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Chapter 1

Introduction

In order to decide, judge;
in order to judge, reason;
in order to reason, decide.

(what to reason about)

(Johnson-Laird, & Shafir, 1993, p.1)

Several years ago a specific win-a-car show was very popiulae show-
master presented three doors to the candidate and aske@bhint one of these
doors there is a car you can win. Behind the others there ats.g@/hat is your
choice?”. The candidate made his choice (e.g., door nod Ytam show-master
opened one of the two doors remaining - with a goat behind, (dapr no.3).
After the door was opened the show-master asked “Do yougstifor the same
door or do you want to revise your choice ?”.

What would you do? How would you decide?

Aside from probabilistic deliberations which could enhanmur winning
probability, the win-a-car show is nevertheless a game ahcl. The possibility
to win the car is not controllable by the person him-/herselther are external
events or the will of the fairy godmother decisive.

At present the show “Who wants to be a millionaire?” is verpylar. The
procedure is as follows. The show-master asks you a moressdifficult ques-



2 CHAPTER 1. INTRODUCTION

tion and gives you four possible answers. Your task is to sdloe correct answer
out of four presented ones. For example, the show-mastedvimawe asked you
“What was the research ship of Charles Darwin called? Daolgbalypso, Beagle,
or Dove?”. What would you guess? Or would you know? (In caseare curi-
ous about the name of the research ship of Darwin, Beagle isdirect answer.)
In contrast to the win-a-car show, the outcome of this gangerigrollable by the
player him-/herself as the amount of money is directly eglab one’s knowledge.

Recently, there are numerous copycats of the millionaiogvsfrhis might be
due to the factocontrollability or attribution of uncertainty If people conceive
of uncertainty as being due to coincidental chance evertseinvorld which are
not controllable, uncertainty is attributed to externatdas. Hence, when people
play the win-a-car show uncertainty will be attributed tdesral factors and the
outcome will be conceived of as being entirely determinedubity guessing. In
contrast, if people conceive of uncertainty as being dueldakaor insufficiency
of their own knowledge, uncertainty is attributed to intdrfactors which are, in
principle, controllable. Hence, when people play the williire show uncertainty
will be attributed to internal factors and the outcome wdldonceived of as being
entirely determined by their own knowledge base. This enthat success will
also be attributed to oneself. Probably, this is why thesevstbecame so popular
recently.

1.1 Decisions under uncertainty

1.1.1 Types of uncertainty

In order to decide favorably it is important to anticipateisequences associated
with different options or actions. Anticipations of futuogitcomes can only be
precise if the world would work entirely deterministic. Hewver, this is not the
case since there are events and circumstances in life thahftaence the out-
come of a decision. Thus, as consequences are logicallyrapigieally junior to

a decision they are uncertain by nature. Generally, uringftas a mental state
described from a subjective point of view and is thus difficolquantify. There-
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fore, classification of decision problems are usually apphhed by the required
coping strategies or by the required cognitive effort inepria resolve uncertainty
(for the latter see 1.1.2).

From a deterministic point of view uncertainty is always daea lack of
knowledge. However it has been shown that it makes a signifiddference
whether people think of a lack of determination as being & plthe external
world or whether uncertainty is more attributed to inteistates of knowledge and
belief (Teigen, 1994). Depending on the perceived causecéntainty different
coping strategies are implemented. The temtsrnal and externaluncertainty
were introduced by Howell and Burnett (1978) to refer to éséimat an individual
can or cannot control.

A more general distinction is made by Kahneman and TversRgZ1 who
also discriminated variants of uncertainty according toghrceived cause of un-
certainty, i.e.,externally attributed uncertaint@and internally attributed uncer-
tainty. The authors subdivided the former into uncertainty basetteguencies
and uncertainty based on propensities, the latter intortaioty based on argu-
ments and uncertainty based on introspective confidemceknowledge.

To refer to uncertainty as external, the perceived causeitflaences the
decision in an uncontrollable way is located in the extemaild. Exemplify-
ing downhill skiing that may considered as being very riskyce external un-
controllable factors like avalanches can turn an enjoyatdt into a nightmare.
However, by learning about specific situation-conseque&atesions, predictions
could be made which help coping with the situation. Accagdio the principle
of frequency, the more often two events co-occur, the maangly they would
be associated. Generally, a typical coping strategy witbraglly attributed un-
certainty is to rate the relative frequency of such eventendd, in contrast to
predictions that we make in guessing or gambling situafitimsse usually de-
pend on extensive experiences and memories of event freigsgfikahneman &
Tversky, 1982).

In contrast, to refer to uncertainty as internal, the p&amkicause of uncer-
tainty is located in the person himself/herself. Imaginemdp@sked whether New
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York is located south of Rome and you would not know the answerertainty is

not due to a lack of determination in the external world, factors acting on the
location of the two cities, but due to your poor geographicawledge (Teigen,

1994). Hence, whenever the predictability of events depemdthe inexperience
with the specific decision problem or on the short duratioproblem solving, un-

certainty is caused by internal circumstances. Howeveqgrding to the principle

of contiguity, specific situation-consequence-cohesamad be learned by form-
ing associations between temporally and/or spatially am#ring events. Gener-
ally, a typical coping strategy with internally attributedcertainty is an intensive
memory search, most likely in combination with the attenopgét missing infor-

mation from valid external sources (Kahneman & Tversky,2t9@igen, 1994).

In decision research it is debated whether the presentiaivigarallels the
distinction between aleatory and epistemic probabilityiri@her, 2003; Junger-
mann, Pfister, & Fischer, 1998). Aleatory probability (frdhe Latin “aleator”
meaning “the gambler”) represents the likelihood of futevents whose occur-
rence is governed by some random physical phenomenon Bsingpdice, i.e.,
externally attributed uncertainty in present terms. Int@st, epistemic probabil-
ity represents uncertainty about propositions when oreslasmplete knowledge
of causative circumstances, i.e., internally attributedautainty in present terms.
It is an open question whether aleatory probability is rédalado epistemic prob-
ability based on one’s inability to precisely predict evéoyce that might affect
the roll of a die, or whether such uncertainties exist in thrire of reality itself,
particularly in quantum phenomena governed by Heisenbergertainty princi-
ple. Although the same mathematical rules apply regardiiestat interpretation
is favored, the choice has major implications for the waypbedry to cope and
resolve uncertainty. The argued epistemological questitiioe neglected in the
following as it appears to be more important whereto unadstas attributed, i.e.,
subjective probability.

Affective states pertain to internal events as well. Howewetil now the role
of feelings, emotions, and moods and their influence on thinjudgments and
decision making is largely unexplained (Forgas, 1992; dumgnn et al., 1998).
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Thereby it is important to distinguish between moods andirfge that emerge
independently from the actual decision problem and thosatiens that are di-
rectly evoked by the evaluation of the possible consequentble former ones
have been shown to unspecifically influence decisions (§trH#@92). In con-
trast, the latter ones are anticipated emotions which askeevby a comparison
between the actual and the expected consequences. By artsonpaf “what
would have been possible” to “what is actually achieved”ptams are able to
influence the evaluation of the decision (for an overview disappointmenbr
regret theory e.g., Loomes, 1988; Loomes & Sugden, 1986, 1987).

1.1.2 Degrees of uncertainty

Besides the classification of uncertain decisions intoragatly attributed and
internally attributed ones, uncertain decisions can alsaifferentiated by the
amount of cognitive effort needed in the specific decisitumasion to resolve un-
certainty. Decision problems ranged at a lower level in tieeanchy require little
cognitive effort and are therefore less uncertain. The roetmitive question how
one decides how to decide depends crucially on the repegganif decision-
relevant information. That way, it is assumed that uncetyain decision making
can be expressed to a greater or lesser extent. For exahmle are situations in
which decisions proceed rather automatically without mofctognitive effort in
contrast to situations in which decision-relevant infotiorahas to be searched for
and structured before arriving at a decision. Thus, theewigence for a contin-
uum of uncertain decisions depending on the amount andattdin of cognitive
resources. The degree of cognitive effort is correlatet! thié degree of reflection
and consciousness with which decisions are made. Accotdi8genson (1990)
four levels of uncertain decisions can be distinguished.

One end of the continuum is spanned roytinized decisionsn which the
preference for one option or action is triggered autombyica his is the case
when a situation resembles ones that were rewarded so fardfchaction x. De-
cisions are then tightly linked to constant actions or apiby highly habituated
preferences. These decision heuristics reflect learnetihgencies between as-
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pects of the decision situation and the effort of a particdicision rule which
are knit long ago (Payne, Bettman, & Johnson, 1993). A hiéeiags a “rule-of-
thumb”, respectively, can be described as the applicatfoexperience-derived
knowledge to a problem most often providing a descriptiorthaf successive
stages of a decision process (Gigerenzer & Todd, 1999). plging habituated
preferences, imagine the decision of what kind of car to bayis determined by
an earlier purchase decision. The decision maker couldndée follows: | will
go and buy a Mercedes Benz like | had one before since it wdsasteliable car
and | had so much fun driving it.

The advantage of such routines is that decisions can be maglequickly
without much of cognitive effort and subsequently cogeitresources are avail-
able for other activities. The disadvantage, however, as tomparatively little
attention is provided to the decision situation and thus jriobable that events
signaling for a behavioral change are ignored.

Stereotype decisiordiffer from routinized decisions in two ways. First, not
the entire situation is determining the decision stratagytlve alternatives. Ac-
cordingly, a simple pattern-matching process is not seffici Second, a minimal
evaluation process is required by what stereotype desisiomconscious. To ex-
emplify this sort of decisions, imagine to go out for foodtdugh the situation,
i.e., the restaurant, is completely different, the optjdms, the dishes, are derived
from a well-defined set, i.e., the menu (Jungermann et 2838)19Stereotype de-
cisions require more behavioral flexibility than routirdzenes. However, since
the field of options is always well-defined, the evaluatiorthef options is only
minimal and generally guided by memory-based schemas $8mned990).

In decision situations that are characterized by a lack atimized or stereo-
type preferences for one option the decision maker is requo derive a prefer-
ence by deeply exploring his value system, i.e., an intensiemory search, or
by gathering information from valid external sources. Sdebision processes re-
quire at least an accurate consideration of the availakliierspbefore a decision
is reached, postponed, or refused. Decisions on this [éseluse trade-offs be-
tween the attractiveness of aspects on different attigbutéis kind of decisions
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is termedreflective decisionsince the actor is faced with a decision problem of
some novelty and complexity (Jungermann et al., 1998; Payak, 1993; Sven-
son, 1990). Exemplifying reflective decisions, imaginengdo buy a house. The
decision maker could reason like follows: | decided to buy touse as | find the
differences in price not so important and | value its quiet@undings so much
that this outweighs the smaller garden.

The highest cognitive effort, however, is required when dkeision maker
faces a new and unfamiliar problem in which the alternatasesnot sufficiently
defined or even partly unknown. Yet, sometimes the undeylyalues determin-
ing decision strategies are undefined and have to be gederaeveral real life
situations are characterized by a lack of options, e.gdéesion what to study or
which job to accept. Subsequently, alternatives have tadmted and their asso-
ciated consequences have to be evaluated in relation te ealele system. These
decisions are termetbnstructive decisionsinterestingly, this kind of decisions
has fairly been neglected in decision research so far (RiftHL996).

In parallel to the described classification of decisiongpt®mies of errors
use the determination of cognitive effort to distinguraistakedrom action slips
(Frese & Zapf, 1994; Reason, 1990; Zapf, Maier, Rappenspefgrmer, 1994).
Taxonomies of errors mostly focus on the timepoint when #xaie the action
process an error occurs. Rasmussen (1983) proposed theieechar types re-
lated to three performance levels, i.e., skill-based acsiips, rule-based mis-
takes, and knowledge-based mistakes. A more coarse diffgion is between
action slips and mistakes. The latter ones are planningré] i.e., the action
proceeds as planned, but the plans or goals are not appeofmiachieve one’s
goal. Whereas, action slips occur whenever the action goesgabut the plans
or goals are correct. Implicated in this definition is the amtaf cognitive effort
needed for action execution as well as the amount of (urtdiogy during action
execution. On the skill-based level sensorimotor perforwrais accomplished
without any conscious control and uncertainty is low sineessrimotor perfor-
mance is highly routinized. For example, errors on the-4kiBed level can signal
for movement errors or premature errors. In contrast, omulee or knowledge-
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based level performance is accomplished consciously, the.development of
goals and action plans as well as the design of a situatiovaysis. Uncertainty
arises mainly as consequences of actions are not fullyrdeted. For example,
errors on the rule-based level or on the knowledge-baseaal $gnal for more
complex errors that often can only be resolved with extenegb, e.g., judgment
errors or errors in reasoning.

1.1.3 Decision heuristics and learning

Meta-cognitive decisions, i.e., decisions about how tad#em accordance with
one’s value system, are not that frequent. In fact, the &tsac between situa-
tional properties, i.e., task and context factors, and fieetiveness and efficiency
of different decision rules or strategies are learned dues {(Payne et al., 1993).
Particularly, decision heuristics and if-then-rules, ethconstitute the definition
criterion of routinized and stereotype decisions, are lopes via learning. Al-
though it is rather challenging to define “learning”, a simgéfinition could be “a
change in behavior due to experience” (Lieberman, 1993)pl3owever, there
are some changes in behavior due to experience what one wotlicbnceive
of as learning, especially with regard to the acquisitiorefision rules, e.g., a
change in behavior because someone has not eaten for veryltofact, what is
meant by learning is that experiences result in the storédg&amation in the
brain. However, this is of little practical use since infation which is stored in
the brain is not directly accessible, but changes in overabier are. However,
also with this thinking there is the problem that it is poksito learn something
even if there is no visible change in behavior. That way,neay is not really the
change in overt behavior but rather the process that ledAz@ordingly, learning
can be defined as the change in the capacity for behavior do@rticular kinds
of experience (Lieberman, 1993).

Considering routinized and stereotype decisions, hésiseflect the estab-
lished change in behavior due to experience with similaisitat situations. That
way, people learn about the relationship between two ewbatsoccur together
(Rescorla, 1988). This form of learning is termesbociative learningind is sub-
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divided into classical conditioning and instrumental dtinding. Both forms of
learning are of particular interest if the second event isrgoortant one and peo-
ple need to be able to identify its causes in order to undergppropriate actions
in the future, e.g., in order to decide favorably (LiebermE®03). Forming asso-
ciations between two co-occurring events enables one ii@ate and predict the
occurrence of important (future) outcomes. In cases wheptedicted outcome
deviates from the actual outcome this so-cafbeediction errorleads to learning
or re-learning, respectively (Schultz & Dickinson, 2080)Subsequently, pre-
diction errors enables people to adapt their behavior tethdictive and causal
structure of the environment. Accordingly, if outcomes oaiably be anticipated
no behavioral modifications are required. In contrast,éfgihediction error is not
nil, behavioral adjustments are required. ConsequergBgifack evaluation or
prediction errors, respectively, allow to assess whethe&obthe undertaken ac-
tion was appropriate in order to achieve the desired outcome

Accordingly, the acquisition of decision rules can be itiggged. By vary-
ing the prediction error, the magnitude of reward, or theperal difference be-
tween the undertaken action and the delivered reward, gagt modification of
decision rules can be observed. Associated with the remtagan of decision-
relevant information is uncertainty, as carried out abolfethe representation
implies that only action x (given situation y) leads to thedi@d outcome it is
fairly trivial that no uncertainty will arise. In contrastthere is no reliable repre-
sentation of decision-relevant information, uncertaimbyv to decide and what to
do will arise. By the time the predicted outcome is similatite actual outcome,
no more behavioral modifications are required and a usefiiida-relevant in-
formation is gathered. That way, investigations of routi and stereotype de-
cisions are very well practical in order to discover ruledehavior in decision
making. However, this kind of investigation does not seefbyetbighly promising.
This is due to two objections, first, higher level decisionlpems are considered

INote that the role of the prediction error is mainly importémtthe investigation of temporal
aspects of decisions in error-driven learning and lessaalsvin other forms of learning like in
perceptual or declarative learning (Schultz & DickinsorQ@0
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as being more interesting and fundamental as lower levésidaegproblems, and
second, the latter decision problems are also includedaprmicesses in higher
level decisions (Svenson, 1990). That way, lower levelsieos, like routinized

and stereotype decisions, can be conceived of as rephsatibdecisions which

in the beginning were treated as higher level decision prob| like reflective and
constructive decisions. Therefore, it will be focused amtiigher level decisions
in the following.

1.1.4 Decision making and problem solving

Decision situations that are characterized by a lack oketgpe preferences or
decision routines require the actor to decide construgtivieo approach a favor-
able solution the decision maker can either combine knowplei and/or com-
plex decision strategies or has to construct a new and apat®mwne. This de-
cision process can also be termed a construgtieblem solving procegduber,
1982; Payne et al., 1993). It has been argued that the estaddldistinction be-
tween decision making and problem solving has to be giveruegalthe psycho-
logical description and explanation of the process of gbsolving. The latter
is defined as a broader concept than decision making and sm®smeveral sub-
processes one of which is decision making (Brander, KompRe8&zer, 1985).
The current definition of problem solving reads as followsprablem is given if
an unfavorable initial state is wished to transform intoafable goal state , but
the transformation is constricted by a barrier. That wagpfgm situations are
defined by the fact that the means in order to reach the goakda®own, or have
to be combined in a so far unknown way. Yet another definitigterion is the
alternative that the goal state is not clearly defined or km¢ldorner, Kreuzig,
Reither, & Staudel, 1983, pp.302). To conceive of decisiaking as problem
solving helps to understand the dynamics of decisions tegaiti new questions,
e.g., at what point a decision is terminated (Huber, 1982).

In sum, a problem is determined by the initial state, the gtate, and the
operations that have to be performed in order to succegsfolieve the intended
goal state (Dorner et al., 1983; Hussy, 1984; Jausoved)13derefore, decision
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problems of some novelty and complexity in which the amoftitih® means-end-
related information is insufficient can also be conceive@®fa problem situa-
tion. A well known classification of problems is the one intell-definedand
ill-defined problems, which was presumabily first introduced by McCafii9p6)
(Howard, 1983; Hussy, 1984). Are all three characteristitat make up a prob-
lem, clearly specified, this is termedtbse problenor well-defined problem. In
contrast, are the three characteristics less clearly dkfthes is termed aopen
problemor ill-defined problem. Although there are several problexohomies
(Dorner, 1976), typically the characteristics of the getate, which is also termed
solution situation and the operators , which is also ternpgdblem, are dichoto-
mously divided into open and closed conditions. By comlgjrilre two character-
istics and the two conditions, a taxonomy of four differerglgem types emerges
(Dorner, 1976; Jausovec, 1994; Wakefield, 1989) (see Tab)e

Table 1.1:Taxonomy of problem types. Open: not clearly defined; closledrly
defined.

