.

For simplicity, we choose only scalars as components of the state |pλ1
1 , . . . , pλn

n 〉 produced by the operator
O and can then omit the helicity indices from |p1, . . . , pn〉. We also consider the states with the number of
particles equal to the naive mass dimension of the operator O, i.e., we consider the states consisting of Δ0

scalars.
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Calculation strategy. For our calculations, it is convenient to use the N=1 formulation of the N=4
SYM theory and compute explicitly in terms of the N=1 superfields in the momentum space. The operators
O = {CIJ ,VJ

I ,O(n)
I ,K} can be identified with the lowest components of the N=1 local operators

CIJ = Tr(ΦIΦJ), VJ
I = Tr(e−gV Φ̄JegV ΦI), I �= J,

O(n)
I = Tr(Φn

I ), K =
∑

I

Tr(e−gV ΦIegV ΦI),
(13)

where ΦI are chiral N=1 superfields and V is a real vector N=1 superfield. The operators CIJ and O(n)
I

are chiral, and VJ
I and K are nonchiral from the N=1 superfield standpoint.

We let F(p1, . . . , pn) = 〈p1, . . . , pn|O(q)|0〉 denote the form factor of the corresponding operator and
expect that F has the property

F(p1, . . . , pn) = Ftree(p1, . . . , pn)(1 + “loops”),

where Ftree(p1, . . . , pn) denotes the tree-level contribution and “loops” schematically denotes the contribu-
tions of the next orders of the perturbation theory. It is convenient to define the ratio

M(p1, . . . , pn) =
F(p1, . . . , pn)

Ftree(p1, . . . , pn)
= (1 + “loops”) =

∑

l=0

λlM(l).

We first consider the chiral case. To calculate the form factors, we use the generating functional for the
strong-coupling Green’s functions Γ[Φcl, J ] in the N=1 superspace. It can be obtained from the generating
functional

Z[j, J ] =
∫

D(ΦI , V, . . . ) exp
{

SN=4 +
∫

d6z J(z)O(z) +
∫

d6z Tr
(
j(z)Φ(z)

)}

using the Legendre transformation with respect to chiral sources j (we note that the source J is unaffected
by the Legendre transformation). After performing the D-algebra, each supergraph gives a contribution
local in the θ, and Γ[Φcl, J ] can be written as (we assume the mass-shell condition p2

i = 0 when performing
the D-algebra)

Γ[Φcl, J ] =
∑

l=0

λlΓ(l)[Φcl, J ] =
∑

l=0

λl

∫
d4p1 · · ·d4pn d6z J(−q, θ) ×

× Tr
(
Φcl(−p1, θ) · · ·Φcl(−pn, θ)

)
M(l)(p1, . . . , pn) + O(J2),

where d6z = d4q d2θ and M(l)(p1, . . . , pn) is given by the sum of scalar integrals over “bosonic” variables.
Then

M(l)(p1, . . . , pn) =
δn+1Γ(l)

δΦcl · · · δΦcl δJ

∣∣∣∣p2
i =0, θ=0,

Φcl=0, J=0

.

We again stress that the on-shell condition p2
i = 0 and momentum conservation q +p1 + · · ·+pn = 0 should

be taken into account when obtaining this expression.
The situation is a bit more complicated in the nonchiral case. All the integrals in Γ[Φcl, Φ̄cl,J ] (J is a

nonchiral source) are now integrals over the full N=1 superspace
∫

d8z (. . . ), where d8z = d4q d4θ (and not
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only over the chiral subspace
∫

d6z (. . . ) as in the chiral case), and the expansion for Γ[Φcl, Φ̄cl,J ] contains
extra terms,

Γ[Φcl, Φ
cl
,J ] =

∑

l=0

λlΓ(l)[Φcl, Φ
cl
,J ] =

=
∑

l=0

λl

∫
d4p1 · · ·d4pn d8z J (−q, θ, θ̄) ×

×
[
Tr

(
Φ

cl
(−p1, θ̄) · · ·Φcl(−pn, θ)

