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Chapter 1

Introduction

In order to decide, judge;

in order to judge, reason;

in order to reason, decide.

(what to reason about)

(Johnson-Laird, & Shafir, 1993, p.1)

Several years ago a specific win-a-car show was very popular.The show-

master presented three doors to the candidate and asked him “Behind one of these

doors there is a car you can win. Behind the others there are goats. What is your

choice?”. The candidate made his choice (e.g., door no.1) and the show-master

opened one of the two doors remaining - with a goat behind (e.g., door no.3).

After the door was opened the show-master asked “Do you stillgo for the same

door or do you want to revise your choice ?”.

What would you do? How would you decide?

Aside from probabilistic deliberations which could enhance your winning

probability, the win-a-car show is nevertheless a game of chance. The possibility

to win the car is not controllable by the person him-/herself, rather are external

events or the will of the fairy godmother decisive.

At present the show “Who wants to be a millionaire?” is very popular. The

procedure is as follows. The show-master asks you a more or less difficult ques-

1



2 CHAPTER 1. INTRODUCTION

tion and gives you four possible answers. Your task is to choose the correct answer

out of four presented ones. For example, the show-master would have asked you

“What was the research ship of Charles Darwin called? Dolphin, Calypso, Beagle,

or Dove?”. What would you guess? Or would you know? (In case you are curi-

ous about the name of the research ship of Darwin, Beagle is the correct answer.)

In contrast to the win-a-car show, the outcome of this game iscontrollable by the

player him-/herself as the amount of money is directly related to one’s knowledge.

Recently, there are numerous copycats of the millionaire show. This might be

due to the factorcontrollability or attribution of uncertainty. If people conceive

of uncertainty as being due to coincidental chance events inthe world which are

not controllable, uncertainty is attributed to external factors. Hence, when people

play the win-a-car show uncertainty will be attributed to external factors and the

outcome will be conceived of as being entirely determined bylucky guessing. In

contrast, if people conceive of uncertainty as being due to alack or insufficiency

of their own knowledge, uncertainty is attributed to internal factors which are, in

principle, controllable. Hence, when people play the millionaire show uncertainty

will be attributed to internal factors and the outcome will be conceived of as being

entirely determined by their own knowledge base. This entails that success will

also be attributed to oneself. Probably, this is why these shows became so popular

recently.

1.1 Decisions under uncertainty

1.1.1 Types of uncertainty

In order to decide favorably it is important to anticipate consequences associated

with different options or actions. Anticipations of futureoutcomes can only be

precise if the world would work entirely deterministic. However, this is not the

case since there are events and circumstances in life that can influence the out-

come of a decision. Thus, as consequences are logically and empirically junior to

a decision they are uncertain by nature. Generally, uncertainty is a mental state

described from a subjective point of view and is thus difficult to quantify. There-
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fore, classification of decision problems are usually approached by the required

coping strategies or by the required cognitive effort in order to resolve uncertainty

(for the latter see 1.1.2).

From a deterministic point of view uncertainty is always dueto a lack of

knowledge. However it has been shown that it makes a significant difference

whether people think of a lack of determination as being a part of the external

world or whether uncertainty is more attributed to internalstates of knowledge and

belief (Teigen, 1994). Depending on the perceived cause of uncertainty different

coping strategies are implemented. The termsinternal andexternaluncertainty

were introduced by Howell and Burnett (1978) to refer to events that an individual

can or cannot control.

A more general distinction is made by Kahneman and Tversky (1982) who

also discriminated variants of uncertainty according to the perceived cause of un-

certainty, i.e.,externally attributed uncertaintyand internally attributed uncer-

tainty. The authors subdivided the former into uncertainty based on frequencies

and uncertainty based on propensities, the latter into uncertainty based on argu-

ments and uncertainty based on introspective confidence, i.e., knowledge.

To refer to uncertainty as external, the perceived cause that influences the

decision in an uncontrollable way is located in the externalworld. Exemplify-

ing downhill skiing that may considered as being very risky since external un-

controllable factors like avalanches can turn an enjoyableevent into a nightmare.

However, by learning about specific situation-consequence-cohesions, predictions

could be made which help coping with the situation. According to the principle

of frequency, the more often two events co-occur, the more strongly they would

be associated. Generally, a typical coping strategy with externally attributed un-

certainty is to rate the relative frequency of such events. Hence, in contrast to

predictions that we make in guessing or gambling situations, those usually de-

pend on extensive experiences and memories of event frequencies (Kahneman &

Tversky, 1982).

In contrast, to refer to uncertainty as internal, the perceived cause of uncer-

tainty is located in the person himself/herself. Imagine being asked whether New
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York is located south of Rome and you would not know the answer, uncertainty is

not due to a lack of determination in the external world, i.e., factors acting on the

location of the two cities, but due to your poor geographicalknowledge (Teigen,

1994). Hence, whenever the predictability of events depends on the inexperience

with the specific decision problem or on the short duration ofproblem solving, un-

certainty is caused by internal circumstances. However, according to the principle

of contiguity, specific situation-consequence-cohesionscould be learned by form-

ing associations between temporally and/or spatially co-occurring events. Gener-

ally, a typical coping strategy with internally attributeduncertainty is an intensive

memory search, most likely in combination with the attempt to get missing infor-

mation from valid external sources (Kahneman & Tversky, 1982; Teigen, 1994).

In decision research it is debated whether the present division parallels the

distinction between aleatory and epistemic probability (Glimcher, 2003; Junger-

mann, Pfister, & Fischer, 1998). Aleatory probability (fromthe Latin “aleator”

meaning “the gambler”) represents the likelihood of futureevents whose occur-

rence is governed by some random physical phenomenon like tossing dice, i.e.,

externally attributed uncertainty in present terms. In contrast, epistemic probabil-

ity represents uncertainty about propositions when one lacks complete knowledge

of causative circumstances, i.e., internally attributed uncertainty in present terms.

It is an open question whether aleatory probability is reducible to epistemic prob-

ability based on one’s inability to precisely predict everyforce that might affect

the roll of a die, or whether such uncertainties exist in the nature of reality itself,

particularly in quantum phenomena governed by Heisenberg’s uncertainty princi-

ple. Although the same mathematical rules apply regardlessof what interpretation

is favored, the choice has major implications for the way people try to cope and

resolve uncertainty. The argued epistemological questionwill be neglected in the

following as it appears to be more important whereto uncertainty is attributed, i.e.,

subjective probability.

Affective states pertain to internal events as well. However, until now the role

of feelings, emotions, and moods and their influence on thinking, judgments and

decision making is largely unexplained (Forgas, 1992; Jungermann et al., 1998).
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Thereby it is important to distinguish between moods and feelings that emerge

independently from the actual decision problem and those emotions that are di-

rectly evoked by the evaluation of the possible consequences. The former ones

have been shown to unspecifically influence decisions (Strack, 1992). In con-

trast, the latter ones are anticipated emotions which are evoked by a comparison

between the actual and the expected consequences. By a comparison of “what

would have been possible” to “what is actually achieved”, emotions are able to

influence the evaluation of the decision (for an overview seedisappointmentor

regret theory, e.g., Loomes, 1988; Loomes & Sugden, 1986, 1987).

1.1.2 Degrees of uncertainty

Besides the classification of uncertain decisions into externally attributed and

internally attributed ones, uncertain decisions can also be differentiated by the

amount of cognitive effort needed in the specific decision situation to resolve un-

certainty. Decision problems ranged at a lower level in the hierarchy require little

cognitive effort and are therefore less uncertain. The meta-cognitive question how

one decides how to decide depends crucially on the representation of decision-

relevant information. That way, it is assumed that uncertainty in decision making

can be expressed to a greater or lesser extent. For example, there are situations in

which decisions proceed rather automatically without muchof cognitive effort in

contrast to situations in which decision-relevant information has to be searched for

and structured before arriving at a decision. Thus, there isevidence for a contin-

uum of uncertain decisions depending on the amount and utilization of cognitive

resources. The degree of cognitive effort is correlated with the degree of reflection

and consciousness with which decisions are made. Accordingto Svenson (1990)

four levels of uncertain decisions can be distinguished.

One end of the continuum is spanned byroutinized decisionsin which the

preference for one option or action is triggered automatically. This is the case

when a situation resembles ones that were rewarded so far if we did action x. De-

cisions are then tightly linked to constant actions or options by highly habituated

preferences. These decision heuristics reflect learned contingencies between as-
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pects of the decision situation and the effort of a particular decision rule which

are knit long ago (Payne, Bettman, & Johnson, 1993). A heuristic or a “rule-of-

thumb”, respectively, can be described as the application of experience-derived

knowledge to a problem most often providing a description ofthe successive

stages of a decision process (Gigerenzer & Todd, 1999). Exemplifying habituated

preferences, imagine the decision of what kind of car to buy that is determined by

an earlier purchase decision. The decision maker could reason like follows: I will

go and buy a Mercedes Benz like I had one before since it was such a reliable car

and I had so much fun driving it.

The advantage of such routines is that decisions can be made very quickly

without much of cognitive effort and subsequently cognitive resources are avail-

able for other activities. The disadvantage, however, is that comparatively little

attention is provided to the decision situation and thus it is probable that events

signaling for a behavioral change are ignored.

Stereotype decisionsdiffer from routinized decisions in two ways. First, not

the entire situation is determining the decision strategy but the alternatives. Ac-

cordingly, a simple pattern-matching process is not sufficient. Second, a minimal

evaluation process is required by what stereotype decisions are conscious. To ex-

emplify this sort of decisions, imagine to go out for food. Although the situation,

i.e., the restaurant, is completely different, the options, i.e., the dishes, are derived

from a well-defined set, i.e., the menu (Jungermann et al., 1998). Stereotype de-

cisions require more behavioral flexibility than routinized ones. However, since

the field of options is always well-defined, the evaluation ofthe options is only

minimal and generally guided by memory-based schemas (Svenson, 1990).

In decision situations that are characterized by a lack of routinized or stereo-

type preferences for one option the decision maker is required to derive a prefer-

ence by deeply exploring his value system, i.e., an intensive memory search, or

by gathering information from valid external sources. Suchdecision processes re-

quire at least an accurate consideration of the available options before a decision

is reached, postponed, or refused. Decisions on this level also use trade-offs be-

tween the attractiveness of aspects on different attributes. This kind of decisions
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is termedreflective decisionssince the actor is faced with a decision problem of

some novelty and complexity (Jungermann et al., 1998; Payneet al., 1993; Sven-

son, 1990). Exemplifying reflective decisions, imagine going to buy a house. The

decision maker could reason like follows: I decided to buy this house as I find the

differences in price not so important and I value its quiet surroundings so much

that this outweighs the smaller garden.

The highest cognitive effort, however, is required when thedecision maker

faces a new and unfamiliar problem in which the alternativesare not sufficiently

defined or even partly unknown. Yet, sometimes the underlying values determin-

ing decision strategies are undefined and have to be generated. Several real life

situations are characterized by a lack of options, e.g., thedecision what to study or

which job to accept. Subsequently, alternatives have to be created and their asso-

ciated consequences have to be evaluated in relation to one’s value system. These

decisions are termedconstructive decisions. Interestingly, this kind of decisions

has fairly been neglected in decision research so far (Fischhoff, 1996).

In parallel to the described classification of decisions, taxonomies of errors

use the determination of cognitive effort to distinguishmistakesfrom action slips

(Frese & Zapf, 1994; Reason, 1990; Zapf, Maier, Rappensperger, & Irmer, 1994).

Taxonomies of errors mostly focus on the timepoint when exactly in the action

process an error occurs. Rasmussen (1983) proposed three basic error types re-

lated to three performance levels, i.e., skill-based action slips, rule-based mis-

takes, and knowledge-based mistakes. A more coarse differentiation is between

action slips and mistakes. The latter ones are planning failures, i.e., the action

proceeds as planned, but the plans or goals are not appropriate to achieve one’s

goal. Whereas, action slips occur whenever the action goes wrong but the plans

or goals are correct. Implicated in this definition is the amount of cognitive effort

needed for action execution as well as the amount of (un-)certainty during action

execution. On the skill-based level sensorimotor performance is accomplished

without any conscious control and uncertainty is low since sensorimotor perfor-

mance is highly routinized. For example, errors on the skill-based level can signal

for movement errors or premature errors. In contrast, on therule- or knowledge-
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based level performance is accomplished consciously, i.e., the development of

goals and action plans as well as the design of a situational analysis. Uncertainty

arises mainly as consequences of actions are not fully determined. For example,

errors on the rule-based level or on the knowledge-based level signal for more

complex errors that often can only be resolved with externalhelp, e.g., judgment

errors or errors in reasoning.

1.1.3 Decision heuristics and learning

Meta-cognitive decisions, i.e., decisions about how to decide in accordance with

one’s value system, are not that frequent. In fact, the association between situa-

tional properties, i.e., task and context factors, and the effectiveness and efficiency

of different decision rules or strategies are learned over time (Payne et al., 1993).

Particularly, decision heuristics and if-then-rules, which constitute the definition

criterion of routinized and stereotype decisions, are developed via learning. Al-

though it is rather challenging to define “learning”, a simple definition could be “a

change in behavior due to experience” (Lieberman, 1993, p.34). However, there

are some changes in behavior due to experience what one wouldnot conceive

of as learning, especially with regard to the acquisition ofdecision rules, e.g., a

change in behavior because someone has not eaten for very long. In fact, what is

meant by learning is that experiences result in the storage of information in the

brain. However, this is of little practical use since information which is stored in

the brain is not directly accessible, but changes in overt behavior are. However,

also with this thinking there is the problem that it is possible to learn something

even if there is no visible change in behavior. That way, learning is not really the

change in overt behavior but rather the process that led to it. Accordingly, learning

can be defined as the change in the capacity for behavior due toparticular kinds

of experience (Lieberman, 1993).

Considering routinized and stereotype decisions, heuristics reflect the estab-

lished change in behavior due to experience with similar decision situations. That

way, people learn about the relationship between two eventsthat occur together

(Rescorla, 1988). This form of learning is termedassociative learningand is sub-
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divided into classical conditioning and instrumental conditioning. Both forms of

learning are of particular interest if the second event is animportant one and peo-

ple need to be able to identify its causes in order to undertake appropriate actions

in the future, e.g., in order to decide favorably (Lieberman, 1993). Forming asso-

ciations between two co-occurring events enables one to anticipate and predict the

occurrence of important (future) outcomes. In cases when the predicted outcome

deviates from the actual outcome this so-calledprediction error leads to learning

or re-learning, respectively (Schultz & Dickinson, 2000).1 Subsequently, pre-

diction errors enables people to adapt their behavior to thepredictive and causal

structure of the environment. Accordingly, if outcomes canreliably be anticipated

no behavioral modifications are required. In contrast, if the prediction error is not

nil, behavioral adjustments are required. Consequently, feedback evaluation or

prediction errors, respectively, allow to assess whether or not the undertaken ac-

tion was appropriate in order to achieve the desired outcome.

Accordingly, the acquisition of decision rules can be investigated. By vary-

ing the prediction error, the magnitude of reward, or the temporal difference be-

tween the undertaken action and the delivered reward, the gradual modification of

decision rules can be observed. Associated with the representation of decision-

relevant information is uncertainty, as carried out above.If the representation

implies that only action x (given situation y) leads to the favored outcome it is

fairly trivial that no uncertainty will arise. In contrast,if there is no reliable repre-

sentation of decision-relevant information, uncertaintyhow to decide and what to

do will arise. By the time the predicted outcome is similar tothe actual outcome,

no more behavioral modifications are required and a useful decision-relevant in-

formation is gathered. That way, investigations of routinized and stereotype de-

cisions are very well practical in order to discover rules ofbehavior in decision

making. However, this kind of investigation does not seem tobe highly promising.

This is due to two objections, first, higher level decision problems are considered

1Note that the role of the prediction error is mainly importantfor the investigation of temporal

aspects of decisions in error-driven learning and less obvious in other forms of learning like in

perceptual or declarative learning (Schultz & Dickinson, 2000).
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as being more interesting and fundamental as lower level decision problems, and

second, the latter decision problems are also included as sub-processes in higher

level decisions (Svenson, 1990). That way, lower level decisions, like routinized

and stereotype decisions, can be conceived of as replications of decisions which

in the beginning were treated as higher level decision problems, like reflective and

constructive decisions. Therefore, it will be focused on the higher level decisions

in the following.

1.1.4 Decision making and problem solving

Decision situations that are characterized by a lack of stereotype preferences or

decision routines require the actor to decide constructively. To approach a favor-

able solution the decision maker can either combine known simple and/or com-

plex decision strategies or has to construct a new and appropriate one. This de-

cision process can also be termed a constructiveproblem solving process(Huber,

1982; Payne et al., 1993). It has been argued that the established distinction be-

tween decision making and problem solving has to be given up due to the psycho-

logical description and explanation of the process of problem solving. The latter

is defined as a broader concept than decision making and comprises several sub-

processes one of which is decision making (Brander, Kompa, &Peltzer, 1985).

The current definition of problem solving reads as follows: Aproblem is given if

an unfavorable initial state is wished to transform into a favorable goal state , but

the transformation is constricted by a barrier. That way, problem situations are

defined by the fact that the means in order to reach the goal areunknown, or have

to be combined in a so far unknown way. Yet another definition criterion is the

alternative that the goal state is not clearly defined or known (Dörner, Kreuzig,

Reither, & Stäudel, 1983, pp.302). To conceive of decisionmaking as problem

solving helps to understand the dynamics of decisions leading to new questions,

e.g., at what point a decision is terminated (Huber, 1982).

In sum, a problem is determined by the initial state, the goalstate, and the

operations that have to be performed in order to successfully achieve the intended

goal state (Dörner et al., 1983; Hussy, 1984; Jausovec, 1994). Therefore, decision
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problems of some novelty and complexity in which the amount of the means-end-

related information is insufficient can also be conceived ofas a problem situa-

tion. A well known classification of problems is the one intowell-definedand

ill-definedproblems, which was presumably first introduced by McCarthy(1956)

(Howard, 1983; Hussy, 1984). Are all three characteristics, that make up a prob-

lem, clearly specified, this is termed aclose problemor well-defined problem. In

contrast, are the three characteristics less clearly defined, this is termed anopen

problemor ill-defined problem. Although there are several problem taxonomies

(Dörner, 1976), typically the characteristics of the goalstate, which is also termed

solution situation, and the operators , which is also termedproblem, are dichoto-

mously divided into open and closed conditions. By combining the two character-

istics and the two conditions, a taxonomy of four different problem types emerges

(Dörner, 1976; Jausovec, 1994; Wakefield, 1989) (see Table1.1).

Table 1.1:Taxonomy of problem types. Open: not clearly defined; closed: clearly

defined.

Problem

open closed

open (3) dialectic problem (4) divergent-production p.
Solution situation

closed (2) insight problem (1) interpolation problem

1. Well-defined interpolation problems: closed problem andclosed solution

situation. The goal state as well as the operators are clearly defined but

not their specific combination and/or sequence. Thus, it is called for log-

ical reasoning. Established interpolation problems are chess or paradigms

used in problem-solving-experiments, e.g., the “cannibal-and-missionary-

problem”.

2. Ill-defined insight problems: open problem and closed solution situation.

The goal state but not the operators are clearly defined. Thus, a correct
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solution exists and subjects are required to deduce the appropriate opera-

tors. Established insight problems are mental exercise tasks like match-stick

arithmetic tasks which require subjects to disengage from familiar strategies

(e.g., Knoblich, Ohlsson, Haider, & Rhenius, 1999).

3. Ill-defined dialectic problems: open problem and open solution situation.

Both, the goal state and the operators are not clearly defined. Thus, one

correct solution does not exist and subjects are required todiscover the

problem. Exemplifying are political and career decisions.

4. Ill-defined divergent-production problems: closed problem and open so-

lution situation. The operators are clearly defined but not the goal state.

Thus, this type of problem resembles creative thinking problems which are

characterized by their open-endedness of solutions. However, divergent-

production problems are more specific with regard to the operators and

knowledge which is needed to solve the problem.

The description of well-defined problems applies to a lot of laboratory situ-

ations in which participants are supplied with informationabout the initial state,

i.e., the stimulus configuration, the goal state, which is usually indicated via pos-

itive feedback, and participants are supplied with information in what way they

are supposed to arrive at the correct solution situation. For example, participants

are required to conduct algebraic proofs such as the one “Prove the equivalence

of expression A and B”. The initial state is determined by theexpressions A and

B, the goal state by the mathematical proof, and the operators by the valid alge-

braic operations. Important to note is the distinction betweenproblemand task.

As carried out above, a problem is defined by the requirement to transform an

initial state into a goal state via a means-end-analysis. Incontrast, as soon as the

finding of the right path is obsolete and the correct action ispre-determined or can

be retrieved from memory, it is conceived of as a task. Dörner (1983) defined a

task as the accomplishment of self-evident operations in a known way that lead

to intended outcomes. The distinction between well-definedproblems and tasks

could be reconciled with the classification of errors, such that action slips might
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occur with tasks and mistakes with problems. The former occur whenever the

action goes wrong but the chosen operators were correct; whereas mistakes occur

whenever the action goes as planned but the chosen operatorsproved not to be

appropriate to achieve the goal. Note however, that the termtaskis ambiguous as

it once can refer to the bare execution of known actions and otherwise to exper-

imental performance. Therefore, the termtask in the present work will be used

to refer to experimental performance (e.g., experimental conditions employed in

fMRI experiments), whereastaskas it is used in problem solving literature will

be referred to aswell-defined taskin the following.

In view of the described problem classification decisions cannot only be clas-

sified according to the cognitive effort they require but also in accordance with

regard to the characteristics “name recognition of the operators” and “clearness

of the goal state”. Routinized or stereotype decisions cannot be equated with

well-defined problems since the former are guided by habituated preferences and

the latter by memory-based schemas, rather could they be conceived of as well-

defined tasks. Constructive decisions can be equated with ill-defined problems

since the goal state is not clearly defined but rather characterized by the open-

endedness of the solution. However, reflective decisions can be equated with well-

defined problems since the initial state is determined by theavailable alternatives,

the goal state by the intended consequences, and the operators by the allowed de-

cision strategies. Yet, the combination and sequencing of decision strategies is not

known.

Reflective decision problems could be solved by an incremental solution ap-

proach consisting of the two sub-processes “difference reduction” and “subgoal-

ing”. The former is accomplished by the selection of appropriate decision strate-

gies that generate interim states similar to the goal state which depict subgoals.

The basis of the selection is a predictive hypotheses about means-end-relations.

As the termprediction implies, subjects first have to hypothesize about future

events, i.e., they do notknowabout the consequences of specific actions. As a

result, subjects will experience some sort of conflict aboutwhich decision strat-

egy is to use when depicting an uncertain decision. Payne andcolleagues (1993)



14 CHAPTER 1. INTRODUCTION

proposed that subjects solve decision problems of some novelty and complexity

by the generation ofif-then-rules. That is, operators used to transform the initial

state can be represented as the productions of the form “if condition x then action

y” (e.g., “If there are more than four applicants, then exclude those who do not

dispose of occupational experience“). These if-then-rules can be conceived of as

decision rules.

Common to well-defined problems and reflective decisions, respectively, is the

requirement to predict an event that is not fully determined. Preferences for spe-

cific operators are developed by testing preliminary working hypotheses generated

on the basis of goal-directed ideas via close feedback evaluations. Consequently,

by time valid decision rules will emerge.

1.1.5 A process model of decision making

Process models of higher level decisions or problem solving, respectively, are

composed of different steps (Hogarth, 1980; Klauer, 1992; Svenson, 1990). These

models describe the decision process as an orderly one, however, decision pro-

cesses are sometimes chaotic. This is because the process ofsolving a decision

problem involves continuous re-structuring and re-appraisal both before and after

the decision has been made such that later steps in the process can alter earlier

ones or that the goal of the decision process can change in themiddle of the pro-

cess. Therefore, these models serve as ideal type of processmodels.

1. Appearance of the decision problem. A careful analysis ofthe goal state

as well as of the initial state is required in order to developappropriate

hypotheses or action plans, respectively.

2. Generation and production of appropriate action plans, including the prog-

nosis of future events.

3. Evaluation of the action plans consisting in a comparisonof promising al-

ternatives with regard to usefulness, economy, and expected utility of the

implementation.



1.1. DECISIONS UNDER UNCERTAINTY 15

4. Selection and decision of the preferred alternative fromavailable ones.

5. Decision implementation. Execution and monitoring of the action.

6. Post-decisional processes consisting in feedback processing and evaluation

with regard to the intended goal state.

Since a misfit between the goal of a decision process and the actual deci-

sion situation usually triggers the iteration of parts of the decision process, post-

decisional processes will be described in more detail. In the post-actional phase,

specific action outcomes are evaluated by comparing what hasbeen achieved,

i.e., the actual state , to what was initially wished to achieve, i.e., the target

state. Usually, a re-evaluation of the initial situation iscarried out consisting

in re-adjustments of situational properties and their predictive values for future

outcomes. The feedback can either be found out by the actor himself, through

various kinds of self-monitoring, or by environmental cuesindicating that some-

thing has gone astray. A third possibility of feedback signals are other people who

know about the intended outcomes. They can notify the actor about a mismatch

between the actual and the target state. This is especially the case when the actor

is inexperienced and the other person is an expert in the field. Generally, feedback

signals can either be positive (favorable) or negative (unfavorable), the latter often

constitutes in an error. No matter of the valence of the feedback, its vital role is

the information about how far the actor has progressed towards a specific goal.

