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Abstract

In this paper we prove a formula for fusion coefficients of affine Kac–Moody algebras first conjectured
by Walton [M.A. Walton, Tensor products and fusion rules, Canad. J. Phys. 72 (1994) 527–536], and re-
discovered by Feingold [A. Feingold, Fusion rules for affine Kac–Moody algebras, in: N. Sthanumoorthy,
Kailash Misra (Eds.), Kac–Moody Lie Algebras and Related Topics, Ramanujan International Symposium
on Kac–Moody Algebras and Applications, Jan. 28–31, 2002, Ramanujan Institute for Advanced Study in
Mathematics, University of Madras, Chennai, India, in: Contemp. Math., vol. 343, American Mathemati-
cal Society, Providence, RI, 2004, pp. 53–96]. It is a reformulation of the Frenkel–Zhu affine fusion rule
theorem [I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro
algebras, Duke Math. J. 66 (1992) 123–168], written so that it can be seen as a beautiful generalization of
the classical Parthasarathy–Ranga Rao–Varadarajan tensor product theorem [K.R. Parthasarathy, R. Ranga
Rao, V.S. Varadarajan, Representations of complex semi-simple Lie groups and Lie algebras, Ann. of Math.
(2) 85 (1967) 383–429].
© 2008 Elsevier Inc. All rights reserved.
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1. Introduction

Fusion rules play a very important role in conformal field theory [11], in the representation
theory of vertex operator algebras [8–10], and in quite a few other areas. For example, fusion
rules were used in [6] to obtain information on D-brane charge groups in string theory which on
the other hand correspond to certain twisted K-groups. This line of research found a mathematical
culmination in the theorem by Freed, Hopkins and Teleman [7], showing that twisted equivariant
K-theory can be identified with a fusion ring. In [1] a connection was found between the fusion
rules for the Virasoro minimal models and elementary abelian 2-groups. Further work in [5]
extended this idea to find a connection between the fusion rules for type A1 and A2 on all levels,
and elementary abelian 2-groups and 3-groups. This was extended as far as was possible in
[17,18] to the case of A� for any rank � and any level.

In [4] an introduction was given to the subject with major focus on the algorithmic aspects
of computing fusion rules for affine Kac–Moody algebras. In particular, it was emphasized that
the Kac–Walton algorithm [12,14,19] for fusion coefficients is closely related to the Racah–
Speiser algorithm for tensor product decompositions, which was the subject of earlier work [2,3].
[4] included a conjecture on fusion coefficients which restates the Frenkel–Zhu theorem [10] in
a form which shows it to be a beautiful generalization of the classical Parthasarathy–Ranga Rao–
Varadarajan tensor product theorem [16]. That conjecture had already been made by Walton [20]
in 1994, but we believe that it has not been proven up until now.

An outline of the organization of the paper is as follows. We give the definition of a fusion
algebra in section two, then we give notation and background about finite-dimensional simple
Lie algebras in section three. This includes facts about irreducible representations, contravariant
Hermitian forms on them, special results for sl2 and its representations, and projection operators.
In section four we briefly give notations about affine algebras leading to the level k fusion algebra
associated with simple Lie algebra g. In section five we discuss tensor products of irreducible
finite-dimensional modules for g and the PRV theorem. In section six we state the Frenkel–Zhu
fusion rule theorem, the Walton conjecture, what it says in the special case when g = sl2, and a
corollary relating fusion coefficients to tensor product multiplicities. We begin the proof of the
Walton conjecture by rewriting the Frenkel–Zhu theorem in several ways. In section seven we
review the proof of the PRV theorem and refine it to help find a relationship between the spaces
which occur in the Frenkel–Zhu theorem and the Walton conjecture. In section eight we put all
these pieces together to finish the proof of the Walton conjecture.
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2. Definition of fusion algebra

Let us begin with the definition of fusion algebra given by J. Fuchs [11]. A fusion algebra F

is a finite-dimensional commutative associative algebra over Q with some basis

B = {xa | a ∈ A}
so that the structure constants Nc

a,b defined by

xa · xb =
∑
c∈A

Nc
a,bxc

are nonnegative integers. There must be a distinguished index Ω ∈ A with the following proper-
ties. It is required that the matrix

C = [Ca,b] = [
NΩ

a,b

]
satisfies C2 = I . Because 0 � Nc

a,b ∈ Z, either C = I or C must be an order 2 permutation

matrix, that is, there is a permutation σ : A → A with σ 2 = 1 and

Ca,b = δa,σ (b).

Write σ(a) = a∗ and call xa∗ the conjugate of xa . Use it to define the nonnegative integers

Na,b,c = Nc∗
a,b

which, by commutativity and associativity of the algebra product, are completely symmetric in
a, b and c. Using this we also find that xΩ is a multiplicative identity element in F and Ω∗ = Ω .

In this paper we are interested in the structure constants of fusion algebras that are associated
to affine Lie algebras.

3. Background and notation for finite-dimensional Lie algebras

Now we will introduce notations and review some basic results needed later. Let g be a finite-
dimensional simple Lie algebra of rank � with Cartan matrix A = [aij ] and Cartan subalgebra H .
The simple roots and the fundamental weights of g are linear functionals

α1, . . . , α� and λ1, . . . , λ�,

respectively, in the dual space H ∗. Let the integral weight lattice P be the Z-span of the funda-
mental weights, and let

P + = {n1λ1 + · · · + n�λ� | 0 � n1, . . . , n� ∈ Z}
be the set of dominant integral weights of g, and let

θ =
�∑

θiαi
i=1
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be the highest root of g. The symmetric bilinear form (·,·) on H ∗ is determined by

aij = 〈αi,αj 〉 = 2(αi, αj )

(αj ,αj )
, 1 � i, j � �,

and the normalization (θ, θ) = 2. The fundamental weights are determined by the conditions
〈λi,αj 〉 = δij for 1 � i, j � �, and the special “Weyl vector”

ρ =
�∑

i=1

λi

will play an important role in several formulas. It is useful to define

λ̌ = 2λ

(λ,λ)
for any 0 �= λ ∈ H ∗,

so we can write (λi, α̌j ) = δij and aij = (αi, α̌j ). We may also express

θ =
�∑

i=1

θ̌i α̌i so θ̌i = θi(αi, αi)

2
.

The Weyl group W of g is defined to be the group of endomorphisms of H ∗ generated by the
simple reflections corresponding to the simple roots,

ri(λ) = λ − (λ, α̌i)αi, 1 � i � �.

This is a finite group of isometries which preserve P . There is a partial order defined on H ∗
defined by

λ � μ if and only if μ − λ =
�∑

i=1

kiαi for some 0 � ki ∈ Z.

For λ ∈ P + let V λ denote the finite-dimensional irreducible g-module with highest weight λ.
It has the weight space decomposition V λ = ⊕

β∈H ∗ V λ
β , where

V λ
β = {

v ∈ V λ
∣∣ h · v = β(h)v, ∀h ∈ H

}
is the β weight space of V λ. Of course, there are only finitely many β ∈ H ∗ such that V λ

β is

nonzero, and we denote by Πλ that finite set of such β . Since dim(V λ
λ ) = 1, a nonzero highest

weight vector vλ
λ ∈ V λ

λ is determined up to a scalar. The dual space (V λ)∗ = Hom(V λ,C) is also
an irreducible highest weight g-module, called the contragredient module of V λ. The action of g
on (V λ)∗ is given by

(x · f )(v) = −f (x · v) for x ∈ g, f ∈ (
V λ

)∗
, v ∈ V λ.
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The highest weight of (V λ)∗ is denoted by λ∗, and equals the negative of the lowest weight of V λ.
For example, in the case when g is of type A�, if λ = ∑�

i=1 niλi then λ∗ = ∑�
i=1 n�+1−iλi .