)
M(l)(p1, . . . , pn) +

+ Tr
(
D

β̇
Φ

cl
(−p1, θ̄) · · ·DαΦcl(−pn, θ)

)
M(l)

β̇α
(p1, . . . pn) +

+ Tr
(
D

2
Φ

cl
(−p1, θ̄) · · ·D2Φcl(−pn, θ)

)
M(l)

2 (p1, . . . , pn)
]
+ O(J 2). (14)

From the N=1 superspace standpoint, the additional terms correspond to the operators of other mass
dimensions, and we have a situation with mixed operators. But from the “component” standpoint, we can
always choose a concrete projection on a particular component of a superfield. We consider only scalar
components. Correspondingly, the last terms in (14) do not contribute to our consideration and can be
dropped.

We calculate in the N=1 superspace formalism and take the projection on the scalar component with
θ = θ̄ = 0 at the end of the calculations. There are advantages and disadvantages to this approach. A
major advantage is the drastic reduction in the number of diagrams compared with the component case
together with the simplified form of the scalar integrals. The disadvantage of the method is the lack of an
explicit N=4 covariance for the answer. It would be desirable to use modern N=4 covariant methods “on
the mass shell,” which are used to calculate amplitudes, but they require some modifications for application
to form factors.

Form factors with Δ0 = 2. For the operators CIJ and VJ
I and with certain distinctions for the

operator K, the form factors have the same form, which corresponds to the general structure of the form
factor M with two external legs in the gauge theory with a zero beta function7

logM =
1
2

2∑

i=1

M̂

(
si,i+1

μ2

)
+ O(ε),

where we introduce

M̂

(
si,i+1

μ2

)
= −1

2

∑

l

(
λ

16π2

)l(
γ

(l)
cusp

(lε)2
+

G(l)

lε
+ C(l)

)(
si,i+1

μ2

)lε

, (15)

γ
(l)
cusp are the coefficients of the perturbative expansion γcusp(λ) =

∑
l γ

(l)
cuspλl of the cusp anomalous dimen-

sion, which we encountered previously when considering the scattering amplitudes, G(l) are the coefficients
of the perturbative expansion G(λ) =

∑
l G

(l)λl of the collinear anomalous dimension, and C(l) are some
constants. The quantities G(l) and C(l) are regularization and scheme dependent in contrast to the cusp
anomalous dimension. For the considered form factors, we obtain

logM = a

(
s12

μ2

)−ε(−2
ε2

+ ζ2

)
+ a2

(
s12

μ2

)−2ε(
ζ2

ε2
+

ζ3

ε

)
+ O(a3),

7A very similar structure of the form factors in QCD was first established in [8].
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where ζn are the corresponding values of the Riemann zeta function and a = λe−εγE . Comparing the
obtained answer with (15), we can find the values of the first two coefficients of the expansion for the
anomalous dimensions γ

(l)
cusp and G(l):

γ(1)
cusp = 4, γ(2)

cusp = −8ζ2,

G(1) = 0, G(2) = −ζ3, C(1) = −ζ2, C(2) = 0.
(16)

We note that the maximal transcendentality principle [21] holds, which in our case means that if we assign
each logarithm and π the transcendentality level 1 and the polylogarithms Lin(x) and ζn the transcenden-
tality level n, then at the given order of the perturbation theory, the coefficient for the nth pole 1/εn has
the total transcendentality 2l−n, where l is the number of loops. For a product, the total transcendentality
is equal to the sum of the transcendentalities of the factors.

The leading IR behavior of M can also be computed by considering the Wilson line with one cusp.
In this case, the dual description in terms of Wilson loops is known. The same result was obtained in [15]
for the operator VX = 2 Tr(Φ1Φ1) − Tr(Φ2Φ2) − Tr(Φ3Φ3) belonging to the energy–momentum tensor
supermultiplet.