By nature, feedback is at the same time partly outside and partly inside the actor.

Outside, as it gives information about the external world and the actual state. In-

side, as the understanding and conceptualization of the feedback is only possible

with a goal in mind. Thus, feedback, no matter whether it is positive or negative,

is a relational concept (Frese & Zapf, 1994). Also on a temporal dimension the

relational concept of feedback appears. The evaluation of feedback which takes

place after the action execution directs people towards thepast as well as to the fu-

ture resulting in the generation of specific situation-consequence-cohesions. This

evaluation process usually leads to a relatively stable change in behavior based

upon experience which leads to the development of a decisionheuristic.
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Considering constructive decisions which are characterized by a lack of alter-

natives, it would be inadequate to start the description of adecision processe with

the appearance of the decision problem. Heckhausen (Heckhausen, 1989, 1991)

and Gollwitzer (Gollwitzer, 1991, 1996a,b) showed that initially there is a wish

that has to be transformed into a want. If the the situation and time point appears

to be appropriate, and if there is some priority and importance to act, the want is

transformed into an intention which then acts as an action-guiding-goal. 2 While

this is generally true for self-initiated actions and decisions that call for the gen-

eration of alternatives (like career decisions), the starting point for the remaining

higher level decisions constitutes in the specific decisionsituation.

1.1.6 The real world in decision making. What is it good for?

Reflective decisions in general and constructive decisionsin particular are not easy

to investigate. In fact, constructive decisions like occupational or political deci-

sions, which account for the most influential decisions in real life, were hardly

ever object of investigation (Fischhoff, 1996; Jungermannet al., 1998). The ex-

perimental paradigms used are rather surrogates for complicated decisions and

can take on lives of their own (Fischhoff, 1996). This could lead to the engage-

ment in subtle variations within the experimental world andtheoretical accounts

could end up with the problem of extrapolation requiring a lot of conjecture.

This instance is due to the strategy in cognitive psychologyto standardize sit-

uations of interest, so as to gain access to the ongoing decision process. Since

descriptive decision research aims at the psychological description and explana-

tion of decision making, its influencing factors and circumstances, it is important

to provide for comparable decision situations, e.g., similarly uncertain decisions.

As higher level decisions can be so unique that one cannot sayhow people gener-

ally behave in such situations it can be thought of observingdecisionsin vivoand

eliciting concurrent verbal protocols. However, the reduction of the problems of

standardization comes along at the price of incurring others. That is, the method

2The implementation from a wish into a want is termed “to cross the Rubicon“ (Heckhausen,

1989, 1991).
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of introspection appeared to be inappropriate and unreliable in order to describe

cognitive processes in particular unconscious and subconscious processes (Zim-

bardo, 1988). At best, the careful observation of one’s own mental processes can

only provide limited account of why people behave the way they do. That way,

in order to tell which factors influence decision behavior, it is inevitable to stan-

dardize experimental situations and measure reaction times (RT) and error rates.

In doing so, it is attempted to earn something general by struggling with the par-

ticulars of specific decisions.

However, for a couple of phenomena it is not possible to distinguish cognitive

processes on the basis of RT or error rates. For example, in order to distinguish ex-

ternally from internally attributed uncertainty there is no reason why there should

be a difference in RT for the one or other uncertainty. To keepat this example, the

application of different coping strategies with differentattributions of uncertainty

can mainly be gathered via introspection.

An alternative way to try to disentangle different attributions of uncertainty

has recently been established by the measurement of hemodynamic correlates.

By using functional Magnetic resonance imaging (fMRI) it ispossible to identify

changes in neural activity with regard to specific (aspects of) cognitive processes.

That way, the brain becomes an external criterion for the dissociation of different

cognitive processes. Furthermore, the convergent resultsof imaging studies con-

tribute to the knowledge of functional communality and thusmake it possible to

interpret the data in a parsimonious way, e.g., which kind ofresources are used

in order to reach or postpone a decision. Moreover, the method of fMRI can be

used to test whether uncertainty is dealt with differently depending on the degree

of uncertainty. For example, it could be assumed that by the time uncertainty is

relatively high people would change to a qualitatively different coping strategy,

a shift that does not need to be conscious. Thus, especially for the investigation

whether externally and internally attributed uncertaintyare qualitatively or quan-

titatively different and beyond whether uncertainty mightbe conceived of as a

simple dual mode without any degrees in between, fMRI is suggested to be the

dedicated method.
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1.1.7 Real world decisions versus laboratory decisions

Regarding the structure of goal-directed actions or higherlevel decisions, respec-

tively, a major distinction between real life and laboratory situations lies in the

pre-decisional phase. The goal of the decision process refers to the representa-

tion of future states which are usually personally relevant. Needless to say that

laboratory situations differ in this respect. Generally, goals are given by the ex-

perimental situation. By complying in participation subjects agree to carry out the

task, i.e., transforming the external task to an internal one.

However, real world and laboratory situations resemble each other with re-

spect to the remaining processes. The initial state has to beencoded. Since goals

serve as anticipative cognitive structures guiding the action process, more or less

elaborated action programs have to be generated. These action programs can be

everything from a first idea how to approach the goal to elaborated blueprints.

The developmental process from ideas to blueprints is a stepwise one whereby

the goal serves as a comparison for the appropriateness of the action. This pro-

cess is also calledhypotheses testing. The actor decides for an option or an action

according to a hypothesis binding a specific action to the initial situation or to a

specific situational property. After action execution the actual state is evaluated

in view of the target state. If the evaluation reveals shortcomings with respect to

goal achievement another action will be executed accordingto a competing hy-

pothesis. This process will be continued until a decision-rule remains leading to

the intended target state with a high probability. That way,the initial situational

properties will gain predictive values for a specific outcome in combination with

the executed action. Note that this applies only to situations in which subjects are

not supplied with a general rule system determining exactlyhow to respond given

a specific initial situation. In contrast, routine situations supersede the testing of

various decision-rules since an effective action is default.

The evaluation of the appropriateness of the executed action is done by means

of feedback. That is, feedback plays a role for learning and motivation since it pro-

vides information about the consequences of actions as wellas about the qualities

of actions. Hence, feedback gives information about how farone has progressed
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towards the goal. Additionally, positive feedback and negative feedback serve

as reinforcement, however, in opposite direction. Positive feedback serves as a

keep-at-it-signal, whereas negative feedback indicates the converse of an efficient

action and signals for an attitude change. Primarily in highly uncertain situations

is it important to actively search for feedback, in order to be able to correctly

predict future outcomes.

In order to stay in line with the concepts in cognitive psychology and cog-

nitive neuroscience, the initial situation will be referred to as thestimulus situa-

tion, the undertaken action will be referred to as theresponse, and decision-rules

will therefore be referred to asstimulus-response-rules(SR-rules) orstimulus-

response-associations, respectively. Positive feedback can also be termedreward

and negative feedbackpunishment.

1.2 Imaging data in uncertainty-related paradigms

To date there is a great number of studies investigating brain activations induced

by well-defined problems including rule induction and application (Goel & Dolan,

2000; Goel, Gold, Kapur, & Houle, 1997), hypotheses testing(Elliott & Dolan,

1998), artificial grammar learning (Fletcher, Büchel, Josephs, Friston, & Ray-

mond, 1999), anticipation of monetary gains and losses (Breiter, Aharon, Kahne-

man, & Dale, 2001), dynamical motion predictions (Ullsperger & von Cramon,

2003), sequence-based stimulus predictions (Schubotz & von Cramon, 2002), un-

certainty in risky decisions (Critchley, Mathias, & Dolan,2001), reward prediction

(Critchley et al., 2001; Elliott, Newman, Longe, & Deakin, 2003), reward antic-

ipation (Knutson, Fong, Adams, Varner, & Hommer, 2001; Knutson, Fong, Ben-

nett, Adams, & Hommer, 2003), and risky choices (Critchley et al., 2001; Rogers

et al., 1999). Common to all these paradigms is the prediction of uncertain events.

Successful predictions are based on an appropriate rule system that has to be set

up by means of a careful feedback evaluation. In order to arrive at a generally

valid rule system, participants have to sample feedback information across the

experimental session to attain a working hypotheses. Over time, preferences for
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specific options or SR-rules, respectively, are developed by testing these prelimi-

nary working hypotheses.

There is yet another group of studies investigating uncertainty-related pro-

cesses like guessing (Elliott, Frith, & Dolan, 1997; Elliott, Rees, & Dolan, 1999)

and gambling (Bechara, Tranel, Damasio, & Damasio, 1996; Breiter et al., 2001;

Monchi, Petrides, Petre, Worsley, & Dagher, 2001). Although they resemble well-

defined problems in the way that participants are required tofind the right path in

the problem space, guessing and gambling does not allow for learning and adap-

tation processes, i.e., the impossibility to use feedback information in order to

successfully predict future events. However, it has been shown that people try to

use feedback information in order to predict future events even in gambling situ-

ations, i.e., the so-called “gamblers fallacy” (Tversky & Kahneman, 1974). This

fallacy is referred to as the inability to comprehend statistical independence of

events, e.g., that subjects incorrectly assume an increased probability of black on

the roulette wheel after a long run of red. Consequently, by using frequency infor-

mation subjects incorrectly believe that their predictionability improves. Several

erroneous beliefs underly the gamblers fallacy , i.e., the “misperception of ran-

domness” (Bar-Hillel & Wagenaar, 1987) and the “law of smallnumbers” (so

termed by Tversky & Kahneman, 1971). The former is describedby the belief

that randomness is characterized by certain patterns according to which random-

ness can be determined. The latter is the belief that small samples are highly

representative of the population. Both erroneous beliefs lead to an inadequate use

of feedback information sampled across trials which is thought to be be used for

future predictions. However, in very specific gambling situations it is yet worth-

while to sample frequency information. For example, when subjects are required

to predict events of a defined sample with known stimulus properties like predict-

ing the color of a playing card but the cards must not be placedback into the pack,

the observation of relative frequencies can be used for future predictions, i.e., a

probability matching approach.

Findings common to studies investigating uncertainty-related paradigms are

brain activations within frontomedian areas corresponding to Brodmann Area 6,
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8, 9, and 10 (see Figure 1.3). Activation within the dorsal part of the anterior

cingulate cortex (ACC) or BA 32
�

/24
�

, respectively, and within the orbitofrontal

gyrus (OFC) are often reported when guessing or gambling behavior or the rep-

resentation of reward and punishment is investigated. However, before describing

the imaging data in detail, the anatomical location of the different brain regions

within the frontomedian wall will be described.

1.2.1 Anatomy of the frontomedian cortex

In order to agree on a uniform identification of anatomical content as well as to

perform multi-subject analyses a standard nomenclature isneeded. As an inter-

national convention the “Brodmann map” which is based on comparative cytoar-

chitectonics of the cortex defined in Brodmann Areas (BA) (Brodmann, 1909)

and the three-dimensional stereotactic “Talairach atlas”, which is based on an or-

thogonal grid-system (Talairach & Tournoux, 1988), are used. Since it is widely

accepted that the functional differentiation of the cerebral cortex into areas is re-

flected by specific laminar patterns, it is a proximate strategy to establish bound-

aries between areas at the point where laminar patterns change. A century ago,

Brodmann argued that the human cortex is organized anatomically in the same

way as the cortex of all other mammals. He showed that the cortex in animals and

humans consists of six layers, and, on the basis of anatomical differences in these

layers, he developed a numbering system which has become a standard basis for

designating areas of the cortex (see Figure 1.1). The classical map by Brodmann

(1909) divided the frontal lobe into 13 cytoarchitectonic areas, the so-called Brod-

mann Areas. That is on the lateral surface BA 4, 6, 8, 9, 10, 44,45, and 47; on

the medial surface BA 4, 6, 8, 9, 10, 11, 12, 25, and 32. The second international

convention is the Talairach stereotactic atlas which retained the classical areas of

Brodmann. A proportional grid makes this atlas (although derived from one par-

ticular brain) applicable to all other brains. The origin ofthe coordinate system is

represented by the upper boundary of the anterior commissure (AC). The y-axis is

defined as a straight line through the upper boundary of AC andthe lower bound-

ary of the posterior commissure (PC). A horizontal line through AC perpendicular
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to the AC-PC line is defined as the x-axis. A straight line perpendicular to both,

the x-axis and the y-axis, passing through AC is defined as thez-axis (see Figure

1.2). A general morphology regardless of the brain under consideration is given

by major lines of cortical enfolding, e.g., the central sulcus is consistently found

between the vertical lines through AC (VCA) and PC (VPC) and the VCA line

separates the anteriorly located pre-supplementary motorarea (pre-SMA) from

the posteriorly located supplementary motor area (SMA). Ifindividual data sets

are aligned with the Talairach coordinate system activation foci can be reported

in Talairach coordinates and BA’s thereby allowing for a concordant spatial local-

ization.

In the following only BA’s will be described that showed to becrucial for

uncertainty-related paradigms, i.e., BA 6, 8, 9, 10, and 32
�

/24
�

. Cytoarchitecton-

ically these areas differ such that mesial BA 8, 9, and 10 belong to thegranu-

lar prefrontal isocortexdefined by a well developed inner granule cell layer IV.

In contrast, BA 6/BA 24
�

and BA 32
�

belong to theagranular anddysgranular

frontal cortex, respectively. Both cortices are defined by the lack of a broad layer

IV, whereby the insertion of layer IV starts within the agranular cortex.

The superior frontal gyrus therewith the frontomedian wallis traditionally

subdivided into the areas BA 6, 8, 9, and 10 in a caudorostral (posterior-anterior)

direction (see Figure 1.3) (Petrides & Pandya, 1999). Basedon anatomical and

functional data BA 6 on the medial wall of the prefrontal cortex is subdivided

into the SMA in the caudal portion of BA 6 and in the pre-SMA in the rostral

portion (Picard & Strick, 2001). A kind of border between these two motor areas

is provided by a perpendicular line cut through the anteriorcommissure (AC),

i.e., the VAC-line (see Figure 1.3). The caudal border of BA 6to BA 4 (primary

motor cortex) on the lateral surface is located in the anterior bank of the central

sulcus, the anterior border of BA 6 to BA 8, however, is not as clearly defined.

In fact, due to missing anatomical landmarks BA 8 and pre-SMAare difficult to

distinguish. The same applies to the distinction between BA8 and the ventrally

located BA 32
�

/24
�

. The latter area is also referred to as the “dorsal division of the

ACC” which is composed of areas 24b
�

-c
�

and 32
�

contrary to the rostral-ventral
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Figure 1.1:The basis of Brodmann’s cortical localization is its subdivision into

areas with similar cellular and laminar structure. Brodmann undertook a sys-

tematic study of the cells of the cerebral cortex, using sections stained with the

then new method of Nissl. Depicted are a lateral and medial view of Brodmann’s

cytoarchitectonic atlas as well as a view of the insular cortex (from Brodmann,

1909).
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Figure 1.2:The upper panel depicts the right hemisphere shown from the lateral

surface, the lower panel the right hemisphere shown from themidline, both with

Brodmann Areas and basal lines by Talairach and Tournoux (1988). The horizon-

tal line defines the y-axis through the upper boundary of AC and the lower bound-

ary of PC. The vertical line through AC (VCA) constitutes thez-axis, the vertical

line through PC is termed the VCP line. (adapted from Talairach & Tournoux,

1988)
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division which is composed of areas 24a-b, 32, and ventral areas 25 and 33 (Bush,

Luu, & Posner, 2000; Vogt, Nimchinsky, Vogt, & Hof, 1995). This subdivision

is based on differences in cytoarchitectonics, patterns ofprojection, and function.

Following anatomical findings from primates, Picard and Strick (2001) proposed

an even finer subdivision of the ACC, namely into caudal cingulate zone (CCZ)

and anterior and posterior rostral cingulate zone (RCZa, RCZp). According to

the authors, the subdivision of the RCZ, which lies rostral to the VCA line, is

supported by studies suggesting a functional dissociationof RCZa and RCZp.

Adjacent to BA 8 in caudorostral direction borders BA 9 and BA10. The

mesial portions of BA 9, 10, and 32 (sometimes including BA 8)are referred to

as the anterior medial prefrontal cortex (aMPFC) (Gusnard,Akbudak, Shulman,

& Raichle, 2001; Zysset, Huber, Samson, Ferstl, & von Cramon, 2003). Based

on anatomical studies in non-human primates, it is agreed upon a dorsal-ventral

distinction of the aMPFC (Morris, Petrides, & Pandya, 1999;Petrides & Pandya,

1999). The dorsal aMPFC is suggested to include mesial partsof BA 9 and 10,

whereas the ventral aMPFC is suggested to include pre- and subgenual parts of

BA 10 and 32 (Petrides & Pandya, 1994). The anterior-most part of the pre-

frontal cortex is usually referred to as the frontopolar cortex. Often, all activation

foci falling into BA 10 are classified as frontopolar. In contrast, Christoff and

Gabrieli (2000) regard the anterior parts of the middle and superior frontal gyri as

frontopolar cortex. This classification approach stems from the observation that

medial, lateral, and orbital surfaces of BA 10 vary in terms of cytoarchitecture and

functional connectivity (Pandya & Barnes, 1987; Petrides &Pandya, 1994).

The OFC, as the name implies, is located above the eye socket which is called

“orbita”. The rectal gyrus, also called the medial orbital gyrus, the anterior, lateral,

and posterior orbital gyri all belong the superordinate concept OFC.

1.2.2 Uncertainty and the brain

Decisions get uncertain whenever the predicted consequences of actions are not

fully determined by specific stimulus-consequence-cohesions or decision rules,

respectively. Prototypical are situations in which peopleare either unfamiliar with
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orientation lines (VAC-VPC) perpendicular to AC-PC, respectively. Brodmann

Areas 6, 8, 9, 10, 24, and 32 are outlined and illustrated in grayscales (adapted

from Talairach & Tournoux, 1988).



1.2. IMAGING DATA IN UNCERTAINTY-RELATED PARADIGMS 27

the decisive specialties of the initial state or with the means-end-relations or both.

Being undecisive which action to choose is given in paradigms investigating

neural correlates of hypotheses testing, rule induction, artificial grammar learn-

ing, and motion or sequence predictions. Different from guessing and gambling

paradigms in which a probability matching approach might bea successful coping

strategy, the specified paradigms call for the set-up of a general rule-system via

feedback evaluation. The posterior frontomedian cortex showed to be involved in

hypotheses testing compared to guessing (Elliott & Dolan, 1998), in rule induc-

tion compared to deduction (Goel et al., 1997), and in learning arbitrary grammar

rules (Fletcher et al., 1999). Interestingly, the study by Elliott and Dolan (1998)

revealed that it seemed not to be decisive whether a rule system actually exists

rather it seemed to be crucial that participants believed inthe existence of a de-

tectable rule system.

Increased activation within pre-SMA extending into mesialBA 8, has also

been observed whenever conflicts arose about the correspondence between a per-

ceived event and the appropriate action selection (Ullsperger & von Cramon,

2001). Participants had to perform a speeded modified flankers task. Brain ac-

tivation within BA 6/8 that was related to response competition was taken to be

reflected by the contrast incompatible correct trials versus compatible correct tri-

als. Likewise, activation within mesial BA 8 near the borderto BA 6 was found

when participants had to predict serial events in increasingly complex stimulus

trains (Schubotz & von Cramon, 2002).

Being undecisive which action is to choose may also be due to imperfectly

known rules, e.g., complex categorization rules. Distinctto paradigms requiring

the set-up of a rule system, specified paradigms rather call for an accurate defi-

nition of the rules (e.g., necessary or sufficient rules). For example, in the study

by Goel and Dolan (2000) a concrete stimulus property was linked to a specified

response, in form of an if-then-rule. Required was a same/different response and

the rule was “if the animals have the same tail and abdomen conditions, then they

are the same type of animal” (Goel & Dolan, 2000, p.110). Participants were con-

fronted with a variety of animals holding different tails and abdomen. Uncertainty
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in response selection was due to a insufficient description of the “same-set” and

the “different-set”. Yet, the task was soluble by carefullymonitoring and evalu-

ating the feedback information. Application of arbitrary and insufficiently known

SR-rules (compared to baseline condition) elicited activation within the mesial

prefrontal cortex (BA 8) (Goel & Dolan, 2000).

The finding that BA 8 seemed to be involved in uncertain decisions is con-

firmed by the neuropsychological interpretations of lesions to the frontomedian

cortex. Patients with lesions to the frontal cortices between both hemispheres

showed severely impairment both in coping with routine actions as well as in the

production of goal-directed ideas in novel situations (vonCramon & Matthes-von

Cramon, 1994). The latter aspect is a crucial requirement for the generation of

predictive and preliminary working hypotheses in order to solve problems (Hussy,

1984). Patients with lesions to the frontomedian wall, whose occurrence is often

resulting from anterior cerebral artery infarction, are characterized by hypobulia,

i.e., cessation of movements despite intact locomotor system, and an increased

dependence on external stimulation (von Cramon & Matthes-von Cramon, 1994).

Accordingly, it could be assumed that lesions to the frontomedian cortex lead to

a lack of internal stimulation, i.e., the production of goal-directed ideas, result-

ing in an inability to cope with problem solving situations or decision situations,

respectively.

Together, activation within the posterior frontomedian cortex was elicited when-

ever uncertainty arose which action has to be chosen. However, the specified

studies manipulated uncertainty mainly via the increased complexity or via the

insufficiency of knowledge, i.e., via internally attributed uncertainty. But, which

brain areas would be involved in externally attributed uncertainty, e.g., with prob-

abilistic learning tasks?

The investigation of neural correlates with externally attributed uncertainty is

just emerging and results are relatively diverse (e.g., Cools, Clark, Owen, & Rob-

bins, 2002; Elliott et al., 1999; Nieuwenhuis et al., 2003; Poldrack et al., 2001).

Probabilistic learning tasks are characterized by probabilistic cue-outcome rela-

tions based on trial-by-trial feedback (Poldrack et al., 2001).
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A recent fMRI study by (Nieuwenhuis et al., 2003) using a probabilistic learn-

ing task revealed an area at the border between BA 8 and BA 32
�

to be significantly

activated for response errors and negative feedback, i.e.,more activation following

incorrect responses than correct responses and more activation following negative

feedback than positive feedback. The activation is suggested to be involved when-

ever events are worse than expected. Activation within BA 8 has also been found

with probabilistic reversal learning tasks (Cools et al., 2002). The authors found

more activation following final reversal errors than correct responses. A final re-

versal error in their paradigm constitutes in the time pointat which participants

started to respond to the previously irrelevant stimulus-reward association, i.e.,

the time point at which the evaluation of the feedback signaled for a rule change.

The probabilistic weather prediction task by Poldrack and colleagues (2001) con-

trasted against baseline revealed the basal ganglia (nucleus caudatus) to be sig-

nificantly activated and a “widespread activation of cortical regions” (Poldrack

et al., 2001, p.547). The task of the participants was to predict rain or sunshine

depending on a particular set of cards.

An extreme form of probabilistic contingencies is represented in guessing

situations. Guessing is characterized by the fact that the relationship between

the response and the desired outcome is entirely determinedby chance. Elliott

and co-workers (1999) described the process of guessing as “making choice re-

sponses under incompletely specified situations” (Elliottet al., 1999, p.403). The

task employed in this guessing study required a prediction of either the color or

the suit of a playing card. Note that cards were not placed back into the pack,

so that the observation of the relative event frequencies was a successful coping

strategy (Ayton, Hunt, & Wright, 1991). Accordingly, if distributions of stimu-

lus properties are known, e.g., the rates of suits and colors, the best way to deal

with uncertainty in such guessing tasks is to adopt a probability matching ap-

proach. The observation of relative frequencies resultingin the translation into

valid probability metrics implies a constant evaluation offeedback across the en-

tire experimental session. Since single trials in such guessing tasks do not imply

any information about performance a cross-trial processing of feedback informa-
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tion is required. Accordingly, Elliott and co-workers (1999) inferred from their

results that the medial orbitofrontal cortex is dealing with the process of extract-

ing information across a number of trials, i.e., feedback evaluation in guessing or

gambling paradigms. Guessing compared to reporting was associated with signif-

icant activations within the OFC, the ACC, and medial prefrontal cortex inter alia

(Elliott et al., 1999). In accordance with these results, Bechara, Damasio, Tranel,

and Andersen (1998) suggested the medial orbitofrontal cortex (the authors refer

to this area as the ventromedial cortex, i.e., BA 25, lower, 24/32, medial aspects of

11, 12, and 10) to be involved in the process of forming an association between a

stimulus and its averaged reward value. The authors used theIowa Gambling Task

in which participants are required to figure out the advantageous stimulus which

is possible via cross-trial evaluation of feedback information, i.e., via reward and

punishment. Likewise, significant activations within OFC and ACC were found

when investigating outcome anticipation in a reward-related gamble, i.e., the pre-

diction about the most likely event. The two brain areas OFC and ACC showed

to be modulated as a function of outcome uncertainty (Critchley et al., 2001). In

this study playing cards were used numbered from 1 to 10 and participants had to

predict whether the next playing card would be higher or lower than the previous

card. That way, cards of value 1 or 10 elicited certain responses, while remaining

values carried different degrees of uncertainty, i.e., theprobability of being higher

or lower approximated the true likelihood for a random set.

