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A Four-Channel Transceive Phased-Array Helmet Coil for 3 T

Coil Design

Experimental Results

Recently, the helmet coil concept introduced by Merkle et al. [2, 3] has been re-engineered 
based on a pure strip-type transmission-line (SL) design [4]. This concept yields improved RF 
field homogeneity and low out-of-volume sensitivity. The 3T transceiver helmet array, which 
was constructed based on this concept, may serve as a prototype for higher frequencies. Spe-
cific features include:
4 High filling factor achieved by an open, dome-like shape (Fig. 1). 
4 4 SL resonators consisting of 10-μm thick, 70-mm wide, self-sticking Cu tape over a Cu 

ground plane separated by a 15-mm thick polypropylene layer and terminated by a short. 
4 Electrical length of each SL resonator set to ¼ wavelength generating standing waves with 

a current maximum at the position of the short (sinusoidal excitation). 
4 Use of a 180° power splitter combined with two 90° splitters to produce equal amplitudes and 

phases of 0°, 90°, 180°, and 270° for the transmit power of the 4 SL resonators to obtain cir-
cular polarization (Stark Contrast, Erlangen, Germany).

4 Power control by a T/R switch for each channel using actively switched PIN diodes to pro-
vide sufficient isolation between transmitter and receiver. 

4 Preamplifiers with high input impedance for each channel to minimize mutual coupling 
between array elements during reception.

4 Each segment tuned by a parallel capacitance and matched to 50 Ω by two series capacitors. 
4 Suppression of common-mode currents by quarter-wave baluns between match capacitor 

and T/R-switch.

For optimizing the design (Fig. 2), and in order to investigate the distribution of the RF field, B1 
(Figs. 3, 4), computer-aided calculations were performed with HFSS (Ansoft, Pittsburgh, PA), 
which employs a finite-element method with adaptive meshing to solve numerically Maxwell´s 
Equations in the frequency domain. 

Workbench measurements

4 Reflected power measurements indicated a balanced coil design (small frequency shifts upon load-
ing, low dielectric losses, dominating magnetic losses).

4 Transmission coefficient measurements indicated good electronic decoupling between different chan-
nels.

3T MRI measurements
(Bruker MedSpec S 300 & Siemens MAGNETOM Trio)

Quadrature receive mode (i.e. signals of the four channels are combined after appropriate phase correction) 
4 Experimental B1-maps and signal distributions (Figs. 5, 6) agreed well with simulations including 

polarization effects (Fig. 3, 4).
4 Due to the high rotational symmetry, a nearly perfect circularly polarized RF field is achieved (Fig. 7).

Phased-array receive mode (sum-of-squares combination).
4 Nearly the same signal distribution was observed for the different channels (Fig. 8). 
4 Due to the use of semi-open SL resonators, mutual coupling between coil elements is low leading 

to very low noise correlation:

4 No significant noise amplification was observed with parallel imaging and acceleration factors 
between 2 and 4 (Fig. 9).

The transceive SL-helmet array permits imaging in both a conventional 4-channel phased-array 
mode as well as a parallel-imaging mode without the need of an additional large-volume transmit 
coil. Extension of this priciple to eight or more channels is straightforward. The open design pro-
vides sufficient space for use of common audiovisual stimulation devices for fMRI.
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A wide-spread strategy to improve the sensitivity in MRI is to use a phased-array receiver 
[1] in combination with a volume-coil transmitter, typically the body coil. With the advent of 
parallel imaging, this concept has become even more popular. However, for dedicated head 
scanners or ultrahigh-field systems (operating above 3 T), whole-body transmit RF coils are 
currently not available due to design challenges and specific absorption rate (SAR) issues. It 
would, hence, be desirable to have a single head coil that combines the advantages of a trans-
mitter of sufficient homogeneity and a multi-channel receiver. 

Design of a 4-channel transceiver array for human brain MRI at 3 T with minimal crosstalk 
between the individual coil elements.

Numerical Results
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Figure 3. 
Magnitude of the RF transmission and reception 
fields inside a cylinder phantom upon exclusive exci-
tation of two opposite coil elements. The numerical 
results are indicative of a subtle polarization effect at 
3 T similar to observation at higher field [5].

Figure 4. 
Numerical results of the B1 simulation inside an un-
structured human head model at 3 T indicating a high 
degree of homogeneity.

Figure 1. 
3T transceive four-channel helmet array.

Figure 2. 
Parametric coil design used for RF field modeling under 
consideration of material properties, capacitors, and ex-
citation ports.
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Figure 5. Qualitative B1 maps obtained with FLASH 
following a 720° prepulse [6]. Adjacent bright areas 
correspond to a 25% difference in field strength. 

Figure 7. Experimental signal distributions in clock-
wise (left) and counter-clockwise (right) modes. 

Figure 8. Signal distribution measered for the different channels 
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Figure 6. Quantitative B1 maps [a.u.] (double-angle method) at 
different z-positions (slice thickness 5 mm; distance 10 mm; 
input power 4.5 kW).

Figure 9. Images obtained without (top left) and with GRAPPA re-
construction and acceleration factors of 2 (top right), 3 (bottom left), 
and 4 (bottom right).