On V λ with a chosen highest weight vector, vλ
λ ∈ V λ

λ , we have a positive definite con-
travariant Hermitian form [14] (·,·) :V λ × V λ → C determined by the following conditions:
(1) (vλ

λ, vλ
λ) = 1, (2) For any v, v′ ∈ V λ, and any x ∈ g, we have (x · v, v′) = −(v, x† · v′), where

the map x → x† is the Chevalley involutive automorphism of g determined by its action on the
generators

e
†
i = −fi, f

†
i = −ei, h

†
i = −hi, 1 � i � �.

Note that for any v ∈ V λ
β , v′ ∈ V λ

β ′ , we have

β(hi)(v, v′) = (hi · v, v′) = −(v,−hi · v′) = β ′(hi)(v, v′)

so 0 = (β −β ′)(hi)(v, v′) for any Cartan generator hi . This means that if β �= β ′ then (v, v′) = 0
so different weight spaces are orthogonal. Let Projλβ :V λ → V λ

β denote the orthogonal projection
operator.

If V λ and V μ are two irreducible highest weight modules with chosen highest weight vectors
and positive definite contravariant Hermitian forms as above, then we have a positive definite
contravariant Hermitian form on the tensor product V λ ⊗ V μ given by(

vλ
1 ⊗ v

μ
1 , vλ

2 ⊗ v
μ
2

) = (
vλ

1 , vλ
2

)(
v

μ
1 , v

μ
2

)
.

If V ν is an irreducible submodule of V λ ⊗ V μ then its orthogonal complement (V ν)⊥ = {v ∈
V λ ⊗ V μ | (v,V ν) = 0} is clearly a g-submodule since

(
x · v,V ν

) = −(
v, x† · V ν

) = 0, for all x ∈ g, v ∈ (
V ν

)⊥
.

This shows that when the tensor product V λ ⊗V μ is decomposed into a direct sum of irreducible
g-modules, the distinct modules obtained are mutually orthogonal with respect to the contravari-
ant Hermitian form. Let Projλ,μ

V ν :V λ ⊗V μ → V ν denote the orthogonal projection operator from
the tensor product to a particular irreducible submodule V ν .

We will use certain facts about the representation theory of the simple Lie algebra g = sl2 of
type A1 whose standard basis {e, f,h} has the brackets [h, e] = 2e, [h,f ] = −2f and [e, f ] = h.
An irreducible finite-dimensional sl2-module V λ is determined by its highest weight, the non-
negative integer λ(h) = m, so we write V λ = V (m). If v0 is a highest weight vector then a basis
of V (m) can be written as {vi | 0 � i � m} where vi = 1

i!f
iv0 and the action of g is given by the

formulas:

h · vi = (m − 2i)vi, f · vi = (i + 1)vi+1, e · vi = (m − i + 1)vi−1

for 0 � i � m with the understanding that vj = 0 for j outside that range. For any integer p � 0,
we understand the operators ep and f p on V (m) to mean p repetitions of the operators e and f ,
respectively. It is easy to see that the contravariant form has values (vi, vj ) = δi,j

(
m
i

)
, for 0 � i �=

j � m, so the form is positive definite.
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Lemma 3.1. Let g = sl2 and V (m) be the irreducible finite-dimensional sl2-module with highest
integral weight m � 0. Then for any integer p � 1, with respect to the positive definite con-
travariant Hermitian form on V (m), we have an orthogonal direct sum decomposition

V (m) = ker
(
f p

) ⊕ Im
(
ep

)
.

Proof. From the explicit formulas for the action, it is clear that ker(f p) is the subspace of the p

lowest weight spaces with basis {vm−p+1, . . . , vm} and that Im(ep) = (ker(f p))⊥ is the subspace
of all other weight spaces with basis {v0, . . . , vm−p}. �

We now go back to the general case of any finite-dimensional simple g. Let V λ be an irre-
ducible g-module, α any root of g, and let gα be the corresponding subalgebra of g isomorphic to
sl2 with standard basis {eα, fα,hα}. The Chevalley involution acts on gα by e†

α = −fα , f †
α = −eα

and h†
α = −hα . The complete reducibility of finite-dimensional sl2-modules gives a direct sum

decomposition

V λ =
⊕

i

V λ
γi

(mi)

into irreducible gα-modules, where V λ
γi

(mi) has g-highest weight γi , and gα-highest weight
γi(hα) = mi . If V λ

γ1
(m1) is one of these, then its orthogonal complement is clearly a gα-

submodule by the same argument as given above for the decomposition of a tensor product.
It means that this decomposition is an orthogonal direct sum decomposition with respect to the
contravariant Hermitian form on V λ.

Lemma 3.2. Let V λ be an irreducible g-module, α any root of g, and gα be the corresponding
subalgebra of g isomorphic to sl2. Let β ∈ Πλ be any weight of V λ. Then, for any integer p � 0
such that p + 〈β,α〉 � 0, we have{

v ∈ V λ
β

∣∣ ep
α (v) = 0

} = {
v ∈ V λ

β

∣∣ f p+〈β,α〉
α (v) = 0

}
.

Proof. The Weyl group reflection rα acts on the weights Πλ and rα(β) = β − 〈β,α〉α. It is also
well known that the operator

Rα = (
exp(fα)

)(
exp(−eα)

)(
exp(fα)

) ∈ GL
(
V λ

)
satisfies Rα(V λ

β ) = V λ
rα(β) for any weight β ∈ Πλ. It is clear from the definition of Rα that it

acts on each of the gα submodules in the decomposition of V λ given in the paragraph above
the lemma. For any 0 �= v ∈ V λ

β we have 0 �= Rα(v) ∈ V λ
rα(β). We can write v = ∑

i vi where

vi ∈ V λ
γi

(mi), and e
p
α (v) = 0 iff e

p
α (vi) = 0 for each i, so we may assume v is in one such

irreducible gα-module. The condition e
p
α (v) = 0 means v is in one of the top p weight spaces

of its irreducible gα-module. This is equivalent to saying that Rα(v) is in one of the bottom p

weight spaces, that is, f
p
α (Rα(v)) = 0.

If 〈β,α〉 � 0 then Rα(v) = cf
〈β,α〉
α (v) for some nonzero scalar c, which means 0 =

f
p
α (cf

〈β,α〉
α (v)) = cf

p+〈β,α〉
α (v).
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If 〈β,α〉 < 0 but p + 〈β,α〉 � 0 then Rα(v) = ce
−〈β,α〉
α (v) for some nonzero scalar c which

means 0 = f
p
α (ce

−〈β,α〉
α (v)) = df

p+〈β,α〉
α (v) for a nonzero scalar d . �

If V is any finite-dimensional vector space with a positive definite Hermitian form and W is
any subspace of V then W has an orthogonal complement W⊥ = {v ∈ V | (v,w) = 0, ∀w ∈ W }
such that V = W ⊕ W⊥. Let PW :V → W be the orthogonal projection of V onto W de-
fined by PW(v) = w where v = w + w′ is the unique expression for v ∈ V with w ∈ W and
w′ ∈ W⊥. If L :V → V is any linear transformation, there is a unique adjoint linear transforma-
tion L† : V → V determined by the conditions(

L(v), v′) = (
v,L†(v′)

)
, for all v, v′ ∈ V.

We call L self-adjoint when L = L†. Note that any orthogonal projection map is self-adjoint
because if v1 = w1 + w′

1 and v2 = w2 + w′
2 for w1,w2 ∈ W and w′

1,w
′
2 ∈ W⊥, then(

PW(v1), v2
) = (

w1,w2 + w′
2

) = (w1,w2) = (
w1 + w′

1,w2
) = (

v1,PW (v2)
)

so P
†
W = PW . Also, it is clear that P 2

W = PW .
Finally, later we will need the following lemma.