Anticipation and experience of monetary gain and losses investigated by Bre-

iter and colleagues (Breiter et al., 2001) was accompanied by significant activa-

tions within the OFC and a sub-cortical network including the ventral tegmental

area (VTA) and the ventral striatum or nucleus accumbens, respectively. Acti-

vation within the ventral striatum was also found by Knutsonand co-workers

(Knutson et al., 2003) who investigated the anticipation ofincreasing monetary

rewards. Moreover, the authors found the mesial prefrontalcortex to be signif-

icantly responsive when reward has been successfully obtained, suggesting the

mesial prefrontal cortex to be involved in tracking rewarding outcomes.

Note, however, that the strategy of monitoring cross trial feedback informa-
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tion cannot be successful in “true” gambling tasks, e.g., playing roulette. This is

because event probability is the same on each trial independent from event oc-

currence on the previous trial, thus, the sampled feedback information cannot im-

prove performance (compare 1.2). Yet, the employed tasks inthe cited gambling

studies mostly did not use such “true” gambling tasks.

1.3 Open questions

The synopsis about recent imaging studies revealed the posterior frontomedian

cortex around mesial BA 8 to be central in cognitive processes involved in un-

certain decisions. By contrasting hypothesis testing withresponse selection, rule

learning with item learning, guessing with reporting, inductive reasoning with de-

ductive reasoning, receiving monetary reward with anticipating reward, response

conflict with no conflict, or final reversal errors with correct responses, these stud-

ies suggest a general difference between processes under uncertainty and those

which are quite certain. However, wherefrom uncertainty arises is neglected so

far, likewise is the mode of assessing uncertainty in decision making. To date,

there are no studies directly comparing the neural correlates of externally at-

tributed and internally attributed uncertainty neither incognitive psychology nor

in cognitive neuroscience.

Hence, it would be interesting to compare these two variantsof uncertainty

and test whether this concept describes psychological states only or whether it will

correspond to distinct brain networks. Thus, it is not clearwhether or not variants

of uncertainty differ on the cerebral level. The question remains whether exter-

nally attributed uncertainty would elicit brain activation within the same brain

networks as internally attributed uncertainty.

On the one hand it could be assumed that the reason of uncertainty would not

matter and activation would be found within the same brain areas as uncertainty

is always due to a lack of knowledge. This assumption is supported by Bereby-

Meyer, Meyer, and Budescu (2003) who concluded from their behavioral studies

that the same cognitive principles govern choice behavior in the presence of both
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externally and internally attributed uncertainty. Moreover, the finding of BA 8

activation with probabilistic learning tasks would argue for a common cortical

substrate.

On the other hand, it could be assumed that the reason of uncertainty would

matter and activation would be found within different brainareas as the perceived

cause of uncertainty determines the coping strategy. This assumption is supported

by Huber, Wider, and Huber (1997) who found that the requirement to actively

search for information, i.e., the coping strategy specific for internally attributed

uncertainty, was found to reduce the interest in probability information, i.e., the

coping strategy specific for externally attributed uncertainty. This finding sug-

gests that the strategies involved in the former and latter variant of uncertainty are

somehow negatively correlated. Moreover, since the perceived controllability has

been shown to constitute an important factor for psychological health (Hatfield

et al., 2002; Zimbardo, 1988) it is reasonable to assume thatuncertainty due to

external factors would constitute a completely different psychological state than

uncertainty due to internal factors. In the latter situation people know that they

are generally empowered to resolve the uncertainty. The distinction of uncer-

tainty into external versus internal, made by many authors in decision research

(e.g. Budescu & Wallsten, 1987; Heath & Tversky, 1991; Kahneman & Tversky,

1982; Teigen, 1994), emphasizes the assumption of different cerebral correlates.

In view of the given literature it could be expected that uncertainty, no matter

of the reason, would be reflected by brain activations withinfrontomedian areas

around mesial BA 8. As strikingly similar frontomedian activations were found

by many different paradigms, all reflecting uncertainty in the one or the other way,

both, externally as well as internally attributed uncertainty, could be expected to

be reflected by activation within BA 8 in the same way with respect to activation

intensity or extension. This assumption implies that uncertainty is a mode of the

brain and not specific for the one or other variant of uncertainty. However, since

different variants of uncertainty have not been compared systematically within the

same paradigm, it may also be that the two are distinguishable according to acti-

vation intensity or/and the extension of the involved brainnetworks. If this holds
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true, externally attributed uncertainty is expected to correspond to stronger fron-

tomedian activations similar to guessing situations whereas internally attributed

uncertainty may induce additional activation within brainareas reported to sub-

serve working memory functions, i.e., lateral prefrontal cortex and posterior brain

areas (Fletcher & Henson, 2001; Owen, 2000) Aside from the question of neural

correlates of variants of uncertainty it is not clear whether or not different de-

grees of uncertainty would draw a distinction on the cerebral level. Everyday ver-

bal protocols suggest that people are used to differentiatebetween subtle degrees

of uncertainty. Examples of qualitatively expressed uncertainty are “probably”,

“maybe”, “certainly”, or “I am not sure whether..”. Sometimes people also use

words referring to frequencies with which events occur like“never”, “frequently”,

“rarely”. These fine graduations in language suggest a difference between almost

certain or fairly certain situations. Thus, it would be veryinteresting to investigate

whether or not different degrees of uncertainty would be reflected by modulations

within the involved brain areas. For example, would it make adifference on the

cerebral level when subjects say that they are certain with 60% or with 100%? It

is expected that decisions under higher uncertainty are reflected by an increase in

activation within the involved brain areas. This is not at all hackneyed, since being

more or less (un-)certain might as well be conceived of as a simple dual mode in

the brain with with no degrees in between.

As carried out above, it could be argued that from a deterministic point of

view uncertainty is always due to a lack of knowledge. It follows from that the

the search for domain-specific information could lower uncertainty by reducing

the range of all possibilities to the relevant alternatives. Generally, the preference

for one option develops over time by comparing what has been achieved to what

was initially wished to achieve. That way negative and positive feedback signals

for an attitude change or for an attitude maintenance, respectively. Thus, only

with the knowledge of results is learning and performance improvement possi-

ble. As the amount of positive feedback increases so does knowledge about the

adequate solution strategy. Hence, the two factors, increasing amount of posi-

tive feedback and the increasing amount of relevant knowledge, are confounded
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by nature. However, if uncertainty actually depends on relevant knowledge, then

solely an increase of relevant knowledge, indicated by positive feedback, should

lower uncertainty. In contrast, an increase of exclusivelypositive feedback should

not lead to a reduction in uncertainty. Thus, the question arises whether activa-

tion in areas modulated by uncertainty of knowledge, which are hypothesized to

be frontomedian areas, is reduced only by increasing the amount of knowledge

or whether an increase of positive feedback simulating a pseudo-learning process

would also reduce activation within frontomedian areas. Isit the case that un-

certainty of knowledge depends on the relevant knowledge, then an increase of

positive outcomes should not lower frontomedian activation and thus should lead

to different cerebral effects than an increase of relevant knowledge.

1.4 Implementation

Open questions are: (1) whether or not externally and internally attributed uncer-

tainty differ on the cerebral level; (2) whether or not higher and lower degrees of

uncertainty draw differently on the involved brain areas; and (3) whether or not an

activation reduction within the involved brain areas can exclusively be achieved

by a real learning process. The present studies set out to investigate brain cor-

relates of uncertainty in decision making using fMRI. Younghealthy adults per-

formed a forced choice task in which they had to predict whichof two concur-

rently presented stimuli would win in a virtual competitiongame. By varying the

pre-experimental instruction, training, trial cues, and the determination of event

occurrence different types and degrees of uncertainty in decision making were

induced.

Externally attributed uncertainty, i.e., uncertainty of frequency, was induced

by varying the winning probabilities according to specifiedwinning rules. To each

stimulus combination a specific winning probability was assigned ranging from

p=.6 to p=1.0 that did not change during the experiment. Therewith, different

degrees of externally attributed uncertainty were induced.

Internally attributed uncertainty, i.e., uncertainty of knowledge, was induced
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by varying the degree of instructed knowledge about winningrules. This was

achieved by using the task instruction and trial cues to generate distinct degrees

of knowledge uncertainty. The task instruction corresponded to knowledge about

differently well known valid decision rules, whereas the trial cues corresponded

to knowledge about the valid decision rule within a specific situation. Accord-

ingly, decisions differed in terms of the necessity to apply, test or search the valid

decision rules, thereby inducing different degrees of knowledge uncertainty.

The factorvariants of uncertaintywas varied between subjects, i.e., one group

of participants thought of a lack of determination of event occurrence as being

part of the external world (Experiment 1, Exp.1) whereas another group attributed

uncertainty to internal states of knowledge and belief (Experiment 2, Exp.2). The

factordegree of uncertaintywas varied within subjects and variants of decision.

In both experiments a control condition was employed in which participants

knew exactly which stimulus would win since an external cue indicated the win-

ning one. Thus, participants decided with absolute certainty. Cognitive processes

related to perception, general attention, or motor output,that were of no interest

in the present experiments, were intended to be subtracted out by keeping their

influence constant over all compared conditions. Hence, perceptual stimulation,

trial structure, and motor requirements were the same within all conditions.

The third experiment (Experiment 3, Exp.3) set out to investigate whether ac-

tivation within brain areas modulated by knowledge uncertainty was exclusively

reduced by increasing the amount of relevant knowledge or whether an increase in

positive outcomes was comparatively powerful. The same experimental paradigm

was used as in Exp.1 and 2. By employing two learning conditions, the validity of

the supplied feedback was manipulated. In the case of valid decision rules, partic-

ipants were supplied with feedback dependent on their response, thereby reducing

knowledge uncertainty due to a set-up of relevant knowledge. In contrast, in the

case of invalid decision rules, participants were suppliedwith feedback indepen-

dent from their response. In fact, the feedback was modeled by a pre-determined

learning curve derived from pilot data. That is, participants were supplied with

increasing positive feedback but they had no chance to buildup a relevant knowl-
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edge base. By doing so, it was intended to separate the effects due to increasing

knowledge from effects due to increasing positive feedback.



Chapter 2

Methods

In order to investigate the relation between cognitive processes and the underlying

brain areas, dedicated methods are developed during the last decades. For exam-

ple, functional neuroimaging methods like positron emission tomography (PET)

and fMRI made it possible to identify changes in neural activity with regard to

specific aspects of cognitive processing in particular within parts of the human

cerebral cortex.

During the last two decades fMRI has rapidly become the method of choice

to study neural correlates of behavior. The reason why cognitive scientist became

so enthused about fMRI are its prominent advantages. Namely, fMRI does not

require injections of radio-isotope (as compared to PET) and is non-invasive in

other respects. The spatial resolution is unexelled at about 2 to 3mm and the

temporal resolution is about 1s. Due to the spatial resolution and in contrast to

other imaging techniques, it is possible to look at deep sub-cortical structures.

Importantly, repetitive measurements are possible, i.e.,the possibility to rescan

a single subject as often as desired. Furthermore, by using fMRI it is possible to

conduct single-subject analyses. And last but not least, itis possible to use already

existent MRI scanners.

In general, fMRI creates digital images displaying local changes in blood flow,

i.e., hemodynamic measures. The physiological parameter changes in blood flow

are conceived of as an indicator for neural activity. Therefore, fMRI represents an

37
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eminent dedicated method to generate maps of cognitive activities.

However, it would be insufficient to leave it with a numeration of solely ad-

vantages of fMRI. Also fMRI comes along with some disadvantages. The method

has to deal with the problem of susceptibility artifacts. That is the problem of

signal loss in brain regions adjacent to air filled cavities which posses different

magnetic properties than brain tissue not bordering such cavities, e.g., air sinuses

(see below). The crucial question whether the activated area is causal (necessary)

for the investigated function (or whether it is just a co-activation) can only be

answered for particular regions (e.g., primary visual cortex). However, in order

to investigate whether or not specific activations depict anepiphenomenon, addi-

tional information is needed to be integrated, e.g., data from drug related changes

in activation, patient data, or data from virtual lesions byusing transcranial mag-

netic stimulation (TMS). The allegation of “neurophrenology” may be met by

the approach to measure functional integration in terms of effective connectivity.

The underlying assumption is that each function is determined by its connections.

By manipulating the interregional interactions, based on anatomical connections,

information about co-activations and necessity of activations could be gathered.

However, this approach is yet limited to regions whose anatomical connections

and function are sufficiently determined and remains to future studies.

In the following the physical as well as the physiological basics of (functional)

MRI will be explained. Further on, the different steps of thedata processing and

the statistical evaluation of functional magnetic resonance images which were

conducted in the present experiments will be described in detail (for an overview

about fMRI see for example Bandettini & Moonen, 1999; Frackowiak, Friston,

Frith, Dolan, & Mazziotta, 1997). Completing, the risks of participating in a

fMRI study will shortly be mentioned.

2.1 Physical basics of MRI

Already for a couple of years the method of magnetic resonance imaging (MRI)

has been used in the clinical domain in order to visualize anatomical structures.
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(f)MRI is based on the fact that the protons of the water molecules possess a spin,

i.e., a rotation around their axis. As the protons possess anelectrical charge the

rotation causes an electrical circular flow which produces amagnetic dipole mo-

ment. If a water probe (e.g., water of the human brain) is exposed to an external

constant magnetic field
�

B0 of a MRI scanner, it gets magnetized. The net mag-

netization (sum of the magnetic dipole moments) increases with the strength of

the external constant magnetic field and is directed towards
�

B0 which is called

the longitudinal direction. If the magnetization is not balanced in direction of
�

B0,

the orthogonal (transversal) component of the magnetization is precessing in the

transversal plane to
�

B0. The frequencyω of the precessing magnetization, the

so-called Larmorfrequency, is given byω � γ B0. γ is the gyromagnetic ratio of

the protons, which is different for different materials, and describes the coupling

of the spin and the magnetic dipole moment. Generally, the precession frequency

increases with the strength of the external magnetic field.

If the magnetization is balanced in direction of
�

B0, no signal is measurable.

However, in order to receive a measurable signal, transversal magnetization has to

be produced. This is done by exposing the water probe to a brief radio-frequency

(RF) pulse. The RF impulses must have the same frequencyω as the precessing

magnetization so that the protons can receive part of the RF energy. This phe-

nomenon is termedresonance. In sum, the RF impulse results in a decline of

the longitudinal magnetization and in a generation of the transversal magnetiza-

tion. Past the excitation the signal decays freely. This is termed the free induction

decay (FID), which is determined by the relaxation parameters of T1, T2, and

T2* which will be explained more detailed in the following. The parameter T1

describes the relaxation of the transverse magnetization towards the longitudi-

nal axis. As this process is induced by the interaction of themagnetization with

the surrounding lattice, it is called the spin-lattice relaxation. The progression

of the longitudinal relaxation is slow so that the parameterT1 is usually used

for anatomical measures. The transverse relaxation of the magnetization is de-

scribed by the parameters T2 and T2*. The T2 process describes the coherence

loss of the spins due to spin-spin relaxation, while T2* covers the effect of mag-
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netic field inhomogeneities which are caused by physiological parameters like

the blood oxygenation. The latter effect is essential for fMRI. It is important to

note that deoxyhemoglobin is paramagnetic (i.e., possesses magnetic properties)

as compared to oxyhemoglobin. The latter does not differ in magnetic suscepti-

bility from other tissue or water, thus, resulting in a homogeneous local magnetic

field. Accordingly, oxyhemoglobin accounts for the longevity of the signal. In

contrast, the presence of paramagnetic deoxyhemoglobin results in an increase of

local inhomogeneity which in turn makes the nuclei to precess at slightly different

frequencies. Hence, the higher the level of deoxyhemoglobin the faster the signal

decays. By changing the oxygenation state of the blood, changes in MRI image

contrasts can be obtained. The detection ofbloodoxygenleveldependent changes

in the MRI signal is done via the internal contrast agent deoxyhemoglobin. This

method is termedBOLD contrast(see 2.2).

In order to define the origin of the signal, a spatial encodingis necessary. In

order to achieve this information another magnetic field is superimposed onto the

external magnetic field. By doing so, the external magnetic field varies linear

in space. Hence, the application of gradients in three dimensions allows for a

localization of the measured signal (for example, D’Esposito, Zarahn, & Aguirre,

1999; Orrison, Lewine, Sanders, & Hartshorne, 1995)

2.2 Physiological basis of fMRI and the BOLD effect

The most common method of fMRI is BOLD contrast imaging (firstdemonstrated

by Ogawa & Lee, 1990), which will be explained in detail in thefollowing. Is a

population of neurons active, their metabolism is enhanced, i.e., the consumption

of oxygen and glucose is increased. As a result, neural events are followed by

an increase in regional cerebral blood volume (rCBV) and in regional cerebral

blood flow (rCBF). This mechanism is termedneurovascular coupling(Roland,

1993). The supply of oxygen is exceeding the consumption such that the con-

centration of oxygenated hemoglobin increases whilst the concentration of de-

oxyhemoglobin decreases. By virtue the rate of oxygenated and deoxygenated
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hemoglobin is changed. By using the magnetization difference between oxy- and

deoxyhemoglobin a fMRI signal is created. If the rate of oxygenated and deoxy-

genated hemoglobin is changed subsequent to a neural response, a decrease in spin

dephasing within the involved brain area appears and subsequently an increase in

the fMRI signal. The change in the rate of oxy- and deoxygenated hemoglobin is

taken as an indicator for increased regional cerebral bloodflow, which in turn is

assumed to indicate neural activity. That way, a brief increase in neural activity

results in a slow time course of the fMRI signal change, i.e.,the hemodynamic

response. The sluggish nature of the fMRI signal change results in a limited tem-

poral resolution of the signal to a few seconds (D’Esposito et al., 1999).

The BOLD signal has several key determinants. Namely, aftera delay of

approximately 2s neural activity triggers an increase in signal intensity. The max-

imum of signal intensity occurs after 4-6s. Within 5-10s after neural activity the

signal falls to circa 10% of its basis value and fades away after 10-12s. Often a

subsidence of signal intensity below the basic value is observed and that is called

an undershoot. In general, the hemodynamic response is subject to variability due

to several different sources, e.g., intra- and inter-individual variations as well as

physiologically related variations (such as caffeine, nicotine, or hormone level).

The latter is met by standardization of experimental implementation. Within one

participant during one experimental session no significantvariability in multiple

hemodynamic responses is reported. Likewise, no significant or if significant but

only small variability effects within one participants across experimental sessions

over several days are observed. Yet, significant variability effects between partic-

ipants within the same brain area are reported (Aguirre, Zarahn, & D’Esposito,

1998).

Using the BOLD contrast, neural activity is measured indirectly via its as-

sumed hemodynamic correlate. However, recently Logothetis, Pauls, Augath, Tri-

nath and Oeltermann (2001) could show that the BOLD responsedirectly reflects

an increase in neural activity, i.e., the neural response toa stimulus. By the simul-

taneous acquisition of fMRI and electrical data in monkeys the authors found that

the BOLD signal reflects synaptic activity, i.e., the local input and intra-cortical
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processing of a population of neurons in a given area, ratherthan the spiking

activity. Yet, it is suggested that the BOLD contrast underrates neural activity

(Bandettini & Ungerleider, 2001).

2.3 Potential risks of participation in fMRI experiments

Despite the classification of fMRI experiments as harmless there are some aspects

to consider. Participants are brought into a very high magnetic field usually 1.5

or 3 Tesla.1 Therefore, it is immense important to exclude subjects withpace

makers or with other metalloid objects inside their bodies from participation. For

the same reason, participants are searched for metalloid items which could could

cause serious injuries if brought into a high magnetic field.Beyond, the diameter

of the magnetic resonance tomograph accounts only for approx. 60cm. Some peo-

ple might perceive this as too constricted, especially people with claustrophobia.

Those people also have to be excluded from participation. The application of the

gradients result in a great noise exposure of around 120dB without ear protection.

Thus, participants must wear ear plugs. In order to ensure optimal security, partic-

ipants’ pulse is monitored during the whole experimental session. Furthermore,

participants have the possibility to communicate via an intercommunication sys-

tem or in serious cases can operate an alarm. Above all, each fMRI experiment

has to be designed according to ethical guidelines and each fMRI experiment has

to be approved by the local ethics committee of the respective university.

2.4 Analysis of fMRI data

The result of a fMRI study is a time sequence of digital (2D) images taken every n

seconds within each defined cubical measuring unit which is termed avoxel(vol-

ume element). An image matrix in the present experiments contains 64x64 voxels

that have a spatial within-plane resolution of 3x3mm with aninter-slice distance

1The strength of a magnetic field is measured in Tesla (T) or Gauss (G), whereby 1T � 10� 000G.

Comparative, the strength of the earth magnetic field accounts for 0.3-0.7 G.
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of 2mm and a slice thickness of 5mm. The main objective of fMRIstudies is to

obtain a statistical parametric map (SPM) that depicts brain areas significantly re-

sponding to a specific experimental condition. This requires several preprocessing

and evaluation steps that will be described in the following. All evaluations are

conducted by using the software package LIPSIA (Leipzig Image Processing and

Statistical Inference Algorithms) by Lohmann and co-workers (Lohmann et al.,

2001).

2.4.1 Preprocessing

Several preprocessing steps are required prior to statistical evaluation to improve

the data quality and remove artifacts due to motion, slice acquisition, and low

frequency drifts (which are due to physiological or technical reasons). Scarcely

anything can be done to correct for artifacts due to susceptibility gradients, i.e.,

the material dependent property of being magnetized in an external magnetic field.

Susceptibility gradients occur specifically in tissues bordering air-filled cavities,

e.g., in the orbitofrontal or anterior temporal cortex. Affected areas should be

excluded from investigation or interpretation.

In all present experiments time sequences of 2D images were taken every

2.5s. Functional data were corrected for 2D motion artifacts using a matching

metric based on a linear correlation. This means that the 2D images were geo-

metrically rotated and shifted until a satisfactory match with a reference scan was

acquired. The slices acquired in the fMRI studies were naturally not measured

simultaneously but sequentially. This offset in slice acquisition may affect the

statistical analysis and was therefore corrected. A sinc-interpolation based on the

Nyquist-Shannon-Theorem was applied to correct for the temporal offset between

the slices acquired in one scan. In the course of fMRI studiesslow signal-drifts

may occur due to physiological (e.g., blood pulsation, respiration) or technical

reasons (e.g., lower signal values on average at the beginning of a scan than to-

wards the end). Changes in the average signal intensity, i.e., baseline drifts, were

corrected by using a temporal highpass filter. The underlying assumption is that

the signal fluctuations are best described as low frequency components of the sig-
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nal. Additionally, noise within the data can be lessened by performing spatial

smoothing using a Gaussian filter kernel. In all present experiments a temporal

highpass filter with a cut-off frequency of 1/170 Hz was used for the baseline cor-

rection of the signal and a spatial smoothing using a Gaussian filter kernels with

5.65mm FWHM was applied.

2.4.2 Spatial transformations

Generally, images have to be preprocessed so that they are geometrically aligned

with each other and conform to a standard anatomical space, e.g., the Talairach

stereotactic space (Talairach & Tournoux, 1988) (see 1.2.1). Hence, in order to

warrant comparability between subjects and subsequently to submit a group anal-

ysis the fMRI data of all subjects were rotated and scaled such that the data sets

were geometrically aligned with each other. As a standard stereotactic coordi-

nate system the Talairach-space (Talairach & Tournoux, 1988) was used in all

present experiments, therefore, local maxima were reported with their respective

Talairach-coordinates and Brodmann Areas. In a separate session 3D high reso-

lution T1-weighted images were acquired for each subject. In the experimental

session 2D anatomical slices were acquired using a MDEFT (Modified Driven

Equilibrium Fourier Transform) sequence. These slices were co-registered with

the 3D full brain scan that resided in the stereotactic coordinate system and then

transformed by linear scaling to a standard size
�
135x175x120mm� . The trans-

formation parameters obtained from this step were subsequently applied to the

functional slices so that the these were also registered into the stereotactic space.

The last step of the preprocessing consisted in the transformation of the 2D func-

tional data into the three-dimensional space. Accordingly, slice-gaps were scaled

using a trilinear interpolation, generating output data with a spatial resolution of

3x3x3mm
�
27mm3 � per voxel. In order to improve the described linear normal-

ization a subsequent preprocessing step was conducted performing an additional

non-linear normalization: Each anatomical 3D data set was deformed such that

it matched a 3D anatomical data set that served as a model image. The result

was a deformation field describing where each pixel in one data set should move



2.4. ANALYSIS OF FMRI DATA 45

so that it matched a corresponding pixel in the model data set. This deformation

field was then applied to the results obtained from the statistical analysis (contrast

images), i.e., linearly normalized 3D contrast images. In LIPSIA the non-linear

normalization is based on an algorithm invented by Thirion (1998).