Problem
open closed

open  (3) dialectic problem (4) divergent-production p.

Solution situation o . .
ut fruat closed (2) insight problem (1) interpolation problem

1. Well-defined interpolation problems: closed problem alu$ed solution
situation. The goal state as well as the operators are gldaflned but
not their specific combination and/or sequence. Thus, ialied for log-
ical reasoning. Established interpolation problems aesstor paradigms
used in problem-solving-experiments, e.g., the “canrélval-missionary-
problem”.

2. lll-defined insight problems: open problem and closeditsmi situation.
The goal state but not the operators are clearly defined. ,Tehgsrrect
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solution exists and subjects are required to deduce theppate opera-
tors. Established insight problems are mental exercigs tie match-stick
arithmetic tasks which require subjects to disengage feonilfar strategies
(e.g., Knoblich, Ohlsson, Haider, & Rhenius, 1999).

3. lll-defined dialectic problems: open problem and openitgm situation.
Both, the goal state and the operators are not clearly defiéds, one
correct solution does not exist and subjects are requiredistmover the
problem. Exemplifying are political and career decisions.

4. lll-defined divergent-production problems: closed peab and open so-
lution situation. The operators are clearly defined but hetdoal state.
Thus, this type of problem resembles creative thinking lemis which are
characterized by their open-endedness of solutions. Hemvelivergent-
production problems are more specific with regard to the aipes and
knowledge which is needed to solve the problem.

The description of well-defined problems applies to a lotadfdratory situ-
ations in which participants are supplied with informatedvout the initial state,
i.e., the stimulus configuration, the goal state, which isallg indicated via pos-
itive feedback, and participants are supplied with infaiorain what way they
are supposed to arrive at the correct solution situatiom.ekample, participants
are required to conduct algebraic proofs such as the onevéRh® equivalence
of expression A and B”. The initial state is determined bydRpressions A and
B, the goal state by the mathematical proof, and the operépthe valid alge-
braic operations. Important to note is the distinction lestaproblemandtask
As carried out above, a problem is defined by the requiremeiansform an
initial state into a goal state via a means-end-analysisoitrast, as soon as the
finding of the right path is obsolete and the correct actigrésdetermined or can
be retrieved from memory, it is conceived of as a task. Do(h883) defined a
task as the accomplishment of self-evident operations incavk way that lead
to intended outcomes. The distinction between well-defipretblems and tasks
could be reconciled with the classification of errors, suwt action slips might
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occur with tasks and mistakes with problems. The former owetenever the
action goes wrong but the chosen operators were correctpafienistakes occur
whenever the action goes as planned but the chosen opepatmesd not to be
appropriate to achieve the goal. Note however, that the taskis ambiguous as
it once can refer to the bare execution of known actions aheraise to exper-
imental performance. Therefore, the tetaskin the present work will be used
to refer to experimental performance (e.g., experimergatitions employed in
fMRI experiments), whereasskas it is used in problem solving literature will
be referred to awell-defined taskn the following.

In view of the described problem classification decisionmcaonly be clas-
sified according to the cognitive effort they require bubails accordance with
regard to the characteristics “name recognition of the atpes” and “clearness
of the goal state”. Routinized or stereotype decisions cabe equated with
well-defined problems since the former are guided by hatsitupreferences and
the latter by memory-based schemas, rather could they leeived of as well-
defined tasks. Constructive decisions can be equated Wvitlefihed problems
since the goal state is not clearly defined but rather cheniaed by the open-
endedness of the solution. However, reflective decisionbeaquated with well-
defined problems since the initial state is determined bytadable alternatives,
the goal state by the intended consequences, and the apdrgtine allowed de-
cision strategies. Yet, the combination and sequencingatbn strategies is not
known.

Reflective decision problems could be solved by an increaheaiution ap-
proach consisting of the two sub-processes “differencaatéah” and “subgoal-
ing”. The former is accomplished by the selection of appeiprdecision strate-
gies that generate interim states similar to the goal staiehadepict subgoals.
The basis of the selection is a predictive hypotheses abeansiend-relations.
As the termprediction implies, subjects first have to hypothesize about future
events, i.e., they do ndnow about the consequences of specific actions. As a
result, subjects will experience some sort of conflict abwkich decision strat-
egy is to use when depicting an uncertain decision. Paynealfehgues (1993)
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proposed that subjects solve decision problems of somdipamed complexity
by the generation df-then-rules That is, operators used to transform the initial
state can be represented as the productions of the formriditon x then action
y” (e.g., “If there are more than four applicants, then edelthose who do not
dispose of occupational experience“). These if-thensraln be conceived of as
decision rules

Common to well-defined problems and reflective decisiorspeetively, is the
requirement to predict an event that is not fully determineceferences for spe-
cific operators are developed by testing preliminary wagkigpotheses generated
on the basis of goal-directed ideas via close feedback atiahs. Consequently,
by time valid decision rules will emerge.

1.1.5 A process model of decision making

Process models of higher level decisions or problem solviagpectively, are
composed of different steps (Hogarth, 1980; Klauer, 1992nSon, 1990). These
models describe the decision process as an orderly one vhgvekecision pro-
cesses are sometimes chaotic. This is because the proceslsinfy a decision
problem involves continuous re-structuring and re-agaitadioth before and after
the decision has been made such that later steps in the proarsalter earlier
ones or that the goal of the decision process can change mitttte of the pro-
cess. Therefore, these models serve as ideal type of pnowekss.

1. Appearance of the decision problem. A careful analysithefgoal state
as well as of the initial state is required in order to devedgpropriate
hypotheses or action plans, respectively.

2. Generation and production of appropriate action plarguding the prog-
nosis of future events.

3. Evaluation of the action plans consisting in a comparisiopromising al-
ternatives with regard to usefulness, economy, and experdiéty of the
implementation.
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4. Selection and decision of the preferred alternative favailable ones.
5. Decision implementation. Execution and monitoring & #ttion.

6. Post-decisional processes consisting in feedback gsimgeand evaluation
with regard to the intended goal state.

Since a misfit between the goal of a decision process and thel ateci-
sion situation usually triggers the iteration of parts af thecision process, post-
decisional processes will be described in more detail. énpibst-actional phase,
specific action outcomes are evaluated by comparing whabéeas achieved,
i.e., the actual state , to what was initially wished to aehjei.e., the target
state. Usually, a re-evaluation of the initial situationcesried out consisting
in re-adjustments of situational properties and their iotee values for future
outcomes. The feedback can either be found out by the aatwselfi, through
various kinds of self-monitoring, or by environmental cirdicating that some-
thing has gone astray. A third possibility of feedback sigmae other people who
know about the intended outcomes. They can notify the adtoutsa mismatch
between the actual and the target state. This is espediallgase when the actor
is inexperienced and the other person is an expert in the Beaderally, feedback
signals can either be positive (favorable) or negativeguariable), the latter often
constitutes in an error. No matter of the valence of the faeklits vital role is
the information about how far the actor has progressed tisvarspecific goal.
By nature, feedback is at the same time partly outside arttypaside the actor.
Outside, as it gives information about the external world te actual state. In-
side, as the understanding and conceptualization of tleoéed is only possible
with a goal in mind. Thus, feedback, no matter whether it sifp@ or negative,
is a relational concept (Frese & Zapf, 1994). Also on a temjpdimension the
relational concept of feedback appears. The evaluatioeeaxftfack which takes
place after the action execution directs people towardpdkeas well as to the fu-
ture resulting in the generation of specific situation-egpugnce-cohesions. This
evaluation process usually leads to a relatively stablegdan behavior based
upon experience which leads to the development of a dedisaristic.
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Considering constructive decisions which are charaadriz/ a lack of alter-
natives, it would be inadequate to start the descriptionddasion processe with
the appearance of the decision problem. Heckhausen (Hes&hal989, 1991)
and Gollwitzer (Gollwitzer, 1991, 1996a,b) showed thatidtly there is a wish
that has to be transformed into a want. If the the situatiahtame point appears
to be appropriate, and if there is some priority and impaatio act, the want is
transformed into an intention which then acts as an actiodig-goal. 2 While
this is generally true for self-initiated actions and dexis that call for the gen-
eration of alternatives (like career decisions), the istgupoint for the remaining
higher level decisions constitutes in the specific decisiaration.

1.1.6 The real world in decision making. What is it good for?

Reflective decisions in general and constructive decisioparticular are not easy
to investigate. In fact, constructive decisions like oatigmal or political deci-
sions, which account for the most influential decisions il tide, were hardly
ever object of investigation (Fischhoff, 1996; Jungermanal., 1998). The ex-
perimental paradigms used are rather surrogates for coagdi decisions and
can take on lives of their own (Fischhoff, 1996). This couwdd to the engage-
ment in subtle variations within the experimental world &neoretical accounts
could end up with the problem of extrapolation requiring teofioconjecture.

This instance is due to the strategy in cognitive psychotogstandardize sit-
uations of interest, so as to gain access to the ongoingidlegisocess. Since
descriptive decision research aims at the psychologicsdrgion and explana-
tion of decision making, its influencing factors and circtemses, it is important
to provide for comparable decision situations, e.g., siyiluncertain decisions.
As higher level decisions can be so unique that one canndimayeople gener-
ally behave in such situations it can be thought of obsergigjsionsn vivo and
eliciting concurrent verbal protocols. However, the raducof the problems of
standardization comes along at the price of incurring ath€hat is, the method

2The implementation from a wish into a want is termed “to crdmsRubicon“ (Heckhausen,
1989, 1991).
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of introspection appeared to be inappropriate and unteliaborder to describe
cognitive processes in particular unconscious and subimrss processes (Zim-
bardo, 1988). At best, the careful observation of one’s ovental processes can
only provide limited account of why people behave the way tthie. That way,
in order to tell which factors influence decision behavibis iinevitable to stan-
dardize experimental situations and measure reactiorst{iR€) and error rates.
In doing so, it is attempted to earn something general byggting with the par-
ticulars of specific decisions.

However, for a couple of phenomena it is not possible toristish cognitive
processes on the basis of RT or error rates. For examplején tr distinguish ex-
ternally from internally attributed uncertainty there smeason why there should
be a difference in RT for the one or other uncertainty. To leaapis example, the
application of different coping strategies with differettributions of uncertainty
can mainly be gathered via introspection.

An alternative way to try to disentangle different attribants of uncertainty
has recently been established by the measurement of heamodycorrelates.
By using functional Magnetic resonance imaging (fMRI) ipisssible to identify
changes in neural activity with regard to specific (aspefjtsagnitive processes.
That way, the brain becomes an external criterion for theatistion of different
cognitive processes. Furthermore, the convergent resflillsaging studies con-
tribute to the knowledge of functional communality and timake it possible to
interpret the data in a parsimonious way, e.g., which kindegburces are used
in order to reach or postpone a decision. Moreover, the methdMRI can be
used to test whether uncertainty is dealt with differentipending on the degree
of uncertainty. For example, it could be assumed that byithe tincertainty is
relatively high people would change to a qualitatively eliént coping strategy,
a shift that does not need to be conscious. Thus, espeailipé investigation
whether externally and internally attributed uncertaiatg qualitatively or quan-
titatively different and beyond whether uncertainty miget conceived of as a
simple dual mode without any degrees in between, fMRI is esggl to be the
dedicated method.
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1.1.7 Real world decisions versus laboratory decisions

Regarding the structure of goal-directed actions or hi¢gnex decisions, respec-
tively, a major distinction between real life and laborgtsituations lies in the
pre-decisional phase. The goal of the decision processsradehe representa-
tion of future states which are usually personally relevawtedless to say that
laboratory situations differ in this respect. Generallyalg are given by the ex-
perimental situation. By complying in participation sutipeagree to carry out the
task, i.e., transforming the external task to an internal on

However, real world and laboratory situations resemblé edher with re-
spect to the remaining processes. The initial state has émé@ded. Since goals
serve as anticipative cognitive structures guiding th@magirocess, more or less
elaborated action programs have to be generated. Thesa gctigrams can be
everything from a first idea how to approach the goal to elaieor blueprints.
The developmental process from ideas to blueprints is avidepone whereby
the goal serves as a comparison for the appropriatenesg afction. This pro-
cess is also callekdypotheses testing he actor decides for an option or an action
according to a hypothesis binding a specific action to th@irgituation or to a
specific situational property. After action execution tlotual state is evaluated
in view of the target state. If the evaluation reveals slomings with respect to
goal achievement another action will be executed accorttireycompeting hy-
pothesis. This process will be continued until a decisigde-remains leading to
the intended target state with a high probability. That vilg, initial situational
properties will gain predictive values for a specific outeoim combination with
the executed action. Note that this applies only to sitnatia which subjects are
not supplied with a general rule system determining examily to respond given
a specific initial situation. In contrast, routine situasosupersede the testing of
various decision-rules since an effective action is defaul

The evaluation of the appropriateness of the executedreistidone by means
of feedback. Thatis, feedback plays a role for learning aativaion since it pro-
vides information about the consequences of actions asawelbout the qualities
of actions. Hence, feedback gives information about hovofer has progressed
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towards the goal. Additionally, positive feedback and tiegafeedback serve
as reinforcement, however, in opposite direction. Pasitaedback serves as a
keep-at-it-signal, whereas negative feedback indicaesanverse of an efficient
action and signals for an attitude change. Primarily in lyigimcertain situations
is it important to actively search for feedback, in order eéodble to correctly
predict future outcomes.

In order to stay in line with the concepts in cognitive psyloay and cog-
nitive neuroscience, the initial situation will be refatr® as thestimulus situa-
tion, the undertaken action will be referred to as thgponseand decision-rules
will therefore be referred to astimulus-response-rule§SR-rules) orstimulus-
response-associationeespectively. Positive feedback can also be termedrd
and negative feedbagunishment

1.2 Imaging data in uncertainty-related paradigms

To date there is a great number of studies investigating laretivations induced
by well-defined problems including rule induction and apgtion (Goel & Dolan,
2000; Goel, Gold, Kapur, & Houle, 1997), hypotheses testiiott & Dolan,
1998), artificial grammar learning (Fletcher, Bichel, ejiss, Friston, & Ray-
mond, 1999), anticipation of monetary gains and lossest@réharon, Kahne-
man, & Dale, 2001), dynamical motion predictions (Ullsparg. von Cramon,
2003), sequence-based stimulus predictions (Schubotsa&vamon, 2002), un-
certainty in risky decisions (Critchley, Mathias, & Dol&%01), reward prediction
(Critchley et al., 2001; Elliott, Newman, Longe, & DeakirQ(3), reward antic-
ipation (Knutson, Fong, Adams, Varner, & Hommer, 2001; kouat, Fong, Ben-
nett, Adams, & Hommer, 2003), and risky choices (Critchlesle 2001; Rogers
etal., 1999). Common to all these paradigms is the predictfiauncertain events.
Successful predictions are based on an appropriate ruiensybat has to be set
up by means of a careful feedback evaluation. In order tveaat a generally
valid rule system, participants have to sample feedbaakrimdtion across the
experimental session to attain a working hypotheses. Qwey, preferences for
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specific options or SR-rules, respectively, are developesting these prelimi-
nary working hypotheses.

There is yet another group of studies investigating uncaytaelated pro-
cesses like guessing (Elliott, Frith, & Dolan, 1997; ElijdRees, & Dolan, 1999)
and gambling (Bechara, Tranel, Damasio, & Damasio, 199éit@&ret al., 2001;
Monchi, Petrides, Petre, Worsley, & Dagher, 2001). AltHotltey resemble well-
defined problems in the way that participants are requirdahdothe right path in
the problem space, guessing and gambling does not allovedonihg and adap-
tation processes, i.e., the impossibility to use feedbatdrination in order to
successfully predict future events. However, it has beewslthat people try to
use feedback information in order to predict future evemenean gambling situ-
ations, i.e., the so-called “gamblers fallacy” (Tversky &theman, 1974). This
fallacy is referred to as the inability to comprehend stiatié independence of
events, e.g., that subjects incorrectly assume an inagasbability of black on
the roulette wheel after a long run of red. Consequently,siygifrequency infor-
mation subjects incorrectly believe that their predictidnility improves. Several
erroneous beliefs underly the gamblers fallacy , i.e., thisperception of ran-
domness” (Bar-Hillel & Wagenaar, 1987) and the “law of snralimbers” (so
termed by Tversky & Kahneman, 1971). The former is describpethe belief
that randomness is characterized by certain patternsdingaio which random-
ness can be determined. The latter is the belief that smalples are highly
representative of the population. Both erroneous belegd to an inadequate use
of feedback information sampled across trials which is ginduo be be used for
future predictions. However, in very specific gambling aftons it is yet worth-
while to sample frequency information. For example, whdrjestts are required
to predict events of a defined sample with known stimulus @ntigs like predict-
ing the color of a playing card but the cards must not be plaeett into the pack,
the observation of relative frequencies can be used fordypeedictions, i.e., a
probability matching approach.

Findings common to studies investigating uncertaintgtesl paradigms are
brain activations within frontomedian areas correspogpdmBrodmann Area 6,
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8, 9, and 10 (see Figure 1.3). Activation within the dorsat pd the anterior
cingulate cortex (ACC) or BA 3224, respectively, and within the orbitofrontal
gyrus (OFC) are often reported when guessing or gamblingvie@hor the rep-
resentation of reward and punishment is investigated. Mewybefore describing
the imaging data in detail, the anatomical location of tHéedént brain regions
within the frontomedian wall will be described.

