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The loudness dependence (LD) of the auditory-evoked N1/P2 component has been shown to be related to the central serotonergic

neurotransmission. Allelic variants in the promoter region of the 5-hydroxytryptamine transporter (5-HTT) gene were shown to

modulate serotonergic activity. It was hypothesized that the three genotypes (l/l, s/l, s/s) differ with respect to LD. Allelic variants of the 5-

HTT promoter region and LD at the Cz electrode were determined in 185 healthy subjects prospectively. A significant association was

found between LD and genotype (ANOVA: F¼ 4.172, p¼ 0.017). Individuals homozygous for the l allele exhibited a weaker LD

compared to heterozygous subjects. The results are consistent with the reported association between 5-HTT genotype and serotonin

transport capacity in lymphoblasts, and indicate that auditory stimulus processing is associated with genetic variants of the brain

serotonergic system. The LD may serve as endophenotype in human serotonin research.
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INTRODUCTION

A valid indicator of central serotonergic neurotransmission
would be useful for various diagnostic and psychopharma-
cological purposes in psychiatry because peripheral seroto-
nergic measures only partially reflect brain serotonergic
function. Since evidence for a modulation of the loudness
dependence (LD) of the auditory-evoked N1/P2 component
by changes of the central serotonergic activity was reported
in humans (von Knorring and Perris, 1981) and animals
(Juckel et al, 1997) the LD was hypothesized to be such an
indicator (Hegerl and Juckel, 1993). The LD denotes the
amplitude change of auditory-evoked potentials (AEPs) in
response to different stimulus intensities. A strong LD is
supposed to indicate a low serotonergic activity and vice
versa. For example, the LD in behaving cats was found to
decrease by application of the 5-HT1a-receptor agonist 8-
OH-DPAT and to increase by the 5-HT2-receptor antagonist
ketanserin (Juckel et al, 1997). Of clinical interest are
observations that a strong LD in depressed patients is

related to a favorable therapeutical outcome to serotonin
agonistic agents (Hegerl and Juckel 1993, Gallinat et al,
2000). Furthermore, a strong LD was described in abstinent
ecstasy users who are supposed to possess a diminished
serotonergic activity (Tuchtenhagen et al, 2000), while
patients with a serotonin syndrome during SSRI treatment
were shown to have a weak LD (Hegerl et al, 1998).

However, it is unknown whether LD is modulated by
genetic variants of serotonergic neurotransmission. A
polymorphic site in the promoter region of the 5-HTT gene
comprising a long (l) and a short (s) variant has become a
focus in psychiatric research (Lesch and Mossner, 1998).
The l/l genotype was described as being associated with
higher 5-HT uptake than s/l and s/s in lymphoblasts (Lesch
et al, 1996) and in nucleus raphe (Heinz et al, 2000). Owing
to the pivotal role of the 5-HTT in brain 5-HT homeostasis,
the SLC6A4 promoter was genotyped in 185 healthy subjects
to test if genotypes differ with respect to the LD.

METHODS

Subjects

The study was approved by the ethics committee of the
University-Hospital Benjamin-Franklin, Berlin. The subjects
gave written informed consent. A total of 185 healthy
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unrelated participants (age 39.37 13.4 years, 96 male), all
of German origin except five subjects (Austrian, Danish,
British), were recruited by newspaper advertisements. A
screening was performed by telephone, and a psychiatric
interview (M.I.N.I, Sheehan et al, 1998) was applied just
before LD recording to evaluate the exclusion criterion:
axis-I or axis-II disorders, axis-I diagnosis of first-degree
relatives, psychotropic drug intake, hearing disorder
(whisper test and in doubtful cases 1000-Hz tone audio-
metry) and any condition that may interfere with the
purpose of the study.