2.4.3 Statistical evaluation

The main objective of the statistical evaluations is to find and depict areas that

are significantly responding to a specified experimental condition via the attain-

ment of a SPM. In short, this is achieved by calculating an analysis of variance

(ANOVA) separately at each voxel. Voxel-wise,t-statistics from the results of the

ANOVA are generated. Subsequently,t-statistics are converted intoz-scores. The

resulting SPM� Z � are then superimposed on an anatomical high resolution image

so as to visualize the functional data (see 2.5).

The measured fMRI signal could best be expressed by the convolution of

the stimulus (described by the stimulus function) and the hemodynamic response

function. The hemodynamic response function itself was expressed by basis func-

tions. In the present event-related designs the hypothetical hemodynamic response

function was explicitly modeled for each stimulus. Generally, the number of em-

ployed basis functions influences the parameter estimation. Usually, only the am-

plitude of the function, expressed in the first basis function, is tested. However,

by using more than one basis function, i.e., its first and second derivative, both

stimulus-dependent as well as regionally specific aspects of the response can be

taken into account. Therefore, the design matrix was generated utilizing a syn-

thetic hemodynamic response function and its first and second derivative (Friston

et al., 1998) and a response delay of 6s.2

In the present proceeding, the statistical analysis was based on a least-squares

estimation using the general linear model (GLM) for serially autocorrelated ob-

2In order to account for serial autocorrelation, the model equation, including the observation

data, the design matrix and the error term, were convolved witha Gaussian kernel with a dispersion

of 4 sec� FWHM. The effective degrees of freedom were estimated as described in Worsley and

Friston (1995) and in Seber (1977).
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servations (random effects model) (Aguirre, Zarahn, & D’Esposito, 1997; Fris-

ton, 1994; Worsley & Friston, 1995; Zarahn, Aguirre, & D’Esposito, 1997). This

means, it is assumed that the variation of the measured signal (Y) could be ex-

plained in terms of a linear combination of the explanatory variables (experimen-

tal conditions,Xβ) and an error term (ε): Y � Xβ � ε. This linear combination is

called a fitted response. The parameters (betas) corresponding to each of the pre-

dictors were unknown and had to be estimated based on a least-squares estimation.

Errors were assumed to be independent and identically normally distributed with

a mean of zero.

In the following, contrast maps, i.e., estimates of the raw-score differences

between specified conditions, were generated for each session and subject. As the

individual functional datasets were all aligned to the samestereotactic reference

space, a group analysis could be performed. For multi-session analysis, specific

hypotheses were tested by using at-statistic and a weighted linear combination of

the effects which is also called a contrast vector. The resulting t-values indicated

the significance of a certain effect voxel-wise, i.e., whether parameters differed

significantly (Holmes & Friston, 1998; Worsley & Friston, 1995). Subsequently,

t values were transformed intoz-scores resulting in a statistical parametric map

(SPM� Z � ) indicating the statistical significance voxel-wise. In order to minimize

the probability of false positives (type I error) only voxels with az-score greater

than 3.09 (P � 0 � 001 uncorrected) and with a volume greater than 225mm3 (5

voxels) were considered as activated voxels. In all three experiments group anal-

yses were calculated by using a voxel-wise random effects model with subject

serving as the random effect, i.e., allowing for the expression of each subjects’ ac-

tivation to be modeled as a random variable. By comparing theaverage activation

to the variability of the activation over subjects it is possible to make inferences

about the population where the sample is drawn from (Friston, Holmes, & Wors-

ley, 1999).
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2.5 Visualization

The resulting SPMZ were superimposed on an anatomical high resolution image

and for a good perceptibilityz-values were color-coded. The functional data from

the present studies were all superimposed onto the same anatomical image. The

chosen anatomical image was an individual brain showing a fairly prototypical

course of gyri and sulci (see Figure 2.1). In the following results sections various

views from the superimposed functional and anatomical images were generated to

illustrate the results. By using a specific threshold for thez-values it was possible

to mask only those voxels that are below the chosen threshold. The threshold of

z-values was color-coded such that values ofZ � 3 � 09 were displayed as crimson

and the higher thez-value the brighter the color (up to bright yellow) (see Figure

2.2).

Figure 2.1:Left, median, and top view of the anatomical image which was used

as a reference image.

Figure 2.2: Displayed is the color ramp which is used to indicate significantly

activated z-values. The crimson end of the scale refers to z-values of Z� 3 � 09.
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2.6 Procedure of the fMRI

In the following the technical details will be reported applying to all three fMRI

experiments which were conducted at the Max-Planck-Institute of Cognitive Neu-

roscience in Leipzig, Germany.

Imaging was performed at 3 Tesla on a Bruker Medspec 30/100 system equipped

with the standard bird cage head coil (SGRAD MkIII 580/400/S, MAGNEX Sci-

entific Ltd., Abingdon, UK). Slices were positioned parallel to the bi-commissural

plane (AC-PC) with 16 slices (thickness 5mm, spacing 2mm) covering the whole

brain. A set of 2D anatomical images was acquired for each participant imme-

diately prior to the functional experiment, using a MDEFT sequence (256x256

pixel matrix). Functional images in plane with the anatomical images were ac-

quired using a single-shot gradient EPI sequence (TE=30ms,64x64 pixel matrix,

flip angle 90� , field of view 19.2cm) sensitive to BOLD contrast. During each

trial, 2 images were obtained from 16 axial slices at the rateof 2.5s. In a separate

session, high resolution whole brain images were acquired from each participant

to improve the localization of activation foci using a T1-weighted 3D segmented

MDEFT sequence covering the whole brain.

Participants were instructed immediately before the MRI experiment. In the

MRI session, subjects were supine on the scanner bed with their right and left

index finger positioned on MRI-suitable response buttons. In order to prevent

postural adjustments, the subject’s arms and hands were carefully stabilized by

tape. In addition, form fitting cushions were used to preventarm, hand and head

motion. Participants were provided with earplugs to attenuate scanner noise. Vi-

sual stimuli were presented with VisuaStim (Magnetic Resonance Technologies,

Northridge, USA), consisting of two small TFT-monitors placed directly in front

of the eyes, simulating a distance to a normal computer monitor of about 100cm.

In the case of ametropia participants used either their own lenses or were supplied

with appropriate ones. Participants were excluded from thestudies in the case of

color-blindness. After participants were welcomed at the laboratory they received

an instruction about the procedure and the task of the specific experimental ses-

sion. Immediately prior to the functional imaging session,subjects spent twenty
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five minutes in the scanner, so that they could acclimate to the confinement and

sounds of the MR environment. Past the experiment participants were debriefed

and thanked for their participation.

2.7 Design of fMRI experiments

Generally, there are two design classes in fMRI, blocked andevent-related designs

(Frackowiak et al., 1997). Blocked fMRI designs are characterized by a blocked

presentation of experimental trials, e.g., block of trialscondition A, block of trials

condition B, etc. Blocks usually last for 40-60s. Using thiskind of presenta-

tion design it it possible to dissociate hemodynamic responses associated with the

repeated presentation of stimuli or the constant performance of one task, respec-

tively. The advantage of blocked designs consists in the great amount of repeti-

tions resulting in high statistical power. However, this design class comes along

with several disadvantages. Namely, a constricted randomization of conditions,

the risk of possible confounds due to processes like maintenance of a particular

attentional set, or the impossibility to dissociate signalchanges within blocks.

Moreover, due to the predictable arrangement of conditionsparticipants usually

know beforehand what kind of task they would have to perform next. Also the

temporal structure of the experimental session becomes predictable after a while.

Both factors could give rise to anticipation and habituation effects.

The advent of event-related designs allows to overcome someof these short-

comings. This design class allows to characterize and compare hemodynamic

responses to single stimuli or events independently from the context in which the

stimuli are presented. Most importantly, event-related designs allow to randomize

stimuli/events so that evaluations are unaffected by possible confounds due to pro-

cesses like maintenance of particular attentional sets. Randomization and coevally

balancing transition probabilities allow to exclude effects due to anticipation and

habituation. Due to unrestricted randomization and relatively fast presentation of

events, fMRI experiments differ hardly anymore from behavioral or electrophys-

iological experiments. This offers a great possibility to investigate the functional
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relationship with behavioral measures, e.g., using error rates or RT as parameters

or the investigation of post-hoc selected events based on participants’ performance

(Burock, Buckner, Woldorff, Rosen, & Dale, 1998). Note, although the hemody-

namic responses add up linear it is possible to dissociate responses to events that

are only separated by 2s (Clark, Maisog, & Haxby, 1998).3 Not less important is

the improvement of the temporal resolution. This can be achieved by varying the

phase of the event relative to the data acquisition and by making repeated mea-

surements such that being in synchrony with the data acquisition is not required.

For each stimulus/event the measured signal is described bya convolution of the

temporal stimulus distribution and the hemodynamic response function. In all

present experiments event-related designs were employed.

The specification of different contrasts allows to test for avariety of effects

which can be categorized into three broad classes, i.e., subtractive, parametric,

and factorial designs. In general, the analysis of fMRI datafollows the method

of cognitive subtraction (Friston et al., 1996). That means, cognitive-behavioral

differences are correlated with brain activation by means of a comparison between

tasks that differ in only the cognitive process of interest but not in sensory, motor

or cognitive requirements. The method of cognitive subtraction holds the assump-

tion of pure insertion. This means, it is assumed that the addition of a cognitive

process to a preexisting set of processes does not affect them. Generally, the

method of cognitive subtraction is simple and offers a very effective way to map

functional anatomy (Friston, Price, Buechel, & Frackowiak, 1997). For example,

the null hypothesis that there are no cerebral differences between uncertain and

certain decisions could be rejected, if the main effect of type of task would be

significant.

In contrast, parametric designs are required if the main focus lies on the in-

vestigation of brain regions that varysystematicallywith the degree of cognitive

processing. Parametric designs are used to investigate therelationship between

experimental parameters and the hemodynamic response. Thus, the crucial differ-

ence between subtractive and parametric designs is that thelatter ones imply the

3This is achieved by partialing out the overlap of hemodynamic responses.
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assumption that the cognitive process (of interest) can be expressed to a greater

or lesser extent (Friston et al., 1997). Accordingly, cognitive processes are not re-

garded as categorical invariants but rather considered as dimensions or attributes

that can be expressed more or less. For example, amongst other things, the present

experiments aimed to investigate activation changes subject to the degree of un-

certainty in decision making. That means, by a parametric variation of the de-

gree of uncertainty it was investigated whether the involved brain regions vary

systematically with the degree of uncertainty. In general,one advantage of para-

metric designs is that no appropriate control condition hasto be employed and

additionally only the changes due to the experimental parameters of interest are

measured. However, in all present experiments an appropriate control condition

was employed in order to additionally test for the main task effects.

In order to complete the overview of different experimentaldesigns in fMRI,

factorial designs will shortly be mentioned as they were notrealized in the present

experiments. If the focus of research lies on the assessmentof the effects of one

manipulation on the effects of another manipulation, neither subtractive (categor-

ical) nor parametric (dimensional) designs are appropriate. Designs associated

with this kind of research questions are factorial (interaction) designs. In this case

the two factors of interest are combined in the same experiment.

2.8 Design of the present fMRI studies

In the following, a short description of the design in the present experiments is

given. However, a more detailed elaboration is carried in the respective chapters.

The first experiment (Exp.1) aimed to investigated brain correlates of exter-

nally attributed uncertainty, i.e., uncertainty of frequency. By using a parametric

design it was tested whether different degrees of uncertainty of frequency are

reflected by modulations of the involved brain areas. An expected slow learning

effect in the course of the experiment was controlled and additionally it was tested

whether the same brain areas are affected or not.

The second experiment (Exp.2) aimed to investigate brain correlates of inter-
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nally attributed uncertainty, i.e., knowledge uncertainty. By using a parametric de-

sign it was tested whether different degrees of knowledge uncertainty are reflected

by modulations of the involved brain areas. Comparable to the first experiment,

a slow learning effect in the course of the experiment was expected and therefore

controlled. Additionally it was tested whether the same brain areas modulated by

knowledge uncertainty are affected or not.

In order to compare brain activations induced by externallyattributed un-

certainty (Exp.1) to brain activations induced by internally attributed uncertainty

(Exp.2), a group comparison was calculated. This means, theresulting two sets

of contrast images from Exp.1 and Exp.2 were compared voxel-wise using a two-

sample t-test to examine the hypothesis that the mean contrasts of the two groups

differ significantly.

The third experiment (Exp.3) aimed at the investigation of uncertainty reduc-

tion given internally attributed uncertainty. That way, itwas tested whether ac-

tivation within areas shown to be modulated by knowledge uncertainty is solely

reduced by increasing the amount of relevant knowledge (real learning) or whether

an increase in solely positive outcomes (pseudo learning) is comparatively pow-

erful. By using a subtractive design both main task effects and a direct contrast

between the two learning conditions were calculated.



Chapter 3

Experiment 1

3.1 Introduction

In real life situations predictions are made on the basis of expectations about

which event is the most probable to come up. Dependent on the frequency with

which we experienced that an evente has followed the type of situation we face

again, predictions are made with more or less certainty. In order to come up

with a stable representation about event frequencies we therefore have to face

the same type of situations over and over again, i.e., withina so-callednatural

sampling(Gigerenzer, 1994; Hasher & Zacks, 1979; Kleiter et al., 1997). The

acquired representation of probabilities of event occurrence is applied to external

stimulus properties, so that a distinction between differently probable events is

possible. The high accuracy of frequency estimations observed in humans con-

firm the vital meaning of correct estimation of event frequencies in many adap-

tive behaviors (Betsch, Plessner, Schwieren, & Gütig, 2001; Sedelmeier, 1999).

Like guessing and gambling, probability-based predictions are charged by exter-

nally attributed uncertainty. In contrast to internally attributed types of uncer-

tainty in decision making, externally attributed uncertainty occurs whenever we

think that it is caused by events in the world that we cannot control (Howell &

Burnett, 1978; Kahneman & Tversky, 1982). The typical coping strategy used

in such situations is to rate the relative frequency of such events. Brain corre-

53
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lates of this externally attributed uncertainty have been investigated in guessing

paradigms confronting subjects with two or more events of equal probability (El-

liott & Dolan, 1998; Elliott et al., 1999; Paulus et al., 2001). However, in many

real life situations we do not expect one out of several events to occur with the

same probability. Rather, we describe situations as indicating varying event prob-

abilities, for instance when saying“I am very certain that it will rain tomorrow”

or “I am quite certain that Peter will be late.”. Hence, in contrast to predictions

that we make in guessing or gambling situations, our real life predictions usually

depend on extensive experiences and memories of event frequencies. Accord-

ingly, Exp.1 set out to investigate whether activations induced by uncertainty in a

natural sampling prediction would be different from or similar as those induced

by uncertainty in guessing or gambling. A similarity is suggested by the fact that

both types are so-called externally attributed types of uncertainty. A difference is

suggested by the fact that predictions that base on a naturalsampling refer to a

learning process, whereas guessing and gambling do not.

FMRI was used to investigate the neural correlates of predictions based on

a virtual natural sampling. Participants were presented with stimulus combina-

tions that determined the probability of a subsequently following event which

occurred with a probability ofp � � 6 � � 7 � � 8 � � 9 � or 1� 0. Using a parametric de-

sign, the hypothesis was tested whether brain activation within the region of in-

terest, i.e., frontomedian areas, would increase with decreasing event probability.

Many different tasks that require decisions or overt responses under uncertainty

are known to draw on frontomedian areas (Bechara et al., 1996; Critchley et al.,

2001; Elliott & Dolan, 1998; Elliott et al., 1999; Goel & Dolan, 2000; Paulus

et al., 2001, 2002; Rogers et al., 1999). However, uncertainty is reported to be

reflected within posterior frontomedian areas, including mesial BA 8 or anterior

BA 6, corresponding to pre-SMA, and BA32
�

/24
�

, i.e. the dorsal part of the ACC.

Accordingly, though the engagement of frontomedian areas in behaviors under un-

certainty is clearly indicated in the literature, we are ignorant about the correlates

of uncertainty that we typically face in everyday behavior,i.e., natural samplings.

One central aim of Exp.1 was therefore to clarify the anatomical location within
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the posterior portion of the frontomedian wall that co-varies positively with in-

creasing uncertainty in predictions in a natural sampling.In addition to posterior

frontomedian areas, orbitofrontal areas are known to be engaged in uncertain de-

cisions, particularly those induced by reward expectancy,and depending on vary-

ing task-corresponding emotional attitudes (Breiter et al., 2001; Critchley et al.,

2001; Elliott et al., 1999; O’Doherty, Kringelbach, Rolls,Hornack, & Andrews,

2001; Rogers et al., 1999). However, due to technical restrictions of the T2*

sequence in a 3T NMR system that usually causes signal voids (Norris, Zysset,

Mildner, & Wiggins, 2002), medial orbitofrontal activations could not be detected

in Exp.1 (see also 2.4.1). The focus of the present study is therefore on poste-

rior frontomedian areas, including mesial BA 6, mesial BA 8,BA 32
�

, and BA

24
�

. The cognitive representation of event frequencies (like “2 out of 10”) are re-

ported to differ crucially from those of event probabilities (like “20%”) (Gigeren-

zer, 1994; Gigerenzer & Hoffrage, 1995). As worries came up that strategies

like coding event frequencies by event probabilities couldemerge after extensive

behavioral training, it was decided to dismiss a training. Without a pre-session

training, however, slow learning effects during the courseof the experimental ses-

sion were expected, and therewith a slow decrease of generaluncertainty. As the

main focus of Exp.1 was the investigation of probability-dependent uncertainty

varying between blocks, it was clearly needed to control forthis slow learning

effect. This was done by the implementation of an additionalstatistical regressor

that modeled learning effects (see also 3.2).

3.2 Method

3.2.1 Stimuli and task

The task of the participants was to predict which of two concurrently presented

stimuli would win in a virtual competition game. Uncertainty of frequency was

manipulated by varying the winning probabilities between experimental condi-

tions (ranging from 60% to 100%). The winning probabilitiesdepended on a

specific stimulus feature (as explained below).
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Stimuli consisted of comic pictures showing UFO’s differing in color, shape,

and a figure seated within the UFO. Four different colors, shapes, and comic fig-

ures (in the following referred to as A, B, C, and D) were employed respectively.

Participants were instructed to attend to one specific stimulus feature, i.e., the fig-

ure dimension. The stimulus properties color and shape varied randomly across

figures. Within each trial, two stimuli were presented concurrently, one on the

right and one on the left side of the screen. Within the stimulus dimension, six

possible pairings were generated by combining the four different figures (e.g., A-

B, A-C, A-D, B-C, B-D, and C-D). Participants had their indexfingers on a left

and a right response button, corresponding to the stimulus presentation positions

on the screen.

In the prediction conditions, each of five pairings of figureswas systemati-

cally associated with a particular winning probability, and these associations were

consistent throughout the experiment. Accordingly, depending on the pairing in

the uncertain prediction condition, the feedback showed one of both figures with a

mean probability of .6 (that D wins against C), .7 (that D winsagainst B), .8 (that

B wins against C), .9 (that C wins against A), and 1.0 (that A wins against D),

respectively (see Table 3.1). The figure combination (A-B) was used as control

condition in which an external cue indicated the winning stimulus.

Table 3.1:Listed are the stimulus combinations and the assigned winning proba-

bilities.

Stimulus combination winning probability

D trumps C 0.6

D trumps B 0.7

B trumps C 0.8

C trumps A 0.9

A trumps D 1.0

In the five prediction conditions (p � � 6 � � 7 � � 8 � � 9 � 1 � 0), participants were in-

structed to press the response button spatially corresponding to the stimulus they
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excepted to win, i.e., to bet on the winner (e.g., after stimulus presentation, if

figure A will win against figure D, or conversely). In the control condition (A-

B) three arrows in the middle of the screen indicated which ofthese two stimuli

would win. Participants were asked to simply indicate the stimulus that was in-

dicated by the arrows. The three arrows indicating the winning stimulus pointed

to A and to B equally often, i.e., A won against B with a probability of .5. Aver-

age winning probabilities were almost balanced between thefour figures (A: .533

, B: .533, C: .500, and D: .433). By balancing the probabilities in this way, it

was aimed to avoid cross-talk between pairings and subsequent effects like latent

inhibition to operate between blocks.

3.2.2 Experimental design

A blocked presentation design was used, with probabilitiesvarying between each

block (p � � 6 � � 7 � � 8 � � 9 � 1 � 0). Each of these blocks as well as blocks of the control

condition consisted of five subsequently presented trials showing the same figure

pairing (for instance, A plays five times against B). Within each trial, one pair of

stimuli was presented for 2s during which participants’ response was recorded.

Presentation was followed by a feedback presented for 1.5s,showing the winner

if the prediction was correct, or showing a masking of both stimuli if the predic-

tion was incorrect (see Figure 3.2). The inter-block-interval was 5s. Overall, 10

blocks were presented for each of the five probabilities and the control condition,

resulting in 60 blocks or 300 trials altogether. Blocks werepresented in random-

ized order, and the order was also randomized and balanced between participants.

The frequency of block-block transitions was balanced across the experimental

session. The order of blocks was balanced between participants, such that the

group-averaged event probability was .80 at each time during the course of the

entire experimental session (see also comments on the regressor modeling slow

learning effects). That is, participant 01 started for instance with the block order

.7, .6, 1.0 and so on, whereas the participant 02 started with.1, .8, .6 and so on

(see Figure 3.1).

An enhancement of the BOLD signal was achieved by employing ajittering
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Figure 3.1:Example of the distribution of the experimental conditions. Each par-

ticipant had another distribution such that the group-averaged event probability

was p� � 80 at each trial over the course of the entire experimental session.

which allowed the assessment of the BOLD-response at different times relative

to the event onset. Both the beginning of each block as well asthe inter-trial-

interval was jittered. Accordingly, while trial duration (3.5s) and trial asynchrony

(5s) were kept constant, the inter-trial-interval (mean duration of 1.5s) varied by a

jittering of 0, 500, 1000, or 1500ms, respectively, assigned randomly to the trials.
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1 trial = 5 sec

1 block = 5 trials

1 experimental session = 60 blocks

time

experimental conditions

100%

80%

70%

60%

control

90%

2 sec 1.5 secvariable duration variable duration
response feedback

Figure 3.2:Example of the stimulation. One experimental session consisted of

60 blocks, i.e., 300 trials. Blocks with different winning probabilities (color-

coded) and the control condition were presented in (pseudo-)randomized order.

One block consisted of 5 trials showing the same stimulus combination. Stimuli

were presented for 2s during which participants’ response was recorded followed

by a feedback of 1.5s. In the present example a positive feedback is shown.

3.2.3 Participants

Sixteen right-handed, healthy volunteers (5 female, mean age 24.9, range 21-

35 years) participated in Exp.1. After being informed aboutpotential risks and

screened by a physician of the institution, subjects gave informed consent before

participating. The experimental standards were approved by the local ethics com-

mittee of the University of Leipzig. Data were handled anonymously.

3.2.4 Procedure

The procedure was conducted as described in chapter 2.6.
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3.2.5 Data analysis

Effects of increasing externally attributed uncertainty were analyzed by using a

parametric design with two regressors (Büchel, Wise, Mummery, Poline, & Fris-

ton, 1996; Büchel, Holmes, Rees, & Friston, 1998; Lange, 1999). So as to model

the effects of externally attributed uncertainty independent from the cause but as a

measure of performance a regressor was used that consisted in the average predic-

tion error per probability of event occurrence, i.e., the average prediction error for

each experimental condition. This regressor is referred toas “condition-regressor”

in the following. Within the same model it was tested for slowunspecific learning

effects by the use of a second regressor, consisting in the group averaged error

score for each trial. This regressor is referred to as “learning-regressor” in the

following. Note that such a second regressor can only be useful if it models a dif-

ferent source of variance than the first regressor and this isblocked-dependent un-

certainty. The statistical independence of the group-averaged learning effect from

the block-wise variation of uncertainty was achieved by balancing the order of

event probabilities between subjects so that the group-averaged event probability

was the same at each trial, i.e.,p � � 80. The condition-regressor (group-averaged

error score for each condition) and the learning-regressor(group-averaged error

score for each trial) were thereby statistically independent in each subject. That

is, none of the correlations were significant (two subjectsr ��� 0 � 11, three sub-

jectsr � 0 � 10, two subjectsr ��� 0 � 17, three subjectsr ��� 0 � 04, three subjects

r � 0 � 02, three subjectsr � 0 � 13). Both regressors referred to the same sample of

trials, including all uncertain prediction conditions, but not the control condition.