1.2.1 Anatomy of the frontomedian cortex

In order to agree on a uniform identification of anatomicaiteat as well as to
perform multi-subject analyses a standard nomenclatunedsled. As an inter-
national convention the “Brodmann map” which is based onpamative cytoar-
chitectonics of the cortex defined in Brodmann Areas (BA)oBnann, 1909)
and the three-dimensional stereotactic “Talairach athakich is based on an or-
thogonal grid-system (Talairach & Tournoux, 1988), aredus®ince it is widely
accepted that the functional differentiation of the ceaébortex into areas is re-
flected by specific laminar patterns, it is a proximate sgiate establish bound-
aries between areas at the point where laminar patterngehak century ago,
Brodmann argued that the human cortex is organized anatiynio the same
way as the cortex of all other mammals. He showed that thexortanimals and
humans consists of six layers, and, on the basis of anatbdiffzxences in these
layers, he developed a numbering system which has becoraedast basis for
designating areas of the cortex (see Figure 1.1). The ckssiap by Brodmann
(1909) divided the frontal lobe into 13 cytoarchitectonieas, the so-called Brod-
mann Areas. That is on the lateral surface BA 4, 6, 8, 9, 10484and 47; on
the medial surface BA 4, 6, 8, 9, 10, 11, 12, 25, and 32. Thenskitternational
convention is the Talairach stereotactic atlas which methithe classical areas of
Brodmann. A proportional grid makes this atlas (althougfived from one par-
ticular brain) applicable to all other brains. The origirtleé coordinate system is
represented by the upper boundary of the anterior comnaigd@). The y-axis is
defined as a straight line through the upper boundary of ACtlatbwer bound-
ary of the posterior commissure (PC). A horizontal line thyio AC perpendicular
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to the AC-PC line is defined as the x-axis. A straight line pedicular to both,
the x-axis and the y-axis, passing through AC is defined ag-tods (see Figure
1.2). A general morphology regardless of the brain undesidemnation is given
by major lines of cortical enfolding, e.g., the central sislés consistently found
between the vertical lines through AC (VCA) and PC (VPC) amel VCA line
separates the anteriorly located pre-supplementary nao&a (pre-SMA) from
the posteriorly located supplementary motor area (SMAndfvidual data sets
are aligned with the Talairach coordinate system actiaatiei can be reported
in Talairach coordinates and BA's thereby allowing for acandant spatial local-
ization.

In the following only BA's will be described that showed to brucial for
uncertainty-related paradigms, i.e., BA 6, 8, 9, 10, and232 Cytoarchitecton-
ically these areas differ such that mesial BA 8, 9, and 10rueto thegranu-
lar prefrontal isocortexdefined by a well developed inner granule cell layer IV.
In contrast, BA 6/BA 24and BA 32 belong to theagranular and dysgranular
frontal cortex, respectively. Both cortices are definedHzylack of a broad layer
IV, whereby the insertion of layer IV starts within the aguéar cortex.

The superior frontal gyrus therewith the frontomedian vigltraditionally
subdivided into the areas BA 6, 8, 9, and 10 in a caudorogtatérior-anterior)
direction (see Figure 1.3) (Petrides & Pandya, 1999). Basednatomical and
functional data BA 6 on the medial wall of the prefrontal earis subdivided
into the SMA in the caudal portion of BA 6 and in the pre-SMA hetrostral
portion (Picard & Strick, 2001). A kind of border betweengbdwo motor areas
is provided by a perpendicular line cut through the antecmmmissure (AC),
i.e., the VAC-line (see Figure 1.3). The caudal border of Bt ®8A 4 (primary
motor cortex) on the lateral surface is located in the amtdrank of the central
sulcus, the anterior border of BA 6 to BA 8, however, is not laarty defined.
In fact, due to missing anatomical landmarks BA 8 and pre-Siédifficult to
distinguish. The same applies to the distinction betweerBBd the ventrally
located BA 32/24. The latter area is also referred to as the “dorsal divisidhe
ACC” which is composed of areas 24t) and 32 contrary to the rostral-ventral
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Figure 1.1:The basis of Brodmann’s cortical localization is its suliglion into
areas with similar cellular and laminar structure. Brodmamndertook a sys-
tematic study of the cells of the cerebral cortex, usingisaststained with the
then new method of Nissl. Depicted are a lateral and medad\df Brodmann’s
cytoarchitectonic atlas as well as a view of the insular err{from Brodmann,
1909).
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Figure 1.2:The upper panel depicts the right hemisphere shown fromatieeal
surface, the lower panel the right hemisphere shown frormtiitine, both with
Brodmann Areas and basal lines by Talairach and Tournou8&).9The horizon-
tal line defines the y-axis through the upper boundary of A€Ctae lower bound-
ary of PC. The vertical line through AC (VCA) constitutes zkaxis, the vertical
line through PC is termed the VCP line. (adapted from Taletir& Tournoux,
1988)
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division which is composed of areas 24a-b, 32, and venteasa?5 and 33 (Bush,
Luu, & Posner, 2000; Vogt, Nimchinsky, Vogt, & Hof, 1995). ighsubdivision
is based on differences in cytoarchitectonics, patterqsajéction, and function.
Following anatomical findings from primates, Picard andc&t2001) proposed
an even finer subdivision of the ACC, namely into caudal daiguzone (CCZ)
and anterior and posterior rostral cingulate zone (RCZaZC According to
the authors, the subdivision of the RCZ, which lies rostoatie VCA line, is
supported by studies suggesting a functional dissociatidtCZa and RCZp.

Adjacent to BA 8 in caudorostral direction borders BA 9 and BA The
mesial portions of BA 9, 10, and 32 (sometimes including BAa®&) referred to
as the anterior medial prefrontal cortex (aMPFC) (Gusnakihudak, Shulman,
& Raichle, 2001; Zysset, Huber, Samson, Ferstl, & von Crgn2093). Based
on anatomical studies in non-human primates, it is agreed apdorsal-ventral
distinction of the aMPFC (Morris, Petrides, & Pandya, 1996trides & Pandya,
1999). The dorsal aMPFC is suggested to include mesial paB# 9 and 10,
whereas the ventral aMPFC is suggested to include pre- @gksual parts of
BA 10 and 32 (Petrides & Pandya, 1994). The anterior-most gfathe pre-
frontal cortex is usually referred to as the frontopolarteer Often, all activation
foci falling into BA 10 are classified as frontopolar. In cradt, Christoff and
Gabirieli (2000) regard the anterior parts of the middle amksor frontal gyri as
frontopolar cortex. This classification approach stemmftbe observation that
medial, lateral, and orbital surfaces of BA 10 vary in terrhgytoarchitecture and
functional connectivity (Pandya & Barnes, 1987; PetrideBaadya, 1994).

The OFC, as the name implies, is located above the eye sobliet 18 called
“orbita”. The rectal gyrus, also called the medial orbitatugs, the anterior, lateral,
and posterior orbital gyri all belong the superordinatecem OFC.

1.2.2 Uncertainty and the brain

Decisions get uncertain whenever the predicted consegqaearfcactions are not
fully determined by specific stimulus-consequence-caimssior decision rules,
respectively. Prototypical are situations in which pe@wkeeither unfamiliar with
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Figure 1.3:Sketched is the right hemisphere shown from the midline.otiter
frame shows coordinates from Talairach and Tournoux (198B)e crosshairs
cut through the anterior and the posterior commissure (AC:Pwith vertical
orientation lines (VAC-VPC) perpendicular to AC-PC, respeely. Brodmann
Areas 6, 8, 9, 10, 24, and 32 are outlined and illustrated iaygcales (adapted
from Talairach & Tournoux, 1988).
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the decisive specialties of the initial state or with the ngeand-relations or both.

Being undecisive which action to choose is given in paradigmestigating
neural correlates of hypotheses testing, rule inductidificgal grammar learn-
ing, and motion or sequence predictions. Different fromsgireg and gambling
paradigms in which a probability matching approach mighd baccessful coping
strategy, the specified paradigms call for the set-up of @mémule-system via
feedback evaluation. The posterior frontomedian cortexveld to be involved in
hypotheses testing compared to guessing (Elliott & Dol&@98], in rule induc-
tion compared to deduction (Goel et al., 1997), and in legyrairbitrary grammar
rules (Fletcher et al., 1999). Interestingly, the study o and Dolan (1998)
revealed that it seemed not to be decisive whether a rulerayattually exists
rather it seemed to be crucial that participants believetthénexistence of a de-
tectable rule system.

Increased activation within pre-SMA extending into me®8al 8, has also
been observed whenever conflicts arose about the correspomtbetween a per-
ceived event and the appropriate action selection (Ulgre& von Cramon,
2001). Participants had to perform a speeded modified flartlesk. Brain ac-
tivation within BA 6/8 that was related to response compmtitvas taken to be
reflected by the contrast incompatible correct trials v@mampatible correct tri-
als. Likewise, activation within mesial BA 8 near the borteBA 6 was found
when participants had to predict serial events in incrghginomplex stimulus
trains (Schubotz & von Cramon, 2002).

Being undecisive which action is to choose may also be dumpmifectly
known rules, e.g., complex categorization rules. Disttogbaradigms requiring
the set-up of a rule system, specified paradigms ratheraralirf accurate defi-
nition of the rules (e.g., necessary or sufficient rules). é&@mple, in the study
by Goel and Dolan (2000) a concrete stimulus property w&edirto a specified
response, in form of an if-then-rule. Required was a sarffieveint response and
the rule was “if the animals have the same tail and abdomeditomms, then they
are the same type of animal” (Goel & Dolan, 2000, p.110).i€lp&nts were con-
fronted with a variety of animals holding different tailsteambdomen. Uncertainty
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in response selection was due to a insufficient descriptidheo“same-set” and
the “different-set”. Yet, the task was soluble by carefuttpnitoring and evalu-
ating the feedback information. Application of arbitrarydansufficiently known
SR-rules (compared to baseline condition) elicited atitwawithin the mesial
prefrontal cortex (BA 8) (Goel & Dolan, 2000).

The finding that BA 8 seemed to be involved in uncertain denssiis con-
firmed by the neuropsychological interpretations of lesitmthe frontomedian
cortex. Patients with lesions to the frontal cortices betwéoth hemispheres
showed severely impairment both in coping with routineaias well as in the
production of goal-directed ideas in novel situations (@amon & Matthes-von
Cramon, 1994). The latter aspect is a crucial requirementhf®o generation of
predictive and preliminary working hypotheses in orderdiwe problems (Hussy,
1984). Patients with lesions to the frontomedian wall, véhoscurrence is often
resulting from anterior cerebral artery infarction, ararttterized by hypobulia,
i.e., cessation of movements despite intact locomotoresysand an increased
dependence on external stimulation (von Cramon & Mattlms@ramon, 1994).
Accordingly, it could be assumed that lesions to the fromdian cortex lead to
a lack of internal stimulation, i.e., the production of gdaiected ideas, result-
ing in an inability to cope with problem solving situationsdecision situations,
respectively.

Together, activation within the posterior frontomedianternwas elicited when-
ever uncertainty arose which action has to be chosen. Howthe specified
studies manipulated uncertainty mainly via the increassdpdexity or via the
insufficiency of knowledge, i.e., via internally attribdtencertainty. But, which
brain areas would be involved in externally attributed utaipty, e.g., with prob-
abilistic learning tasks?

The investigation of neural correlates with externallyibtited uncertainty is
just emerging and results are relatively diverse (e.g.l€@lark, Owen, & Rob-
bins, 2002; Elliott et al., 1999; Nieuwenhuis et al., 2008|dPack et al., 2001).
Probabilistic learning tasks are characterized by praistibicue-outcome rela-
tions based on trial-by-trial feedback (Poldrack et alQD0
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A recent fMRI study by (Nieuwenhuis et al., 2003) using a ptalistic learn-
ing task revealed an area at the border between BA 8 and Bib 82 significantly
activated for response errors and negative feedbackyioge activation following
incorrect responses than correct responses and moretiactif@lowing negative
feedback than positive feedback. The activation is sugdestbe involved when-
ever events are worse than expected. Activation within BASdso been found
with probabilistic reversal learning tasks (Cools et alQ2). The authors found
more activation following final reversal errors than cotmessponses. A final re-
versal error in their paradigm constitutes in the time painvhich participants
started to respond to the previously irrelevant stimutygard association, i.e.,
the time point at which the evaluation of the feedback sigmhdbr a rule change.
The probabilistic weather prediction task by Poldrack amittegues (2001) con-
trasted against baseline revealed the basal ganglia (rsuckudatus) to be sig-
nificantly activated and a “widespread activation of catticegions” (Poldrack
et al., 2001, p.547). The task of the participants was toigrredin or sunshine
depending on a particular set of cards.

An extreme form of probabilistic contingencies is représdnn guessing
situations. Guessing is characterized by the fact that élionship between
the response and the desired outcome is entirely deternipethance. Elliott
and co-workers (1999) described the process of guessinmalkirig choice re-
sponses under incompletely specified situations” (Eléotl., 1999, p.403). The
task employed in this guessing study required a predictfagitber the color or
the suit of a playing card. Note that cards were not placed b#o the pack,
so that the observation of the relative event frequenciesavsuccessful coping
strategy (Ayton, Hunt, & Wright, 1991). Accordingly, if ditbutions of stimu-
lus properties are known, e.g., the rates of suits and ¢cdleesbest way to deal
with uncertainty in such guessing tasks is to adopt a prdibalbmatching ap-
proach. The observation of relative frequencies resuitinthe translation into
valid probability metrics implies a constant evaluatiorfe#dback across the en-
tire experimental session. Since single trials in such gjnggasks do not imply
any information about performance a cross-trial procgssfrfeedback informa-
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tion is required. Accordingly, Elliott and co-workers (¥9nferred from their
results that the medial orbitofrontal cortex is dealinghwitie process of extract-
ing information across a number of trials, i.e., feedbacduation in guessing or
gambling paradigms. Guessing compared to reporting wasiassd with signif-
icant activations within the OFC, the ACC, and medial prefab cortex inter alia
(Elliott et al., 1999). In accordance with these results;i2ea, Damasio, Tranel,
and Andersen (1998) suggested the medial orbitofrontaéxdthe authors refer
to this area as the ventromedial corte, i.e., BA 25, lon#f32, medial aspects of
11, 12, and 10) to be involved in the process of forming an@aton between a
stimulus and its averaged reward value. The authors usédwiaeGambling Task
in which participants are required to figure out the advagdag stimulus which
is possible via cross-trial evaluation of feedback infatiiorg i.e., via reward and
punishment. Likewise, significant activations within OF@I&ACC were found
when investigating outcome anticipation in a reward-eglagamble, i.e., the pre-
diction about the most likely event. The two brain areas OR€ ACC showed
to be modulated as a function of outcome uncertainty (dgickt al., 2001). In
this study playing cards were used numbered from 1 to 10 aridipants had to
predict whether the next playing card would be higher or lotan the previous
card. That way, cards of value 1 or 10 elicited certain respsnwhile remaining
values carried different degrees of uncertainty, i.e.ptiodability of being higher
or lower approximated the true likelihood for a random set.

Anticipation and experience of monetary gain and lossesstityated by Bre-
iter and colleagues (Breiter et al., 2001) was accompanyesignificant activa-
tions within the OFC and a sub-cortical network including trentral tegmental
area (VTA) and the ventral striatum or nucleus accumberspecdively. Acti-
vation within the ventral striatum was also found by Knutsord co-workers
(Knutson et al., 2003) who investigated the anticipationnofeasing monetary
rewards. Moreover, the authors found the mesial prefrargekex to be signif-
icantly responsive when reward has been successfully raataisuggesting the
mesial prefrontal cortex to be involved in tracking rewagloutcomes.

Note, however, that the strategy of monitoring cross teadback informa-
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tion cannot be successful in “true” gambling tasks, e.@yiplg roulette. This is
because event probability is the same on each trial indgmeérfctbom event oc-
currence on the previous trial, thus, the sampled feedldoknnation cannot im-
prove performance (compare 1.2). Yet, the employed tasttigited gambling
studies mostly did not use such “true” gambling tasks.

1.3 Open questions

The synopsis about recent imaging studies revealed therpmsfrontomedian
cortex around mesial BA 8 to be central in cognitive procgsseolved in un-
certain decisions. By contrasting hypothesis testing vaiponse selection, rule
learning with item learning, guessing with reporting, intive reasoning with de-
ductive reasoning, receiving monetary reward with anéittiig reward, response
conflict with no conflict, or final reversal errors with corteesponses, these stud-
ies suggest a general difference between processes unckntainty and those
which are quite certain. However, wherefrom uncertaintgegr is neglected so
far, likewise is the mode of assessing uncertainty in decisnaking. To date,
there are no studies directly comparing the neural cogelaf externally at-
tributed and internally attributed uncertainty neitheicognitive psychology nor
in cognitive neuroscience.

Hence, it would be interesting to compare these two variahtmcertainty
and test whether this concept describes psychologicalsstaity or whether it will
correspond to distinct brain networks. Thus, it is not cleéhether or not variants
of uncertainty differ on the cerebral level. The questiomaés whether exter-
nally attributed uncertainty would elicit brain activatiavithin the same brain
networks as internally attributed uncertainty.

On the one hand it could be assumed that the reason of umteneuld not
matter and activation would be found within the same bra@gasias uncertainty
is always due to a lack of knowledge. This assumption is supgdy Bereby-
Meyer, Meyer, and Budescu (2003) who concluded from thdiabieral studies
that the same cognitive principles govern choice behawitiné presence of both
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externally and internally attributed uncertainty. Moregvthe finding of BA 8
activation with probabilistic learning tasks would argue & common cortical
substrate.

On the other hand, it could be assumed that the reason oftaimtgrwould
matter and activation would be found within different braheas as the perceived
cause of uncertainty determines the coping strategy. Bsigmaption is supported
by Huber, Wider, and Huber (1997) who found that the requinginto actively
search for information, i.e., the coping strategy speciicifiternally attributed
uncertainty, was found to reduce the interest in probghiiformation, i.e., the
coping strategy specific for externally attributed undatya This finding sug-
gests that the strategies involved in the former and lattigamt of uncertainty are
somehow negatively correlated. Moreover, since the pexdaiontrollability has
been shown to constitute an important factor for psychokdghealth (Hatfield
et al., 2002; Zimbardo, 1988) it is reasonable to assumeutiatrtainty due to
external factors would constitute a completely differesyghological state than
uncertainty due to internal factors. In the latter situageople know that they
are generally empowered to resolve the uncertainty. Thindi®n of uncer-
tainty into external versus internal, made by many authordeicision research
(e.g. Budescu & Walllsten, 1987; Heath & Tversky, 1991; Kahae & Tversky,
1982; Teigen, 1994), emphasizes the assumption of diffesrebral correlates.