AEP-Recording

AEP recording (Synamps-Neuroscans) was performed with
eyes open. Tones (1000 Hz, 40 ms duration, ISI 1800–
2200 ms) of five intensities (79, 87.5, 96, 104.5, and
113 dBSPL) were presented binaurally by headphones. At
least 30 artefact-free (7 100 mV) sweeps/intensity were
averaged. N1 peaks (50–150 ms) and P2 peaks (100–
250 ms) were determined semiautomatically at a Cz
electrode (linked-mastoids reference). The LD was calcu-
lated as a linear regression slope with stimulus intensity as
an independent variable and N1/P2 amplitude as a
dependent variable (Gallinat et al, 2000). Genotyping was
performed as described previously (Sander et al, 1998).

RESULTS

An ANOVA revealed significant differences of the LD
between the three 5-HTT genotype groups
(F(2,182)¼ 4.172, p¼ 0.017, R2¼ 0.044). Post hoc analyses
yielded a significant lower LD for the l/l as compared to the
s/l genotype (p¼ 0.022), but not for l/l vs s/s genotype
(p¼ 0.15, Bonferroni, Figure 1). No age differences were
found among l/l (40.87 14.2 years), s/l (38.77 12.2 years)
and s/s (37.07 13.8 years) genotype groups
(F(2,182)¼ 1.047, p¼ 0.353).

DISCUSSION

A significantly weaker LD was observed in subjects with l/l
genotype as compared to the group with s/l genotype, which
may indicate a higher central serotonergic activity in
subjects homozygous for the l allele. The 5-HTT genotype
explained 4% of LD variance. This finding is important
since it confirms and extends a recent SPECT study (Heinz
et al, 2000) in suggesting that central serotonergic activity is
increased in l/l carriers. The present results are also in
agreement with the observation that lymphoblasts with one
or two s alleles possess a lower 5HT-uptake than cells with
the l/l genotype (Lesch et al, 1996), although in vivo
measures showed conflicting results (Willeit et al, 2001).

A weak LD was originally interpreted as a consequence of
a central mechanism protecting the organism from sensory
overload (Buchsbaum, 1976). The later described associa-
tion of LD with serotonergic neurotransmission (Hegerl and
Juckel, 1993) is supposed to be based on the dense
serotonergic innervation of the primary auditory cor-
texFthe main N1/P2 generatorFespecially layer IV (Lewis
et al, 1986). Since layer IV also receives most of the specific
thalamic sensory input, brainstem serotonergic projections
are in a position to modulate initial cortical signal
processing (Morrison et al, 1982) and therefore the LD
(Juckel et al, 1997). It was reported in behaving cats that the
LD is weak during high firing rate of serotonergic neurons
in dorsal raphe nucleus and vice versa (Juckel et al, 1999). It
can be speculated that the weak LD of the l/l genotype in the
present data is because of a high firing rate of raphe
neurons. In line with this, a higher transport capacity of the
l/l genotype was suggested to exert a somatodendritic 5-
HT1a-receptor-mediated negative feedback with an overall
increase of 5-HT neurotransmission (Lesch and Mossner,
1998). Such a mechanism might decrease the LD generated
in the auditory cortex and may explain the present results.

Interestingly, recent animal studies indicate a primarily
inhibitory effect of 5-HT even on nuclei of the ascending
auditory pathway including superior olive (Fitzgerald and
Sanes, 1999) and inferior colliculus (Hurley and Pollak,
1999). Furthermore, 5-HT exerts influences on neural
development and probably on plasticity and function of
the auditory system as well (Fitzgerald and Sanes, 1999).
Therefore, it cannot be excluded that 5-HT-genotype-driven
developmental alterations of subcortical structures and the
ascending auditory pathway underlie the present results.

In summary, LD as a correlate of the auditory cortical
stimulus processing may serve as an intermediate pheno-
type indicating central serotonergic activity as a function of
genotype. The LD may be helpful to evaluate the functional
significance of other polymorphisms of the serotonin
system.
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Figure 1 Mean values and standard error of mean of the LD for three
genotypes. The l/l homozygous group has a significant weaker LD as
compared to the s/l group (*p¼ 0.022).
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