Absolute certain predictions, i.e., the control condition, were modeled as a sepa-

rate onset vector within the same model. By including both regressors within one

statistical model, contrast maps could be generated that extracted the three effects

of interest independently from each other. Three contrast maps were generated

from that statistical model:

Firstly, all uncertain prediction blocks were collapsed and contrasted against

certain predictions, i.e., the control condition. Thereby, it was tested for the main

task effect. Second, the effects of probability-dependentuncertainty in predic-
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tion were tested by using the condition-regressor. And third, the effects of time-

dependent uncertainty were tested by using the learning-regressor.

3.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as described inchapter 2.6. One

functional scan consisted of 723 images and each image of 16 slices.

3.2.7 MRI analysis

All preprocessing and evaluation steps were calculated by using the software

package LIPSIA (Lohmann et al., 2001) as described in chapter 2.4.

3.3 Results

3.3.1 Behavioral data

Performance was measured by the rate of erroneous predictions and reaction times

of correct predictions. A repeated measures ANOVA with the 5-level factor un-

certainty (p � � 6 � � 7 � � 8 � � 9 � 1 � 0) yielded a significant main effect for both erroneous

predictions (F
�
4 � 60� � 54� 5;p � � 0001) and reaction times (F

�
4 � 60� � 6 � 0;p �

� 001) (see Table 3.2). As participants did not make any erroneous responses in

the control condition, a repeated measures ANOVA with the 2-level factor un-

certainty (all uncertain conditions collapsed, control condition) was not feasible

neither for erroneous predictions nor for reaction times. Aone-sided Pearson-

correlation between erroneous predictions and time was found to be significantly

negative (r � � � 19;p � � 001). Likewise, reaction times got significantly shorter

in the course of the experiment, as indicated by a significantly negative one-sided

Pearson-correlation (r � � � 43;p � � 0001). Together, decreasing rates of both er-

roneous predictions and reaction times indicated significant slow learning effects

over time.
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Table 3.2:Error rates (mean and SD in percent) and reaction times (meanand

SD in ms) for all conditions during the fMRI scanning (n=16).

Condition Error rates (%) Reaction times (ms)

p � � 6 52.5 (3.8) 1095.5 (153.7)

p � � 7 47.2 (9.7) 1030.4 (168.6)

p � � 8 41.2 (8.2) 1026.0 (177.8)

p � � 9 29.4 (9.2) 1004.9 (150.7)

p � 1 � 0 14.3 (7.8) 997.5 (125.2)

control 0 932.0 (203.5)

3.3.2 MRI data

Main task effect

In order to test for the main task effect, all 5 levels of uncertain predictions were

collapsed and contrasted against certain predictions, i.e., the control condition.

As listed in Table 3.3 and shown in Figure 3.3 significant activations were elicited

within the right posterior frontomedian cortex (mesial BA 8/6), the right anterior

insula, the cuneus, the cerebellar vermis extending laterally into the paramedian

portion of the left cerebellar hemisphere, and within a sub-cortical network, in-

cluding the ventral striatum, the thalamus, and the right midbrain area (VTA).

Parametric effect of externally attributed uncertainty

When testing for the parametric effect of externally attributed uncertainty posi-

tively co-varying voxels were found to be located within theright posterior fron-

tomedian cortex (mesial BA 8), the right thalamus, the rightanterior insula, and

the left cerebellar cortex (see Table 3.4 and Figure 3.4). Hence, the right mesial

BA 8 was the only cortical area that was found to be activated both in contrast

to the control condition (main task effect) and in the parametric modulation of

probability-dependent prediction uncertainty (parametric effect). Some areas that
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Table 3.3:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of significantly activated voxels in prediction under un-

certainty (all levels collapsed) in contrast to predictionunder certainty (control

condition).

Area Hemisphere x y z Z

Frontomedian Cortex (BA 8/6) R 8 18 464.4

Ventral striatum L -12 12 -3 4.5

R 21 15 -6 4.0

Thalamus L -15 -18 12 3.4

R 8 -17 6 4.2

Midbrain area R 8 -17 -6 3.9

Anterior insula R 40 19 6 4.1

Cerebellum R 1 -68 -23 4.7

Cuneus R 4 -71 14 4.1

were activated significantly in the main task effect did not co-vary positively with

increasing uncertainty. Additional activations were located within the right middle

frontal gyrus and superior frontal sulcus, and the mid-portion of the right intra-

parietal sulcus. Though these areas were also slightly activated in the main task

effect, maximalz-scores remained below the statistical threshold.

Parametric effect of slow learning

Finally, it was tested for voxels that co-varied positivelywith decreasing uncer-

tainty due to slow learning effects in the course of the experimental session (see

Table 3.5 and Figure 3.5). As a result, significant activations within only two

areas were found. Namely, one activation located at the junction of the right infe-

rior pre-central sulcus and the right inferior frontal sulcus (inferior frontal junction

area, IFJ), the other within the left posterior parahippocampal gyrus. Hence, there

was no area that was commonly activated by probability-dependent uncertainty in
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Prediction Under Uncertainty - Control

vSt

BA8

Tha
VTA

Cu

Ce

vSt

VTA

Figure 3.3:Main task effect (Z
� 3 � 09) for prediction under uncertainty versus

control condition. Group-averaged activations are shown on coronal (y=12),

sagittal (x=8), and axial (z=-6) slices of an individual brain normalized and

aligned to the Talairach stereotactic space. For activation coordinates, see Ta-

ble 3.3. Abbreviations: vST, ventral striatum; BA8, mesialBrodmann Area 8;

Tha, thalamus; VTA, midbrain area; Cu, cuneus; Ce, Cerebellum.

prediction and by decreasing uncertainty due to slow learning effects.

3.4 Discussion

Exp.1 investigated brain areas particularly within the frontomedian cortex that

co-varied positively with a parametric modulation of prediction uncertainty in a

virtual natural sampling approach. To that end, different degrees of prediction un-

certainty were induced by different probabilities of eventoccurrence. In contrast

to a control condition that allowed a certain prediction on the basis of external

cues, prediction under uncertainty engaged the mesial BA 8.Though the max-

imally activated voxel of the frontomedian activation was located on the border

between BA 6 and BA 8, closer inspection revealed voxels activated above the

statistical threshold were only found anteriorly to the activation maximum, that

is within BA 8, but not within BA 6. This was further supportedby the para-
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Table 3.4:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of voxels co-varying positively with increasing predic-

tion uncertainty.

Area Hemisphere x y z Z

Frontomedian Cortex (BA 8) R 4 30 46 3.9

Thalamus R 8 -11 9 3.4

Anterior insula R 37 12 -3 3.6

Cerebellum L -18 -71 -29 4.0

Superior frontal sulcus R 17 3 46 3.6

Middle frontal gyrus (MFG) R 37 21 36 3.7

Inferior parietal lobule R 46 -53 38 4.0

Table 3.5:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of voxels co-varying positively with decreasing predic-

tion uncertainty in the course of the experiment.

Area Hemisphere x y z Z

Inferior frontal junction area (IFJ) R 43 0 263.5

Posterior parahippocampal gyrus L -18 -44 -34.1

metric analysis. When testing for voxels that co-varied positively with increasing

uncertainty in prediction as measured by the mean prediction error across blocks,

activation was found to be clearly located within mesial BA 8.

3.4.1 Increasing uncertainty reflected within mesial BA 8

Uncertain versus certain prediction elicited activation within mesial BA 8. The

maximally activated voxel was located at the border to mesial BA 6, i.e. the pre-

SMA, whereas the parametric effect of increasing uncertainty induced maximal

activation anteriorly within mesial BA 8. Though this outcome raises the question
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of functional differences and similarities between anterior mesial BA 6/pre-SMA

and mesial BA 8, these are difficult to determine in the literature. On the one

hand, the pre-SMA role in higher movement organization is long established, as

in contrast to hierarchically lower movement output organization attributed to the

posteriorly adjacent SMA proper (Picard & Strick, 1996, 2001; Shima & Tanji,

1998). Specifically, the pre-SMA receives converging and rich input from all lat-

eral prefrontal areas, which in turn are target regions fromsensory cortices (Bates

& Goldman-Rakic, 1993; Luppino, Matelli, Camarda, & Rizzolatti, 1993). The

pre-SMA is therefore suggested incognitiverather than motor aspects of volun-

tary behavior, particularly in the anticipatory processing of sensory (visual) in-

formation in view of a potential decision making or motor selection (Ikeda et al.,

1999; Picard & Strick, 2001). On the other hand and in contrast to the pre-SMA,

less is known about the functional profile of the anteriorly adjacent mesial BA 8.

Projections between the monkey homologue of the pre-SMA, area F6 (Matelli,

Luppino, & Rizzolatti, 1985), and anteriorly adjacent areas of the frontomedian

wall suggest a close functional relationship (Luppino et al., 1993). Tracer studies

in the monkey do not explicitly differentiate between mesial BA 6 and adjacent

8, but in contrast point out that rich prefrontal projections target the rostral SMA

so anteriorly, that this target area may include Walker’s medial area 8b (Bates

& Goldman-Rakic, 1993). In accordance with fronto-parietal projections investi-

gated in the monkey, right frontal and parietal areas together with mesial 8 were

found to be increasingly activated by increasing prediction uncertainty . Also in

imaging studies, mesial BA 8 and pre-SMA are often reported to be engaged in

the same task and contrast. For instance, mesial BA 8 and pre-SMA together

show increased activation whenever conflicts arise about the correspondence be-

tween perceived events and appropriate motor selections (Ullsperger & von Cra-

mon, 2001). Likewise, predicting serial events in increasingly complex stimulus

trains increased pre-SMA activation near the border or evenincluding a portion of

mesial BA 8 (Schubotz & von Cramon, 2002). More clearly separated from BA

6 are functions of the mesial BA 8 in hypothesis testing (Elliott & Dolan, 1998)

and rule application (Goel & Dolan, 2000). Elliott and Dolandiscuss mesial BA
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8 activation in terms of a response selection guided by mnemonic representations

of adaptive SR-mappings, rather than by internally guided guessing. Similarly,

Goel and Dolan (2000) refer to the anticipatory functions ofBA 8, suggesting that

subjects anticipate stimuli in view of activated response rules for these stimuli.

Note, however, that these authors refer to mesial BA 8 as pre-SMA. Indirect evi-

dence for a functional difference between mesial BA 8 and pre-SMA may come

from findings that indicate the pre-SMA does not co-vary withthe amount of er-

rors made in a visuo-manual learning paradigm (Sakai et al.,1999). In contrast,

mesial BA 8 activation was found to co-vary with errors in thepresent experiment.

A cautious suggestion may therefore be that BA 6 (pre-SMA) and mesial BA 8 are

both involved in the acquisition of stimulus-response associations, with the latter

to modulate this learning process by error evaluation.

3.4.2 Uncertain predictions based on natural samplings as in con-

trast to other types of decisions under uncertainty.

The aim of the present study was to figure out whether predictions based on a

natural sampling induce similar or different frontomedianactivations as other ex-

ternally attributed types of uncertainty, particularly guessing or gambling. When

comparing activations from the present study with those of other types of uncertainty-

inducing tasks, two different activation clusters emerge.As plotted in Figure 3.6,

activations reported in guessing paradigms (Elliott et al., 1999), error detection

(Ullsperger & von Cramon, 2001), and risky choice (Critchley et al., 2001; Rogers

et al., 1999) elicited activations within BA 32
�

/24
�

. In contrast, activation within

Exp.1 was found to be located similar to those of hypothesis testing (Elliott &

Dolan, 1998), response competition (Ullsperger & von Cramon, 2001), rule appli-

cation (Goel & Dolan, 2000), and sequence-based stimulus prediction (Schubotz

& von Cramon, 2002), i.e., within mesial BA 8 and 6. This comparison indicates

that activations induced by uncertainty in a natural sampling prediction are indeed

different from those induced by uncertainty in guessing, although both types are

so-called externally attributed variants of uncertainty.As suggested in the intro-

duction, differences in frontomedian correlates may instead reflect that predictions
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that base on a natural sampling refer to a learning process and memory, whereas

guessing and gambling do not. In comparison to further activations induced by

decision under uncertainty, a common characteristic of tasks that elicit similar

activations like the present natural sampling approach maybe that uncertainty is

reduced in the long run. They involve the setting up of a modelthat is tested

and that helps us to adapt our behavior stepwise and in a cumulative manner. In

contrast, guessing and risky choices involve a short-term error processing, but no

long-term behavioral adaptation to valid stimulus-response rules. Accordingly,

the main difference between tasks activating BA 32
�

/24
�

and those activating BA

8/6 may be that the former do not allow for learning and adaptation processes, but

function more as an alerting system. This difference may include also emotional

processes, which should have higher impact on fast behavioral adaptations rather

than on long-lasting learning. Accordingly, BA 32
�

/24
�

is suggested in the integra-

tion of cognitive processing of uncertainty with corresponding adaptive changes

in bodily states (Critchley et al., 2001) or evaluative processes related to the emo-

tional consequences of a (risky) choice (Elliott & Dolan, 1998). Together with

results discussed in the literature, the present findings can be taken to indicate that

mesial BA 8 is particularly engaged in feedback-based testing models or hypothe-

sis on valid SR-associations that lead to long-lasting behavioral modifications. In

contrast, BA 32
�

/24
�

appears to be rather engaged in the fast correction of response

errors, including or modulated by a short-term emotional evaluation.

3.4.3 Sub-cortical activation

In contrast to the control condition, predictions under uncertainty induced also

activations within a sample of sub-cortical areas, including several foci within the

midbrain (ventral tegmental area, VTA), the ventral striatum (nc. accumbens),

and the dorsal thalamus. These structures belong to a striatal-thalamo-cortical

network basically prominent in reward-based learning functions (Breiter et al.,

2001; Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; Elliott, Friston, & Dolan,

2000; Graybiel, 2000). As in the presently employed naturalsampling approach,

such types of learning are typically characterized by a slowdelayed acquisition



3.4. DISCUSSION 69

rate of implicit SR-associations. In particular, the nc. accumbens is taken to

support the ability to work for delayed rewards (Cardinal, Parkinson, Hall, &

Everitt, 2002). It is suggested that erroneous predictionsfunction as ateach-

ing signal for phasic changes in dopaminergic activity (Hollermann & Schultz,

1998; Schultz, 1998; Schultz & Dickinson, 2000). Thereby, dopaminergic pro-

jections from the VTA through the ventral striatum and the frontomedian cortex

(Williams & Goldman-Rakic, 1998) provide phasic signals tomodify and update

SR-mappings (Inase, Tokuno, Nambu, Akazawa, & Takada, 1999).

Activations that were found within these areas can be reconciled with the idea

of a summative, value-based attitude formation in natural samplings (Betsch et al.,

2001). This approach assumes that, in natural samplings, the responses evoked by

perceptual events are automatically recorded and summed up. Subsequently, these

summary evaluations can serve as a basis for predictions andcorresponding be-

havioral responses. However, it has also to be considered that uncertainty was

not the only aspect to vary between conditions. Rather, the expectancy and the

experience of positive and negative prediction outcome varied too. Since a pos-

itive prediction outcome could be seen as a kind of reward, a related issue here

is whether expectancy and experience of reward can be dissociated on the brain

level. Recent imaging studies have indicated that expectancy and previous expe-

rience mostly share common neural substrates (Breiter et al., 2001), as already

suggested by the work of Mellers and colleagues (Mellers, Schwartz, Ho, & Ri-

tov, 1997; Mellers, Schwartz, & Ritov, 1999). Accordingly,the frontomedian

areas found to be activated in Exp.1 could be differently modulated by either the

expectancy or the experience of positive prediction outcomes.

3.4.4 Decreasing uncertainty by slow learning effects over thecourse

of the experimental session

Slow learning effects during the course of the experimentalsession were expected

due to decreasing uncertainty related to knowledge. Learning effects were con-

trolled for by modeling a second regressor using the group-averaged error score

for each trial. In addition, however, it was also looked directly for the effects
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of the learning-regressor in order to confirm non-overlapping brain activations for

slow learning and frequency-dependent uncertainty. As a result, significant activa-

tions were found only within two regions, the right IFJ and the posterior parahip-

pocampal gyrus. Activations within the posterior fronto-lateral cortex have been

reported in shifting cognitive set, i.e., the switching from one response tendency

based on previous experiences to a currently more suitable one (Brass & von Cra-

mon, 2002; Monchi et al., 2001; Nakahara, Hayashi, Konishi,& Miyashita, 2002).

According to this view, decline in IFJ activation would reflect decreasing require-

ments on switching between different stimulus-response associations. With in-

creasing familiarity with the stimulus pairings and their probabilistic meaning,

the requirements on behavioral switching and flexibility may decline during the

course of the experimental session. This would also apply todecreasing activa-

tion within parahippocampal sites, which show slow sustained modulations during

new stimulus-response learning (Cahusac, Rolls, Miyashita, & Niki, 1993). How-

ever, the crucial implication of this finding is that slow learning effects and the

reduction of prediction uncertainty draw on different, non-overlapping brain ar-

eas, so that learning effects did not distort the activationpattern which was in the

focus of interest.

3.4.5 Conclusion

Findings from Exp.1 indicated that frequency-based prediction uncertainty elicited

frontomedian activation that resemble those induced in long-term stimulus-response

adaptation processes such as hypothesis testing, as in contrast to those engaged in

short-term error processing such as guessing.
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Figure 3.4:Parametric effects of prediction uncertainty. The upper panel shows

the group-averaged activations on a sagittal (x=4), and an axial (z=36) slice. Vox-

els co-varying positively with prediction uncertainty were located within mesial

BA 8 (1), the middle frontal gyrus (2), and the inferior parietal lobule (3). Coor-

dinates of further activations are given in Table 3.4. An example for a regressor

for one participant is plotted on the lower panel. Regressors were determined in-

dividually, depending on the presentation order of blocks.The level of uncertainty

was modeled by the mean prediction error made for each of the five probabilities.

Bars for each experimental block are shown in different intensities of gray. Note

that the ten blocks of the control condition did not enter theparametric analysis

and are therefore not shown in the figure.
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Figure 3.5: Parametric effects of learning. The upper panel shows the group-

averaged activations on a left sagittal slice (x=43) and an axial slice (z=3). Voxels

co-varying positively with the decreasing error rates in the course of the exper-

imental session were found within the left posterior parahippocampal gyrus (1)

and within the right inferior frontal junction area (2). Thelower panel shows the

regressor that modeled decreasing uncertainty due to slow learning effects across

participants (gray bars). The regressor was based on the group-averaged mean

prediction error for each trial of the experimental condition (5 trials per block, 50

blocks = 250 trials). The 50 trials of the control condition are not plotted as they

did not enter the parametric analysis.
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Figure 3.6: Comparison between frontomedian activations of Exp.1 (a, e) and

those of other studies on decisions under uncertainty. The right frontomedian wall

of a white matter segmented individual brain is shown from the midline. The outer

frame shows coordinates from Talairach and Tournoux (1988). The crosshairs

cut through the anterior and the posterior commissure (AC-PC), with vertical

orientation lines (VAC-VPC) perpendicular to AC-PC, respectively. Brodmann

Areas 6, 8, 24, and 32 are outlined. Red-yellow spheres referto activation foci

within mesial BA 8, green-blue spheres to those within BA 32
�

/24
�

. The red sphere

a corresponds to the main task effect of prediction uncertainty compared to the

control condition (see Figure 3.3). The sphere e corresponds to the parametric

effect of increasing prediction uncertainty (see Figure 3.4). Other letters and

spheres correspond to the following studies: b, Schubotz & von Cramon, 2002

(prediction difficulty); c, Elliott & Dolan, 1998 (hypothesis testing); d and g, Goel

& Dolan, 2000 (rule application); f, Ullsperger & von Cramon, 2001 (response

competition); l, Ullsperger & von Cramon, 2001 (error detection); m, Elliott &

Dolan, 1998 (committing oneself to choice); n, Critchley etal., 2001 (uncertainty

and arousal); o, Elliott et al., 1999 (guessing); and p, Rogers et al., 1999 (risky

choice).





Chapter 4

Experiment 2

4.1 Introduction

From a deterministic point of view, uncertainty is always caused by a lack of

knowledge. Nevertheless, we are used to attribute our uncertainty to different

causes, and these different causes are reflected in the way wetry to resolve our

uncertainty, i.e., by our coping strategies. A phenomenological analysis by Kah-

neman and Tversky (1982) distinguished between external attribution of uncer-

tainty (see Exp.1) and internal attribution of uncertaintyin decision making, a

distinction also made by other authors (e.g., Howell, 1971;Teigen, 1994). Ex-

ternal attribution of uncertainty occurs whenever we thinkthat our uncertainty is

due to coincidental chance events in the world which we cannot control. As a

prominent coping strategy, then, we try to rate the probability of external events

(e.g., “There is a sixty percent chance for rain tomorrow”).Internal attribution of

uncertainty, in contrast, occurs whenever we think that ouruncertainty is due to a

lack or insufficiency of knowledge, i.e., to internal factors in ourselves which in

principle we could control. A successful coping strategy inthis case is an inten-

sive memory search, most likely in combination with the attempt to get missing

information from valid external sources (e.g., “I am quit sure that possums are

mammals, but I don’t know exactly”).

In the second experiment (Exp.2) it was aimed to investigatethe neural corre-

75
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lates of internally attributed uncertainty and beyond in asmuch they differ from

those induced by externally attributed uncertainty (Exp.1). Thus, it was investi-

gated whether the two variants of uncertainty, which we are used to distinguish in

every day life, can be dissociated on the brain level. Using the same experimental

paradigm as in Exp.1, internally attributed uncertainty was induced by varying

the degrees of instructed knowledge about the winning rules. Parallel to Exp.1,

where six levels of externally attributed uncertainty wereinduced, five levels of

internally attributed uncertainty were induced in Exp.2.

For externally attributed uncertainty (Exp.1) mesial BA 8 was found to reflect

uncertainty of frequency and furthermore to co-vary positively with increasing

uncertainty. Using the same parametric approach as in Exp.1, it was investigated

whether internally attributed uncertainty is also reflected by frontomedian acti-

vations (main effect), and if so, whether this brain activation also increases with

increasing uncertainty of knowledge (parametric effect).Hence, it was tested

whether mesial BA 8 activation reflects increasing uncertainty, regardless of the

reason of uncertainty. In a subsequent group comparison (between-subjects de-

sign) it was investigated whether the co-activated networks underlying internally

and externally attributed uncertainty differ significantly from each other. Par-

ticularly, since storage and retrieval of acquired visuomotor associations are re-

quired for the suggested coping strategy in decisions underinternally attributed

uncertainty (Kahneman & Tversky, 1982), fronto-parietal activations in networks

that sub-serve working memory functions were expected (Fletcher & Henson,

2001; Owen, 2000).

Since the manipulation of knowledge uncertainty made a pre-experimental

training of the winning rules impossible, slow learning effects during the course of

the experimental session were expected, and therewith a slow decrease of general

uncertainty. As the main focus of Exp.2 was the investigation of knowledge-

dependent uncertainty varying between blocks, it was clearly needed to control

for slow learning effects during the experimental session.This was done by the

implementation of an additional statistical regressor that modeled learning effects

(see also 3.2).
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4.2 Method

4.2.1 Stimuli and task

In order to allow for a comparison between Exp.2 and the preceding Exp.1, only

few features of the experimental paradigm were modified. As before, participants

had to predict which of two concurrently presented stimuli would win in a virtual

competition game. The crucial difference between the two paradigms was that

uncertainty in Exp.1 was manipulated by varying winning probabilities between

experimental conditions (from 60% to 100%), whereas uncertainty in Exp.2 was

manipulated by varying the degree of knowledge that participants were provided

with regarding 15 winning rules, each of which determining a100% winning

probability as dependent on stimulus features (as explained below). The second

difference between Exp.1 and 2 was that experimental conditions were announced

by task cues in the present study.

The same stimulus material was used as in Exp.1.

Stimuli consisted of comic pictures showing UFO’s differing in color, shape,

and a figure seated within the UFO. Four different colors, shapes, and comic fig-

ures were employed, respectively. Within each trial, two ofthese stimuli were pre-

sented concurrently, one on the right and one on the left sideof the screen. Within

each stimulus dimension, five possible pairings were generated by combining the

four different levels (e.g., within the color dimension, the pairings red-yellow, red-

blue, yellow-blue, yellow-green, and blue-green were presented; the sixth pairing,

here red-green, was generally skipped in order to restrict rule complexity (see be-

low)). Participants had their index fingers on a left and a right response button,

corresponding to the stimulus presentation positions on the screen.

In the prediction conditions, each stimulus dimension (color, shape, figure)

represented a rule group consisting of five different sub-rules specifying the cor-

rect feedback , as listed in Table 4.1. These 15 rules were valid throughout the

experiment, that is, yellow always trumped blue and so on. Inorder to induce

different levels of uncertainty of knowledge, participants were provided with dif-

ferent amounts of information about these rules. One rule group was trained up
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to optimal performance prior to the fMRI session (trained rules condition). A

second rule group was verbally instructed at the end of this training session, but

not practiced (learned rules condition). The third rule group was neither trained

nor verbally instructed, so that participants were initially ignorant about this set

of rules (explored rules condition). In a fourth prediction condition, participants

were asked to test which one out of two rule groups, i.e., the trained or the learned

rule group, was valid within a given block (tested rules condition). The assign-

ment of stimulus dimension to rule group was balanced between participants.