In view of the given literature it could be expected that utaiaty, no matter
of the reason, would be reflected by brain activations wiffontomedian areas
around mesial BA 8. As strikingly similar frontomedian &ations were found
by many different paradigms, all reflecting uncertaintyhie bne or the other way,
both, externally as well as internally attributed uncetigi could be expected to
be reflected by activation within BA 8 in the same way with exgfo activation
intensity or extension. This assumption implies that utaiety is a mode of the
brain and not specific for the one or other variant of uncetyaiHowever, since
different variants of uncertainty have not been comparstesyatically within the
same paradigm, it may also be that the two are distinguishatitording to acti-
vation intensity or/and the extension of the involved bragétworks. If this holds
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true, externally attributed uncertainty is expected taespond to stronger fron-
tomedian activations similar to guessing situations waeliaternally attributed
uncertainty may induce additional activation within braireas reported to sub-
serve working memory functions, i.e., lateral prefrontattex and posterior brain
areas (Fletcher & Henson, 2001; Owen, 2000) Aside from tlestipn of neural
correlates of variants of uncertainty it is not clear whetbenot different de-
grees of uncertainty would draw a distinction on the celdbval. Everyday ver-
bal protocols suggest that people are used to differertigti®een subtle degrees
of uncertainty. Examples of qualitatively expressed utaiety are “probably”,
“maybe”, “certainly”, or “I am not sure whether..”. Sometis people also use
words referring to frequencies with which events occur fikever”, “frequently”,
“rarely”. These fine graduations in language suggest ardifiee between almost
certain or fairly certain situations. Thus, it would be verieresting to investigate
whether or not different degrees of uncertainty would beoéfld by modulations
within the involved brain areas. For example, would it maldifierence on the
cerebral level when subjects say that they are certain v@th 6r with 100%? It
is expected that decisions under higher uncertainty arectefl by an increase in
activation within the involved brain areas. This is not &hackneyed, since being
more or less (un-)certain might as well be conceived of amalsi dual mode in
the brain with with no degrees in between.

As carried out above, it could be argued that from a detestinpoint of
view uncertainty is always due to a lack of knowledge. Itdwls from that the
the search for domain-specific information could lower utaiety by reducing
the range of all possibilities to the relevant alternativ@snerally, the preference
for one option develops over time by comparing what has bebieeed to what
was initially wished to achieve. That way negative and pasiteedback signals
for an attitude change or for an attitude maintenance, otispt. Thus, only
with the knowledge of results is learning and performancprovement possi-
ble. As the amount of positive feedback increases so doesl&dge about the
adequate solution strategy. Hence, the two factors, iszrgaamount of posi-
tive feedback and the increasing amount of relevant knaydedre confounded
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by nature. However, if uncertainty actually depends orvesieknowledge, then
solely an increase of relevant knowledge, indicated bytpesieedback, should
lower uncertainty. In contrast, an increase of exclusipalgitive feedback should
not lead to a reduction in uncertainty. Thus, the questitgearwhether activa-
tion in areas modulated by uncertainty of knowledge, whighhypothesized to
be frontomedian areas, is reduced only by increasing theuatad knowledge

or whether an increase of positive feedback simulating aquséearning process
would also reduce activation within frontomedian areasit the case that un-
certainty of knowledge depends on the relevant knowledgm an increase of
positive outcomes should not lower frontomedian activatiad thus should lead
to different cerebral effects than an increase of relevantedge.

1.4 Implementation

Open questions are: (1) whether or not externally and iatlgrattributed uncer-
tainty differ on the cerebral level; (2) whether or not highad lower degrees of
uncertainty draw differently on the involved brain areasj &) whether or not an
activation reduction within the involved brain areas canl@sively be achieved
by a real learning process. The present studies set out éstigate brain cor-
relates of uncertainty in decision making using fMRI. Youreplthy adults per-
formed a forced choice task in which they had to predict whithwo concur-
rently presented stimuli would win in a virtual competitigame. By varying the
pre-experimental instruction, training, trial cues, ahd tetermination of event
occurrence different types and degrees of uncertainty aisien making were
induced.

Externally attributed uncertainty, i.e., uncertainty méduency, was induced
by varying the winning probabilities according to specifiéidning rules. To each
stimulus combination a specific winning probability wasigised ranging from
p=.6 to p=1.0 that did not change during the experiment. &ith, different
degrees of externally attributed uncertainty were induced

Internally attributed uncertainty, i.e., uncertainty afokvledge, was induced
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by varying the degree of instructed knowledge about winminlgs. This was
achieved by using the task instruction and trial cues to ge@elistinct degrees
of knowledge uncertainty. The task instruction corresohi knowledge about
differently well known valid decision rules, whereas thaltcues corresponded
to knowledge about the valid decision rule within a specifigagion. Accord-
ingly, decisions differed in terms of the necessity to aptggt or search the valid
decision rules, thereby inducing different degrees of Kedge uncertainty.

The factorvariants of uncertaintyvas varied between subjects, i.e., one group
of participants thought of a lack of determination of eveotwrence as being
part of the external world (Experiment 1, Exp.1) whereadfarogroup attributed
uncertainty to internal states of knowledge and belief @ipent 2, Exp.2). The
factordegree of uncertaintwas varied within subjects and variants of decision.

In both experiments a control condition was employed in Wiparticipants
knew exactly which stimulus would win since an external amdidated the win-
ning one. Thus, participants decided with absolute cagta®ognitive processes
related to perception, general attention, or motor outimat, were of no interest
in the present experiments, were intended to be subtracteldyokeeping their
influence constant over all compared conditions. Hencesgpéuwal stimulation,
trial structure, and motor requirements were the same nvéticonditions.

The third experiment (Experiment 3, Exp.3) set out to ingasé whether ac-
tivation within brain areas modulated by knowledge undetyavas exclusively
reduced by increasing the amount of relevant knowledge ethén an increase in
positive outcomes was comparatively powerful. The samer@xgntal paradigm
was used as in Exp.1 and 2. By employing two learning conwitithe validity of
the supplied feedback was manipulated. In the case of vaditsihn rules, partic-
ipants were supplied with feedback dependent on their resspahereby reducing
knowledge uncertainty due to a set-up of relevant knowledigeontrast, in the
case of invalid decision rules, participants were supplwetl feedback indepen-
dent from their response. In fact, the feedback was modsiedgre-determined
learning curve derived from pilot data. That is, particiizawere supplied with
increasing positive feedback but they had no chance to hpila relevant knowl-
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edge base. By doing so, it was intended to separate thestfaetto increasing
knowledge from effects due to increasing positive feedback



Chapter 2

Methods

In order to investigate the relation between cognitive psses and the underlying
brain areas, dedicated methods are developed during théeleades. For exam-
ple, functional neuroimaging methods like positron ensissomography (PET)
and fMRI made it possible to identify changes in neural #gtiwith regard to
specific aspects of cognitive processing in particular witharts of the human
cerebral cortex.

During the last two decades fMRI has rapidly become the mietahoice
to study neural correlates of behavior. The reason why tegracientist became
so enthused about fMRI are its prominent advantages. NaridRl does not
require injections of radio-isotope (as compared to PET)iamon-invasive in
other respects. The spatial resolution is unexelled attabda 3mm and the
temporal resolution is about 1s. Due to the spatial resoiutind in contrast to
other imaging techniques, it is possible to look at deepubieal structures.
Importantly, repetitive measurements are possible, the. possibility to rescan
a single subject as often as desired. Furthermore, by uSIRd it is possible to
conduct single-subject analyses. And last but not leastpidssible to use already
existent MRI scanners.

In general, fMRI creates digital images displaying locafjes in blood flow,
i.e., hemodynamic measures. The physiological parambgerges in blood flow
are conceived of as an indicator for neural activity. TheneffMRI represents an

37
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eminent dedicated method to generate maps of cognitivetaegi

However, it would be insufficient to leave it with a numeratiof solely ad-
vantages of fMRI. Also fMRI comes along with some disadvgata The method
has to deal with the problem of susceptibility artifacts.aflts the problem of
signal loss in brain regions adjacent to air filled cavitidsich posses different
magnetic properties than brain tissue not bordering sudgities e.g., air sinuses
(see below). The crucial question whether the activateal isreausal (necessary)
for the investigated function (or whether it is just a cohatton) can only be
answered for particular regions (e.g., primary visual @grt However, in order
to investigate whether or not specific activations depicggiphenomenon, addi-
tional information is needed to be integrated, e.g., data fdrug related changes
in activation, patient data, or data from virtual lesionsusjng transcranial mag-
netic stimulation (TMS). The allegation of “neurophrergjd may be met by
the approach to measure functional integration in termdfe€tve connectivity.
The underlying assumption is that each function is detezthlvy its connections.
By manipulating the interregional interactions, based met@mical connections,
information about co-activations and necessity of adtivet could be gathered.
However, this approach is yet limited to regions whose anatal connections
and function are sufficiently determined and remains tor&usiudies.

In the following the physical as well as the physiologicasiba of (functional)
MRI will be explained. Further on, the different steps of tta#a processing and
the statistical evaluation of functional magnetic resa@gaimages which were
conducted in the present experiments will be describedtamildéor an overview
about fMRI see for example Bandettini & Moonen, 1999; Fradkf, Friston,
Frith, Dolan, & Mazziotta, 1997). Completing, the risks drficipating in a
fMRI study will shortly be mentioned.

2.1 Physical basics of MRI

Already for a couple of years the method of magnetic resamamaging (MRI)
has been used in the clinical domain in order to visualiz¢oanmigal structures.
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(HMRI is based on the fact that the protons of the water mdéscpossess a spin,
i.e., a rotation around their axis. As the protons possesdeatrical charge the
rotation causes an electrical circular flow which producesagnetic dipole mo-
ment. If a water probe (e.g., water of the human brain) is sggdo an external
constant magnetic fiel8y of a MRI scanner, it gets magnetized. The net mag-
netization (sum of the magnetic dipole moments) increaststhe strength of
the external constant magnetic field and is directed towBedwhich is called
the longitudinal direction. If the magnetization is notdrated in direction o8y,
the orthogonal (transversal) component of the magnetizasi precessing in the
transversal plane t8,. The frequencyw of the precessing magnetization, the
so-called Larmorfrequency, is given by=y Bg. Yy is the gyromagnetic ratio of
the protons, which is different for different materialsdadescribes the coupling
of the spin and the magnetic dipole moment. Generally, teegssion frequency
increases with the strength of the external magnetic field.

If the magnetization is balanced in direction 84, no signal is measurable.
However, in order to receive a measurable signal, tranabveragnetization has to
be produced. This is done by exposing the water probe to firbd®-frequency
(RF) pulse. The RF impulses must have the same frequerasy/ the precessing
magnetization so that the protons can receive part of theriRFgg. This phe-
nomenon is termedesonance In sum, the RF impulse results in a decline of
the longitudinal magnetization and in a generation of taegdversal magnetiza-
tion. Past the excitation the signal decays freely. Thierisied the free induction
decay (FID), which is determined by the relaxation paramseté T1, T2, and
T2* which will be explained more detailed in the following.h& parameter T1
describes the relaxation of the transverse magnetizatimartls the longitudi-
nal axis. As this process is induced by the interaction ofnlagnetization with
the surrounding lattice, it is called the spin-lattice xelfon. The progression
of the longitudinal relaxation is slow so that the param@tgris usually used
for anatomical measures. The transverse relaxation of #gnetization is de-
scribed by the parameters T2 and T2*. The T2 process desdtieecoherence
loss of the spins due to spin-spin relaxation, while T2* eeuee effect of mag-
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netic field inhomogeneities which are caused by physioldgiarameters like
the blood oxygenation. The latter effect is essential foRIMt is important to
note that deoxyhemoglobin is paramagnetic (i.e., possaasgnetic properties)
as compared to oxyhemoglobin. The latter does not differ agmetic suscepti-
bility from other tissue or water, thus, resulting in a horaoegous local magnetic
field. Accordingly, oxyhemoglobin accounts for the longewf the signal. In
contrast, the presence of paramagnetic deoxyhemoglobiftsén an increase of
local inhomogeneity which in turn makes the nuclei to pre@slightly different
frequencies. Hence, the higher the level of deoxyhemoglti® faster the signal
decays. By changing the oxygenation state of the blood,gdgam MRI image
contrasts can be obtained. The detectioblobd oxygenleveldependent changes
in the MRI signal is done via the internal contrast agent gtheroglobin. This
method is terme@OLD contrast(see 2.2).

In order to define the origin of the signal, a spatial encodéngecessary. In
order to achieve this information another magnetic fieldigesimposed onto the
external magnetic field. By doing so, the external magnesid fvaries linear
in space. Hence, the application of gradients in three déines allows for a
localization of the measured signal (for example, D’Esjgogiarahn, & Aguirre,
1999; Orrison, Lewine, Sanders, & Hartshorne, 1995)

2.2 Physiological basis of fMRI and the BOLD effect

The most common method of fMRI is BOLD contrast imaging (fitsinonstrated
by Ogawa & Lee, 1990), which will be explained in detail in flofowing. Is a

population of neurons active, their metabolism is enhaniced the consumption
of oxygen and glucose is increased. As a result, neural g\@stfollowed by
an increase in regional cerebral blood volume (rCBV) andemjianal cerebral
blood flow (rCBF). This mechanism is termedurovascular couplingRoland,

1993). The supply of oxygen is exceeding the consumptioh #oat the con-
centration of oxygenated hemoglobin increases whilst tircentration of de-
oxyhemoglobin decreases. By virtue the rate of oxygenatedddeoxygenated
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hemoglobin is changed. By using the magnetization diffeedretween oxy- and
deoxyhemoglobin a fMRI signal is created. If the rate of axyated and deoxy-
genated hemoglobin is changed subsequent to a neural sespotecrease in spin
dephasing within the involved brain area appears and subs#ly an increase in
the fMRI signal. The change in the rate of oxy- and deoxygahaemoglobin is
taken as an indicator for increased regional cerebral bilowg which in turn is
assumed to indicate neural activity. That way, a brief iaseein neural activity
results in a slow time course of the fMRI signal change, tlee, hemodynamic
response. The sluggish nature of the fMRI signal changédtsdsia limited tem-
poral resolution of the signal to a few seconds (D’Espodital.e1999).

The BOLD signal has several key determinants. Namely, aftdelay of
approximately 2s neural activity triggers an increasegnai intensity. The max-
imum of signal intensity occurs after 4-6s. Within 5-10safteural activity the
signal falls to circa 10% of its basis value and fades awasr dfd-12s. Often a
subsidence of signal intensity below the basic value isrkseand that is called
an undershoot. In general, the hemodynamic response ecstibjvariability due
to several different sources, e.g., intra- and inter-iioldial variations as well as
physiologically related variations (such as caffeineptiie, or hormone level).
The latter is met by standardization of experimental im@etation. Within one
participant during one experimental session no signifizarigbility in multiple
hemodynamic responses is reported. Likewise, no signtfaif significant but
only small variability effects within one participants ass experimental sessions
over several days are observed. Yet, significant varigleffiects between partic-
ipants within the same brain area are reported (Aguirrealtar& D’Esposito,
1998).

Using the BOLD contrast, neural activity is measured iretiyevia its as-
sumed hemodynamic correlate. However, recently Logahetiuls, Augath, Tri-
nath and Oeltermann (2001) could show that the BOLD respdingetly reflects
an increase in neural activity, i.e., the neural responsestanulus. By the simul-
taneous acquisition of fMRI and electrical data in monkénssauthors found that
the BOLD signal reflects synaptic activity, i.e., the loagbut and intra-cortical
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processing of a population of neurons in a given area, rattar the spiking
activity. Yet, it is suggested that the BOLD contrast unaes neural activity
(Bandettini & Ungerleider, 2001).

2.3 Potential risks of participation in fMRI experiments

Despite the classification of fMRI experiments as harmlbesetare some aspects
to consider. Participants are brought into a very high migrield usually 1.5
or 3 Teslat Therefore, it is immense important to exclude subjects wihe
makers or with other metalloid objects inside their bodiesnf participation. For
the same reason, participants are searched for metakwoi itvhich could could
cause serious injuries if brought into a high magnetic fiBleyond, the diameter
of the magnetic resonance tomograph accounts only for appBrm. Some peo-
ple might perceive this as too constricted, especially [geojith claustrophobia.
Those people also have to be excluded from participatior. afiplication of the
gradients result in a great noise exposure of around 120tbutiear protection.
Thus, participants must wear ear plugs. In order to ensuimalsecurity, partic-
ipants’ pulse is monitored during the whole experimentakgm. Furthermore,
participants have the possibility to communicate via aarctmmunication sys-
tem or in serious cases can operate an alarm. Above all, 8&iRhdxperiment
has to be designed according to ethical guidelines and d&Rhdxperiment has
to be approved by the local ethics committee of the respeativersity.

2.4 Analysis of fMRI data

The result of a fMRI study is a time sequence of digital (2Dages taken every n
seconds within each defined cubical measuring unit whickrimeéd avoxel(vol-

ume element). Animage matrix in the present experimentaowm64x64 voxels
that have a spatial within-plane resolution of 3x3mm withirger-slice distance

1The strength of a magnetic field is measured in Tesla (T) or &&Bis whereby T = 10.000G.
Comparative, the strength of the earth magnetic field adsdon0.3-0.7 G.
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of 2mm and a slice thickness of 5mm. The main objective of fidiRHies is to
obtain a statistical parametric map (SPM) that depictantaedas significantly re-
sponding to a specific experimental condition. This reguseveral preprocessing
and evaluation steps that will be described in the followiAdl evaluations are
conducted by using the software package LIPSIA (LeipzigdenBrocessing and
Statistical Inference Algorithms) by Lohmann and co-waosk@ohmann et al.,
2001).

2.4.1 Preprocessing

Several preprocessing steps are required prior to stafigvaluation to improve
the data quality and remove artifacts due to motion, slicgu&dition, and low
frequency drifts (which are due to physiological or techhieasons). Scarcely
anything can be done to correct for artifacts due to sudmiéfgtigradients, i.e.,
the material dependent property of being magnetized in tamreed magnetic field.
Susceptibility gradients occur specifically in tissuesdaoing air-filled cavities,
e.g., in the orbitofrontal or anterior temporal cortex. &ffed areas should be
excluded from investigation or interpretation.

In all present experiments time sequences of 2D images \vaken tevery
2.5s. Functional data were corrected for 2D motion arifacting a matching
metric based on a linear correlation. This means that then2iyés were geo-
metrically rotated and shifted until a satisfactory matdtina reference scan was
acquired. The slices acquired in the fMRI studies were a#ifunot measured
simultaneously but sequentially. This offset in slice asiion may affect the
statistical analysis and was therefore corrected. A siterpolation based on the
Nyquist-Shannon-Theorem was applied to correct for theoteal offset between
the slices acquired in one scan. In the course of fMRI stusl@s signal-drifts
may occur due to physiological (e.g., blood pulsation, iraspn) or technical
reasons (e.g., lower signal values on average at the bagimfia scan than to-
wards the end). Changes in the average signal intensitybaseline drifts, were
corrected by using a temporal highpass filter. The undeaglgissumption is that
the signal fluctuations are best described as low frequemtyponents of the sig-
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nal. Additionally, noise within the data can be lessened exfguming spatial
smoothing using a Gaussian filter kernel. In all present ixgants a temporal
highpass filter with a cut-off frequency of 1/170 Hz was usadlie baseline cor-
rection of the signal and a spatial smoothing using a Gaug#iar kernels with
5.65mm FWHM was applied.