The O(n)
I , n = 3, form factors at the two-loop level. We here consider the results of calculating

for the chiral half-BPS operators O(n)
I defined above. In the second order of the perturbation theory, we

have

logM =
3∑

i=1

a

(
si,i+1

μ2

)−ε(
− 1

ε2
+

ζ2

2

)
+

+
3∑

i=1

a2

(
si,i+1

μ2

)−2ε(
ζ2

2ε2
+

7ζ3

2ε

)
+ fin.part.

As in the preceding case of the form factors of the operators with the conformal dimension two, we can find
the first two coefficients in the expansion of the anomalous dimensions:

γ(1)
cusp = 4, γ(2)

cusp = −8ζ2, G(1) = 0, G(2) = −7ζ3. (17)

We note that the values of γ(l), as expected, are unchanged and coincide with (16), while those of the
collinear anomalous dimension depend on the form factor considered.

We note the highly nontrivial cancellations between the polylogarithms that occurred when calculating
logM. The individual contributions from the scalar integrals have coefficients of the poles consisting
of nontrivial combinations of logarithms and polylogarithms of different weight. We see that the IR-
factorization property holds for the form factors as for the amplitudes.

The O(n)
I , n > 3, form factors at the two-loop level. In the first order of the perturbation theory,

similar to the form factors of operators with the conformal dimension two, the answer is given by the “scalar
triangle.” In the second order, the answer has a form similar to the n=3 case but has an additional term
coming from the factored one-loop diagrams. The full set of scalar integrals in the answer is given in Fig. 2.

Expanding over ε and calculating the logarithm of the answer, we obtain

logM =
n∑

i=1

a

(
si,i+1

μ2

)−ε(
− 1

ε2
+

ζ2

2

)
+

+
n∑

i=1

a2

(
si,i+1

μ2

)−2ε(
ζ2

2ε2
+

7ζ3

2ε

)
+ fin.part.
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Fig. 2. Scalar integrals in the answer: the arc in G7 corresponds to the presence of the numerator

(k − p)2, the thick black line corresponds to an off-shell leg with the momentum q, and all the other

legs are on-shell.

The first two coefficients in the expansion of the anomalous dimensions are

γ(1)
cusp = 4, γ(2)

cusp = −8ζ2, G(1) = 0, G(2) = −7ζ3.

The finite part is
λF (1)(s12, . . . , sn1) + λ2F (2)(s12, . . . , sn1) + O(λ3)

and is trivial at one loop, F (1) = 0, and the two-loop expression F (2) is a complicated combination of
polylogarithms and generalized Goncharov polylogarithms of several variables.

We note that the result is still simpler than in the nonsupersymmetric theory and the maximal tran-
scendentality principle still holds [21]. In the case of (1+1)-dimensional kinematics, the expressions for
the finite parts of the form factors are essentially simplified [17]. For instance, for the form factor of the
operator O(3)

I , the answer is expressed in terms of only logarithms, and the finite part has the form

−λ2

2880

(
75 log4 s12

s13
+ 120π2 log2 s12

s13
− 317π4

)
.

Dual conformal invariance. We note a general property of the integrals in the final result first
mentioned in [17]: all the scalar integrals can be obtained from the pseudoconformal integrals in the answer
for the amplitudes by a certain limit procedure. This means that the calculation results should be expressed
in terms of conformally invariant ratios, which restricts the form of the answer. On the mass shell, generally
speaking, this dual conformal symmetry has an anomaly, but this anomaly is completely determined by the
cusp anomalous dimension.