Table 4.1:Listed are the three rule groups which consisted of five different and

intransitive sub-rules.

Rule group Color Comic figure Shape

Sub-rules yellow trumps blue A trumps B circle trumps triangle

blue trumps red B trumps C triangle trumps quadrat

green trumps blue D trumps B ellipse trumps triangle

red trumps yellow C trumps A quadrat trumps circle

yellow trumps green A trumps D circle trumps ellipse

In the four prediction conditions (trained, learned, explored, and tested), par-

ticipants were instructed to press the response button spatially corresponding to

the stimulus they excepted to win (e.g., after the task cue “color rules are valid”, if

the red stimulus will win against the blue, or conversely). In the control condition,

pairings showed two identical stimuli (same color, shape, and figure). Three ar-

rows in the middle of the screen indicated which of these two stimuli would win.

Participants were asked to simply indicate the stimulus that was indicated by the

arrows.

4.2.2 Experimental design

The experimental design was identical to Exp.1 with regard to presentation, time

flow, randomization, and jittering. The only difference to Exp.1 was the presenta-
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1 trial = 5 sec

1 block = cue + 5 trials

1 experimental session = 72 blocks

time

Cue

2 sec 1.5 secvariable duration variable duration
response feedback

rules/conditions

trained

learned

explored

tested

Figure 4.1:Example of the stimulation. One experimental session consisted of 72

blocks, i.e., 360 trials. Blocks with differently well known winning rules (color-

coded) and the control condition were presented in (pseudo-)randomized order.

One block consisted of 5 trials showing the same stimulus combination. Stimuli

were presented for 2s during which participants’ response was recorded followed

by a feedback of 1.5s. In the present example a positive feedback is shown.

tion of a verbal cue at the beginning of each block which announced the respective

experimental condition (see Figure 4.1). Overall, 15 blocks were presented for

each of the four prediction conditions, and 12 for the control condition, resulting

in 72 blocks or 360 trials altogether. Blocks were presentedin randomized order,

and the order was also balanced between participants.

4.2.3 Participants

Twelve (7 female, mean age 25.1, range 20-31 years) right-handed, healthy vol-

unteers participated in Exp.2. After being informed about potential risks and

screened by a physician of the institution, subjects gave informed consent be-
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fore participating. The experimental standards were approved by the local ethics

committee of the University of Leipzig. Data were handled anonymously.

4.2.4 Procedure

The procedure was conducted as described in chapter 2.6. However, different to

Exp.1, participants performed a training session immediately prior to the func-

tional imaging session. The training session lasted twentyfive minutes during

which the anatomical images were taken.

4.2.5 Data analysis

Effects of levels of prediction uncertainty were analyzed using a parametric de-

sign that paralleled that of Exp.1 (Büchel et al., 1996, 1998; Lange, 1999). In

order to model the effects of prediction uncertainty as a measure of performance,

a regressor was used consisting in the group-averaged prediction error per exper-

imental condition (trained, learned, explored, and tested). Parallel to Exp.1, this

regressor is referred to as “condition-regressor” in the following.

Within the same model, it was also controlled for slow unspecific learning

effects, that is, for the reduction ofcondition-independentuncertainty. This was

done by introducing a second regressor referred to as “learning-regressor” in the

following. Note that the learning-regressor could not be modeled individually,

because learning depended systematically on knowledge, and therefore on the

individual presentation order of experimental conditions. In order to avoid mod-

eling of two statistically interdependent regressors (individual condition-regressor

and individual learning-regressor), the learning-regressor consisted in the group-

averaged error score for each trial. Since the order of conditions was balanced

inter-individually, regressors were statistically independent. By this design, un-

specific learning effects could be controlled for.

Both condition-regressor and learning-regressor referred to the same sample

of trials, including all prediction conditions, but excluding the control condition.

The control condition was modeled as a separate onset vectorwithin the same

model. By including both regressors within one statisticalmodel, contrast maps



4.3. RESULTS 81

could be generated that extracted three effects of interest, independently from each

other:

Firstly, the main task effect was investigated by building the contrast between

all collapsed prediction conditions and control condition. Second, the paramet-

ric effect of levels of prediction uncertainty was tested byusing the condition-

regressor. Third, the parametric effect of slow condition-independent uncertainty

reduction was tested by using the learning-regressor. Finally, in order to inves-

tigate whether internally attributed uncertainty differed significantly from exter-

nally attributed uncertainty (group comparison between Exp.1 and 2), contrast

images were compared voxel-wise using a two-samplet-test to examine the hy-

pothesis that the mean contrasts of the two groups differ. The resulting image

containsz-values indicating the degree of significance of the group difference.

4.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as described inchapter 2.6. One

functional scan consisted of 1010 images and each image of 16slices.

4.2.7 MRI analysis

All preprocessing and evaluation steps were calculated by using the software

package LIPSIA (Lohmann et al., 2001) as described in chapter 2.4.

4.3 Results

4.3.1 Behavioral data

Performance was measured by the rate of erroneous predictions and reaction times

of correct predictions. A repeated measures ANOVA with the 2-level factor uncer-

tainty (all uncertain conditions collapsed, control condition) yielded a significant

main effect both for error rates (F
�
1 � 5� � 35� 2 � p � � 002) and for reaction times

(F
�
1 � 5� � 61� 1 � p � � 001). A repeated measures ANOVA with the 4-level fac-

tor uncertainty (trained, learned, tested, and explored rules) yielded a significant
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main effect for error rates (F
�
3 � 36� � 14� 0 � p � � 0001) but not for reaction times

(F
�
3 � 36� � 2 � 2 � p � � 11) (see Table 4.2).

Table 4.2:Error rates (mean and SD in percent) and reaction times (meanand

SD in ms) for the different conditions during the fMRI scanning (n=12).

Rule group Error rates (%) Reaction times (ms)

trained 6.6 (6.9) 881.2 (149.4)

learned 15.7 (12.5) 901.2 (228.3)

explored 16.8 (6.8) 878.6 (185.4)

tested 23.4 (13.8) 1005.2 (198.9)

control condition 0 617.8 (95.3)

A slow learning effect was not significant as measured by error rates (one-

sided Pearson-correlation between erroneous predictionsand time:r � � � 01;p �

� 40), but as decrease in reaction times in the course of the experiment (one-sided

Pearson-correlation between reaction times and time:r � � � 23;p � � 001). Errors

dropped from the first to the last quartile by 4.7%, as compared to 5.5% in Exp.1.

4.3.2 MRI data

Main task effect

Corresponding to the behavioral analysis, the main effect of task was tested by

collapsing all uncertain prediction blocks and contrasting them against the control

condition (absolute certain prediction). Significant activations were found within

the right posterior frontomedian cortex (mesial BA 8), bilaterally within inferior

prefrontal areas (inferior frontal junction area (IFJ), i.e., at the cross-section of

the inferior frontal sulcus and the inferior pre-central sulcus); mid-portions of the

middle frontal gyrus (MFG) along the inferior frontal sulcus (IFS), the antero-

superior insula, posterior parietal cortices (along the banks of the intraparietal

sulcus (IPS)), within pretectal areas, and extra-striate visual cortices (see also Ta-

ble 4.3 and Figure 4.2).
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Table 4.3:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of significantly activated voxels in prediction under un-

certainty (all levels collapsed) in contrast to predictionunder certainty (control

condition).

Area Hemisphere x y z Z

Frontomedian Cortex (mesial BA 8) R 4 21 474.5

Frontomedian Cortex (anterior BA 8) R 1 33 414.2

Inferior frontal junction area (IFJ) L -38 9 323.8

R 40 13 32 3.7

Middle frontal gyrus (MFG) L -44 25 23 4.4

R 37 27 26 4.4

Antero-superior Insula L -26 24 6 4.5

R 28 22 9 4.0

Intraparietal sulcus (IPS) L -26 -62 503.8

R 31 -53 47 4.6

Pretectal area L -5 -29 0 3.8

R 4 -26 0 3.3

Extra-striate visual cortex L -35 -54 -94.3

R 31 -50 -8 4.3

Effects of levels of uncertainty

Effects of knowledge-dependent (internally attributed) uncertainty were tested

using the condition-regressor (group-averaged prediction error per experimental

condition). As listed in Table 4.4 and shown in Figure 4.3, significant activations

were elicited within the right frontomedian cortex (anterior portion of mesial BA

8), the left IJF, the right mid-portion of MFG, and bilaterally within posterior pari-

etal cortices along the banks of the anterior portion of the IPS. Note that trials with

correct and incorrect responses were collapsed, because excluding the trials with

negative feedback did not change the overall activation pattern, except for a little
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MFG

BA 8

IPS

Figure 4.2:Main task effect (Z� 3 � 09) for knowledge uncertainty versus certainty

(control condition). Group-averaged activations are shown on axial (z=32;50)

and sagittal (x=3) slices of an individual brain normalizedand aligned to the

Talairach stereotactic space. For activation coordinatessee Table??. Abbrevia-

tions: BA 8, mesial BA 8; MFG, middle frontal gyrus; IPS, intraparietal sulcus.

worse signal-to-noise ratio. Moreover, when using reaction times as values for the

condition-regressor, the same cerebral network was found to be activated. In this

case, the overall signal-to-noise ratio was lower than in the error-based analysis.

Slow learning effects

It was tested for slow learning effects on the BOLD contrast by using the learning-

regressor (group-averaged error score for each trial). Activations were found

within the right IFJ (Talairach coordinates:x � 46� y � 7 � z � 35;Z � 4 � 0), the right

inferior frontal sulcus (Talairach coordinates:x � 43� y � 15� z � 26;Z � 3 � 8),

the left dorsal thalamic system (Talairach coordinates:x � � 14� y � � 27� z �

0;Z � 3 � 7), and within the right insula (Talairach coordinates:x � 40� y � � 5 � z �

� 6;Z � 3 � 6) (see also Figure 4.4).
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Figure 4.3:Parametric effects of knowledge uncertainty. Group-averaged acti-

vations of voxels co-varying positively with erroneous predictions are shown on

sagittal (x=1;40) and axial (z=38) slices. For activation coordinates see Table

4.4. Abbreviations: BA 8, mesial BA 8; MFG, middle frontal gyrus; IPS, intra-

parietal sulcus; IPL, inferior parietal lobe.
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Figure 4.4:Parametric effects of slow decreasing uncertainty. Group-averaged

activation of voxels co-varying positively with the error rates in the course of

the experiment is shown on an axial (z=35) slice. For activation coordinates see

results section. Abbreviation: IFJ, inferior frontal junction area.
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Table 4.4:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of voxels co-varying positively with increasing predic-

tion uncertainty.

Area Hemisphere x y z Z

Frontomedian Cortex (anterior BA 8) R 1 33 414.3

Inferior frontal junction area (IFJ) L -44 12 384.0

Middle frontal gyrus (MFG) R 40 24 35 4.2

Inferior parietal sulcus (IPS) L -38 -42 444.1

R 40 -53 50 4.2

Comparison between externally and internally attributed uncertainty

Subsequently, it was tested whether networks underlying externally attributed un-

certainty and those underlying internally attributed uncertainty differ significantly.

A between-subjects group comparison was calculated using atwo-samplet-test,

i.e., the two sets of contrast images from Exp.1 and Exp.2 were compared voxel-

wise (Lohmann et al., 2001). The resulting image (see Fig. 4.5) containsz-values

that indicate significant group differences of the main effects of uncertainty. Ac-

cording to the initial hypothesis, it was focused on three regions of interest: the

mesial BA 8, fronto-lateral and posterior parietal areas. As expected, the infe-

rior frontal cortex (IFJ bilaterally; mid-portion of left MFG/IFS) and posterior

parietal cortices correlated positively with uncertaintywhen internally attributed.

Talairach coordinates were nearly identical to coordinates of the main effect (see

Table 4.5). The number of significantly activated voxels indicating a difference

within the anterior portion of mesial BA 8 was negligible (11voxels) and re-

stricted to the most anterior part of this region.
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Table 4.5:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) indicating the degree of significance of the group differ-

ence for internally attributed uncertainty.

Area Hemisphere x y z Z

Frontomedian Cortex (anterior BA 8) L -2 31 474.0

Inferior frontal junction area (IFJ) L -41 18 354.2

R 40 13 32 3.8

Middle frontal gyrus (MFG) L -41 25 23 4.2

Inferior parietal sulcus (IPS) L -29 -62 503.8

L -47 -44 50 4.0

R 31 -53 47 4.7

4.4 Discussion

Exp.2 was designed to investigate whether different causesof uncertainty in a

prediction task are reflected within the same brain areas. Byusing a parametric

approach and inducing different degrees of uncertainty, itwas aimed to identify

and compare the brain correlates of internally attributed uncertainty, i.e., uncer-

tainty of knowledge (Exp.2), with those of externally attributed uncertainty, i.e.,

uncertainty of frequency (Exp.1). As a common cortical substrate of uncertain

predictions, regardless of uncertainty attribution, mesial BA 8 was found to be

significantly activated. In contrast, activation within other brain areas differed

significantly between the two types of uncertainty. A directcomparison showed

that internally attributed uncertainty specifically engaged a fronto-parietal net-

work bilaterally. In the following, both commonly activated brain areas as well as

areas that were exclusively activated for internally attributed uncertainty will be

discussed.
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BA 8

MFG

IPS

Figure 4.5:Group comparison between the two types of uncertainty. Significant

differences in activation strength are found within the anterior portion of mesial

Brodmann Area 8 (BA 8), the posterior middle frontal gyrus (MFG), and within

posterior parietal areas bordering the intraparietal sulcus (IPS). For activation

coordinates see Table 4.5.

4.4.1 Types of uncertainty - or ways of learning, rule validity,and

coping strategies?

First, the argument has to be considered that Exp.1 and Exp.2differed not only

with regard to differently attributed uncertainties, but also with regard to different

types of learning, and also with regard to differently validSR-rules. As will be

argued in the following, however, neither of these two potential confounds can

explain the differences between the experiments.

Considering the learning characteristics, uncertainty offrequency (Exp.1) is

observed in situations in which we typically cannot learn upto optimal perfor-

mance, whereas uncertainty of knowledge (Exp.2) emerges ifwe can, and hence

is a transient phenomenon as in contrast to the former. In order to balance this

inherent difference between both types of uncertainty, learning requirements were

manipulated in a way that Exp.2 was too short to allow for learning up to op-

timal performance. Data support that this manipulation wassuccessful: Errors

decreased from quartile 1 to quartile 4 by 5.5% in Exp.1, and 4.7% in Exp.2.
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Both learning effects were not significant (F
�
3 � 45� � 2 � 9;p � � 05 respectively

F
�
3 � 33� � 1 � 7;p � � 18). Therefore, it can be assumed that differences between

Exp.1 and 2 cannot be reduced to remaining uncertainty in thelatter and non-

remaining uncertainty in the former.

Considering the second potential confound, rule validity was necessarily the

instrument to implement different levels of uncertainty offrequency in Exp.1, as

in contrast to Exp.2. Following, the average rule validity differed between Exp.1

(80%) and 2 (100%). However, if differences between Exp.1 and 2 were caused

by differently valid rules, then one would also expect for the same reason that,

firstly, WM networks should not co-vary parametrically withlevels of uncertainty

in Exp.2, because they all refer to the same (100%) rule validity; and secondly,

that the very same WM networks should be activated and co-vary parametrically

with levels of uncertainty in Exp.1, because they differ with regard to rule validity

(60%, 70%, 80%, 90% and 100%). As evident from the data, however, neither is

the case. Therefore, rule validity cannot be the cause for systematic differences

between Exp.1 and 2.

In contrast, it is of course correct to say that the studies differed with regard to

the coping strategies they induced, and that these different strategies are reflected

by different cerebral activations. Behaviorally, different coping strategies have

been suggested to be an indicator for different attributed uncertainties (Kahneman

& Tversky, 1982). The term “variants of uncertainty” is meant to refer to exactly

this definition, i.e., different ways to try to resolve decision uncertainty and hence

different strategies to avoid future errors or achieve future rewards. Note that the

performance scores in both experiments confirmed that participants tried to per-

form well. This of course had to be prooved statistically in particular for Exp.1,

where expected maximal performance were below 100% correctresponses. To

this end, the discrimination indexPr by Pr
� hit � f alsealarm(Snodgrass & Cor-

win, 1988) was calculated. This index allows to correct performance scores for

guessing tendencies in all response classes. As a result, all conditions showed to

be significantly different from chance level (100%:t � 15� � 37� 7, p � 0 � 001; 90%:

t � 15� � 22� 3, p � 0 � 001; 80%:t � 15� � 16� 4, p � 0 � 001; 70%:t � 15� � 7 � 8, p � 0 � 001;



4.4. DISCUSSION 91

60%: t � 15� � 2 � 2; p � 0 � 04). Therefore, it can be exclude that differences between

Exp.1 and 2 were caused by guessing tendencies in the former as in contrast to

the latter.

Finally, it is important to note that present Exp.2 as well aspreceding Exp.1

were not designed to differentiate pre- and post-feedback processes. Activations

therefore reflect uncertainty as especially emerging in thepre-feedback phase,

together with processes that start in the post-feedback phase. However, although

uncertainty may be reduced due to feedback evaluation in thelatter phase, it is

unlikely to vanish entirely. Moreover, expectancy and previous experience were

found to mostly share common neural substrates (Breiter et al., 2001), as already

suggested by behavioral data (Mellers et al., 1997, 1999).

4.4.2 Attribution-independent activation of uncertainty:

mesial BA 8

Both internally as well as externally attributed uncertainty elicited activation within

mesial BA 8 (Talairach coordinates in Exp.1:x � 8 � y � 18� z � 46). A group com-

parison revealed no significant difference in the mean activation value within the

posterior part of mesial BA 8. Internally attributed uncertainty elicited activation

within a larger area than externally attributed uncertainty, extending into anterior

mesial BA 8 and reaching the border of mesial BA 9. However, this difference was

probably caused by a slightly larger activation in Exp.2, and may reflect quantita-

tive rather than qualitative differences.

Like adjacent mesial areas BA 6 (pre-SMA) and adjacent portions of BA

32
�

/24
�

, mesial BA 8 has been repeatedly found in tasks that induce uncertainty

(see also Figure 3.6). In this context, BA 32
�

(together with BA 24
�

) is usually

referred to as the anterior cingulate cortex (ACC). Since the anatomical and func-

tional organization of mesial BA 8 has begun to be focused on only recently,

empirical evidence for a functional distinction between these three areas is still

weak. Moreover, activations within mesial BA 8 and pre-SMA are difficult to

disentangle due to missing macroscopical landmarks between these areas, and the

same applies to the distinction between these regions and ACC. However, since
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it is widely accepted that laminar differentiations reflectfunctional differentia-

tions of the cortex, it can be suggested that the considered areas underly different

aspects in behavior under uncertainty. For instance, mesial BA 8 is a granular

prefrontal isocortex, whereas ACC can be subdivided into agranular (BA 24
�

) and

dysgranular (BA 32
�

) cortex.

In view of existing data, however, it appears that mesial BA 8on the one

hand and BA 32
�

/24
�

on the other appear to be preferentially engaged in different

experimental paradigms on uncertainty. This view, which was already sketched in

chapter 3.4.2, will be outlined in more detail in in the following.

Studies on conflict that report BA 32
�

/24
�

(often in company with pre-SMA)

typically use paradigms such as e.g. the Eriksen flankers task or go/no go tasks

(e.g., Bunge, Hazeltine, Scanlon, Rosen, & Gabrieli, 2002;Garavan, Ross, Mur-

phy, Roche, & Stein, 2002; Luks, Simpson, Feiwell, & Miller,2002; Ruff, Wood-

ward, Laurens, & Liddle, 2001; Ullsperger & von Cramon, 2001, 2003). Com-

mon features of these paradigms are (a) SR-rules are simple (one-to-one map-

pings), often spatially compatible, and usually known and instructed beforehand,

(b) two response tendencies are activated concurrently, sothat conflict arises on

the response level, (c) errors are usually induced by time pressure and percep-

tual difficulty, (d) conflict can be diminished by a close stimulus inspection, and

(e) feedback evaluation allows to improve performance in perceptual and motor

skills. In these paradigms, either ACC or pre-SMA are differently engaged in two

sub-processes of conflict, as can be stressed by contrast building. The ACC is pre-

dominantly reported in error monitoring (Bunge et al., 2002; Garavan et al., 2002;

Kiehl, Liddle, & Hopfinger, 2000; Ullsperger & von Cramon, 2001), whereas BA

6/pre-SMA (sometimes extending into mesial BA 8) is rather reflecting conflict

detection (Kiehl et al., 2000; Ruff et al., 2001; Ullsperger& von Cramon, 2001).

Based on these findings, the functional dissociation between pre-SMA and ACC

has become a focus of research (Ullsperger & von Cramon, 2001, 2003) and was

confirmed in recent meta-analysis by Fassbender, Hester, and Garavan (2003).

In contrast, ACC activation is typically absent in a different type of paradigm

regarding conflict reporting mesial BA 8 activation. These studies investigated
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hypothesis testing with low restrictions (Elliott & Dolan,1998), the application of

arbitrary SR-rules (Goel & Dolan, 2000), and the detection of arbitrary SR-rules

(Knutson et al., 2003). Common features of these are (a) SR-rules are complex

(many-to-many mappings), arbitrary and usually unknown beforehand, (b) deci-

sions tendencies depend on previously evaluated feedbacks, so that conflict arises

on the knowledge level, (c) errors are not induced by time pressure, but by cogni-

tive difficulty, (d) conflict can be diminished by mnemonic search, and (e) feed-

back evaluation allows to improve performance in cognitiveskills and knowledge.

From all these features, however, feedback evaluation appears to be the most rele-

vant for BA 8 activation. Accordingly, BA 8 is not found in a number of paradigms

that at first glance seem to match several of the features listed above, but do not

allow for a feedback-based learning of SR-rules (Bush et al., 2002; Casey et al.,

2000; Paulus et al., 2002, 2001).

In sum, it is suggested that both Exp.1 and Exp.2 draw rather on BA 8 than

on ACC (BA 32
�

/24
�

) because the employed tasks induced a sustained feedback-

dependence of task performance, i.e., deliberate choices based on mnemonic searches,

as in contrast to forced responses based on perceptual cues.To put it shortly, BA

8 and ACC may distinguish “decision conflicts” from “response conflicts”. Con-

sidering a distinction proposed by Reason (1990), these could be suggested to

precede “mistakes” in the latter and “action slips” in the former case.

4.4.3 Attribution-dependent activation of uncertainty

In addition to mesial BA 8 significant activations within theMFG, IFJ, and IPS

were found to be activated significantly in internally attributed uncertainty versus

control condition. The same sample of areas was found to increase with increasing

internally attributed uncertainty (parametric effect) and in direct task contrast be-

tween internally attributed and externally attributed uncertainty (Exp.1 vs. Exp.2).

These findings confirm the hypothesis that uncertainty due toinsufficient knowl-

edge will engage brain areas sub-serving WM functions.

The MFG (BA 46/9) is also referred to as mid-dorsolateral prefrontal area

(Petrides, 2000). Activations within this region have beenreported when moni-
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toring and manipulation of information within WM is required (D’Esposito et al.,

1998). The monitoring of mnemonic information across trials is taken to be the

key feature of tasks activating mid-dorsolateral prefrontal areas (Kostopoulos &

Petrides, 2003; Petrides, 2002) as in contrast to memory retrieval per se which has

been shown to specifically activate the mid-ventrolateral prefrontal cortex.

In the present experiment, mnemonic information referred to SR-rules that

were defined by different non-spatial object properties. The mid-dorsolateral pre-

frontal coordinates in the present study fit to those reported for non-spatial WM

in a recent meta-analysis by Owen (2000) (Talairach coordinates right: 35� 32� 19;

left: � 42� 23� 19).

The manipulation of actively maintained information within WM is suggested

to rely on mid-dorsolateral prefrontal cortex (Hartley & Speer, 2000; Petrides,

2002). Accordingly, the increasing activity within these areas is taken to reflect

increasing demands in computations on stored information,specifically the re-

duction of all possible SR-rules to a smaller set of valid SR-rules. In the case of

trained rules, the cue referred to five valid SR-rules concerning property X (e.g.

comic figure). In the case of learned rules, participants knew that the cue referred

to five valid SR-rules concerning property Y (e.g. color), but not to which exactly.

In the case of explored rules, participants knew that the cuereferred to five valid

SR-rules, but not to which property they applied. Finally, whenever participants

had to test whether either the trained or the learned rule-group were valid, the

range of to-be-checked SR-rules was twice as large as in the trained or learned

rules condition. Hence, parametric variations of the mid-dorsolateral prefrontal

activation is taken to reflect different requirements on reducing the range of po-

tential SR-rules.

In addition to MFG, posterior parietal areas (IPS) were found to be co-activated,

as typical for WM functions (Owen, 2000). In contrast to the prefrontal compo-

nents of this network, the posterior parietal areas are taken to maintain all SR-

rules that are valid in an experiment (Bunge et al., 2002). From this set currently

valid SR-rules are selected by corresponding prefrontal sites (Miller & Cohen,

2001; Smith & Jonides, 1999). By manipulating the number of SR-rules (sample



4.4. DISCUSSION 95

sizes) with which participants started the present study, experimental conditions

differed in their requirement to maintain SR-rules, and therefore draw differently

on posterior parietal areas.