2.4.2 Spatial transformations

Generally, images have to be preprocessed so that they ameegécally aligned
with each other and conform to a standard anatomical spage tlee Talairach
stereotactic space (Talairach & Tournoux, 1988) (see l.Hgnce, in order to
warrant comparability between subjects and subsequengdlytimit a group anal-
ysis the fMRI data of all subjects were rotated and scaleti that the data sets
were geometrically aligned with each other. As a standagtestactic coordi-
nate system the Talairach-space (Talairach & Tournoux8)L@&s used in all
present experiments, therefore, local maxima were reghavith their respective
Talairach-coordinates and Brodmann Areas. In a separasiose3D high reso-
lution T1-weighted images were acquired for each subjetthé experimental
session 2D anatomical slices were acquired using a MDEFTdifMd Driven
Equilibrium Fourier Transform) sequence. These slicesveerregistered with
the 3D full brain scan that resided in the stereotactic doatd system and then
transformed by linear scaling to a standard i¥85«175«120mm). The trans-
formation parameters obtained from this step were subsdguapplied to the
functional slices so that the these were also registeredliat stereotactic space.
The last step of the preprocessing consisted in the tranaf@n of the 2D func-
tional data into the three-dimensional space. Accordirglige-gaps were scaled
using a trilinear interpolation, generating output datéhvai spatial resolution of
3x3x3mm27mn?) per voxel. In order to improve the described linear normal-
ization a subsequent preprocessing step was conductamparf an additional
non-linear normalization: Each anatomical 3D data set vedisrothed such that
it matched a 3D anatomical data set that served as a modekimBlge result
was a deformation field describing where each pixel in ona dget should move



2.4. ANALYSIS OF FMRI DATA 45

so that it matched a corresponding pixel in the model dataTdes deformation
field was then applied to the results obtained from the $sidlsanalysis (contrast
images), i.e., linearly normalized 3D contrast images. [IRSIA the non-linear
normalization is based on an algorithm invented by Thirit®9g).

2.4.3 Statistical evaluation

The main objective of the statistical evaluations is to find @epict areas that
are significantly responding to a specified experimentatitmm via the attain-
ment of a SPM. In short, this is achieved by calculating aryaisof variance
(ANOVA) separately at each voxel. Voxel-widestatistics from the results of the
ANOVA are generated. Subsequenthgtatistics are converted intescores. The
resulting SPMZ} are then superimposed on an anatomical high resolutiondmag
S0 as to visualize the functional data (see 2.5).

The measured fMRI signal could best be expressed by the kaioro of
the stimulus (described by the stimulus function) and thaddynamic response
function. The hemodynamic response function itself wasesqed by basis func-
tions. In the present event-related designs the hypo#iét@nodynamic response
function was explicitly modeled for each stimulus. Genlgréhe number of em-
ployed basis functions influences the parameter estimatlenally, only the am-
plitude of the function, expressed in the first basis fumgtis tested. However,
by using more than one basis function, i.e., its first and @ @terivative, both
stimulus-dependent as well as regionally specific aspddtseaesponse can be
taken into account. Therefore, the design matrix was géeebnailizing a syn-
thetic hemodynamic response function and its first and skderivative (Friston
et al., 1998) and a response delay of 6s.

In the present proceeding, the statistical analysis wasthas a least-squares
estimation using the general linear model (GLM) for seyialutocorrelated ob-

2In order to account for serial autocorrelation, the modelagign, including the observation
data, the design matrix and the error term, were convolvedav@aussian kernel with a dispersion
of 4 sec FWHM. The effective degrees of freedom were estimated as deddribé&/orsley and
Friston (1995) and in Seber (1977).
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servations (random effects model) (Aguirre, Zarahn, & [p&sito, 1997; Fris-
ton, 1994; Worsley & Friston, 1995; Zarahn, Aguirre, & D'Esjito, 1997). This
means, it is assumed that the variation of the measuredI| gighaould be ex-
plained in terms of a linear combination of the explanatasiables (experimen-
tal conditions X[3) and an error termej: Y = X3+ €. This linear combination is
called a fitted response. The parameters (betas) corragsgamceach of the pre-
dictors were unknown and had to be estimated based on sslgaastes estimation.
Errors were assumed to be independent and identically igrdistributed with
a mean of zero.

In the following, contrast maps, i.e., estimates of the saare differences
between specified conditions, were generated for eaclosemsil subject. As the
individual functional datasets were all aligned to the sateeeotactic reference
space, a group analysis could be performed. For multi@essialysis, specific
hypotheses were tested by usingsatistic and a weighted linear combination of
the effects which is also called a contrast vector. The tiegui-values indicated
the significance of a certain effect voxel-wise, i.e., wletharameters differed
significantly (Holmes & Friston, 1998; Worsley & Friston,9%). Subsequently,

t values were transformed intsscores resulting in a statistical parametric map
(SPM{Z}) indicating the statistical significance voxel-wise. lnlerto minimize
the probability of false positives (type | error) only voselith az-score greater
than 3.09 P < 0.001 uncorrected) and with a volume greater than 228° (5
voxels) were considered as activated voxels. In all threeéments group anal-
yses were calculated by using a voxel-wise random effectdemwith subject
serving as the random effect, i.e., allowing for the expoesef each subjects’ ac-
tivation to be modeled as a random variable. By comparingteeage activation
to the variability of the activation over subjects it is pibses to make inferences
about the population where the sample is drawn from (Fridtmhmes, & Wors-
ley, 1999).
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2.5 Visualization

The resulting SPMZ were superimposed on an anatomical kigiution image
and for a good perceptibilitg-values were color-coded. The functional data from
the present studies were all superimposed onto the saman@inat image. The
chosen anatomical image was an individual brain showingrly farototypical
course of gyri and sulci (see Figure 2.1). In the followingulés sections various
views from the superimposed functional and anatomical @sagere generated to
illustrate the results. By using a specific threshold forzivalues it was possible
to mask only those voxels that are below the chosen threshdid threshold of
z-values was color-coded such that valueZ ef 3.09 were displayed as crimson
and the higher the-value the brighter the color (up to bright yellow) (see Faju
2.2).

Figure 2.1:Left, median, and top view of the anatomical image which vezsiu
as a reference image.

Figure 2.2: Displayed is the color ramp which is used to indicate sigaifity
activated z-values. The crimson end of the scale referssedues of Z= 3.09.
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2.6 Procedure of the fMRI

In the following the technical details will be reported appd to all three fMRI
experiments which were conducted at the Max-Planck-Llistibf Cognitive Neu-
roscience in Leipzig, Germany.

Imaging was performed at 3 Tesla on a Bruker Medspec 30/116rsyequipped
with the standard bird cage head coil (SGRAD Mkl 580/4QWB\GNEX Sci-
entific Ltd., Abingdon, UK). Slices were positioned parkitethe bi-commissural
plane (AC-PC) with 16 slices (thickness 5mm, spacing 2mnagkng the whole
brain. A set of 2D anatomical images was acquired for eacticgmnt imme-
diately prior to the functional experiment, using a MDEFTj@ence (256x256
pixel matrix). Functional images in plane with the anatahicmages were ac-
quired using a single-shot gradient EPI sequence (TE=364x§4 pixel matrix,
flip angle 90, field of view 19.2cm) sensitive to BOLD contrast. During leac
trial, 2 images were obtained from 16 axial slices at theo&#5s. In a separate
session, high resolution whole brain images were acquimad £ach participant
to improve the localization of activation foci using a T1ligl#ed 3D segmented
MDEFT sequence covering the whole brain.

Participants were instructed immediately before the MRlegzinent. In the
MRI session, subjects were supine on the scanner bed withriblet and left
index finger positioned on MRI-suitable response buttonms.ortder to prevent
postural adjustments, the subject’'s arms and hands weséutharstabilized by
tape. In addition, form fitting cushions were used to prewnt, hand and head
motion. Participants were provided with earplugs to atté@wscanner noise. Vi-
sual stimuli were presented with VisuaStim (Magnetic Resae Technologies,
Northridge, USA), consisting of two small TFT-monitors géa directly in front
of the eyes, simulating a distance to a normal computer moaftabout 100cm.
In the case of ametropia participants used either their ewsds or were supplied
with appropriate ones. Participants were excluded fronsthéies in the case of
color-blindness. After participants were welcomed at gimtatory they received
an instruction about the procedure and the task of the spexifierimental ses-
sion. Immediately prior to the functional imaging sessisubjects spent twenty
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five minutes in the scanner, so that they could acclimategatmfinement and
sounds of the MR environment. Past the experiment partitspaere debriefed
and thanked for their participation.

2.7 Design of fMRI experiments

Generally, there are two design classes in fMRI, blockedesedt-related designs
(Frackowiak et al., 1997). Blocked fMRI designs are chamaoed by a blocked
presentation of experimental trials, e.g., block of tr@adition A, block of trials
condition B, etc. Blocks usually last for 40-60s. Using tkisd of presenta-
tion design it it possible to dissociate hemodynamic respsmssociated with the
repeated presentation of stimuli or the constant perfooma one task, respec-
tively. The advantage of blocked designs consists in thatgmmount of repeti-
tions resulting in high statistical power. However, thisidae class comes along
with several disadvantages. Namely, a constricted rargfiimn of conditions,
the risk of possible confounds due to processes like manta of a particular
attentional set, or the impossibility to dissociate sigclanges within blocks.
Moreover, due to the predictable arrangement of conditparticipants usually
know beforehand what kind of task they would have to perfoaxtnAlso the
temporal structure of the experimental session becometicgable after a while.
Both factors could give rise to anticipation and habituatdfects.

The advent of event-related designs allows to overcome sdriese short-
comings. This design class allows to characterize and campemodynamic
responses to single stimuli or events independently franctntext in which the
stimuli are presented. Most importantly, event-relatesigles allow to randomize
stimuli/events so that evaluations are unaffected by ptessonfounds due to pro-
cesses like maintenance of particular attentional setsd&aization and coevally
balancing transition probabilities allow to exclude effedue to anticipation and
habituation. Due to unrestricted randomization and nedftifast presentation of
events, fMRI experiments differ hardly anymore from bebeaii or electrophys-
iological experiments. This offers a great possibility ngdstigate the functional
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relationship with behavioral measures, e.g., using eai@sror RT as parameters
or the investigation of post-hoc selected events basedrtinipants’ performance
(Burock, Buckner, Woldorff, Rosen, & Dale, 1998). Notehaligh the hemody-
namic responses add up linear it is possible to dissociafmnses to events that
are only separated by 2s (Clark, Maisog, & Haxby, 1998)ot less important is
the improvement of the temporal resolution. This can beesgltl by varying the
phase of the event relative to the data acquisition and byingakpeated mea-
surements such that being in synchrony with the data atiguiss not required.
For each stimulus/event the measured signal is describ@dcbyvolution of the
temporal stimulus distribution and the hemodynamic respduinction. In all
present experiments event-related designs were employed.

The specification of different contrasts allows to test faradiety of effects
which can be categorized into three broad classes, i.etrastiie, parametric,
and factorial designs. In general, the analysis of fMRI daliaws the method
of cognitive subtraction (Friston et al., 1996). That meamgnitive-behavioral
differences are correlated with brain activation by medmsoomparison between
tasks that differ in only the cognitive process of interagtrimot in sensory, motor
or cognitive requirements. The method of cognitive sulivadholds the assump-
tion of pure insertion. This means, it is assumed that théiaddf a cognitive
process to a preexisting set of processes does not affaut tiigenerally, the
method of cognitive subtraction is simple and offers a vdigotive way to map
functional anatomy (Friston, Price, Buechel, & Frackowia897). For example,
the null hypothesis that there are no cerebral differenedwden uncertain and
certain decisions could be rejected, if the main effect petpf task would be
significant.

In contrast, parametric designs are required if the mainddies on the in-
vestigation of brain regions that vasystematicallywith the degree of cognitive
processing. Parametric designs are used to investigateldtenship between
experimental parameters and the hemodynamic responss, thieicrucial differ-
ence between subtractive and parametric designs is thittheones imply the

3This is achieved by partialing out the overlap of hemodymamesponses.
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assumption that the cognitive process (of interest) carxpeessed to a greater
or lesser extent (Friston et al., 1997). Accordingly, ctigaiprocesses are not re-
garded as categorical invariants but rather consideredheendions or attributes
that can be expressed more or less. For example, amongsthottgs, the present
experiments aimed to investigate activation changes sutjeghe degree of un-
certainty in decision making. That means, by a parametii@tian of the de-
gree of uncertainty it was investigated whether the invblbeain regions vary
systematically with the degree of uncertainty. In geneyaé advantage of para-
metric designs is that no appropriate control condition tease employed and
additionally only the changes due to the experimental patars of interest are
measured. However, in all present experiments an appteprantrol condition
was employed in order to additionally test for the main taffhots.

In order to complete the overview of different experimemtasigns in fMRI,
factorial designs will shortly be mentioned as they wereraatized in the present
experiments. If the focus of research lies on the assessmh#im effects of one
manipulation on the effects of another manipulation, rgigubtractive (categor-
ical) nor parametric (dimensional) designs are apprapriddesigns associated
with this kind of research questions are factorial (intécex) designs. In this case
the two factors of interest are combined in the same expetime

2.8 Design of the present fMRI studies

In the following, a short description of the design in thesamat experiments is
given. However, a more detailed elaboration is carried é@r#spective chapters.

The first experiment (Exp.1) aimed to investigated brainmedates of exter-
nally attributed uncertainty, i.e., uncertainty of freqag By using a parametric
design it was tested whether different degrees of unceytaihfrequency are
reflected by modulations of the involved brain areas. An etgzkslow learning
effect in the course of the experiment was controlled andiaddlly it was tested
whether the same brain areas are affected or not.

The second experiment (Exp.2) aimed to investigate brairelates of inter-
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nally attributed uncertainty, i.e., knowledge uncertgify using a parametric de-
sign it was tested whether different degrees of knowledgemainty are reflected
by modulations of the involved brain areas. Comparable editist experiment,

a slow learning effect in the course of the experiment wagsetgn and therefore
controlled. Additionally it was tested whether the samerbaseas modulated by
knowledge uncertainty are affected or not.

In order to compare brain activations induced by externatltyibuted un-
certainty (Exp.1) to brain activations induced by intelyaktributed uncertainty
(Exp.2), a group comparison was calculated. This meanggethdting two sets
of contrast images from Exp.1 and Exp.2 were compared wigd-using a two-
sample t-test to examine the hypothesis that the mean ststathe two groups
differ significantly.

The third experiment (Exp.3) aimed at the investigationrofartainty reduc-
tion given internally attributed uncertainty. That waywiés tested whether ac-
tivation within areas shown to be modulated by knowledgesttamty is solely
reduced by increasing the amount of relevant knowledgéléaaning) or whether
an increase in solely positive outcomes (pseudo learnggpiinparatively pow-
erful. By using a subtractive design both main task effeots @ direct contrast
between the two learning conditions were calculated.



Chapter 3

Experiment 1

3.1 Introduction

In real life situations predictions are made on the basisxpketations about
which event is the most probable to come up. Dependent orrélqedncy with
which we experienced that an evenhas followed the type of situation we face
again, predictions are made with more or less certainty. rdferoto come up
with a stable representation about event frequencies weftite have to face
the same type of situations over and over again, i.e., wahgo-callednatural
sampling(Gigerenzer, 1994; Hasher & Zacks, 1979; Kleiter et al.,799The
acquired representation of probabilities of event ocawees applied to external
stimulus properties, so that a distinction between diffdyeprobable events is
possible. The high accuracy of frequency estimations ebsgein humans con-
firm the vital meaning of correct estimation of event frequies in many adap-
tive behaviors (Betsch, Plessner, Schwieren, & Gitig,12@®delmeier, 1999).
Like guessing and gambling, probability-based predictiare charged by exter-
nally attributed uncertainty. In contrast to internallyriguted types of uncer-
tainty in decision making, externally attributed uncert@aioccurs whenever we
think that it is caused by events in the world that we cannatrob (Howell &
Burnett, 1978; Kahneman & Tversky, 1982). The typical cgpitrategy used
in such situations is to rate the relative frequency of su@nts. Brain corre-

53
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lates of this externally attributed uncertainty have bemmstigated in guessing
paradigms confronting subjects with two or more events abégrobability (El-
liott & Dolan, 1998; Elliott et al., 1999; Paulus et al., 200However, in many
real life situations we do not expect one out of several evembccur with the
same probability. Rather, we describe situations as itidigaarying event prob-
abilities, for instance when sayiriyam very certain that it will rain tomorrow”
or “l am quite certain that Peter will be late.” Hence, in contrast to predictions
that we make in guessing or gambling situations, our realgiedictions usually
depend on extensive experiences and memories of evenefreigs. Accord-
ingly, Exp.1 set out to investigate whether activationsizetl by uncertainty in a
natural sampling prediction would be different from or danias those induced
by uncertainty in guessing or gambling. A similarity is saegted by the fact that
both types are so-called externally attributed types otttainty. A difference is
suggested by the fact that predictions that base on a naamabling refer to a
learning process, whereas guessing and gambling do not.

FMRI was used to investigate the neural correlates of ptiede based on
a virtual natural sampling. Participants were presentdtl stimulus combina-
tions that determined the probability of a subsequentlyofdhg event which
occurred with a probability op = .6,.7,.8,.9, or 1.0. Using a parametric de-
sign, the hypothesis was tested whether brain activatidhirwihe region of in-
terest, i.e., frontomedian areas, would increase withedesing event probability.
Many different tasks that require decisions or overt respsrunder uncertainty
are known to draw on frontomedian areas (Bechara et al.,; X28@hley et al.,
2001; Elliott & Dolan, 1998; Elliott et al., 1999; Goel & Daia 2000; Paulus
et al., 2001, 2002; Rogers et al., 1999). However, uncaytanreported to be
reflected within posterior frontomedian areas, includingsial BA 8 or anterior
BA 6, corresponding to pre-SMA, and BA224, i.e. the dorsal part of the ACC.
Accordingly, though the engagement of frontomedian amehslaviors under un-
certainty is clearly indicated in the literature, we aredgmt about the correlates
of uncertainty that we typically face in everyday behavi@r,, natural samplings.
One central aim of Exp.1 was therefore to clarify the anatafbcation within
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the posterior portion of the frontomedian wall that co-garpositively with in-
creasing uncertainty in predictions in a natural samplingaddition to posterior
frontomedian areas, orbitofrontal areas are known to bagedin uncertain de-
cisions, particularly those induced by reward expectaacg, depending on vary-
ing task-corresponding emotional attitudes (Breiter gt2)01; Critchley et al.,
2001; Elliott et al., 1999; O’'Doherty, Kringelbach, Rolldprnack, & Andrews,
2001; Rogers et al., 1999). However, due to technical otigtnis of the T2*
sequence in a 3T NMR system that usually causes signal wNioisi§, Zysset,
Mildner, & Wiggins, 2002), medial orbitofrontal activatie could not be detected
in Exp.1 (see also 2.4.1). The focus of the present studyeietbre on poste-
rior frontomedian areas, including mesial BA 6, mesial BAB3, 32', and BA
24'. The cognitive representation of event frequencies (lketit of 10”) are re-
ported to differ crucially from those of event probabilgtidike “20%") (Gigeren-
zer, 1994; Gigerenzer & Hoffrage, 1995). As worries came hagi strategies
like coding event frequencies by event probabilities cartterge after extensive
behavioral training, it was decided to dismiss a trainingithdut a pre-session
training, however, slow learning effects during the coufsthe experimental ses-
sion were expected, and therewith a slow decrease of gamaraftainty. As the
main focus of Exp.1 was the investigation of probabilitypeedent uncertainty
varying between blocks, it was clearly needed to controlttiis slow learning
effect. This was done by the implementation of an additictatistical regressor
that modeled learning effects (see also 3.2).