As a result, the dual conformal symmetry remains an extremely useful instrument for investigating the
properties of amplitudes and the Wilson loops dual to them. Strictly speaking, the integrals that appear
when calculating the form factors do not have an exact dual conformal invariance but, as already mentioned,
can be obtained from the dually conformal using a certain limit procedure [17], which we describe with
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Fig. 3. The two-loop ladder-type triangle diagram and the two-loop box diagram: the arc corresponds

to the presence of a numerator.

the example shown in Fig. 3. In the right-hand picture, we show the diagram arising in the form-factor
calculation, and in the left-hand picture, we show the “initial” dually conformal diagram encountered when
integrating the amplitudes. In the limit as points 2 and 3 go to infinity, the left diagram passes into the
right diagram.

IR-finite observables based on form factors. Strictly speaking, the form factors 〈0|O|pλ1
1 , . . . , pλn

n 〉
on the mass shell, like the amplitudes, are ill defined in four-dimensional space–time because of the presence
of IR divergences, and some IR regulator must therefore be introduced. This leads to the appearance of an
additional mass parameter μ in the dimensional regularization, breaking the conformal symmetry. In other
words, it may be said that 〈0|O|pλ1

1 , . . . , pλn
n 〉 are intermediate objects and the true physical quantities are

the IR-safe observables that are constructed from 〈0|O|pλ1
1 , . . . , pλn

n 〉 and are free of IR divergences and
hence free of the IR regulator. Indeed, for the process γ∗ → Jets in QCD, we are usually interested in
the total cross section σtot(γ∗ → Jets) or some differential distributions and not in the matrix elements
〈0|jQCD

em |pλ1
1 , . . . , pλn

n 〉 themselves. To obtain a physical (final) result, we must include all the processes
allowed by the energy–momentum conservation laws in the same order of the perturbation theory.

For instance, we consider the total cross section σtot for the process J → all possible from the N=4
supermultiplet, where the classical source J is coupled to the N=4 supermultiplet by a local gauge-invariant
operator O. By the optical theorem,

σtot(s) ∼
1
s

Ims

[∫
dDx e−iqx〈O(x)O(0)〉

]
, q2 = −s.

The two-point correlation function for the operators O in the conformal theory, in addition to the canonical
mass dimension Δ0, can have an anomalous dimension γ = γ(λ) that depends on the coupling constant,

〈O(x)O(0)〉 ∼ 1
(x2)Δ0(1−ε)+γ

.

After some calculation, we obtain the total cross section

σtot(s) ∼
1

Γ(Δ0 + γ)Γ(Δ0 + γ − 1)
1

s3−Δ0−γ

and can study its asymptotic behavior at weak and strong couplings.
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In the N=4 SYM theory, as in any conformal field theory, if the operator O is protected (which means
that it does not receive quantum corrections and γ = 0), then the total cross section behaves as C/s3−Δ0.
From this expression, it might seem that we have a violation of unitarity for processes with operators whose
dimension is greater than three, according to the Froissart theorem. The contradiction is resolved because
the Froissart theorem is applicable only to renormalizable interactions, i.e., interactions corresponding to
operators with a conformal dimension less than or equal to three.

If we consider not σtot but some differential distribution, then the optical theorem is not so useful, and
we must compute the perturbation theory directly. The form factors considered here are “building blocks”
for such objects.

4. Discussion

We have summarized our recent achievements in understanding the IR structure of the N=4 SYM
theory. As we showed, although the MHV and other helical amplitudes have several attractive aspects,
they are not physical objects and depend on the IR regulator. Investigating their properties further is an
interesting mathematical problem, but it cannot be considered physically well defined. At the same time,
many remarkable properties of the MHV amplitudes are lost for physically well-defined objects.

The form factors are the objects next in complexity after the amplitudes. As we showed, they have
many properties similar to those of the scattering amplitudes (the IR divergences factor and so on) although
they formally differ from the amplitudes by allowing one leg to go off shell.

The N=4 SYM theory is the first example of a conformal quantum field theory in four-dimensional
space–time. There are many indications that it might be integrable in some sense. Integrability in similar
cases means the presence of an infinite number of conservation laws, i.e., an infinite number of relations.
Possibly, the abovementioned Yangian symmetry is responsible for such a set of relations.
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