Regarding IFJ activation, it has been shown that the implementation of learned

SR-rules elicits activation within the this area (Brass & von Cramon, 2002; Na-

gahama et al., 2001). This interpretation can be applied to IFJ activation in the

present experiment, where the selection and implementation of appropriate SR-

rules is required throughout the experiment and co-varies as a function of SR-

knowledge. Activation was found to decrease within the sameor closely adjacent

areas during the course of the experimental session (see Figure 4.4). This effect

replicated findings from Exp.1, though coordinates differed slightly. As discussed

in the previous study, a decrease in IFJ activation was interpreted to reflect a de-

crease in effort in implementing valid SR-rules. The same explanation applies to

the parametric modulations of IFJ area: as the range of potentially valid SR-rules

is reduced, IFJ activation decreases. Note that activationmodulation in IFJ cannot

be attributed to retrieval success, because increasing success would be reflected in

a negative co-variation with decreasing IFJ response.

4.4.4 Conclusion

Together with Exp.1, present data demonstrate that both externally attributed un-

certainty and internally attributed uncertainty modulated the posterior frontome-

dian cortex, specifically in mesial BA 8. However, while the former attribution of

uncertainty elicited activations within a dopaminergic sub-cortical network, the

latter induced additional activations within a fronto-parietal network. Findings

thereby confirm that memory search is an appropriate coping strategy in this type

of uncertainty. Concluding, mesial BA 8 reflectsthat we are uncertain, additional

networkswhat we do to achieve future rewards.





Chapter 5

Experiment 3

5.1 Introduction

The physician who diagnoses a patient, the broker who has to decide whether or

not to sell (the shares), or the student who needs to answer questions in an ex-

amination, all face uncertainty due to incomplete or unreliable knowledge. In all

examples the actor is concerned with the existence of several options rather than

with just one and thus uncertainty depicts the persons’ belief about the variability

of possible outcomes (Teigen, 1994). But how can this uncertainty be resolved

in order to prescribe drugs, sell shares, or answer examination questions? A re-

duction of knowledge uncertainty, which constitutes in thereduction of the range

of all possibilities to the relevant alternatives, is typically achieved by gathering

and evaluating external information which is feedback in experimental situations.

By comparing what has been achieved to what was initially wished to achieve,

feedback contains information about how far someone has progressed towards

his/her specific goal. Generally, negative feedback (usually an error ) constitutes

the converse of an efficient action. By indicating that something has gone astray,

negative feedback signals for an attitude change. In contrast, positive feedback

serves as a “keep-at-it” signal. Thus, without knowledge ofresults there is no

progress such as learning or performance improvement. The preference for one

option develops over time as it is supported by an increasingamount of positive

97
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feedback. By the same time an increase in relevant knowledgeoccurs. These two

factors, the increasing amount of positive feedback and theincreasing amount of

relevant knowledge are thus confounded by nature.

Exp.1 and 2 suggested that the neural correlate of uncertaindecisions, regard-

less of the attribution of uncertainty, is mesial BA 8. Basedon these findings

and results from other imaging studies (Elliott & Dolan, 1998; Goel & Dolan,

2000), it is assumed that this cortical substrate is particularly engaged in feedback-

based hypothesis testing on valid SR-associations that leads to behavioral modi-

fications. Furthermore, parametric effects in Exp.1 and 2 revealed that activation

within mesial BA 8 decreased with increasing certainty. Certainty in experimental

paradigms is supposed to be mediated via an increase of positive feedback which,

in this context, indicates an increase in knowledge. For example, in hypothe-

sis testing tasks an increase in positive feedback indicates the successful set-up

of valid SR-rules according to which the task at hand can effectually be accom-

plished. Therefore, a real learning process is supposed to reduce activation within

mesial BA 8.

In contrast, solely receiving an increasing amount of positive feedback inde-

pendent from the actual response should not increase knowledge. This is because

feedback in a so-calledpseudo learning processdoes not allow to set-up a reliable

knowledge base since it has no informative content.

Accordingly, if activation within mesial BA 8 actually depends on relevant

knowledge, then exclusively an increase of relevant knowledge, indicated by pos-

itive feedback, should reduce activation within mesial BA 8. In contrast, an in-

crease of solely positive feedback, simulating a learning process (pseudo learn-

ing), should not lead to an activation reduction within mesial BA 8.

Using the same experimental paradigm as in the preceding experiments, the

third one set out to investigate whether an independent manipulation of knowl-

edge and feedback would lead to different cerebral effects within mesial BA 8. A

dissociation on the brain level was hypothesized such that activation within mesial

BA 8 would solely be reduced by a real learning process but notby a pseudo learn-

ing process. For the real learning process a replication of the results of Exp.2 was
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expected such that real learning would induce activation both within mesial BA

8 and within WM networks. By using a subtractive design the different contribu-

tions of an increasing amount of knowledge and that of an increasing amount of

positive feedback on activation within mesial BA 8 were investigated.

5.2 Method

5.2.1 Stimuli and task

In order to allow for a comparison between Exp.3 and Exp.2, only some fea-

tures of the experimental paradigm were modified. As before,participants had to

predict which of two concurrently presented stimuli would win in a virtual com-

petition game. The same stimulus material was used as in Exp.1 and 2 but with

two modifications. First, the shape of the UFO’s was not relevant in the present

paradigm and therefore it stayed the same throughout the entire experimental ses-

sion. Second, within both remaining stimulus dimensions (i.e., color and figure

dimension), all six possible pairings were generated by combining their four dif-

ferent levels (e.g., within the color dimension, the pairings red-yellow, red-blue,

yellow-blue, yellow-green, blue-green, and red-green were presented).

In order to induce areal learning condition and apseudo learningcondi-

tion, participants were provided with differently valid feedbacks. The distinct

feedback validity was unbeknown to the participants. In thereal learning condi-

tion, one stimulus dimension represented a rule group consisting of six different

sub-rules specifying the correct feedback. The six rules were valid throughout

the experiment. Feedback depended on participants’ response and was therefore

informative in order to set-up valid SR-rules. In the pseudolearning condition

participants were instructed that one stimulus dimension represented a rule group

consisting of six different sub-rules. However, feedback was not specified by the

rules but modeled according to a pre-determined reinforcement schedule relating

trial number to feedback quality. Hence, feedback was uninformative in order

to set-up valid SR-rules. The assignment of stimulus dimensions to either real

learning or pseudo learning was balanced between participants.



100 CHAPTER 5. EXPERIMENT 3

In order to model a realistic time course of successful learning, i.e., the distri-

bution of increasing positive respectively decreasing negative feedback over time,

a learning model was extracted from pilot data. In the pilot study one group

of participants learned the color rules, another group learned the figure rules.

Since the learning curves did not differ significantly between the two groups�
F

�
3 � 16� � � 58;p � � 63� , the two learning curves were averaged. The resulting

distribution relating trial number to the value of the feedback was subsequently

employed to simulate a learning process in the pseudo learning condition in the

fMRI session.

In the real as well as in the pseudo learning condition participants were in-

structed to press the response button spatially corresponding to the stimulus they

excepted to win (e.g., after the task cue “color rules are valid”, if the red stim-

ulus will win against the blue, or conversely). In the control condition, pairings

showed two identical stimuli (same color, shape, and figure). Three arrows in the

middle of the screen indicated which of these two stimuli would win. Participants

were asked to simply indicate the stimulus that was indicated by the arrows.

Modifications due to pilot data

As before, the implementation of the manipulation was tested in a pilot study.

This was done to investigate whether the presence of the pseudo learning con-

dition would deteriorate or even prevent successful learning in the real learning

condition. Participants were instructed that the two conditions did not differ in

any respect.

Ten volunteers (5 female, mean age 22.2, range 19-25 years) participated in

the pilot study. A repeated measures ANOVA with the 2-level factor condition

yielded a significant main effect for RT (F
�
1 � 9� � 64� 8;p � � 0001) such that par-

ticipants were slower (in choosing their response) in the pseudo learning con-

dition (meanRT � 1217� 3ms, SD � 151� 8) than in the real learning condition

(meanRT � 785� 1ms, SD � 71� 3) The assumption that the presence of a pseudo

learning effect would impair successful learning was proven to be incorrect. Par-

ticipants learned the correct SR-rules in the course of the experimental session
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as indicated by a significant difference in the rate of correct responses against

chance level in the fourth quartile (t
�
9� � 19� 4;p � � 0001). As well a repeated

measures ANOVA with the 4-level factor quartile yielded a significant main ef-

fect for the rate of correct responses indicating a significant learning progress

(F
�
3 � 7� � 41� 2;p � � 0001) (see Table 5.1).
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Figure 5.1:The rate of correct responses for the real learning condition in the

pilot study are plotted per quartile (20 blocks).

However, after completion participants reported thatsomething was oddwith

the pseudo learning condition. This feeling of oddness was not only supported by

a significant difference in reaction times (as reported above) but also by a signif-

icant difference in uncertainty judgments with regard to response selection in the

two conditions as revealed by a post-experimental survey (Wilcoxon signed-rank

test:Z � � 2 � 7;p
�
1tailed� � � 001). After the experiment participants had to indi-

cate their (un-) certainty in response selection with regard to the two rule groups

on a fivefold graded ordinal scale of measurement. Generally, participants indi-

cated a higher uncertainty in response selection in their respective pseudo learn-

ing condition. In order to determine whether the degree of the observed differ-

ence reflects a substantial one a non-parametric Wilcoxon signed-rank test was



102 CHAPTER 5. EXPERIMENT 3

calculated.1 Furthermore, as revealed by the post-experimental survey,nobody

suspected the feedback to be invalid in the pseudo learning condition but anybody

reported that it was very difficult and demanding to figure outthe valid SR-rules

in this condition.

Decelerated reaction times and the presence of “odd” feelings might be an in-

dicator for higher uncertainty in decision making in the pseudo learning condition.

However, it is also correct to assume, that odd feelings could eventually result in

suspiciousness about feedback validity such that it might not be conceived of as

self-induced. Subsequently, the attribution of success which is assumed to lead to

a reduction in uncertainty would not occur. If this holds true, the contrast between

real learning and pseudo learning would be confounded by thefactorattribution

of success.

In order to control for this possible confound, an additional control condi-

tion was prepared for the fMRI experiment. This condition resembled the pseudo

learning condition but assured that feedback was conceivedof as self-induced.

Since this second control condition was designed as a hybridbetween the pseudo

learning and the control condition it was termedpseucocondition. Contrasting

the pseuco condition with the pseudo learning condition should give information

about a possible confounding effect of attribution of success with regard to activa-

tion within the region of interest, i.e., mesial BA 8. Accordingly, in the additional

control condition participants were not required to learn something but to accom-

plish a perceptually very demanding task. By supplying an increasing amount of

positive feedback, delivered according to a pre-determined reinforcement sched-

ule, an improved perceptual performance was simulated. Thefeedback distribu-

tion in the pseuco condition correlated significantly with the feedback distribution

employed in the pseudo learning condition (r
�
pseuco� pseudo� � � 89;p � � 0001).

It was assumed that participants would experience an apparent learning progress

because of an improvement of perceptual discrimination butwithout the need to

set up a knowledge base of valid SR-rules. Due to the lack of decision rules, par-

1This was done since the scale cannot be assumed to have the properties of an equal-interval-

scale.
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ticipants had no chance to control for the correctness of thesupplied feedback.

Therewith a suspiciousness about the feedback validity wasprevented.

In the additional control condition, pairings showed two identical stimuli (same

color, shape, and figure). Three of five arrows in the middle ofthe screen indicated

which of these two stimuli would win. Participants were asked to simply indicate

the stimulus that was indicated by the three arrows. Perceptual difficulty was in-

duced by the presentation time of the arrows, i.e., all five arrows were presented

for only 20ms. Participants were told that their performance would increase due

to a significantly better perception by time, i.e., simply asa function of time. Note

that participants were again completely ignorant about feedback validity.

As before, the additional control condition was tested in a pilot study. Six

volunteers (3 female, mean age 24, range 23-25 years) participated in the pilot

study. A query past the experiment revealed that all participants believed that

their perception got better in the course of the experiment.This is supported by a

significant decrease in reaction times over the course of theexperimental session

(F
�
3 � 3� � 3 � 4;p � � 044). Therefore, it was inferred that participants attributed

successful accomplishment to themselves.

For an overview over the interrelations of the experimentalconditions and

associated manipulated factors, see Table 5.1.

Table 5.1: Interrelations between the employed conditions and the manipulated

factors.

increase of ...

Condition ...knowledge ...positive feedback ...success

real learning yes yes yes

pseudo learning no yes ?

pseuco condition no yes yes

control condition no no no
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5.2.2 Experimental design

The experimental design was identical to that used in Exp.1 and 2 with regard

to presentation, time course, randomization, and jittering. Parallel to Exp.2 (but

different to Exp.1) a verbal cue at the beginning of each block was presented to an-

nounce the respective experimental condition. Overall, 23blocks were presented

for the real learning, pseudo learning and pseuco condition, respectively, and 10

for the control condition, resulting in 79 blocks or 395 trials altogether.

5.2.3 Participants

Fifteen (10 female, mean age 25.9, range 23-33 years) right-handed, healthy vol-

unteers participated in the fMRI experiment. After being informed about potential

risks and screened by a physician of the institution, subjects gave informed con-

sent before participating. The experimental standards were approved by the local

ethics committee of the University of Leipzig. Data were handled anonymously.

5.2.4 Procedure

The procedure was conducted as described in chapter 2.6.

5.2.5 Data analysis

In order to investigate whether activation within mesial BA8 is reduced only by

increasing the amount of knowledge or also by increasing theamount of positive

feedback a subtractive design was realized. The conditionsreal learning, pseudo

learning, pseuco, and control were all modeled as separate onset vectors within

the same model. Contrast maps were generated that extractedthe four effects of

interest independently from each other. Accordingly, the following comparisons

were carried out: First, it was tested for the main task effect for either real learning

and pseudo learning. That is, testing the hypothesis that there is no activation

within mesial BA 8 (the parameters for both conditions are the same) against

the hypothesis that there is activation (the parameter for the respective learning

condition is greater than that for the control condition). Only the contrastreal
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learning versus control conditionwas expected to show a significant decrease of

activation within mesial BA 8 over the course of the experiment. Second, in order

to control for the factor attribution of success with regardto activation within

mesial BA 8, a direct contrast between pseudo learning and the pseuco condition

was calculated. In the case of no difference within mesial BA8 between pseudo

learning and the pseuco condition, the fourth comparison was calculated: In order

to look at voxels where the difference between real learningand pseudo learning

accounts for a significant amount of variance a direct contrast between the two

conditions was calculated.

5.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as described inchapter 2.6. One

functional scan consisted of 1108 images and each image of 16slices.

5.2.7 MRI analysis

All preprocessing and evaluation steps were calculated by using the software

package LIPSIA (Lohmann et al., 2001) as described in chapter 2.4.

5.3 Results

5.3.1 Behavioral data

In Table 5.2 error rates for the real learning condition and RT for each condi-

tion are shown per quartile. In Figure 5.2 RT are plotted for each condition

per quartile. One quartile consisted of 20 blocks, i.e., 100trials. A repeated

measures ANOVA with the 4-level factor condition yielded a significant main

effect for RT (F
�
3 � 33� � 80� 6;p � � 0001). Also the single contrast between

real learning and pseudo learning yielded a significant maineffect for RT, such

that participants were slower in the pseudo learning condition than in the real

learning condition (
�
F1 � 11� � 112� 9;p � � 0001). RT in the pseuco condition

as well as in the control condition decreased significantly over the course of
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the experiment (pseuco:F
�
3 � 42� � 3 � 5;p � � 024; control: F

�
3 � 42� � 4 � 7;p �

� 007). This does not apply to the distribution of the RT in the real learning and

pseudo learning condition, respectively (real learning:F
�
3 � 42� � 2 � 6;p � � 067;

pseudo learning:F
�
3 � 42� � 1 � 8;p � � 158). Reaction times in the pseuco con-

dition were faster in general since stimuli were presented for only 20ms and

participants could respond as soon as the stimuli appeared.A learning effect

was indicated by both a significant decrease of error rates over the course of

the experiment (F
�
3 � 42� � 5 � 1;p � � 004) (see Table 5.2) and a significant dif-

ference of the rate of correct responses against chance level in the fourth quartile

(t
�
14� � 5 � 0;p � � 0001). The distribution of decreasing negative feedback inthe

real learning condition correlated significantly with bothemployed learning mod-

els (r
�
real � pseudo� � � 72;p � � 0001;r

�
real � pseuco� � � 65;p � � 0001). Also,

the two models simulating learning effects correlated significantly with each other

(r
�
pseudo� pseuco� � � 89;p � � 0001) (see Figure 5.3).

Table 5.2:Error rates (mean and SD in percent) for the real learning (RL) and

reaction times (RT) (mean and SD in ms) per quartile (Q1-4) for real learning

(RL), pseudo learning (PL), pseuco condition (PC), and the control condition

(CC) in the fMRI experiment (n=15).

RL RL PL PC CC

Errors RT RT RT RT

Q 1 38.6 (10.9) 1275.1 (119.4) 1237.3 (135.5) 959.1 (197.0) 776.9 (136.4)

Q 2 30.5 (16.6) 1199.0 (168.0) 1202.8 (159.3) 970.5 (143.8) 701.6 (123.4)

Q 3 32.4 (15.0) 1222.8 (183.8) 1193.9 (162.8) 947.1 (167.3) 717.8 (114.9)

Q 4 24.0 (18.1) 1194.0 (180.0) 1170.2 (206.7) 854.6 (167.1) 670.3 (122.0)
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Figure 5.2:Reaction times (RT) are plotted per quartile (20 blocks) forall condi-

tions.

5.3.2 Post-session survey

After completion of the functional session, confidence judgments were collected,

i.e., participants were interviewed about their confidencein decision making over

the course of the experiment with regard to each condition. Furthermore, they

were asked to report in more detail what they thought and how they felt during the

experimental session.

In general, all participants reported that the two conditions in which they were

asked to figure out valid rules (real learning and pseudo learning) differed with

respect to the experienced confidence in decisions. Participants indicated a higher

uncertainty in response selection in pseudo learning as in real learning as indi-

cated by a significant difference in (un-)certainty judgments (Wilcoxon signed-

rank test:Z � � 2 � 2;p � � 027). All participants reported difficulties in identifying

the valid rules in the pseudo learning condition. However, nobody suspected the

feedback to be incorrect or invalid, rather they distrustedtheir memory of event

occurrences and ability in drawing inferences. In unison, participants noticed that

they acquired the rules in some way due to the increasing positive feedback. How-



108 CHAPTER 5. EXPERIMENT 3

0

10

20

30

40

50

60
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

blocks

real

pseudo

pseuco

Figure 5.3:The decreasing distribution of erroneous responses in the real learning

condition and the modeled distributions of decreasing negative feedback for the

pseudo learning condition and the pseuco condition are shown over the course of

the experiment (1 block consisted of 5 trials).

ever, they were astonished by the fact that they still made mistakes in the end and

that they could not repeat the rules as fluently as in the real learning condition

past the experimental session. Hence, introspective judgments did not indicate

suspiciousness about the feedback validity in the pseudo learning condition. Also

turned out by the survey was participants’ ignorance about the nature of the feed-

back in the pseuco condition, i.e., participants really believed that their perception

got better by time. Together, the survey revealed that the simulation of a pseudo

learning process respectively the simulation of improved perception was highly

effective.
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5.3.3 MRI data

Effects of real learning

The main effect of task was tested by contrasting the real learning condition

against the control condition. As shown in Table 5.3 and Figure 5.4, significant

activations were found within the left posterior frontomedian cortex (mesial BA

8), the right pre-SMA, the left inferior prefrontal area (inferior frontal junction

area (IFJ), i.e., at the cross-section of the inferior frontal sulcus and the inferior

pre-central sulcus), bilaterally within the antero-superior insula, within the left

posterior parietal cortex (along the banks of the intraparietal sulcus (IPS)), bilat-

erally within the precuneus, the left cuneus, dorsal premotor cortex, aqueduct, and

the right cerebellum.

Table 5.3:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of significantly activated voxels in real learning versus

control condition.

Area Hemisphere x y z Z

Frontomedian Cortex (mesial BA 8) L -5 19 444.6

Pre-supplementary motor area (pre-SMA) R 1 6 534.7

Inferior frontal junction area (IFJ) L -41 7 38 4.1

Antero-superior Insula L -29 22 6 4.0

R 34 18 12 4.1

Intraparietal sulcus (IPS) L -35 -51 445.0

Precuneus L -5 -68 53 4.6

R 10 -71 23 3.8

Cuneus L -17 -74 15 4.9

Cerebellum R 4 -68 -15 3.8

Aqueduct L -2 -35 -15 4.0

Dorsal premotor cortex L -26 -2 65 4.1
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Figure 5.4:The left panel shows the main task effect (Z
� 3 � 09) for real learning

versus control condition; the right panel the main task effect for pseudo learning

versus control condition. Group-averaged activations areshown on sagittal (x=-

5) and axial (z=32;50) slices of an individual brain normalized and aligned to

the Talairach stereotactic space. For activation coordinates see Table 5.3 and 5.4.

Abbreviations: BA 8, mesial BA 8; Pcu, Precuneus; IFJ, inferior frontal junction

area; IPS, intraparietal sulcus.

Effects of pseudo learning

The main task effect of pseudo learning was tested by contrasting the pseudo

learning condition against the control condition. As shownin Table 5.4 and Figure

5.4, significant activations were found within left mesial BA 8, the left IFJ, the

left mid-portion of the middle frontal gyrus (MFG), bilaterally within the antero-

superior insula, within the left posterior parietal cortex(along the banks of the

IPS), the right precuneus, the left extra-striate visual area, the left parietoccipital

sulcus, and dorsal premotor cortex.

Control for the attribution of success

In order to control for the factor attribution of success with regard to activation

within mesial BA 8, a direct contrast between pseudo learning and the pseuco

condition was calculated. As a result, no significant activation was found within

the region of interest, i.e., mesial BA 8. Accordingly, since the factor attribution

of success did not lead to different cerebral effects withinmesial BA 8, the pseuco

condition will be neglected in the following.
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Table 5.4:Anatomical specification, hemisphere, Talairach coordinates
�
x � y� z� ,

and maximal z-scores (Z) of significantly activated voxels in pseudo learning ver-

sus control condition.

Area Hemisphere x y z Z

Frontomedian Cortex (mesial BA 8) L -5 24 385.0

Inferior frontal junction area (IFJ) L -44 6 383.9

Middle frontal gyrus (MFG) L -41 22 29 4.2

Antero-superior Insula L -32 22 6 4.3

R 34 18 9 4.7

Intraparietal sulcus (IPS) L -35 -51 445.4

Precuneus R 4 -60 504.4

Extra-striate visual area L -17 -96 3 4.3

Parietoccipital sulcus L -20 -66 153.7

Dorsal premotor cortex L -26 0 533.4

Direct contrast between real learning and pseudo learning

The question if activation within mesial BA 8 is reduced onlyby increasing the

amount of knowledge (real learning) or if activation is alsoreduced by increasing

the amount of positive feedback (pseudo learning) was investigated by calculating

a direct contrast between real learning and pseudo learningtrials. The resulting

contrast image contained contrast values describing the effective difference be-

tween these experimental conditions (i.e., the differencebetween the two means).

As a result, the comparison between real learning and pseudolearning trials re-

vealed no significant difference within any brain region.

In order to explore this finding of no difference with regard to the percent sig-

nal change in real learning and pseudo learning, the signal courses were analyzed.

In order to attain this information, trial-averaged signalcourses for each condition

(and subject) were taken from a specified voxel within mesialBA 8, plus 8 adja-
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cent neighbors within the same slice (2D).2 Furthermore, differences between the

minimum and maximum activation for real learning and pseudolearning were cal-

culated. The minimum activation was sought in the time rangeof 0 to 5s and the

maximum activation in the time range of 3 to 8s. These time ranges were chosen

in accordance with reports about the usual time ranges of time-to-onset and time-

to-peak (Neumann, Lohmann, Zysset, & von Cramon, 2003). It revealed that

the signal courses of both conditions showed a significant, positive correlation

(r � � 66;p � � 01) and that the differences between the minimum and maximum

activation did not differ significantly (t
�
14� � � � 60;p � � 56).

5.4 Discussion

Exp.3 was designed to investigate whether activation in brain areas identified to

be involved in higher and lower degrees of knowledge uncertainty is reduced ex-

clusively by increasing the amount of knowledge or also by increasing the amount

of positive feedback . Accordingly, it was investigated whether an alternative way

to reduce activation within mesial BA 8 may be to increase theamount of solely

positive feedback in the absence of knowledge acquisition.