3.2 Method

3.2.1 Stimuli and task

The task of the participants was to predict which of two corently presented
stimuli would win in a virtual competition game. Uncertaindf frequency was
manipulated by varying the winning probabilities betweapegimental condi-
tions (ranging from 60% to 100%). The winning probabilitiéspended on a
specific stimulus feature (as explained below).
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Stimuli consisted of comic pictures showing UFQO'’s differim color, shape,
and a figure seated within the UFO. Four different colorspelaand comic fig-
ures (in the following referred to as A, B, C, and D) were ergptbrespectively.
Participants were instructed to attend to one specific $tisfeature, i.e., the fig-
ure dimension. The stimulus properties color and shapedagndomly across
figures. Within each trial, two stimuli were presented conently, one on the
right and one on the left side of the screen. Within the stimuimension, six
possible pairings were generated by combining the fouewdifit figures (e.g., A-
B, A-C, A-D, B-C, B-D, and C-D). Participants had their indéxgers on a left
and a right response button, corresponding to the stimukseptation positions
on the screen.

In the prediction conditions, each of five pairings of figuvess systemati-
cally associated with a particular winning probabilitydadhese associations were
consistent throughout the experiment. Accordingly, depenon the pairing in
the uncertain prediction condition, the feedback showedadtoth figures with a
mean probability of .6 (that D wins against C), .7 (that D wagginst B), .8 (that
B wins against C), .9 (that C wins against A), and 1.0 (that Asaagainst D),
respectively (see Table 3.1). The figure combination (A-Bswsed as control
condition in which an external cue indicated the winningsilus.

Table 3.1:Listed are the stimulus combinations and the assigned ninpioba-
bilities.

Stimulus combination  winning probability

D trumps C 0.6
D trumps B 0.7
B trumps C 0.8
C trumps A 0.9
A trumps D 1.0

In the five prediction conditionsp(= .6,.7,.8,.9,1.0), participants were in-
structed to press the response button spatially correspgpmal the stimulus they
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excepted to win, i.e., to bet on the winner (e.qg., after dstimyresentation, if
figure A will win against figure D, or conversely). In the casitcondition (A-
B) three arrows in the middle of the screen indicated whicthege two stimuli
would win. Participants were asked to simply indicate thegius that was in-
dicated by the arrows. The three arrows indicating the wigrstimulus pointed
to A and to B equally often, i.e., A won against B with a prollipof .5. Aver-
age winning probabilities were almost balanced betweefoilnefigures (A: .533
, B: .5633, C: .500, and D: .433). By balancing the probabditin this way, it
was aimed to avoid cross-talk between pairings and subeegffects like latent
inhibition to operate between blocks.

3.2.2 Experimental design

A blocked presentation design was used, with probabiliterging between each
block (p=.6,.7,.8,.9,1.0). Each of these blocks as well as blocks of the control
condition consisted of five subsequently presented triadsvs1g the same figure
pairing (for instance, A plays five times against B). Withack trial, one pair of
stimuli was presented for 2s during which participantspose was recorded.
Presentation was followed by a feedback presented for §hsying the winner
if the prediction was correct, or showing a masking of botimgti if the predic-
tion was incorrect (see Figure 3.2). The inter-block-ivéémas 5s. Overall, 10
blocks were presented for each of the five probabilities hadtontrol condition,
resulting in 60 blocks or 300 trials altogether. Blocks weresented in random-
ized order, and the order was also randomized and balanteddyeparticipants.
The frequency of block-block transitions was balanced sxitbe experimental
session. The order of blocks was balanced between parttsipauch that the
group-averaged event probability was .80 at each time duhie course of the
entire experimental session (see also comments on thessegnmodeling slow
learning effects). That is, participant 01 started foranse with the block order
.7, .6, 1.0 and so on, whereas the participant 02 started.®;itl8, .6 and so on
(see Figure 3.1).

An enhancement of the BOLD signal was achieved by employijitjeaing
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Figure 3.1:Example of the distribution of the experimental conditidaach par-
ticipant had another distribution such that the group-aaged event probability
was p= .80 at each trial over the course of the entire experimentalisess

which allowed the assessment of the BOLD-response at eliffe¢imes relative
to the event onset. Both the beginning of each block as wethesnter-trial-

interval was jittered. Accordingly, while trial duratio.6s) and trial asynchrony
(5s) were kept constant, the inter-trial-interval (mearatlan of 1.5s) varied by a
jittering of 0, 500, 1000, or 1500ms, respectively, assigramdomly to the trials.
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1 experimental session = 60 blocks experimental conditions
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1 block = 5 trials

control
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1 trial = 5 sec

variable duration 2 sec 1.5 sec variable duration
response feedback

Figure 3.2: Example of the stimulation. One experimental session statsiof
60 blocks, i.e., 300 trials. Blocks with different winningplpabilities (color-

coded) and the control condition were presented in (pseualtdomized order.
One block consisted of 5 trials showing the same stimulusbi@tion. Stimuli

were presented for 2s during which participants’ responas recorded followed
by a feedback of 1.5s. In the present example a positive dekdb shown.

3.2.3 Participants

Sixteen right-handed, healthy volunteers (5 female, mepgn24.9, range 21-
35 years) participated in Exp.1. After being informed abpotiential risks and
screened by a physician of the institution, subjects gaferimed consent before
participating. The experimental standards were approyetélocal ethics com-
mittee of the University of Leipzig. Data were handled anmoysly.

3.2.4 Procedure

The procedure was conducted as described in chapter 2.6.
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3.2.5 Data analysis

Effects of increasing externally attributed uncertaintgrevanalyzed by using a
parametric design with two regressors (Biichel, Wise, MamyrPoline, & Fris-
ton, 1996; Buchel, Holmes, Rees, & Friston, 1998; Lang89).9So as to model
the effects of externally attributed uncertainty indepartdrom the cause but as a
measure of performance a regressor was used that consisherlaverage predic-
tion error per probability of event occurrence, i.e., therage prediction error for
each experimental condition. This regressor is referred toondition-regressor”
in the following. Within the same model it was tested for slamgpecific learning
effects by the use of a second regressor, consisting in thepgaveraged error
score for each trial. This regressor is referred to as “lagrregressor” in the
following. Note that such a second regressor can only baiLigéfmodels a dif-
ferent source of variance than the first regressor and this¢ked-dependent un-
certainty. The statistical independence of the groupemest learning effect from
the block-wise variation of uncertainty was achieved byabaing the order of
event probabilities between subjects so that the groupaged event probability
was the same at each trial, i.p.= .80. The condition-regressor (group-averaged
error score for each condition) and the learning-regrefgaup-averaged error
score for each trial) were thereby statistically indepemdie each subject. That
is, none of the correlations were significant (two subjects —0.11, three sub-
jectsr = 0.10, two subjects = —0.17, three subjects = —0.04, three subjects
r = 0.02, three subjects= 0.13). Both regressors referred to the same sample of
trials, including all uncertain prediction conditions.timot the control condition.
Absolute certain predictions, i.e., the control condifisiere modeled as a sepa-
rate onset vector within the same model. By including bogitegsors within one
statistical model, contrast maps could be generated thatoted the three effects
of interest independently from each other. Three contragiswere generated
from that statistical model:

Firstly, all uncertain prediction blocks were collapsed aontrasted against
certain predictions, i.e., the control condition. Therdbwas tested for the main
task effect. Second, the effects of probability-dependermtertainty in predic-
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tion were tested by using the condition-regressor. Andithihie effects of time-
dependent uncertainty were tested by using the learnogssor.

3.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as describetiapter 2.6. One
functional scan consisted of 723 images and each image dick8.s

3.2.7 MRI analysis

All preprocessing and evaluation steps were calculated diyguthe software
package LIPSIA (Lohmann et al., 2001) as described in ch&pie

3.3 Results

3.3.1 Behavioral data

Performance was measured by the rate of erroneous predietial reaction times
of correct predictions. A repeated measures ANOVA with tHevgl factor un-
certainty p=.6,.7,.8,.9,1.0) yielded a significant main effect for both erroneous
predictions F(4,60) = 54.5;p < .0001) and reaction time$(4,60) = 6.0;p <
.001) (see Table 3.2). As participants did not make any eowseesponses in
the control condition, a repeated measures ANOVA with tHevel factor un-
certainty (all uncertain conditions collapsed, controhdition) was not feasible
neither for erroneous predictions nor for reaction timesonk-sided Pearson-
correlation between erroneous predictions and time wasdféo be significantly
negative { = . — 19;p < .001). Likewise, reaction times got significantly shorter
in the course of the experiment, as indicated by a significargigative one-sided
Pearson-correlatiorr & —.43;p < .0001). Together, decreasing rates of both er-
roneous predictions and reaction times indicated sigmifiskow learning effects
over time.
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Table 3.2:Error rates (mean and SD in percent) and reaction times (nexah
SD in ms) for all conditions during the fMRI scanning=(6).

Condition Error rates (%) Reaction times (ms)

p=.6 52.5 (3.8) 1095.5 (153.7)
p=.7 47.2 (9.7) 1030.4 (168.6)
p=.8 41.2 (8.2) 1026.0 (177.8)
p=.9 29.4 (9.2) 1004.9 (150.7)
p=1.0 14.3 (7.8) 997.5 (125.2)
control 0 932.0 (203.5)

3.3.2 MRIl data
Main task effect

In order to test for the main task effect, all 5 levels of utaierpredictions were
collapsed and contrasted against certain predictions,tihe control condition.
As listed in Table 3.3 and shown in Figure 3.3 significantvatibns were elicited
within the right posterior frontomedian cortex (mesial B&B the right anterior
insula, the cuneus, the cerebellar vermis extending Iatérdo the paramedian
portion of the left cerebellar hemisphere, and within a satiical network, in-
cluding the ventral striatum, the thalamus, and the rightrain area (VTA).

Parametric effect of externally attributed uncertainty

When testing for the parametric effect of externally attréal uncertainty posi-
tively co-varying voxels were found to be located within tight posterior fron-
tomedian cortex (mesial BA 8), the right thalamus, the rigiterior insula, and
the left cerebellar cortex (see Table 3.4 and Figure 3.4ncElethe right mesial
BA 8 was the only cortical area that was found to be activatgith n contrast
to the control condition (main task effect) and in the par@imenodulation of
probability-dependent prediction uncertainty (parameiffect). Some areas that
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Table 3.3: Anatomical specification, hemisphere, Talairach coortisdx,y, z),
and maximal z-scores (Z) of significantly activated voxelsrédiction under un-
certainty (all levels collapsed) in contrast to predictiander certainty (control

condition).

Area Hemisphere x y z Z
Frontomedian Cortex (BA 8/6) R 8 18 464.4
Ventral striatum L -12 12 -3 45

R 21 15 -6 4.0
Thalamus L -15 -18 12 34

R 8 -17 6 4.2
Midbrain area R 8 -17 -6 3.9
Anterior insula R 40 19 6 4.1
Cerebellum R 1 -68 -234.7
Cuneus R -71 14 41

were activated significantly in the main task effect did rmwary positively with

increasing uncertainty. Additional activations were techlwithin the right middle
frontal gyrus and superior frontal sulcus, and the midiporbf the right intra-

parietal sulcus. Though these areas were also slightlyaéet in the main task
effect, maximak-scores remained below the statistical threshold.

Parametric effect of slow learning

Finally, it was tested for voxels that co-varied positivalith decreasing uncer-
tainty due to slow learning effects in the course of the grpental session (see
Table 3.5 and Figure 3.5). As a result, significant activetiovithin only two
areas were found. Namely, one activation located at theipmof the right infe-
rior pre-central sulcus and the right inferior frontal stdginferior frontal junction
area, IFJ), the other within the left posterior parahippggal gyrus. Hence, there
was no area that was commonly activated by probability-deget uncertainty in
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Prediction Under Uncertainty - Control

Figure 3.3:Main task effect (Z> 3.09) for prediction under uncertainty versus
control condition. Group-averaged activations are shownawmronal (y=12),
sagittal (x=8), and axial (z=-6) slices of an individual branormalized and
aligned to the Talairach stereotactic space. For activatimordinates, see Ta-
ble 3.3. Abbreviations: vST, ventral striatum; BA8, me8laddmann Area 8;
Tha, thalamus; VTA, midbrain area; Cu, cuneus; Ce, Cerebell

prediction and by decreasing uncertainty due to slow legraffects.

3.4 Discussion

Exp.1 investigated brain areas particularly within thenfoomedian cortex that
co-varied positively with a parametric modulation of pitin uncertainty in a
virtual natural sampling approach. To that end, differesgrdes of prediction un-
certainty were induced by different probabilities of eveaturrence. In contrast
to a control condition that allowed a certain prediction ba basis of external
cues, prediction under uncertainty engaged the mesial BAHugh the max-

imally activated voxel of the frontomedian activation wasdted on the border
between BA 6 and BA 8, closer inspection revealed voxelvateti above the
statistical threshold were only found anteriorly to thehadton maximum, that

is within BA 8, but not within BA 6. This was further supportéy the para-
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Table 3.4: Anatomical specification, hemisphere, Talairach coortisgx,y, z),
and maximal z-scores (Z) of voxels co-varying positivety wicreasing predic-
tion uncertainty.

Area Hemisphere x y z Z

Frontomedian Cortex (BA8) R 4 30 4639
Thalamus R 8 -11 9 34
Anterior insula R 37 12 -3 3.6
Cerebellum L -18 -71 -29 4.0
Superior frontal sulcus R 17 3 4636
Middle frontal gyrus (MFG) R 37 21 36 3.7
Inferior parietal lobule R 46 -53 3840

Table 3.5:Anatomical specification, hemisphere, Talairach coortisdx,y, z),
and maximal z-scores (Z) of voxels co-varying positiveth décreasing predic-
tion uncertainty in the course of the experiment.

Area Hemisphere x y z Z
Inferior frontal junction area (IFJ) R 43 0 2635
Posterior parahippocampal gyrus L -18 44 -3l

metric analysis. When testing for voxels that co-variedtp@dy with increasing
uncertainty in prediction as measured by the mean predietior across blocks,
activation was found to be clearly located within mesial BA 8

3.4.1 Increasing uncertainty reflected within mesial BA 8

Uncertain versus certain prediction elicited activatioithim mesial BA 8. The
maximally activated voxel was located at the border to m&#a6, i.e. the pre-
SMA, whereas the parametric effect of increasing uncestaimduced maximal
activation anteriorly within mesial BA 8. Though this outce raises the question
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of functional differences and similarities between aatenesial BA 6/pre-SMA
and mesial BA 8, these are difficult to determine in the liei@ On the one
hand, the pre-SMA role in higher movement organization g lestablished, as
in contrast to hierarchically lower movement output orgation attributed to the
posteriorly adjacent SMA proper (Picard & Strick, 1996, 208hima & Tanji,
1998). Specifically, the pre-SMA receives converging aold mput from all lat-
eral prefrontal areas, which in turn are target regions fsemsory cortices (Bates
& Goldman-Rakic, 1993; Luppino, Matelli, Camarda, & Rizati, 1993). The
pre-SMA is therefore suggested éognitiverather than motor aspects of volun-
tary behavior, particularly in the anticipatory procegsof sensory (visual) in-
formation in view of a potential decision making or motoreszion (Ikeda et al.,
1999; Picard & Strick, 2001). On the other hand and in cohtathe pre-SMA,
less is known about the functional profile of the anteriodyaaent mesial BA 8.
Projections between the monkey homologue of the pre-SMéa &6 (Matelli,
Luppino, & Rizzolatti, 1985), and anteriorly adjacent ared the frontomedian
wall suggest a close functional relationship (Luppino et¥#93). Tracer studies
in the monkey do not explicitly differentiate between me8A 6 and adjacent
8, but in contrast point out that rich prefrontal projectidarget the rostral SMA
so anteriorly, that this target area may include Walker'slislearea 8b (Bates
& Goldman-Rakic, 1993). In accordance with fronto-pali@i@jections investi-
gated in the monkey, right frontal and parietal areas tagettith mesial 8 were
found to be increasingly activated by increasing predictiocertainty . Also in
imaging studies, mesial BA 8 and pre-SMA are often reportebet engaged in
the same task and contrast. For instance, mesial BA 8 an&M#e-together
show increased activation whenever conflicts arise abeutdhrespondence be-
tween perceived events and appropriate motor selectiolisgp@dger & von Cra-
mon, 2001). Likewise, predicting serial events in increglyi complex stimulus
trains increased pre-SMA activation near the border or v&@nding a portion of
mesial BA 8 (Schubotz & von Cramon, 2002). More clearly sefmt from BA
6 are functions of the mesial BA 8 in hypothesis testing (&ll& Dolan, 1998)
and rule application (Goel & Dolan, 2000). Elliott and Doldiscuss mesial BA
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8 activation in terms of a response selection guided by mn@mwepresentations
of adaptive SR-mappings, rather than by internally guideesging. Similarly,
Goel and Dolan (2000) refer to the anticipatory functionBAf8, suggesting that
subjects anticipate stimuli in view of activated respongegs for these stimuli.
Note, however, that these authors refer to mesial BA 8 aSptA- Indirect evi-
dence for a functional difference between mesial BA 8 and3W\ may come
from findings that indicate the pre-SMA does not co-vary itk amount of er-
rors made in a visuo-manual learning paradigm (Sakai e1999). In contrast,
mesial BA 8 activation was found to co-vary with errors in gesent experiment.
A cautious suggestion may therefore be that BA 6 (pre-SMA)raasial BA 8 are
both involved in the acquisition of stimulus-response aisgions, with the latter
to modulate this learning process by error evaluation.