Lemma 3.3. Let V = U1 ⊕U2 be an orthogonal direct sum decomposition of a finite-dimensional
vector space V with a positive definite Hermitian form, and let W be any subspace of V . Then
we have the orthogonal direct sum decomposition of W :

W = PW(U1) ⊕ (W ∩ U2).

Proof. Let v ∈ W be in the orthogonal complement of PW(U1). This means that for any u1 ∈ U1,
we have

0 = (
PW(u1), v

) = (
u1,P

†
W(v)

) = (
u1,PW (v)

) = (u1, v)

which means v ∈ W ∩ U⊥
1 = W ∩ U2. �

4. Notation for affine Lie algebras

Let

ĝ = g ⊗ C
[
t, t−1] ⊕ Cc ⊕ Cd

be the affine algebra constructed from g with derivation d = −t d
dt

adjoined as usual, and with
Cartan subalgebra

H = H ⊕ Cc ⊕ Cd.

The simple roots and the fundamental weights of ĝ are linear functionals

α0, α1, . . . , α� and Λ0,Λ1, . . . ,Λ�,
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respectively, in the dual space H∗. The simple roots of g form a basis of H ∗ (as do the funda-
mental weights), and we identify them with linear functionals in H∗ having the same values on
H ⊆ H and being zero on c and d . Let c∗ and d∗ in H∗ be the functionals which are zero on H

and which satisfy

c∗(c) = 1, c∗(d) = 0, d∗(c) = 0, d∗(d) = 1.

Extend the bilinear form (·,·) to H∗ by letting(
c∗,H ∗) = 0 = (

d∗,H ∗), (
c∗, c∗) = 0 = (

d∗, d∗), and
(
c∗, d∗) = 1.

Then α0 = d∗ − θ and

Λ0 = c∗, Λi = θi

(αi, αi)

2
c∗ + λi = θ̌ic

∗ + λi, 1 � i � �,

are determined by the conditions 〈Λi,αj 〉 = δij for 0 � i, j � �. Let the integral weight lattice
P̂ be the Z-span of the fundamental weights, and let

P̂ + =
{

�∑
i=0

niΛi

∣∣∣ 0 � ni ∈ Z

}

be the set of dominant integral weights of ĝ.
The affine Weyl group Ŵ of ĝ is the group of endomorphisms of H∗ generated by the simple

reflections corresponding to the simple roots,

ri(Λ) = Λ − (Λ, α̌i)αi, 0 � i � �.

This is an infinite group of isometries which preserve P̂ . The canonical central element, c ∈ ĝ
acts on an irreducible ĝ-module as a scalar k, called the level of the module. We will only discuss
modules with highest weight Λ ∈ P̂ +, which are the “nicest” in that they have affine Weyl group
symmetry and satisfy the Weyl–Kac character formula. An irreducible highest weight ĝ-module
is uniquely determined by its highest weight

Λ =
�∑

i=0

niΛi ∈ P̂ +

and, if we define θ0 = 1 = θ̌0, then

k = Λ(c) =
�∑

i=0

niΛi(c) =
�∑

i=0

niθi

(αi, αi)

2
=

�∑
i=0

ni θ̌i .

For fixed k there are only finitely many Λ ∈ P̂ + with Λ(c) = k, and we denote that finite set
by P̂ +

k . It is easy to see that Ŵ preserves the level k weights {Λ ∈ P̂ | Λ(c) = k}. The affine hy-
perplane determined by the condition Λ(c) = k can be projected onto H ∗ and the corresponding
action of Ŵ is such that the simple reflections ri for 1 � i � � act as they were defined originally
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on H ∗, as isometries generating the finite Weyl group W of g. But the new affine reflection r0
acts as r0(λ) = λ−(λ, θ)θ +kθ = rθ (λ)+kθ , the composition of reflection rθ and the translation
by kθ , which is not an isometry on H ∗.

Irreducible ĝ-modules V̂ Λ of level k � 1 are indexed by P̂ +
k , but we can also index them by

certain weights of g as follows. From the formulas above we can write

Λ =
�∑

i=0

niΛi = kc∗ +
�∑

i=1

niλi .

So there is a bijection between P̂ +
k and the set of weights λ = ∑�

i=1 niλi such that

k = n0 +
�∑

i=1

niθi

(αi, αi)

2
= n0 +

�∑
i=1

ni θ̌i = n0 + 〈λ, θ〉.

Since n0 � 0, this is equivalent to the “level k condition”

〈λ, θ〉 =
�∑

i=1

ni θ̌i � k.

Define the set

P +
k =

{
λ =

�∑
i=1

niλi ∈ P +
∣∣∣ 〈λ, θ〉 � k

}

and let the index set A (as in the fusion algebra definition) be P +
k . Then we see that irreducible

modules on level k correspond to λ ∈ P +
k . Fix level k � 1 and write the fusion algebra product

(which has not been defined yet!)

[λ] · [μ] =
∑

ν∈P+
k

N
(k)ν
λ,μ [ν].

The distinguished identity element, [0], corresponds to Λ = kc∗, and for each [λ] there is a
distinguished conjugate [λ∗] such that N

(k)0
λ,μ = δμ,λ∗ . Knowing N

(k)ν
λ,μ is equivalent to knowing

the completely symmetric coefficients

N
(k)
λ,μ,ν = N

(k)ν∗
λ,μ .

Let F(g, k) denote this fusion algebra.

5. Tensor product decompositions

There is a close relationship between the product in fusion algebras associated with an affine
Kac–Moody algebra ĝ and tensor product decompositions of irreducible g-modules. Let V λ
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be the irreducible finite-dimensional g-submodule of V̂ Λ generated by a highest weight vec-
tor. In the special case when Λ = kΛ0 = kc∗, that finite-dimensional g-module is V 0, the
one-dimensional trivial g-module. Since g is semisimple, any finite-dimensional g-module is
completely reducible. Therefore, we can write the tensor product of irreducible g-modules

V λ ⊗ V μ =
∑

ν∈P+
Multνλ,μ V ν

as the direct sum of irreducible g-modules, including multiplicities. This decomposition is inde-
pendent of the level k and is part of the basic representation theory of g. The fusion products
[λ] · [μ] are obtained by a subtle truncation of the above summation.

The Racah–Speiser algorithm gives the formula

Multνλ,μ =
∑
w∈W

ε(w)Multλ
(
w(ν + ρ) − μ − ρ

)
where W is the Weyl group of g, ε(w) = (−1)length(w) is the sign of w, the Weyl vector ρ = ∑

λi

is the sum of the fundamental weights of g, and Multλ(β) = dim(V λ
β ) is the inner multiplicity

of the weight β in V λ. Recall that Πλ = {β ∈ H ∗ | dim(V λ
β ) > 0} denotes the set of all weights

of V λ. In fact, the only weights ν for which Multνλ,μ may be nonzero are those of the form

ν = β + μ where β ∈ Πλ.
This algorithm assumes that you can already produce the weight diagram of any irreducible

module, V λ, so we should have discussed that first, but in fact the special case of the Racah–
Speiser algorithm when μ = 0 gives a recursion for the inner multiplicities of V λ. Since V 0 is
the trivial one-dimensional module, V λ ⊗ V 0 = V λ, so Multνλ,0 = δλ,ν and therefore

0 =
∑
w∈W

ε(w)Multλ
(
w(ν + ρ) − ρ

)
for ν �= λ. One knows that Multλ(wλ) = 1 and Multλ(wν) = Multλ(ν) for all w ∈ W , so the
above formula implies that

Multλ(ν) = −
∑

1�=w∈W

ε(w)Multλ(ν + ρ − wρ)

for ν �= λ. Since ρ > wρ in the partial ordering on weights, this gives an effective recursion for
Multλ(ν).