5.4.1 Activation within mesial Brodmann Area 8

As a result, the activation patterns of real learning and pseudo learning did not

differ in any respect. Accordingly, in contrast to the initial hypothesis it made

no difference on the cerebral level whether activation within mesial BA 8 was

reduced by increasing the amount of knowledge or by increasing the amount of

positive feedback .

As revealed from Exp.1 and 2, mesial BA 8 can be taken to be particularly

engaged in feedback-based hypothesis testing on valid SR-rules. Moreover, re-

sults from Exp.2 suggested that the more positive feedback is received indicating

a successful set-up of SR-rules the less activation is elicited within mesial BA 8.

2As a specified voxel the activation focus within mesial BA 8 fromthe main effect real learning

was taken (x ��� 5 � y � 19� z � 44).
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As revealed from Exp.3, the increasing amount of positive feedback is sufficient

to lessen activation within mesial BA 8 regardless of the objective possibility to

set-up valid SR-rules. That is, an increased frequency of positive feedback is sug-

gested to be powerful to lower uncertainty in decision making. This may be due to

the fact that the supply of increasing positive feedback leads to an overconfidence

in correctness, i.e., the overestimation of the likelihoodof the favored hypothesis.

In general, the assessment of confidence or the degree of belief in a given

hypothesis integrates different kinds of evidence, i.e., the strength of the evidence

and its weight or predictive validity, respectively. The distinction between strength

and weight of evidence is closely related to the distinctionbetween the size of an

effect (e.g., the difference between two means) and its reliability (e.g., the stan-

dard error of the difference) (Griffin & Tversky, 1992). One major finding of the

literature on judgments under uncertainty indicated that subjects are often more

confident in their judgments than it is warranted by the facts, i.e., being overconfi-

dent (Ayton, & McClelland, 1997; Griffin & Tversky, 1992; Sieck & Yates, 2001;

Stone & Opel, 2000). Particularly, it has been shown that overconfidence results

from the fact that subjects are more sensitive to the strength of evidence than to its

weight (Griffin & Tversky, 1992). This means that subjects’ confidence is deter-

mined by the balance of arguments for and against the competing hypotheses but

with insufficient regard to the credence of the evidence. On the other hand, this

mode of judgment leads to underconfidence when subjects undervalue the strength

of evidence and overvalue the weight of evidence. For example, when evaluating

a letter of recommendation for a student written by a former teacher two aspects

of the evidence have to be considered: How positive is the letter and how credible

is the writer? If it is focussed primarily on the positivity of the recommendation

with insufficient regard to the credibility of the writer, overconfidence will occur.

In contrast, if it is focussed mainly on the credibility of the writer with insuffi-

cient regard to the positivity of the recommendation, underconfidence will occur

(Griffin & Tversky, 1992).

Accordingly, we suggest that in Exp.3 subjects’ tendency tofocus on the

strength of evidence led to an undervaluation of the prior probability of the hy-
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pothesis in question. Consequently, the low or even nonexistent predictive validity

of evidence could not be considered in the balance assessment of arguments. Sub-

sequently, the degree of belief in a given hypothesis was notbiased by informa-

tion about the credence of evidence but strengthened by the increased frequency

of positive outcomes.

Other explanations of overconfidence puts it down to unrealistic optimism

(e.g., Weinstein, 1987, 1989) or wishful thinking (e.g., Babad, 1987; Harvey,

1992). According to this view, overconfidence is caused by the generalized ten-

dency to overestimate the likelihood of positive outcomes and to underestimate

the likelihood of negative outcomes. Yet, this assumption raises the question

about the mechanisms responsible for producing this bias. Possibly, it could be

due the recruitment process of arguments, i.e., the generation of arguments fa-

voring the selected alternative in order to produce confidence judgments (Koriat,

Lichtenstein, & Fischhoff, 1980). In Exp.3 participants experienced an increas-

ing amount of positive feedback in all three experimental conditions except for

the control condition in which the amount of positive outcomes stayed the same

throughout the experiment (see Table 5.5). Therefore, it ishighly probable that

participants overestimated the likelihood of positive outcomes and underestimated

the likelihood of negative ones. The recruitment process ofarguments favoring the

current working hypothesis is thus supported by an increasing amount of positive

feedback. Subsequently, confidence in correctness is supposed to rise.

This assumption is supported by the finding that subjects’ confidence in cor-

rectness increases with experience. Behavioral studies onmotor skill tasks showed

that the relationship between subjects’ confidence in correctness and the length of

practice seemed to depend more on subjects’ expectation about the effects of prac-

tice than on the actual effects of practice (Harvey, 1994). Asimilar explanation

may apply to our data too, such that the temporal duration of task performance in-

fluenced the confidence in correctness. In the pseudo learning condition both the

expectation and the experience about the effects of practice (indicated by increas-

ing positive outcomes) were validated. This may subsequently have produced an

illusion of learning. The simulated improvement of skill and knowledge may thus



5.4. DISCUSSION 115

Table 5.5:For the three conditions real learning, pseudo learning, and pseuco the

ratios ofcorrect to incorrect responses are listed per quartile (1 quartile consisted

of 28 trials). Ratios of correct and incorrect responses in real learning and pseudo

learning did not differ significantly (χ2 �
3 � 15� � � 06;p � � 99).

real learning pseudo learning pseuco condition

quartile 1 61 : 39 58 : 42 52 : 48

quartile 2 70 : 30 68 : 32 68 : 32

quartile 3 68 : 32 72 : 28 74 : 26

quartile 4 76 : 24 82 : 18 96 : 4

have resulted in a reduction in decision conflict.

Further support comes from the clinical domain. Very early work by Jenkins

and Ward (1965) on response-outcome contingency demonstrated that not the ob-

jective degree of control but theproportion of positive outcomesis the primary

determinant of perception of control (see also Tennen, Drum, Gillen, & Stanton,

1982). That way, the subjective judgment of control is related to the probability

of receiving the desired outcome rather than to the difference in outcome prob-

abilities of all possible outcomes. The authors concluded that the perception of

control should therefore be manipulable by systematicallyvarying the frequency

of non-contingent positive outcomes. This is exactly, whatwas done in Exp.3.

Hence, it is assumed that the (manipulated) increased probability of desired, pos-

itive outcomes in the pseudo learning condition produced anillusion of control or

an illusion of learning, respectively.

The presumption that the duration of task execution can influence (over-) con-

fidence in performance is in conflict with the literature on judgments of learning

(e.g., Koriat, 1997; Koriat, Sheffer, & Ma’ayan, 2002). According to the literature,

the duration of task execution results in anunderconfidence-with-practice(UWP)

effect, i.e., an increased underconfidence in performance judgments despite a per-

formance improvement (Koriat et al., 2002). Yet, the UWP effect is shown to

occur withrepeatedpractice. This means, still on the first presentation a tendency
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towards overconfidence was observed and only from the secondpresentation on a

UWP effect (Koriat et al., 2002). Since these findings were mainly observed with

the estimation of one’s future recall performance of word lists, there is no clue

for a temporal estimation from when on the UWP effect should be expected with

hypothesis testing.

Together the monitoring of one’s own performance via feedback could have

led to an overconfidence and the illusion of knowing in real learning and pseudo

learning. Consequently, knowledge uncertainty decreased. This is supported by

the fact that the two conditions did not differ in their activation pattern within

mesial BA 8. However, whether subjects’ tendency to focus onthe strength of ev-

idence with simultaneous undervaluation of the weight of evidence is responsible

for an (unduly) increase in certainty or rather the durationof performing a task

remains to be elucidated in future studies.

5.4.2 Activation within dorsolateral and posterior parietal areas

As in Exp.2, significant activations, in addition to mesial BA 8, were found within

the MFG, IFJ, and IPS.

Activations within the MFG and IFJ are in accordance with ourprior hypothe-

ses and results from previous imaging studies. The sustained monitoring and ma-

nipulation of feedback information across the experimental session was required

in the present experiment in order to accomplish the task successfully. This de-

mand, which is taken to be the key feature of tasks activatingmid-dorsolateral

prefrontal areas (MFG) (D’Esposito et al., 1998; Petrides,2002), was instructed

to apply to both real learning and pseudo learning. In the former as well as in the

latter condition participants were required to implement appropriate task rules.

This demand could be accomplished by updating task representations which has

been shown to be reflected within the IFJ area (Brass & von Cramon, 2002; Na-

gahama et al., 2001).

Activations within posterior parietal areas are taken to maintain all SR-rules

that are valid in an experimental session (Bunge et al., 2002) (see also 4.4.3).

In Exp.2 it has been shown that different amounts of to be maintained SR-rules
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co-varied systematically with posterior parietal areas. Therefore, more activa-

tion within posterior parietal areas could have been expected for pseudo learn-

ing as compared to real learning (direct contrast) as the number of possible SR-

rules, consistently reinforced by feedback, differed between the two conditions.

In such a manner, that in pseudo learning the reduction of allpossible SR-rules to

a smaller set of the valid SR-rules was not as clear-cut and byexpeditious means

as in real learning. Therefore, pseudo learning could have been expected to draw

more on posterior parietal areas than real learning. This assumption was indicated

by an activation difference within the IPS for pseudo learning in the direct con-

trast (Talairach coordinates:x � 22� y � � 56� z � 38;Z � 3 � 7; volume: 119mm3).

However, since the volume was less than 225mm3 (equivalent to 5 voxels), this

activation was not considered as activated.

The involvement of WM networks in real learning as well as in pseudo learn-

ing are supposed to confirm that a typical coping strategy employed with per-

ceived knowledge uncertainty constitutes in an intensive memory search, most

likely in combination with the utilization of external information (Kahneman &

Tversky, 1982).





Chapter 6

General discussion and future

perspectives

The main findings of the experiments can be summarized as follows: First, un-

certainty in decision making is reflected within mesial BA 8.Second, different

variants of uncertainty entailing different coping strategies can be dissociated on

the basis of additionally activated networks. And third, the evaluation of increas-

ing positive feedback, not exclusively the acquisition of knowledge, reduces ac-

tivation within mesial BA 8. Together, activation within mesial BA 8 appears to

be engaged in setting up an environmental model that is tested and helps us to

adapt our behavior stepwise and in a cumulative manner to thevarying situational

requirements. That way, mesial BA 8 can be conceived of as an area that tracks

more or less uncertain outcomes with regard to an internal model and acts like a

steering wheel that directs how uncertainty is dealt with.

In view of the existing literature and the employed paradigms, it is suggested

that activation within mesial BA 8 on the one hand and activation within BA

32
�

/24
�

(often in company with pre-SMA) on the other are preferentially engaged

in different decisions under uncertainty such that the former is elicited by well-

defined problems whereas the latter is elicited by well-defined tasks. The present

chapter will outline three major issues considering (1) theproposed fundamental

difference between BA 8 activation as in contrast to BA 32
�

/24
�

activation, (2)

119
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in as much activation within mesial BA 8 can be differentiated from activation

within anteriorly located BA 10, and (3) the final section comprises an outlook on

worthwhile investiagtions in the near future.

BA 8 activation was found within a number of studies investigating uncertainty-

related paradigms like detection and application of arbitrary SR-rules (Fletcher

et al., 1999; Goel & Dolan, 2000; Goel et al., 1997; Knutson etal., 2003) or hy-

pothesis testing (Elliott & Dolan, 1998). Uncertainty in these tasks as well as

in the presently employed one is induced by cognitive difficulty. Although the

initial state, the goal state and the operators (rules) which are used to transform

one state into the other are clearly defined in the consideredparadigms, the spe-

cific combination or sequence of the operators is not given orpre-determined.

Rather, subjects have to logically reason how the difference between the initial

state and the goal state is reduced in beeline. Aggravating is the fact when the

operators are unknown and subjects have to figure out the operators in addition

to the specific combination of those. A reduction of uncertainty can be achieved

by a careful feedback evaluation. The returning information - presumed it is valid

- signals whether or not the goal state is successfully achieved. By comparing

different combinations of initial states and actions, common features of success-

ful situation-responses-associations can be obtained resulting in the learning of a

general strategy. Thus, this incremental solution approach is managed by an ex-

amination of drawn conclusions via feedback evaluation. According to the prob-

lem solving approach, all considered features meet the definition criteria for well-

defined problems and at the same time for reflective decisionssince the problem

solving approach comprises the sub-process of decision making (compare 1.1.4).

In contrast, activation within BA 32
�

/24
�

(often plus BA 6) is found in a num-

ber of studies investigating uncertainty related paradigms like response conflict

or error detection and error processing (e.g. Bunge et al., 2002; Garavan et al.,

2002; Luks et al., 2002; Ruff et al., 2001; Ullsperger & von Cramon, 2001). These

studies used paradigms like the Eriksen flankers task, speeded modified flankers

tasks, or go/no go tasks. Uncertainty in these tasks is induced by time pressure or

perceptual difficulty resulting in a co-activation of two response tendencies such
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that conflicts arise on the response level. Usually, the operators are known and in-

structed beforehand. That way, feedback does neither have to be sampled across

trials nor does it provide new information but simply servesas an affirmative an-

swer on a trial by trial basis. According to the problem solving approach, all

considered features meet the definition criteria for well-defined tasks and at the

same time for routinized or stereotype decisions.

Concluding, it appears that activation within mesial BA 8 iscentrally involved

in well-defined problems or reflective decisions, respectively. It is suggested

that tasks requiring a sustained feedback-dependence of task performance will

elicit activation within the posterior frontomedian cortex. In contrast, activation

within BA 32
�

/24
�

has been shown to be centrally involved in well-defined tasks

or routinized decisions, respectively. It is suggested that tasks requiring forced

responses based on perceptual cues will elicit activation within BA 32
�

/24
�

.

Accordingly, it is not peculiar to find BA 8 activation for errors compared

to correct responses within some paradigms (Cools et al., 2002; Nieuwenhuis

et al., 2003) and activation within BA 32
�

/24
�

for the same contrast within other

paradigms (Carter et al., 1998; Ullsperger & von Cramon, 2001, 2003). The for-

mer investigated errors with probabilistic tasks, which wedefined as reflective

decisions, whereas the latter investigated errors in response conflict, which we de-

fined as routinized decisions. Thus, it is suggested that errors occurring with de-

cision conflicts draw on different brain areas than errors occurring with response

conflicts.

In error research the determination of cognitive effort of an action is used to

distinguish different types of errors, i.e., mistakes fromaction slips. Also in de-

cision research the factor “cognitive effort” is used to distinguish more or less

uncertain decisions. Relating the taxonomy of errors to theone of decisions, it is

suggested that different types of decisions are associatedwith different kinds of

errors such that reflective decisions generate mistakes, routinized decisions action

slips. Action slips are defined as errors resulting from somefailure in the exe-

cution and/or storage stage of an action sequence and can therefore be observed

as externalizedactions-not-as-planned(Reason, 1990). In contrast, mistakes are
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defined as “failures in the judgmental and/or inferential processes involved in the

selection of an objective or in the specification of the meansto achieve it” (Rea-

son, 1990, p.9). That way, mistakes refer to complex errors which could only be

solved with a substantial amount of cognitive effort. In contrast, action slips refer

to simple errors, mostly movement errors, which can easily be corrected with-

out much of cognitive effort. Reconciling mistakes and action slips with errors in

different types of decisions-problems, it appears that errors in routinized or stereo-

type decisions signal for a failure in the execution of knowndecision rules or for

a failure in the storage of heurisitcs, whereas errors in reflective decisions signal

for a failure in the inferential process involved in the specification of the decision

rules. Therefore, it is suggested that qualitatively different errors engage different

brain areas.

Considering the existing literature and the present results we conclude that

the posterior frontomedian cortex is involved in cognitiveprocesses like feedback

evaluation and hypothesis testing, i.e., tasks which require a sustained feedback

evaluation of task performance. However, at first glance, this conclusion is in

conflict with the proposition that mesial BA 10 is centrally involved in these very

cognitive processes (for a review see Christoff & Gabrieli,2000). It appeared that

the anterior-most parts of the middle and superior frontal gyri are involved in rea-

soning tasks like the Tower of London task (TOL) (Baker et al., 1996), inductive

reasoning tasks (Goel et al., 1997; Osherson et al., 1998), and the Raven’s Progres-

sive Matrices Test (RPM) (Prabhakaran, Smith, Desmond, Glover, & Gabrieli,

1997).

It could be hypothesized that the cause for this difference is founded within

the type of tested problem such that studies reporting BA 10 activation employed

ill-defined problems whereas studies reporting mesial BA 8 activation employed

well-defined problems. Several imaging studies reporting activation within BA

10 used tasks with a closed problem, i.e, clearly defined operators, and an open

solution situation, i.e., an ill-defined goal state. By definition these ill-defined

problems are divergent-production problems which are characterized by an open-

endedness of the solutions and by a knowledge base specifying how to solve the
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problem. The open-endedness of the problem is induced by a lack of feedback.

That way, participants cannot test whether or not their answer was correct. For

example, due to the lack of feedback in the RPM participants stayed ignorant

whether or not their analytic reasoning was correct. The lack of feedback could

also give rise to the possibility that there is more than one correct answer or that

the correct answer varies inter-individually depending onone’s one internal ref-

erence system. The latter is supported by studies investigating evaluative judg-

ments (Zysset, Huber, Ferstl, & von Cramon; Zysset et al., 2003) and coherence

judgments (Ferstl & von Cramon, 2001, 2002) which found activation within the

aMPFC. Feedback was delivered in neither study. Subjects were asked to judge

statements with regard to personal preference (Zysset et al., 2002, 2003) or co-

herence (Ferstl & von Cramon, 2001, 2002), respectively. Assubjects were not

supplied with an objective reference system (which would have been confirmed

by feedback) they had to assess the external stimulus on an internal scale. Stud-

ies investigating pleasantness judgments in which obviously no feedback could

be given, also found activation within the aMPFC and relatedthe activation to

introspectively oriented mental activities (Gusnard et al., 2001).

However, inconsistent with our hypothesis is evidence suggesting that mesial

BA 10 may also be involved in feedback evaluation (Elliott etal., 1997). Feed-

back evaluation is also a central component of the WisconsinCard Sorting Test

(WCST) and some studies using the WCST reported activation within BA 10 (Na-

gahama et al., 1996; Ragland et al., 1998). Elliott and co-workers (1997) inves-

tigated the neural response to feedback versus no feedback by using a version of

the TOL. They found BA 10 activation when participants received feedback versus

not receiving feedback. However, feedback was entirelyindependentfrom partic-

ipants’ response. Positive feedback was supplied in 100% or80% of the cases,

respectively, regardless whether or not the response was correct. A past-session

survey revealed that all participants realized the feedback to be invalid. That way,

participants had to engage in the evaluation of self-generated sequences of moves

independent from the supplied feedback. Due to the invalidity of the feedback this

kind of TOL resembled the TOL employed without feedback as inferences had to
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be made without an external reference system.

While reasoning tasks like the TOL or the RPM are designed to be workable

without feedback the WCST is not. For example, in the RPM testsubjects could

engage in formal operations applied to sets and subsets of element features on

each trial. Feedback is not needed to engage in the next trialin which another

set of different element features has to be processed. Thus,the stimulus material

and the operators are designed in a way that challenging processing is possible

without feedback. The same applies to the TOL. In contrast, the WCST is not de-

signed in a way that the task would be demanding on each trial without feedback.

The critical feature of the WCST is the temporary rule change. Not until feedback

is delivered the task is solvable. By employing this performance-dependent rule

change (i.e., after a fixed number of correct trials, the ruleis changed) the goal

state is varying over the experimental session whereas the operators are identical.

Hence, the WCST could be conceived of as a hybrid between well-defined and

ill-defined tasks: Although the WCST has a closed problem anda closed solu-

tion situation the latter changes temporally making the definition of the goal state

less definite. On the one hand the WCST resembles rule learning tasks like the

presently employed one but on the other hand differs with respect to the additional

demand to flexibly change rules. The latter implies that the decision from when

on a negative feedback signals for a rule change is introspectively generated. This

may be the reason why studies applying the WCST found activation within BA

10.

The considered reasoning tasks share a common substrate, namely the evalu-

ation of self-generated responses or plans for actions. Forexample, in the TOL

task the evaluation of self-generated sequence of moves is required, in inductive

reasoning tasks the evaluation of self-generated hypotheses, in the RPM the evalu-

ation of the plausibility of an argument, and in coherence orevaluative judgments

the assessment of an external stimulus on an internal scale.Together, in all cases

subjects evaluate information they have generated by themselves or retrieved. This

assumption is supported by Gusnard and co-workers (2001) who specified the

cognitive processes in which the (dorsal) aMPFC is involvedas self-referential or
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introspectively oriented mental activities. These processes are required when non-

routine cognitive strategies have to be generated and selected in novel situations.

Considering classifications of decisions, ill-defined problems can be conceived of

as constructive decisions. Concluding, it is suggested that activation within BA

10 is involved in self-referential evaluations and introspective thoughts (Gusnard

et al., 2001; Zysset et al., 2003).

However, it needs further studies investigating well-defined and ill-defined

problems which should be administered with and without feedback in order to

test the proposed preliminary model. Furthermore, studiesare needed that directly

compare neural correlates of well-defined problems and well-defined tasks, at best

within the same experimental paradigm. Another issue whichis to be addressed

is the dissociation of uncertainty and difficulty. A task is required in which both

uncertainty and difficulty can parametrically be varied so as to disentangle the

contributions of these two factors to cerebral activation.

The present results help to broaden the state of knowledge concerning neural

correlates of uncertain decisions. Particularly, that different types of problems en-

tailing different coping strategies may be crucial for the required brain networks.

However, there are still more open questions than settled ones. For example, it

has been shown that affective states have a highly important, yet little understood

influence on how people think about, remember, and respond tosocial situations

(Forgas, 2001). Recent research and theories illustrate how affective states can

play a subtle and often subconscious role in guiding peoples’ thoughts, memories,

judgments, attitudes and behaviors in social situations (Forgas, 1992). Moods can

influence decisions as well as the structuring of cognitive material. In contrast to

emotions, moods can be described as general and diffuse feelings which need not

to be conscious. Generally, moods do not correspond to a specific goal and need

not to be released by an event (Abele, 1991, 1992). Hence, although not knowing

where from a specific mood is originating the person feels sad, depressive, cheer-

ful or glad. Moods have been shown to influence the content as well as the process

of cognition. In problem solving situations, subjects in a positive mood tend to use

simplifying strategies and are quicker in decision making than neutrally tempered
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subjects (Isen & Means, 1983) whereas subjects in a negativemood tend to use

more analytic strategies (Schwarz, 1990). Dependent on thetask and context both

of these strategies could yield good decisions. In general,negative moods could

foster an analytic, precise, and detail-oriented processing whereas positive moods

could foster simplifying and flexible processing as well as the use of heuristics

(Forgas, 1992). It would be interesting to investigate whether or not this behav-

ioral dissociation is also reflected on the brain level. For example, well-defined

problems that require analytic strategies should be be moresuccessfully solved by

negatively tempered subjects than by positively tempered subjects. According to

our hypothesis, subjects in a negative mood should elicit lower activation within

frontomedian areas than subjects in a positive mood since the use of appropriate

(analytic) strategies should decrease uncertainty.

Another interesting issue would be the investigation of uncertain judgments

as compared to uncertain decisions. In general, decisions are made with regard

to the expected consequences. This implies an implicit or explicit assessment of

the consequences. The resulting evaluative or preference judgments are usually

not observable, but the choice for a specific option are (Jungermann et al., 1998).

Consequently, it could be assumed that judgments determinethe choice for a spe-

cific option. However, in the words of Einhorn and Hogarth, judgment “is neither

necessary nor sufficient for choice” (1981, p.73). The traditional assumption that

judgment and choice are equivalent was proven to be incorrect by the fact that

many heuristics yield a choice among options without providing evaluations of

each alternative (Payne et al., 1993). Furthermore, the finding of the so-called

preference reversalscalled the equivalence of judgment and choice into question.

In short, preference reversal describes the robust finding that expressed prefer-

ences can be reversed depending upon whether a choice or judgment response is

used. Although there are several explanations for this phenomenon, its cause is

placed at the fact that variations in response mode cause a fundamental change in

the way people process information.

From this it follows that it would be worthwhile to investigate whether or not

uncertain judgments would involve the same brain areas as uncertain decisions.
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For example, one could compare brain correlates of judgments about uncertain

gambles to choices of uncertain gambles. To use judgments and choices of gam-

bles is advised since there are objective dimensions, such as the amount and the

probability of winning, which can be used to determine more or less uncertainty

in judgments and choices. It could be hypothesized that choices of uncertain

gambles should draw on different brain areas than judgmentsof uncertain gam-

bles since different information procedures are proposed for these two response

modes (Payne et al., 1993). Information processing in the choice mode is assumed

to be primarily dimensional whereas processing in the judgment mode is assumed

to be primarily alternative. In a dimensional-based procedure each dimension of

one option is compared with the same dimension of another option whereas in

an alternative-based procedure one item of information about one alternative is

used as an anchor and subsequently this anchor is adjusted totake additional in-

formation into account. Hence, it will be interesting to investigate whether the

behavioral response mode effect will be reflected by differential brain activations.

That is, whether or not a change in the strategy for processing information as a

function of the response mode will be related to different cerebral effects.
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