3.4.2 Uncertain predictions based on natural samplings as in cen
trast to other types of decisions under uncertainty.

The aim of the present study was to figure out whether predistbased on a
natural sampling induce similar or different frontomedaativations as other ex-
ternally attributed types of uncertainty, particularlyegging or gambling. When
comparing activations from the present study with thoselufitypes of uncertainty-
inducing tasks, two different activation clusters emeryeplotted in Figure 3.6,
activations reported in guessing paradigms (Elliott et E999), error detection
(Ulisperger & von Cramon, 2001), and risky choice (Critgta¢ al., 2001; Rogers
et al., 1999) elicited activations within BA 324. In contrast, activation within
Exp.1 was found to be located similar to those of hypothesstirtg (Elliott &
Dolan, 1998), response competition (Ullsperger & von Cran2001), rule appli-
cation (Goel & Dolan, 2000), and sequence-based stimukgigiron (Schubotz
& von Cramon, 2002), i.e., within mesial BA 8 and 6. This comigxan indicates
that activations induced by uncertainty in a natural samgtirediction are indeed
different from those induced by uncertainty in guessinthalgh both types are
so-called externally attributed variants of uncertairg suggested in the intro-
duction, differences in frontomedian correlates may ex$teflect that predictions



68 CHAPTER 3. EXPERIMENT 1

that base on a natural sampling refer to a learning processn@mory, whereas
guessing and gambling do not. In comparison to further atitims induced by
decision under uncertainty, a common characteristic dfstalsat elicit similar
activations like the present natural sampling approach Ibeathat uncertainty is
reduced in the long run. They involve the setting up of a mahlat is tested
and that helps us to adapt our behavior stepwise and in a atiseumanner. In
contrast, guessing and risky choices involve a short-teror processing, but no
long-term behavioral adaptation to valid stimulus-reggorules. Accordingly,
the main difference between tasks activating BA/22 and those activating BA
8/6 may be that the former do not allow for learning and adaptgrocesses, but
function more as an alerting system. This difference maldealso emotional
processes, which should have higher impact on fast belsdnddaptations rather
than on long-lasting learning. Accordingly, BA'324' is suggested in the integra-
tion of cognitive processing of uncertainty with corresgioig adaptive changes
in bodily states (Critchley et al., 2001) or evaluative geses related to the emo-
tional consequences of a (risky) choice (Elliott & Dolan98%® Together with
results discussed in the literature, the present finding®edaken to indicate that
mesial BA 8 is particularly engaged in feedback-basedngstiodels or hypothe-
sis on valid SR-associations that lead to long-lasting Wehal modifications. In
contrast, BA 3224 appears to be rather engaged in the fast correction of regspon
errors, including or modulated by a short-term emotionaluation.

3.4.3 Sub-cortical activation

In contrast to the control condition, predictions underartainty induced also
activations within a sample of sub-cortical areas, ingigdieveral foci within the
midbrain (ventral tegmental area, VTA), the ventral stnmiat(nc. accumbens),
and the dorsal thalamus. These structures belong to aatttiatamo-cortical

network basically prominent in reward-based learning fions (Breiter et al.,
2001; Delgado, Nystrom, Fissell, Noll, & Fiez, 2000; EltioEriston, & Dolan,

2000; Graybiel, 2000). As in the presently employed natsaahpling approach,
such types of learning are typically characterized by a slelayed acquisition
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rate of implicit SR-associations. In particular, the nc.cuaobens is taken to
support the ability to work for delayed rewards (Cardinaykison, Hall, &
Everitt, 2002). It is suggested that erroneous predictiomstion as ateach-
ing signalfor phasic changes in dopaminergic activity (Hollermann éh&tz,
1998; Schultz, 1998; Schultz & Dickinson, 2000). Therehlypaminergic pro-
jections from the VTA through the ventral striatum and trenfomedian cortex
(Williams & Goldman-Rakic, 1998) provide phasic signalsriodify and update
SR-mappings (Inase, Tokuno, Nambu, Akazawa, & Takada,)1999

Activations that were found within these areas can be rdlsmhwith the idea
of a summative, value-based attitude formation in natualgings (Betsch et al.,
2001). This approach assumes that, in natural samplingsetiponses evoked by
perceptual events are automatically recorded and summesulgsequently, these
summary evaluations can serve as a basis for predictions@nesponding be-
havioral responses. However, it has also to be consideaddutitertainty was
not the only aspect to vary between conditions. Rather, xpeaancy and the
experience of positive and negative prediction outcom@dano. Since a pos-
itive prediction outcome could be seen as a kind of rewarelated issue here
is whether expectancy and experience of reward can be dissdon the brain
level. Recent imaging studies have indicated that expegtand previous expe-
rience mostly share common neural substrates (Breiter.,e2@01), as already
suggested by the work of Mellers and colleagues (Mellereyw@adz, Ho, & Ri-
tov, 1997; Mellers, Schwartz, & Ritov, 1999). Accordingthe frontomedian
areas found to be activated in Exp.1 could be differently nteteéd by either the
expectancy or the experience of positive prediction outm

3.4.4 Decreasing uncertainty by slow learning effects over theourse
of the experimental session

Slow learning effects during the course of the experimesgasion were expected
due to decreasing uncertainty related to knowledge. Legreffects were con-
trolled for by modeling a second regressor using the grogpaged error score
for each trial. In addition, however, it was also looked dile for the effects
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of the learning-regressor in order to confirm non-overlaggirain activations for
slow learning and frequency-dependent uncertainty. Asualtesignificant activa-
tions were found only within two regions, the right IFJ and pgosterior parahip-
pocampal gyrus. Activations within the posterior fron&elral cortex have been
reported in shifting cognitive set, i.e., the switchingnr@ne response tendency
based on previous experiences to a currently more suitalel¢Rrass & von Cra-
mon, 2002; Monchi et al., 2001; Nakahara, Hayashi, Kon&iliyashita, 2002).
According to this view, decline in IFJ activation would refielecreasing require-
ments on switching between different stimulus-responsedsations. With in-
creasing familiarity with the stimulus pairings and theiplpabilistic meaning,
the requirements on behavioral switching and flexibilityyndecline during the
course of the experimental session. This would also apptietweasing activa-
tion within parahippocampal sites, which show slow sustdimodulations during
new stimulus-response learning (Cahusac, Rolls, Miyas&itNiki, 1993). How-
ever, the crucial implication of this finding is that slow ieig effects and the
reduction of prediction uncertainty draw on different, rarerlapping brain ar-
eas, so that learning effects did not distort the activapattern which was in the
focus of interest.

3.4.5 Conclusion

Findings from Exp.1 indicated that frequency-based ptedicincertainty elicited
frontomedian activation that resemble those induced ig-tenm stimulus-response
adaptation processes such as hypothesis testing, as mastaotthose engaged in
short-term error processing such as guessing.
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Figure 3.4:Parametric effects of prediction uncertainty. The uppengiashows

the group-averaged activations on a sagittal (x=4), and aiab(z=36) slice. Vox-

els co-varying positively with prediction uncertainty wdocated within mesial
BA 8 (1), the middle frontal gyrus (2), and the inferior paaielobule (3). Coor-

dinates of further activations are given in Table 3.4. Anregée for a regressor
for one participant is plotted on the lower panel. Regresseere determined in-
dividually, depending on the presentation order of blodkse level of uncertainty
was modeled by the mean prediction error made for each ofibgfobabilities.

Bars for each experimental block are shown in differentrinittes of gray. Note
that the ten blocks of the control condition did not enter plagametric analysis
and are therefore not shown in the figure.
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Figure 3.5: Parametric effects of learning. The upper panel shows tloeimr

averaged activations on a left sagittal slice (x=43) and arabslice (z=3). Voxels
co-varying positively with the decreasing error rates i ttourse of the exper-
imental session were found within the left posterior pgpglbicampal gyrus (1)
and within the right inferior frontal junction area (2). THewer panel shows the
regressor that modeled decreasing uncertainty due to sfawning effects across
participants (gray bars). The regressor was based on thegpaveraged mean
prediction error for each trial of the experimental conditi (5 trials per block, 50
blocks = 250 trials). The 50 trials of the control conditioreanot plotted as they
did not enter the parametric analysis.
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Figure 3.6: Comparison between frontomedian activations of Exp.1 anel
those of other studies on decisions under uncertainty. igin frontomedian wall
of a white matter segmented individual brain is shown froenrtfidline. The outer
frame shows coordinates from Talairach and Tournoux (198B)e crosshairs
cut through the anterior and the posterior commissure (AC)PRwith vertical
orientation lines (VAC-VPC) perpendicular to AC-PC, respecly. Brodmann
Areas 6, 8, 24, and 32 are outlined. Red-yellow spheres tefactivation foci
within mesial BA 8, green-blue spheres to those within BA32 The red sphere
a corresponds to the main task effect of prediction uncetyacompared to the
control condition (see Figure 3.3). The sphere e correspaidthe parametric
effect of increasing prediction uncertainty (see Figurd)3. Other letters and
spheres correspond to the following studies: b, Schuboto® @ramon, 2002
(prediction difficulty); c, Elliott & Dolan, 1998 (hypothisstesting); d and g, Goel
& Dolan, 2000 (rule application); f, Ullsperger & von Cramo2001 (response
competition); I, Ullsperger & von Cramon, 2001 (error detien); m, Elliott &
Dolan, 1998 (committing oneself to choice); n, Critchleylet2001 (uncertainty
and arousal); o, Elliott et al., 1999 (guessing); and p, Reget al., 1999 (risky
choice).






Chapter 4

Experiment 2

4.1 Introduction

From a deterministic point of view, uncertainty is alwaysised by a lack of
knowledge. Nevertheless, we are used to attribute our taiosr to different
causes, and these different causes are reflected in the way teeresolve our
uncertainty, i.e., by our coping strategies. A phenomegiod analysis by Kah-
neman and Tversky (1982) distinguished between exteriribdaton of uncer-
tainty (see Exp.1) and internal attribution of uncertaiirtydecision making, a
distinction also made by other authors (e.g., Howell, 19i&igen, 1994). Ex-
ternal attribution of uncertainty occurs whenever we thimkt our uncertainty is
due to coincidental chance events in the world which we caoantrol. As a
prominent coping strategy, then, we try to rate the prohigitof external events
(e.g., “There is a sixty percent chance for rain tomorrovrijernal attribution of
uncertainty, in contrast, occurs whenever we think thatumeertainty is due to a
lack or insufficiency of knowledge, i.e., to internal fagdn ourselves which in
principle we could control. A successful coping strategyhis case is an inten-
sive memory search, most likely in combination with the ragié to get missing
information from valid external sources (e.g., “I am quitesthat possums are
mammals, but | don’t know exactly”).

In the second experiment (Exp.2) it was aimed to investitie@eeural corre-

75



76 CHAPTER 4. EXPERIMENT 2

lates of internally attributed uncertainty and beyond imagh they differ from

those induced by externally attributed uncertainty (ExpThus, it was investi-

gated whether the two variants of uncertainty, which we aegluo distinguish in

every day life, can be dissociated on the brain level. Udiegsame experimental
paradigm as in Exp.1, internally attributed uncertaintysvwaduced by varying

the degrees of instructed knowledge about the winning rukesallel to Exp.1,

where six levels of externally attributed uncertainty wigrduced, five levels of
internally attributed uncertainty were induced in Exp.2.

For externally attributed uncertainty (Exp.1) mesial BA &dound to reflect
uncertainty of frequency and furthermore to co-vary pesijyi with increasing
uncertainty. Using the same parametric approach as in Eixpvas investigated
whether internally attributed uncertainty is also refldchy frontomedian acti-
vations (main effect), and if so, whether this brain aciomtalso increases with
increasing uncertainty of knowledge (parametric effedtjence, it was tested
whether mesial BA 8 activation reflects increasing uncetyaregardless of the
reason of uncertainty. In a subsequent group comparisawéba-subjects de-
sign) it was investigated whether the co-activated netwarkderlying internally
and externally attributed uncertainty differ significgnffom each other. Par-
ticularly, since storage and retrieval of acquired visutom@associations are re-
quired for the suggested coping strategy in decisions uimtemally attributed
uncertainty (Kahneman & Tversky, 1982), fronto-parietztivations in networks
that sub-serve working memory functions were expectedtdirée & Henson,
2001; Owen, 2000).

Since the manipulation of knowledge uncertainty made aegperimental
training of the winning rules impossible, slow learningeets during the course of
the experimental session were expected, and therewithwvedelorease of general
uncertainty. As the main focus of Exp.2 was the investigatd knowledge-
dependent uncertainty varying between blocks, it was lglesreded to control
for slow learning effects during the experimental sessibhis was done by the
implementation of an additional statistical regressot thadeled learning effects
(see also 3.2).
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4.2 Method

4.2.1 Stimuli and task

In order to allow for a comparison between Exp.2 and the pliageExp.1, only
few features of the experimental paradigm were modified. &sre, participants
had to predict which of two concurrently presented stimuind win in a virtual
competition game. The crucial difference between the twagigms was that
uncertainty in Exp.1 was manipulated by varying winninglyadoilities between
experimental conditions (from 60% to 100%), whereas uag@st in Exp.2 was
manipulated by varying the degree of knowledge that paditis were provided
with regarding 15 winning rules, each of which determinind0®% winning
probability as dependent on stimulus features (as expuldiedéow). The second
difference between Exp.1 and 2 was that experimental donditvere announced
by task cues in the present study.

The same stimulus material was used as in Exp.1.

Stimuli consisted of comic pictures showing UFQ’s diffeyim color, shape,
and a figure seated within the UFO. Four different colorspekaand comic fig-
ures were employed, respectively. Within each trial, twtheke stimuli were pre-
sented concurrently, one on the right and one on the leftdfittee screen. Within
each stimulus dimension, five possible pairings were géeettay combining the
four different levels (e.g., within the color dimensione thairings red-yellow, red-
blue, yellow-blue, yellow-green, and blue-green were gméd; the sixth pairing,
here red-green, was generally skipped in order to restrietaomplexity (see be-
low)). Participants had their index fingers on a left and atrigsponse button,
corresponding to the stimulus presentation positions erstineen.

In the prediction conditions, each stimulus dimensiondgathape, figure)
represented a rule group consisting of five different subsrapecifying the cor-
rect feedback , as listed in Table 4.1. These 15 rules weig thabughout the
experiment, that is, yellow always trumped blue and so onoréter to induce
different levels of uncertainty of knowledge, participamtere provided with dif-
ferent amounts of information about these rules. One ruemmas trained up
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to optimal performance prior to the fMRI sessidmained rules condition A
second rule group was verbally instructed at the end of thiaihg session, but
not practiced learned rules condition The third rule group was neither trained
nor verbally instructed, so that participants were idifiagjnorant about this set
of rules gexplored rules condition In a fourth prediction condition, participants
were asked to test which one out of two rule groups, i.e. rdirdd or the learned
rule group, was valid within a given bloclegted rules condition The assign-
ment of stimulus dimension to rule group was balanced betyeaeticipants.

Table 4.1:Listed are the three rule groups which consisted of five rdiffieand
intransitive sub-rules.

Rule group Color Comic figure Shape

Sub-rules  yellow trumps blue  Atrumps B  circle trumps trieng
blue trumps red B trumps C  triangle trumps quadrat
green trumps blue D trumps B  ellipse trumps triangle
red trumps yellow  Ctrumps A quadrat trumps circle
yellow trumps green A trumps D circle trumps ellipse

In the four prediction conditions (trained, learned, exeth and tested), par-
ticipants were instructed to press the response buttoiapatorresponding to
the stimulus they excepted to win (e.g., after the task cakfgules are valid”, if
the red stimulus will win against the blue, or converselp)the control condition,
pairings showed two identical stimuli (same color, shape, figure). Three ar-
rows in the middle of the screen indicated which of these tivoudi would win.
Participants were asked to simply indicate the stimuluswhes indicated by the
arrows.

4.2.2 Experimental design

The experimental design was identical to Exp.1 with regangrésentation, time
flow, randomization, and jittering. The only difference tegEL was the presenta-
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1 experimental session = 72 blocks rules/conditions

trained O
learned O
explored O
tested B

time

1 block = cue + 5 trials

1 trial = 5 sec

+

variable duration 2 sec 1.5 sec variable duration
response feedback

Figure 4.1:Example of the stimulation. One experimental session statsdf 72
blocks, i.e., 360 trials. Blocks with differently well knowinning rules (color-
coded) and the control condition were presented in (pseualocdomized order.
One block consisted of 5 trials showing the same stimulusbi@tion. Stimuli
were presented for 2s during which participants’ responas recorded followed
by a feedback of 1.5s. In the present example a positive dekdb shown.

tion of a verbal cue at the beginning of each block which anoed the respective
experimental condition (see Figure 4.1). Overall, 15 bdoalere presented for
each of the four prediction conditions, and 12 for the cdrdomdition, resulting
in 72 blocks or 360 trials altogether. Blocks were preseimedndomized order,
and the order was also balanced between participants.

4.2.3 Participants

Twelve (7 female, mean age 25.1, range 20-31 years) rigidddy healthy vol-
unteers participated in Exp.2. After being informed abooteptial risks and
screened by a physician of the institution, subjects gaferimed consent be-
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fore participating. The experimental standards were agutdy the local ethics
committee of the University of Leipzig. Data were handledramimously.

4.2.4 Procedure

The procedure was conducted as described in chapter 2.6evdowdifferent to
Exp.1, participants performed a training session immetigtrior to the func-
tional imaging session. The training session lasted twémwyminutes during
which the anatomical images were taken.

4.2.5 Data analysis

Effects of levels of prediction uncertainty were analyzasthg a parametric de-
sign that paralleled that of Exp.1 (Buchel et al., 1996,89%nge, 1999). In
order to model the effects of prediction uncertainty as asweaof performance,
a regressor was used consisting in the group-averaged:fpoederror per exper-
imental condition (trained, learned, explored, and tgst@arallel to Exp.1, this
regressor is referred to as “condition-regressor” in thieong.

Within the same model, it was also controlled for slow ungffetearning
effects, that is, for the reduction obndition-independeniincertainty. This was
done by introducing a second regressor referred to as flegmagressor” in the
following. Note that the learning-regressor could not bedeted individually,
because learning depended systematically on knowledgktremefore on the
individual presentation order of experimental conditiohrsorder to avoid mod-
eling of two statistically interdependent regressorsividdal condition-regressor
and individual learning-regressor), the learning-regpegonsisted in the group-
averaged error score for each trial. Since the order of tiondi was balanced
inter-individually, regressors were statistically indedent. By this design, un-
specific learning effects could be controlled for.