In [2,3] Feingold studied certain patterns which occur in the tensor product decomposition of
a fixed irreducible g-module, V λ, with all other modules V μ. For fixed λ, as μ varies there are
only a finite number of different patterns of outer multiplicities which can occur, and there are
sets of values for μ for which the pattern is constant, called zones of stability for tensor product
decompositions. We have the following precise result from [3] about when a particular weight β

of V λ, reaches the zone of stability.

Theorem 5.1. Let λ,μ ∈ P + and β ∈ Πλ be such that β + μ ∈ P +. Let

β − rβ,jαj , . . . , β, . . . , β + qβ,jαj
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be the αj weight string through β . If 〈μ,αj 〉 � qβ,j then

Multβ+μ
λ,μ = Mult

β+μ+λj

λ,μ+λj
.

Since 〈μ + λj ,αj 〉 = 〈μ,αj 〉 + 1, it is clear that 〈μ,αj 〉 � qβ,j implies

Multβ+μ
λ,μ = Mult

β+μ+mλj

λ,μ+mλj
for all m � 1.

This result shows that for fixed λ ∈ P + and fixed β ∈ Πλ, the tensor product multiplicities
Multβ+μ

λ,μ have zones of stability as μ varies, and it is sufficient to study the finite number of μ

such that 〈μ,αj 〉 � qβ,j for 1 � j � �.
There is another important result about tensor product coefficients which played a role in

[2,3]. In 1977 Prof. Bertram Kostant drew the attention of Feingold to the following beautiful
result of Parthasarathy, Ranga Rao and Varadarajan [16], which is here rewritten slightly.

Theorem 5.2. (See [16].) Let λ,μ ∈ P + and β ∈ Πλ be such that β + μ ∈ P +. Let � = rank(g)

and let 0 �= ej ∈ gαj
be a root vector corresponding to the simple root αj for 1 � j � �. Then

Multβ+μ
λ,μ = dim

{
v ∈ V λ

β

∣∣ e
〈μ,αj 〉+1
j v = 0, 1 � j � �

}
.

6. The Frenkel–Zhu theorem and its reformulation

Now let us turn to the Frenkel–Zhu fusion rule theorem for affine Kac–Moody algebras. (Note
that this is closely related to results of Gepner–Witten [13], which appeared much earlier in the
physics literature. Also, see Haisheng Li [15].)

Theorem 6.1. (See [10].) Let λ,μ, ν ∈ P +
k , and let 0 �= eθ ∈ gθ be a root vector of g in the θ root

space of g. Let vν
ν ∈ V ν be a highest weight vector and write

H′ = Homg
(
V λ ⊗ V μ ⊗ V ν,C

)
.

Then the level k fusion coefficient N
(k)
λ,μ,ν , which is completely symmetric in λ, μ and ν, equals

the dimension of the vector space

FZk(λ,μ, ν) = {
f ∈ H′ ∣∣ f

(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ ⊗ vν

ν

) = 0
}
.

We now state the main result of this paper, the theorem, conjectured by Walton, which is
a blending of the PRV and FZ theorems, showing that the FZ theorem is actually a beautiful
generalization of the PRV theorem.

Theorem 6.2. For λ,μ ∈ P +
k , β ∈ Πλ such that β + μ ∈ P +

k , we have N
(k)(β+μ)
λ,μ equals the

dimension of the space

W+
k (λ,β,μ) = {

v ∈ V λ
β

∣∣ e
〈μ,αj 〉+1
j v = 0, 1 � j � �, and e

k−〈β+μ,θ〉+1
θ v = 0

}
.
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In [20] the statement of the conjecture is slightly different from above, with the condition
e
k−〈β+μ,θ〉+1
θ v = 0 replaced by the condition f

k−〈μ,θ〉+1
θ v = 0. The equivalence of these two

conditions is precisely the content of Lemma 3.2.
Theorem 6.2 implies the following result, which tells the level k at which the fusion coefficient

associated with a single weight β ∈ Πλ equals the tensor product multiplicity associated with that
weight.

Corollary 6.3. Suppose λ,μ ∈ P +
k , and β ∈ Πλ is such that β + μ ∈ P +

k . Let the θ weight

string through β in Πλ be β − rθ, . . . , β, . . . , β + qθ . Then k � 〈μ,θ〉 + r implies N
(k) (β+μ)
λ,μ =

Multβ+μ
λ,μ .

Before starting the proof of the theorem, we will show how it reproduces the well-known
fusion coefficients in the special case when g = sl2, where � = 1, θ = α1, and P +

k = {n1λ1 |
n1 ∈ Z, 0 � n1 � k}. In this case we use the notation [n1] instead of n1λ1, so V [n1] = V (n1)

is the irreducible g-module with highest weight [n1]. The weights of V [n1] are {β = [n1 − 2i] |
0 � i � n1} and each weight space V

[n1][n1−2i] is one-dimensional. For 0 � n1 � n2 ∈ Z, the tensor
product decomposition

V [n1] ⊗ V [n2] =
n1⊕
i=0

V [n1+n2−2i]

is well known. If [n1], [n2] ∈ P +
k then the fusion product corresponds to a truncation of this

tensor product, so that only terms [n1 + n2 − 2i] ∈ P +
k could appear, with coefficients no larger

than 1. Note that the following Corollary 6.4 says the truncation is somewhat stronger than that,
requiring n1 + n2 − 2i � k − i. Since there is a symmetry between n1 and n2, it is not surprising
to also find the condition i � n2 symmetric to the assumption i � n1.

Corollary 6.4. For 0 � n1, n2 � k, 0 � i � n1 with 0 � n1 −2i+n2 � k, the sl2 fusion coefficient
N

(k)[n1+n2−2i]
[n1],[n2] equals 1 if i � n2 and n1 + n2 − 2i � k − i, zero otherwise.

Proof. For 1 � i � n1, the raising operator e1 = eθ sends V
[n1][n1−2i] isomorphically on-

to V
[n1][n1−2i+2], and kills the highest weight space V

[n1][n1] . This means that for v ∈ V
[n1][n1−2i] and

p � 0,

e
p+1
1 v = 0 iff n1 < n1 − 2i + 2(p + 1) iff i � p.

The conditions on v in the Walton space

W+
k

([n1], [n1 − 2i], [n2]
) = {

v ∈ V
[n1][n1−2i]

∣∣ e
n2+1
1 v = 0 and e

k−(n1+n2−2i)+1
1 v = 0

}
are then i � n2 and n1 + n2 − 2i � k − i. When these are satisfied, we have

W+
k

([n1], [n1 − 2i], [n2]
) = V

[n1][n1−2i]

so the sl2 fusion coefficient N
(k) [n1+n2−2i] = 1, and otherwise, it is zero. �
[n1],[n2]
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In order to prove Theorem 6.2 we must understand the connection between the PRV theorem,
the statement of the theorem and the FZ theorem. We begin by rewriting the FZ theorem in a
slightly different form. We can define a g-module map

Φ : Hom
(
V λ ⊗ V μ,V ν∗) → Hom

(
V λ ⊗ V μ ⊗ V ν,C

)
by

(Φf )
(
vλ ⊗ vμ ⊗ vν

) = (
f

(
vλ ⊗ vμ

))(
vν

)
.

It is easy to check that this is a g-module map and an isomorphism. In general, for V and W any
two g-modules, Hom(V ,W) is a g-module under the action, (x · L)(v) = x · (L(v)) − L(x · v)

for any v ∈ V and any L ∈ Hom(V ,W). It may be helpful to use the notations πV : g → End(V ),
πW : g → End(W), and π : g → End(Hom(V ,W)) to distinguish the representations of g on
these three spaces. Then the above equation is saying that π(x)(L) = πW(x) ◦ L − L ◦ πV (x).

We also have the definition of the space of g-module maps from V to W ,

Homg(V ,W) = {
L ∈ Hom(V ,W)

∣∣ π(x)(L) = 0, ∀x ∈ g
}

= {
L ∈ Hom(V ,W)

∣∣ πW(x) ◦ L = L ◦ πV (x), ∀x ∈ g
}
.

If v ∈ Vβ is a weight vector of weight β , that is, for any h ∈ H , πV (h)v = β(h)v, and L is any g-
module map, then πW(h)L(v) = L(πV (h)v) = L(β(h)v) = β(h)L(v) shows that L(Vβ) ⊆ Wβ .
If ProjVβ :V → Vβ and ProjWβ :W → Wβ are the orthogonal projection operators, then it is easy

to see that L(ProjVβ (v)) = ProjWβ (L(v)) for any v ∈ V .
Since Φ is a g-module isomorphism, it is clear that it restricts to an isomorphism

Φ : Homg
(
V λ ⊗ V μ,V ν∗) → Homg

(
V λ ⊗ V μ ⊗ V ν,C

)
.

We wish to describe the preimage of the space FZk(λ,μ, ν) under Φ . Since Φ is an isomor-
phism, f ∈ FZk(λ,μ, ν) is of the form Φg for a unique element g ∈ Homg(V

λ ⊗ V μ,V ν∗
). The

conditions on f mean that (
g
(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

))(
vν
ν

) = 0.

This allows us to rewrite the FZ theorem as follows.

Theorem 6.5. (See [10].) Let λ,μ, ν ∈ P +
k , and let 0 �= eθ ∈ gθ be a root vector of g in the θ root

space of g. Let vν
ν ∈ V ν be a highest weight vector and write

H = Homg
(
V λ ⊗ V μ,V ν∗)

.

Then the level k fusion coefficient N
(k)
λ,μ,ν equals the dimension of the space

FZ′
k(λ,μ, ν) = {

g ∈H
∣∣ g

(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

)(
vν
ν

) = 0
}
. (6.1)
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There is a natural isomorphism of g-modules

Ψ : Hom
(
V ∗,W

) → W ⊗ V (6.2)

which is defined as follows. For any L ∈ Hom(V ∗,W),

Ψ (L) =
d∑

j=1

L
(
v∗
j

) ⊗ vj

where d = dim(V ) = dim(V ∗), {v1, . . . , vd} is any basis of V and {v∗
1 , . . . , v∗

d} is the dual basis
of V ∗, that is, the basis such that v∗

i (vj ) = δij . The inverse map sends a basic tensor w ⊗ v ∈
W ⊗ V to the element in Hom(V ∗,W) which sends any f ∈ V ∗ to f (v)w ∈ W . We will always
choose the basis of V to consist of weight vectors, and if vj has weight μj , so that for any h ∈ H ,
πV (h)vj = μj (h)vj , then it is easy to see that the weight of the dual vector v∗

j is −μj . Namely,
by the definition of the representation of g on the dual space V ∗, for 1 � i � d we have(

πV ∗(h)v∗
j

)
(vi) = −v∗

j

(
πV (h)vi

) = −v∗
j

(
μi(h)vi

) = −μi(h)v∗
j (vi)

= −μi(h)δij = −μj (h)δij = −μj (h)v∗
j (vi)

which says that πV ∗(h)v∗
j = −μj (h)v∗

j . So Πλ∗ = −Πλ. This means that a highest weight vector

vν
ν ∈ V ν

ν has a dual lowest weight vector vν∗
−ν ∈ V ν∗

−ν , and all other weight vectors of V ν∗
with

weights above −ν are zero on vν
ν . In other words, with respect to the positive definite Hermitian

form on the irreducible module V ν∗
, the orthogonal complement of the lowest weight space V ν∗

−ν

is the subspace of linear functionals in V ν∗
that send vν

ν to 0. We now see that

FZ′
k(λ,μ, ν) = {

g ∈ H
∣∣ g

(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

) ∈ (
V ν∗

−ν

)⊥}
. (6.3)

For any g ∈ H we know that Im(g) is a submodule of V ν∗
, so if g �= 0 then g is surjec-

tive. Also, g sends weight vectors to weight vectors of the same weight, and g sends highest
(respectively, lowest) weight vectors to highest (respectively, lowest) weight vectors. V ν∗

has
a one-dimensional highest weight space in which we have chosen a basis vector vν∗

ν∗ ∈ V ν∗
ν∗ .

V ν∗
also has a one-dimensional lowest weight space in which we have chosen a basis vector

vν∗
−ν ∈ V ν∗

−ν . The tensor product V λ ⊗V μ decomposes into the direct sum of irreducible modules,
but g must send any highest (respectively, lowest) weight vector whose weight is not ν∗ (respec-
tively, not −ν) to zero, so it sends all irreducible components whose highest weight is not ν∗ to
zero. The dimension of the space of highest (respectively, lowest) weight vectors in V λ ⊗ V μ of
weight ν∗ (respectively, −ν) is the tensor product multiplicity M = Multν

∗
λ,μ, so we may choose a

basis {u1, . . . , uM } of that HWV space U+ (respectively, LWV space U−) and determine gi ∈H
uniquely by the conditions gi(uj ) = δi,j v

ν∗
ν∗ (respectively, gi(uj ) = δi,j v

ν∗
−ν ) for 1 � i, j � M .

Then {g1, . . . , gM} is a basis of H. Let us denote by U(g) the universal enveloping algebra of g. It
is clear that gi takes the submodule U(g)ui isomorphically to V ν∗

and sends all other irreducible
submodules U(g)uj , j �= i, of the tensor product to zero, so it is essentially an orthogonal projec-

tion from the tensor product to one of its components followed by an isomorphism. Let Projλ,μ

U+ be
the orthogonal projection from V λ ⊗ V μ to the subspace of highest weight vectors of weight ν∗,
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and let Projλ,μ

U− be the orthogonal projection from V λ ⊗V μ to the subspace of lowest weight vec-

tors of weight −ν. Then for any v ∈ V λ ⊗V μ, write v = u+v′ +v′′ where u = Projλ,μ

U− (v) ∈ U−,
v′ is of weight −ν but is orthogonal to U− so is not a lowest weight vector and must be a sum of
vectors from irreducible components whose highest weights are not ν∗, and v′′ is a sum of vec-
tors of weights not −ν. Then g(v) = g(u) + g(v′) + g(v′′) with g(u) ∈ V ν∗

−ν , and g(v′) = 0 and

g(v′′) is a sum of vectors of weights not −ν, so Projν
∗

−ν(g(v)) = g(u) = g(Projλ,μ

U− (v)). A similar
argument applies to U+, so we have shown that for any g ∈H we have

g ◦ Projλ,μ

U+ = Projν
∗

ν∗ ◦ g, (6.4)

g ◦ Projλ,μ

U− = Projν
∗

−ν ◦ g. (6.5)

But this means that we can rewrite the Frenkel–Zhu space in (6.3) as

FZ′
k(λ,μ, ν) = {

g ∈ H
∣∣ Projν

∗
−νg

(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

) = 0
}

(6.6)

= {
g ∈ H

∣∣ g
(
Projλ,μ

U−
(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

)) = 0
}
. (6.7)

7. Review of the proof of the PRV theorem

Now we will review the proof of the PRV theorem and see if it allows us to find an isomor-
phism between the Frenkel–Zhu space FZ′

k(λ,μ, ν) and the Walton space W+
k (λ,β,μ) when

ν∗ = β + μ.
In the proof of the PRV theorem one looks at the g-module V = Hom(V μ∗

,V λ), where
π : g → End(V ) denotes the representation. As noted above (see Eq. (6.2)), V ∼= V λ ⊗ V μ, and
this isomorphism is given by the map Ψ which sends irreducible components in V to isomorphic
irreducible components in V λ ⊗ V μ. The proof begins by considering the subspace of all lowest
weight vectors (LWVs) in V ,

U = {
L ∈ V

∣∣ π(fi)L = 0, 1 � i � �
}

where � = rank(g) and ei , fi , hi are the generators of g with the usual Serre relations. Then

L ∈ U iff πλ(fi) ◦ L = L ◦ πμ∗(fi), for 1 � i � �.

It is clear that U is invariant under the operators π(hj ), so it has a weight space decomposition

U =
r⊕

m=1

Um

where Um = {L ∈ U | π(h)L = −νm(h)L, ∀h ∈ H } is the −νm-weight space, −ν1, . . . ,−νr are
the distinct lowest weights of irreducible components in V whose corresponding highest weights
are ν∗

1 , . . . , ν∗
r . Furthermore,

dim(Um) = Mult
ν∗
m

λ,μ
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is the multiplicity of V ν∗
m in the tensor product V λ ⊗ V μ because the independent vectors in Um

each generate a distinct irreducible component in V . Let v∗
1 = v

μ∗
μ∗ be a highest weight vector

(HWV) in V μ∗
of weight μ∗ dual to v1 = v

μ
−μ∗ a LWV in V μ of weight −μ∗. The key step in

the proof of the PRV theorem is the following lemma.

Lemma 7.1. Define the linear map ξ : U → V λ by

ξ(L) = L
(
v∗

1

)
, ∀L ∈ U.

Then ξ is injective and the range of ξ equals

V ′ = {
v ∈ V λ

∣∣ πλ(fi)
〈μ∗,αi 〉+1v = 0, 1 � i � �

}
.

Proof. Because the highest weight vector v∗
1 ∈ V μ∗

satisfies

πμ∗(fi)
〈μ∗,αi 〉+1v∗

1 = 0

for 1 � i � �, we have

πλ(fi)
〈μ∗,αi 〉+1L

(
v∗

1

) = L
(
πμ∗(fi)

〈μ∗,αi 〉+1v∗
1

) = 0

so ξ(U) ⊆ V ′. Let g = g− ⊕ H ⊕ g+ be the triangular decomposition of g, where g− is the Lie
subalgebra of g generated by the negative root vectors, that is, the span of f1, . . . , f� and all
their multibrackets, and similarly g+ is generated by the positive root vectors. Let U(g) be the
universal enveloping algebra of g and extend the meaning of any representation of g to include the
representation of the associative algebra U(g). We may also have use for the universal enveloping
algebras U(g−) and U(g+). It is well known that U(g−) is spanned by all products of the form
y = fi1 · · ·fis for any s � 0 and any 1 � ij � � for 1 � j � s, and that V μ∗ = U(g−)v∗

1 is
spanned by all vectors of the form

πμ∗(y)v∗
1 = πμ∗(fi1) · · ·πμ∗(fis )v

∗
1

for y as above. If L(v∗
1) = 0 for some L ∈ U then we get

0 = πλ(y)L
(
v∗

1

) = L
(
πμ∗(y)v∗

1

)
showing that L = 0 and therefore ξ is injective. Let v ∈ V ′ be arbitrary and try to define L ∈ V

by

L
(
πμ∗(y)v∗

1

) = πλ(y)v

for any y ∈ U(g−). If πμ∗(y)v∗
1 = 0 then it is known that y can be written

y =
�∑

yi f
〈μ∗,αi 〉+1
i

i=1
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for some yi ∈ U(g−), so πλ(y)v = 0. This means that L is well defined on πμ∗(U(g−))v∗
1 = V μ∗

.
By the definition of the linear map L we have(

πλ(fi) ◦ L
)(

πμ∗(y)v∗
1

) = πλ(fiy)v = L
(
πμ∗(fiy)v∗

1

) = (
L ◦ πμ∗(fi)

)(
πμ∗(y)v∗

1

)
which shows that πλ(fi) ◦ L = L ◦ πμ∗(fi) so L ∈ U . This completes the argument that ξ is an
isomorphism from U to V ′. �

Now suppose that L ∈ Um for some 1 � m � r , so π(h)L = −νm(h)L for any h ∈ H . But
π(h)L = πλ(h) ◦ L − L ◦ πμ∗(h) so ξ(L) ∈ V λ

μ∗−νm
has weight μ∗ − νm because

πλ(h)
(
Lv∗

1

) = L
(
πμ∗(h)v∗

1

) − νm(h)Lv∗
1 = L

(
μ∗(h)v∗

1

) − νm(h)Lv∗
1

= (
μ∗ − νm

)
(h)Lv∗

1 .

This shows that ξ provides an isomorphism between each subspace Um and

V ′
μ∗−νm

= {
v ∈ V λ

μ∗−νm

∣∣ πλ(fi)
〈μ∗,αi 〉+1v = 0, 1 � i � �

}
.

The PRV notation for this subspace is V −(λ;μ∗ − νm,μ∗) and their result is the formula for the
tensor product multiplicity

Mult
ν∗
m

λ,μ = dim
(
V −(

λ;μ∗ − νm,μ∗)).
Replacing fi by ei in the definition of the space V −(λ;γ,μ∗) one gets another space,

V +(
λ;γ,μ∗) = {

v ∈ V λ
γ

∣∣ πλ(ei)
〈μ∗,αi 〉+1v = 0, 1 � i � �

}
.

In the proof of the PRV theorem it is shown that

dim
(
V −(

λ;γ,μ∗)) = dim
(
V +(

λ;−γ ∗,μ
))

by using an automorphism coming from the longest element of the Weyl group, W . Then the
final result of the PRV theorem is that

Mult
ν∗
m

λ,μ = dim
(
V +(

λ;ν∗
m − μ,μ

))
.

To understand this we must discuss the longest element and a little bit of the theory of Lie
groups. First it is necessary to know that the elements of the Weyl group are in one-to-one cor-
respondence with the Weyl chambers in H ∗. The dominant chamber, P +, corresponding to the
identity element in W , is also associated with a choice of simple roots, Δ = {α1, . . . , α�}, or
with a choice of positive roots, R+, by the condition λ ∈ P + iff 〈λ,αi〉 � 0, for 1 � i � �. The
opposite chamber −P + defined by the conditions 〈λ,αi〉 � 0 is related to P + by a unique ele-
ment w0 ∈ W such that w0(P

+) = −P +, which means w0(Δ) = −Δ, and w0(R
+) = R−. This

is the longest element whose length is the number of positive roots and whose order is 2. For
example, in type A2, w0 = r1r2r1 = rθ , but in type B2, w0 = r1r2r1r2 �= rθ . Since w0(Δ) = −Δ,



2096 A.J. Feingold, S. Fredenhagen / Journal of Algebra 320 (2008) 2079–2100
there is an order 2 permutation σ ∈ S� such that w0(αi) = −ασ(i) for 1 � i � �. If ν ∈ P + then
w0(ν) = −ν∗ is the lowest weight in Πν , so we have

〈ν,αi〉 = 〈
w0(ν),w0(αi)

〉 = 〈−ν∗,−ασ(i)

〉 = 〈
ν∗, ασ(i)

〉
.

We use ν∗ = −w0(ν) to extend the definition of dual weight to any ν ∈ H ∗. Note that θ is the
highest weight of the adjoint representation and −θ = w0(θ) = −θ∗ is the lowest weight, so
θ∗ = θ . Therefore, for any ν ∈ H ∗ we have

〈ν, θ〉 = 〈
w0(ν),w0(θ)

〉 = 〈−ν∗,−θ
〉 = 〈

ν∗, θ
〉
.

We say πV : g → End(V ) is an integrable representation when πV (H) acts diagonalizably
on V and all πV (ei) and πV (fi) are locally nilpotent on V . This is certainly true for V any
finite-dimensional g-module, including the adjoint representation, g itself, so that exp(πV (x)) ∈
GL(V ) and exp(ad(x)) ∈ Aut(g) for all x = ei , x = fi and x = h ∈ H . It is not hard to check
that (

exp
(
πV (x)

))
πV (y)

(
exp

(
πV (x)

))−1 = πV

(
exp

(
ad(x)

)
y
)

for all y ∈ g. Of particular interest are the elements

r
πV

i = (
exp

(
πV (fi)

))(
exp

(
πV (−ei)

))(
exp

(
πV (fi)

)) ∈ GL(V )

for 1 � i � �. It is known [14] that r
πV

i (Vμ) = Vri(μ) for any weight μ of V , and rad
i (gα) = gri (α)

for any root α of g. If the longest element is written as a product of simple reflections, w0 =
ri1 · · · ris , then we have corresponding elements

w
πV

0 = r
πV

i1
· · · rπV

is
∈ GL(V ) and wad

0 = rad
i1

· · · rad
is

∈ Aut(g)

such that

w
πV

0 ◦ πV (y) ◦ (
w

πV

0

)−1 = πV

(
wad

0 (y)
)

so using y = h ∈ H we can get

w
πV

0 (Vμ) = Vw0(μ) and wad
0 (gα) = gw0(α).

In particular, this means that for 1 � i � �, we have

wad
0 (ei) ∈ gw0(αi ) = g−ασ(i)

so wad
0 (ei) = cifσ(i) for some 0 �= ci ∈ C and wad

0 (fi) = c−1
i eσ (i). Then we have

w
πV

0 ◦ πV (fi) = πV

(
wad

0 (fi)
) ◦ w

πV

0 = c−1
i πV (eσ(i)) ◦ w

πV

0

and for any power, pi ,

w
πV ◦ πV (fi)

pi = c
−pi πV (eσ(i))

pi ◦ w
πV .
0 i 0
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Using pi = 〈μ∗, αi〉 + 1 and V = V λ, we see that w
πV

0 provides an isomorphism between

V −(
λ;γ,μ∗) = {

v ∈ V λ
γ

∣∣ πλ(fi)
〈μ∗,αi 〉+1v = 0, 1 � i � �

}
and

V +(
λ;−γ ∗,μ

) = {
v ∈ V λ−γ ∗

∣∣ πλ(ei)
〈μ,αi 〉+1v = 0, 1 � i � �

}
.

Since wad
0 (gθ ) = g−θ we also have wad

0 (eθ ) = cfθ for some 0 �= c ∈ C and for any power, p,

w
πV

0 ◦ πV (fθ )
p = c−p πV (eθ )

p ◦ w
πV

0 .

Applying w
πλ

0 to the space W+
k (λ,β,μ) in Theorem 6.2 gives the isomorphic space

W−
k

(
λ,−β∗,μ∗)

= {
v ∈ V λ−β∗

∣∣ πλ(fj )
〈μ∗,αj 〉+1v = 0, 1 � j � �, and πλ(fθ )

k−〈β+μ,θ〉+1v = 0
}
. (7.1)

It is clear that W−
k (λ,−β∗,μ∗) is a subspace of V −(λ;−β∗,μ∗),

W−
k

(
λ,−β∗,μ∗) = {

v ∈ V −(
λ;−β∗,μ∗) ∣∣ πλ(fθ )

k−〈β+μ,θ〉+1v = 0
}

which corresponds by ξ to a subspace of U . Our next step is to find the condition on L ∈ U

which corresponds to this subspace.

8. Conclusion of the proof

The root vector fθ ∈ g−θ can be expressed as some multibracket of the simple root vectors
f1, . . . , f�, so L ∈ U implies that π(fθ )L = 0 so πλ(fθ ) ◦ L = L ◦ πμ∗(fθ ). Furthermore, since
−θ is the lowest root of g, [fθ , fi] = 0 for 1 � i � �, so in any representation of g, the represen-
tatives of these root vectors commute. For any p � 1 define the subspace of V ′

V ′(p) = {
v ∈ V λ

∣∣ πλ(fi)
〈μ∗,αi 〉+1v = 0, 1 � i � �, πλ(fθ )

pv = 0
}
.

Then for any L ∈ U , ξ(L) ∈ V ′(p) iff πλ(fθ )
pL(v

μ∗
μ∗ ) = 0 iff πλ(y)πλ(fθ )

pL(v
μ∗
μ∗ ) = 0 for all

y ∈ U(g−). But since πλ(y) commutes with πλ(fθ ), and since πλ(y)L(v
μ∗
μ∗ ) = L(πμ∗(y)v

μ∗
μ∗ )

and U(g−)v
μ∗
μ∗ = V μ∗

, so

ξ(L) ∈ V ′(p) iff πλ(fθ )
pL

(
V μ∗) = 0 iff L

(
V μ∗) ⊆ Ker

(
πλ(fθ )

p
)
.

Then ξ provides an isomorphism from the subspace

U(p) = {
L ∈ U

∣∣ πλ(fθ )
pL

(
V μ∗) = 0

} = {
L ∈ U

∣∣ L
(
V μ∗) ⊆ Ker

(
πλ(fθ )

p
)}

to V ′(p). Let −ν be one of the weights −νm which occur in the weight space decomposition
of U , corresponding to a highest weight module V ν∗

where ν∗ = β +μ so 〈β +μ,θ〉 = 〈ν∗, θ〉 =
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〈ν, θ〉. We have seen that ξ provides an isomorphism between U−ν and V ′
μ∗−ν = V −(λ;μ∗ −

ν,μ∗) = V −(λ;−β∗,μ∗), so it also provides an isomorphism between corresponding weight
spaces

U−ν(p) = {
L ∈ U−ν

∣∣ πλ(fθ )
pL

(
V μ∗) = 0

}
= {

L ∈ U−ν

∣∣ L
(
V μ∗) ⊆ Ker

(
πλ(fθ )

p
)}

(8.1)

and

V ′−β∗(p) = {
v ∈ V λ−β∗

∣∣ πλ(fi)
〈μ∗,αi 〉+1v = 0, 1 � i � �, πλ(fθ )

pv = 0
}
,

which will equal the Walton space W−
k (λ,−β∗,μ∗) when p = k − 〈ν, θ〉 + 1.

Lemma 8.1. For any integer p � 1 we have

Ψ
(
U−ν(p)

) = (
Ker

(
πλ(fθ )

p
) ⊗ V μ

) ∩ Ψ (U−ν)

and we have the orthogonal direct sum decomposition

Ψ (U−ν) = Ψ
(
U−ν(p)

) ⊕ Projλ,μ

Ψ (U−ν )

(
Im

(
πλ(eθ )

p
) ⊗ V μ

)
.

Proof. Apply the isomorphism Ψ to U−ν(p) to get the subspace

Ψ
(
U−ν(p)

) = {
Ψ (L) ∈ V λ ⊗ V μ

∣∣ L ∈ U−ν(p)
}

of certain lowest weight vectors of weight −ν in V λ ⊗ V μ. Recall the definition

Ψ (L) =
d∑

j=1

L
(
v∗
j

) ⊗ vj

where d = dim(V μ) = dim(V μ∗
), {v1, . . . , vd} is a basis of V μ and {v∗

1 , . . . , v∗
d} is the dual basis

of V μ∗
. Then we see that

Ψ (L) ∈ Ker
(
πλ(fθ )

p
) ⊗ V μ, for all L ∈ U−ν(p),

since L(v∗
j ) ∈ Ker(πλ(fθ )

p) for 1 � j � d . Of course, Ψ (L) ∈ Ψ (U−ν), so we get containment
in one direction. Now suppose that Ψ (L) ∈ Ψ (U−ν) and Ψ (L) ∈ Ker(πλ(fθ )

p) ⊗ V μ, so for
1 � j � d we have L(v∗

j ) ∈ Ker(πλ(fθ )
p), giving L ∈ U−ν(p) so Ψ (L) ∈ Ψ (U−ν(p)).

Let gθ
∼= sl2 be the subalgebra with basis eθ , fθ and hθ = [eθ , fθ ]. As mentioned in Section 3,

V λ has a decomposition into the orthogonal direct sum of irreducible gθ -modules,

V λ =
⊕

V λ
γi

(mi)
i
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where dim(V λ
γi

(mi)) = mi +1 and the highest weight of V λ
γi

(mi) is γi ∈ Πλ so mi = γi(hθ ). Also
recall from Section 3 that from the representation theory of sl2, on each irreducible component
we have the orthogonal decomposition

V λ
γi

(mi) = Ker
(
πλ(fθ )

p
) ⊕ Im

(
πλ(eθ )

p
)

into the p lowest hθ weight spaces and the rest. So we also get the orthogonal decomposition

V λ = Ker
(
πλ(fθ )

p
) ⊕ Im

(
πλ(eθ )

p
)
.

Of course, in the first equation above we mean the kernel and image of those operators restricted
to each irreducible component. This gives an orthogonal decomposition

V λ ⊗ V μ = Ker
(
πλ(fθ )

p
) ⊗ V μ ⊕ Im

(
πλ(eθ )

p
) ⊗ V μ.

Lemma 3.3 applied to this decomposition of the tensor product gives the orthogonal direct sum
decomposition of the subspace Ψ (U−ν) as stated. �

Let {Ψ (L1), . . . ,Ψ (Ldp )} be a basis of the first summand Ψ (U−ν(p)) in the above decompo-
sition of Ψ (U−ν), and let {Ψ (Ldp+1), . . . ,Ψ (LM)} be a basis of the second summand, where

M = Multν
∗

λ,μ = dim(U−ν) = dim(Ψ (U−ν)). Then there is a basis, {g1, . . . , gdp , . . . , gM} of

H = Homg(V
λ ⊗ V μ,V ν∗

) determined by the conditions gi(Ψ (Lj )) = δi,j v
ν∗
−ν for vν∗

−ν a lowest
weight vector in V ν∗

. The subspace

H(Kp) = {
g ∈ H

∣∣ g
(
Ψ

(
U−ν(p)

)) = 0
}

of elements of H that vanish on the first summand, has basis {gdp+1, . . . , gM} and the subspace

H(Ip) = {
g ∈ H

∣∣ g
(
Projλ,μ

Ψ (U−ν)

(
Im

(
πλ(eθ )

p
) ⊗ V μ

)) = 0
}

of elements of H that vanish on the second summand, has basis {g1, . . . , gdp } so dp =
dim(H(Ip)). Remember that the dimension of the Walton space W−

k (λ,−β∗,μ∗) is dp when
p = k − 〈ν, θ〉 + 1. But in that case, H(Ip) equals the Frenkel–Zhu space

FZ′
k(λ,μ, ν) = {

g ∈H
∣∣ g

(
Projλ,μ

Ψ (U−ν )

(
e
k−〈ν,θ〉+1
θ V λ ⊗ V μ

)) = 0
}

so we have completed the proof of Theorem 6.2.

Acknowledgment

A.J.F. wishes to thank the Albert Einstein Institute for its wonderful hospitality and support
which helped complete this work, AEI-2007-145.



2100 A.J. Feingold, S. Fredenhagen / Journal of Algebra 320 (2008) 2079–2100
References

[1] F. Akman, A. Feingold, M. Weiner, Minimal model fusion rules from 2-groups, Lett. Math. Phys. 40 (1997) 159–
169.

[2] A.J. Feingold, Zones of uniform decomposition in tensor products, Proc. Amer. Math. Soc. 70 (1978) 109–113.
[3] A.J. Feingold, Tensor products of finite dimensional modules for complex semisimple Lie algebras, in: A.J. Cole-

man, P. Ribenboim (Eds.), Lie Theories and Their Applications, Proceedings of the 1977 Annual Seminar of
the Canadian Mathematical Congress, in: Queen’s Papers in Pure and Appl. Math., vol. 48, Queen’s University,
Kingston, Ontario, 1978, pp. 394–397.

[4] A. Feingold, Fusion rules for affine Kac–Moody algebras, in: N. Sthanumoorthy, Kailash Misra (Eds.), Kac–Moody
Lie Algebras and Related Topics, Ramanujan International Symposium on Kac–Moody Algebras and Applications,
Jan. 28–31, 2002, Ramanujan Institute for Advanced Study in Mathematics, University of Madras, Chennai, India,
in: Contemp. Math., vol. 343, American Mathematical Society, Providence, RI, 2004, pp. 53–96.

[5] A. Feingold, M. Weiner, Type A fusion rules from elementary group theory, in: S. Berman, P. Fendley, Y. Huang, K.
Misra, B. Parshall (Eds.), Proceedings of the Conference on Infinite-Dimensional Lie Theory and Conformal Field
Theory, in: Contemp. Math., vol. 297, American Mathematical Society, Providence, RI, 2002.

[6] S. Fredenhagen, V. Schomerus, Branes on group manifolds, gluon condensates, and twisted K-theory, JHEP 0104
(2001) 007.

[7] D.S. Freed, M.J. Hopkins, C. Teleman, Twisted K-theory and loop group representations, arXiv:math/0312155.
[8] I.B. Frenkel, Yi-Zhi Huang, J. Lepowsky, On axiomatic approaches to vertex operator algebras and modules, Mem.

Amer. Math. Soc. 104 (594) (1993).
[9] I.B. Frenkel, J. Lepowsky, A. Meurman, Vertex Operator Algebras and the Monster, Pure Appl. Math., vol. 134,

Academic Press, Boston, 1988.
[10] I.B. Frenkel, Y. Zhu, Vertex operator algebras associated to representations of affine and Virasoro algebras, Duke

Math. J. 66 (1992) 123–168.
[11] J. Fuchs, Fusion rules in conformal field theory, Fortschr. Phys. 42 (1994) 1–48.
[12] P. Furlan, A.Ch. Ganchev, V.B. Petkova, Quantum groups and fusion rules multiplicities, Nuclear Phys. B 343

(1990) 205–227.
[13] D. Gepner, E. Witten, String theory on group manifolds, Nuclear Phys. B 278 (1986) 493–549.
[14] V.G. Kac, Infinite Dimensional Lie Algebras, third ed., Cambridge University Press, Cambridge, 1990.
[15] Haisheng Li, The regular representation, Zhu’s A(V )-theory and induced modules, J. Algebra 238 (1) (2001) 159–

193.
[16] K.R. Parthasarathy, R. Ranga Rao, V.S. Varadarajan, Representations of complex semi-simple Lie groups and Lie

algebras, Ann. of Math. (2) 85 (1967) 383–429.
[17] O. Omar Saldarriaga, Fusion algebras, symmetric polynomials, orbits of N -groups, and rank-level duality, PhD

Dissertation, State University of New York, Binghamton, New York, math.RA/0406303, 2004.
[18] Omar Saldarriaga, Fusion algebras, symmetric polynomials, and Sk -orbits of Zk

N
, J. Algebra 312 (2007) 257–293.

[19] M.A. Walton, Algorithm for WZW fusion rules: A proof, Phys. Lett. B 241 (3) (1990) 365–368.
[20] M.A. Walton, Tensor products and fusion rules, Canad. J. Phys. 72 (1994) 527–536.