Both condition-regressor and learning-regressor radeimehe same sample
of trials, including all prediction conditions, but excind the control condition.
The control condition was modeled as a separate onset witin the same
model. By including both regressors within one statisticaldel, contrast maps
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could be generated that extracted three effects of inténelgtpendently from each
other:

Firstly, the main task effect was investigated by building tontrast between
all collapsed prediction conditions and control conditiddecond, the paramet-
ric effect of levels of prediction uncertainty was testedusyng the condition-
regressor. Third, the parametric effect of slow conditimtlependent uncertainty
reduction was tested by using the learning-regressor. lIf;if@ order to inves-
tigate whether internally attributed uncertainty difi@rgignificantly from exter-
nally attributed uncertainty (group comparison betweep.Exand 2), contrast
images were compared voxel-wise using a two-sarhpdst to examine the hy-
pothesis that the mean contrasts of the two groups diffee rfEsulting image
containsz-values indicating the degree of significance of the grotferince.

4.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as describetiapter 2.6. One
functional scan consisted of 1010 images and each image siicks.

4.2.7 MRI analysis

All preprocessing and evaluation steps were calculated diyguthe software
package LIPSIA (Lohmann et al., 2001) as described in ch@pie

4.3 Results

4.3.1 Behavioral data

Performance was measured by the rate of erroneous predietial reaction times
of correct predictions. A repeated measures ANOVA with thev2l factor uncer-
tainty (all uncertain conditions collapsed, control cdiui) yielded a significant
main effect both for error rate$(1,5) = 35.2,p < .002) and for reaction times
(F(1,5) = 611,p < .001). A repeated measures ANOVA with the 4-level fac-
tor uncertainty (trained, learned, tested, and explorégkyyielded a significant
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main effect for error rated~(3,36) = 14.0, p < .0001) but not for reaction times

(F(3,36) =2.2,p=".11) (see Table 4.2).

Table 4.2:Error rates (mean and SD in percent) and reaction times (maxadh
SD in ms) for the different conditions during the fMRI scauignin=12).

Rule group Error rates (%) Reaction times (ms)
trained 6.6 (6.9) 881.2 (149.4)
learned 15.7 (12.5) 901.2 (228.3)
explored 16.8 (6.8) 878.6 (185.4)
tested 23.4 (13.8) 1005.2 (198.9)
control condition 0 617.8 (95.3)

A slow learning effect was not significant as measured byreates (one-
sided Pearson-correlation between erroneous predictiothéime:r = —.01;p=
.40), but as decrease in reaction times in the course of theriexpnt (one-sided
Pearson-correlation between reaction times and tinee:-.23;p < .001). Errors
dropped from the first to the last quartile by 4.7%, as compayé.5% in Exp.1.

4.3.2 MRIdata
Main task effect

Corresponding to the behavioral analysis, the main effetask was tested by
collapsing all uncertain prediction blocks and contrastirem against the control
condition (absolute certain prediction). Significant atibns were found within
the right posterior frontomedian cortex (mesial BA 8), t@tally within inferior
prefrontal areas (inferior frontal junction area (IFJg.,.at the cross-section of
the inferior frontal sulcus and the inferior pre-centracas); mid-portions of the
middle frontal gyrus (MFG) along the inferior frontal suic(iFS), the antero-
superior insula, posterior parietal cortices (along thekbaof the intraparietal
sulcus (IPS)), within pretectal areas, and extra-strieteal cortices (see also Ta-
ble 4.3 and Figure 4.2).
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Table 4.3: Anatomical specification, hemisphere, Talairach coortisgx,y, z),
and maximal z-scores (Z) of significantly activated voxelsrédiction under un-
certainty (all levels collapsed) in contrast to predictiander certainty (control

condition).
Area Hemisphere x y z Z
Frontomedian Cortex (mesial BA8) R 4 21 445
Frontomedian Cortex (anterior BA8) R 1 33 442
Inferior frontal junction area (IFJ) L -38 9 3238
R 40 13 32 3.7
Middle frontal gyrus (MFG) L -44 25 23 4.4
R 37 27 26 44
Antero-superior Insula L -26 24 645
R 28 22 9 4.0
Intraparietal sulcus (IPS) L -26 -62 503.8
R 31 -53 47 4.6
Pretectal area L -5 -29 0338
R 4 -26 0 33
Extra-striate visual cortex L -35 -54 -943
R 31 -50 -8 43

Effects of levels of uncertainty

Effects of knowledge-dependent (internally attributedertainty were tested
using the condition-regressor (group-averaged prediciwor per experimental
condition). As listed in Table 4.4 and shown in Figure 4.@ngicant activations
were elicited within the right frontomedian cortex (antenportion of mesial BA
8), the left IJF, the right mid-portion of MFG, and bilatdyalvithin posterior pari-
etal cortices along the banks of the anterior portion of Bt INote that trials with
correct and incorrect responses were collapsed, becaoksliexy the trials with
negative feedback did not change the overall activatiotepatexcept for a little
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IPS

Figure 4.2:Main task effect (2> 3.09) for knowledge uncertainty versus certainty
(control condition). Group-averaged activations are simoan axial (z=32;50)
and sagittal (x=3) slices of an individual brain normalizeashd aligned to the
Talairach stereotactic space. For activation coordinases Table&??. Abbrevia-
tions: BA 8, mesial BA 8; MFG, middle frontal gyrus; IPS, ayarietal sulcus.

worse signal-to-noise ratio. Moreover, when using readiimes as values for the
condition-regressor, the same cerebral network was foube tactivated. In this
case, the overall signal-to-noise ratio was lower thanénettior-based analysis.

Slow learning effects

It was tested for slow learning effects on the BOLD contrgstiging the learning-
regressor (group-averaged error score for each trial).ivétains were found
within the right IFJ (Talairach coordinates= 46,y = 7,z= 35;Z = 4.0), the right
inferior frontal sulcus (Talairach coordinateg:= 43y = 15z = 26;Z = 3.8),
the left dorsal thalamic system (Talairach coordinates: —14,y = —27,z =
0;Z = 3.7), and within the right insula (Talairach coordinatgs: 40,y = —5,z=
—6;Z = 3.6) (see also Figure 4.4).
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Figure 4.3: Parametric effects of knowledge uncertainty. Group-agedaacti-
vations of voxels co-varying positively with erroneousdptons are shown on
sagittal (x=1;40) and axial (z=38) slices. For activatioroardinates see Table
4.4. Abbreviations: BA 8, mesial BA 8; MFG, middle frontahgg; IPS, intra-
parietal sulcus; IPL, inferior parietal lobe.
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Figure 4.4: Parametric effects of slow decreasing uncertainty. Graupraged
activation of voxels co-varying positively with the errates in the course of
the experiment is shown on an axial (z=35) slice. For actoratoordinates see
results section. Abbreviation: IFJ, inferior frontal jutign area.
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Table 4.4: Anatomical specification, hemisphere, Talairach coortisgx,y, z),
and maximal z-scores (Z) of voxels co-varying positivety wicreasing predic-
tion uncertainty.

Area Hemisphere x y z Z
Frontomedian Cortex (anterior BA8) R 1 33 4143
Inferior frontal junction area (IFJ) L -44 12 384.0
Middle frontal gyrus (MFG) R 40 24 354.2
Inferior parietal sulcus (IPS) L -38 -42 444.1
R 40 -53 50 4.2

Comparison between externally and internally attributed uncertainty

Subsequently, it was tested whether networks underlyitgyeally attributed un-
certainty and those underlying internally attributed utaiaty differ significantly.
A between-subjects group comparison was calculated using-gamplet-test,
i.e., the two sets of contrast images from Exp.1 and Exp.2wempared voxel-
wise (Lohmann et al., 2001). The resulting image (see Fk). cbntainsz-values
that indicate significant group differences of the mainaffeof uncertainty. Ac-
cording to the initial hypothesis, it was focused on thregaes of interest: the
mesial BA 8, fronto-lateral and posterior parietal areas. eXpected, the infe-
rior frontal cortex (IFJ bilaterally; mid-portion of left MG/IFS) and posterior
parietal cortices correlated positively with uncertaintigen internally attributed.
Talairach coordinates were nearly identical to coordmatethe main effect (see
Table 4.5). The number of significantly activated voxelsidgating a difference
within the anterior portion of mesial BA 8 was negligible (Ytxels) and re-
stricted to the most anterior part of this region.
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Table 4.5: Anatomical specification, hemisphere, Talairach coortisdx,y, z),
and maximal z-scores (Z) indicating the degree of signifieasf the group differ-
ence for internally attributed uncertainty.

Area Hemisphere x y z Z
Frontomedian Cortex (anterior BA8) L -2 31 47.0
Inferior frontal junction area (IFJ) L -41 18 354.2
R 40 13 32 3.8
Middle frontal gyrus (MFG) L -41 25 234.2
Inferior parietal sulcus (IPS) L -29 -62 503.8
L -47 -44 50 4.0

31 -53 47 4.7

4.4 Discussion

Exp.2 was designed to investigate whether different caogescertainty in a

prediction task are reflected within the same brain areasuddyg a parametric
approach and inducing different degrees of uncertaintyai aimed to identify

and compare the brain correlates of internally attributededainty, i.e., uncer-
tainty of knowledge (Exp.2), with those of externally ditried uncertainty, i.e.,
uncertainty of frequency (Exp.1). As a common cortical stabs of uncertain

predictions, regardless of uncertainty attribution, raleBiA 8 was found to be

significantly activated. In contrast, activation withirhet brain areas differed
significantly between the two types of uncertainty. A direatnparison showed
that internally attributed uncertainty specifically engdga fronto-parietal net-
work bilaterally. In the following, both commonly activatérain areas as well as
areas that were exclusively activated for internally latiiéd uncertainty will be

discussed.
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Figure 4.5:Group comparison between the two types of uncertainty. iffignt
differences in activation strength are found within theeaiar portion of mesial
Brodmann Area 8 (BA 8), the posterior middle frontal gyrus=@®), and within
posterior parietal areas bordering the intraparietal suk (IPS). For activation
coordinates see Table 4.5.

4.4.1 Types of uncertainty - or ways of learning, rule validity,and
coping strategies?

First, the argument has to be considered that Exp.1 and EjfePed not only
with regard to differently attributed uncertainties, blsawith regard to different
types of learning, and also with regard to differently veiR-rules. As will be
argued in the following, however, neither of these two ptit¢rconfounds can
explain the differences between the experiments.

Considering the learning characteristics, uncertaintjrexjuency (Exp.1) is
observed in situations in which we typically cannot learntapptimal perfor-
mance, whereas uncertainty of knowledge (Exp.2) emerges dan, and hence
is a transient phenomenon as in contrast to the former. laerdadbalance this
inherent difference between both types of uncertaintyniag requirements were
manipulated in a way that Exp.2 was too short to allow forrdeay up to op-
timal performance. Data support that this manipulation sascessful: Errors
decreased from quartile 1 to quartile 4 by 5.5% in Exp.1, ari@odin Exp.2.
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Both learning effects were not significark (3,45) = 2.9;p = .05 respectively
F(3,33) = 1.7;p = .18). Therefore, it can be assumed that differences between
Exp.1 and 2 cannot be reduced to remaining uncertainty iratter and non-
remaining uncertainty in the former.

Considering the second potential confound, rule validigswecessarily the
instrument to implement different levels of uncertaintyfrefquency in Exp.1, as
in contrast to Exp.2. Following, the average rule validilffesled between Exp.1
(80%) and 2 (100%). However, if differences between Expd 2mere caused
by differently valid rules, then one would also expect foe #ame reason that,
firstly, WM networks should not co-vary parametrically widlvels of uncertainty
in Exp.2, because they all refer to the same (100%) rule it)glieind secondly,
that the very same WM networks should be activated and oppatametrically
with levels of uncertainty in Exp.1, because they diffetwitgard to rule validity
(60%, 70%, 80%, 90% and 100%). As evident from the data, hewveeither is
the case. Therefore, rule validity cannot be the cause ftemyatic differences
between Exp.1 and 2.

In contrast, it is of course correct to say that the studifieréd with regard to
the coping strategies they induced, and that these diffsteategies are reflected
by different cerebral activations. Behaviorally, diffetecoping strategies have
been suggested to be an indicator for different attributezbrtainties (Kahneman
& Tversky, 1982). The term “variants of uncertainty” is mesmrefer to exactly
this definition, i.e., different ways to try to resolve dégisuncertainty and hence
different strategies to avoid future errors or achieverki@wards. Note that the
performance scores in both experiments confirmed thatcjaatits tried to per-
form well. This of course had to be prooved statistically antjgular for Exp.1,
where expected maximal performance were below 100% comespbnses. To
this end, the discrimination indd% by P, = hit — falsealarm(Snodgrass & Cor-
win, 1988) was calculated. This index allows to correct ganfance scores for
guessing tendencies in all response classes. As a resgibnditions showed to
be significantly different from chance level (100%gs) = 37.7, p < 0.001; 90%:
t(15) =223, p<0.001; 80%:t (15 = 16.4, p< 0.001; 70%:(15 = 7.8, p< 0.001;



4.4. DISCUSSION 91

60%:1(15 = 2.2; p= 0.04). Therefore, it can be exclude that differences between
Exp.1 and 2 were caused by guessing tendencies in the fogriarcantrast to
the latter.

Finally, it is important to note that present Exp.2 as welpesceding Exp.1
were not designed to differentiate pre- and post-feedbaokegses. Activations
therefore reflect uncertainty as especially emerging inpiteefeedback phase,
together with processes that start in the post-feedbackephdowever, although
uncertainty may be reduced due to feedback evaluation itatter phase, it is
unlikely to vanish entirely. Moreover, expectancy and fes experience were
found to mostly share common neural substrates (Breitdr,&2001), as already
suggested by behavioral data (Mellers et al., 1997, 1999).

4.4.2 Attribution-independent activation of uncertainty:
mesial BA 8

Both internally as well as externally attributed unceraiglicited activation within
mesial BA 8 (Talairach coordinates in ExpXl= 8,y = 18,z= 46). A group com-
parison revealed no significant difference in the mean atitin value within the
posterior part of mesial BA 8. Internally attributed unednty elicited activation
within a larger area than externally attributed uncenaiextending into anterior
mesial BA 8 and reaching the border of mesial BA 9. Howevés,dtiference was
probably caused by a slightly larger activation in Exp.2J aray reflect quantita-
tive rather than qualitative differences.

Like adjacent mesial areas BA 6 (pre-SMA) and adjacent gustiof BA
32/24, mesial BA 8 has been repeatedly found in tasks that inducertainty
(see also Figure 3.6). In this context, BA'3®bgether with BA 24) is usually
referred to as the anterior cingulate cortex (ACC). Sineeatiatomical and func-
tional organization of mesial BA 8 has begun to be focused mig tecently,
empirical evidence for a functional distinction betweeasth three areas is still
weak. Moreover, activations within mesial BA 8 and pre-SMi difficult to
disentangle due to missing macroscopical landmarks betthese areas, and the
same applies to the distinction between these regions ar@l MOwever, since
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it is widely accepted that laminar differentiations reflémtctional differentia-

tions of the cortex, it can be suggested that the considesss ainderly different
aspects in behavior under uncertainty. For instance, mBsia is a granular
prefrontal isocortex, whereas ACC can be subdivided intaragar (BA 24) and

dysgranular (BA 39 cortex.

In view of existing data, however, it appears that mesial BAn8the one
hand and BA 3224 on the other appear to be preferentially engaged in differen
experimental paradigms on uncertainty. This view, whiclk alaeady sketched in
chapter 3.4.2, will be outlined in more detail in in the foliog.

Studies on conflict that report BA 324 (often in company with pre-SMA)
typically use paradigms such as e.g. the Eriksen flankeksorago/no go tasks
(e.g., Bunge, Hazeltine, Scanlon, Rosen, & Gabrieli, 2@@&;avan, Ross, Mur-
phy, Roche, & Stein, 2002; Luks, Simpson, Feiwell, & Mill2002; Ruff, Wood-
ward, Laurens, & Liddle, 2001; Ullsperger & von Cramon, 202003). Com-
mon features of these paradigms are (a) SR-rules are simpéet¢-one map-
pings), often spatially compatible, and usually known amstruicted beforehand,
(b) two response tendencies are activated concurrentlyyataonflict arises on
the response level, (c) errors are usually induced by tineesare and percep-
tual difficulty, (d) conflict can be diminished by a close atios inspection, and
(e) feedback evaluation allows to improve performance icgptual and motor
skills. In these paradigms, either ACC or pre-SMA are défaly engaged in two
sub-processes of conflict, as can be stressed by contrainuiThe ACC is pre-
dominantly reported in error monitoring (Bunge et al., 20B2ravan et al., 2002;
Kiehl, Liddle, & Hopfinger, 2000; Ulisperger & von Cramon,@), whereas BA
6/pre-SMA (sometimes extending into mesial BA 8) is ratheftecting conflict
detection (Kiehl et al., 2000; Ruff et al., 2001; Ullspergevon Cramon, 2001).
Based on these findings, the functional dissociation betvpee-SMA and ACC
has become a focus of research (Ullsperger & von Cramon,, 2ZBWB) and was
confirmed in recent meta-analysis by Fassbender, HesteGaravan (2003).

In contrast, ACC activation is typically absent in a diffetréype of paradigm
regarding conflict reporting mesial BA 8 activation. Thetgdies investigated
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hypothesis testing with low restrictions (Elliott & Dolabh998), the application of
arbitrary SR-rules (Goel & Dolan, 2000), and the detectibarbitrary SR-rules
(Knutson et al., 2003). Common features of these are (a)ukR-are complex
(many-to-many mappings), arbitrary and usually unknowiofgdand, (b) deci-
sions tendencies depend on previously evaluated feedbskisat conflict arises
on the knowledge level, (c) errors are not induced by timesaree, but by cogni-
tive difficulty, (d) conflict can be diminished by mnemoniaseh, and (e) feed-
back evaluation allows to improve performance in cognisikids and knowledge.
From all these features, however, feedback evaluationeappe be the most rele-
vant for BA 8 activation. Accordingly, BA 8 is not found in amier of paradigms
that at first glance seem to match several of the featuresl lsbove, but do not
allow for a feedback-based learning of SR-rules (Bush eD2; Casey et al.,
2000; Paulus et al., 2002, 2001).

In sum, it is suggested that both Exp.1 and Exp.2 draw rathé3/ 8 than
on ACC (BA 32/24) because the employed tasks induced a sustained feedback-
dependence of task performance, i.e., deliberate choas=iton mnemonic searches,
as in contrast to forced responses based on perceptuallpst it shortly, BA
8 and ACC may distinguish “decision conflicts” from “respereonflicts”. Con-
sidering a distinction proposed by Reason (1990), thesd dmai suggested to
precede “mistakes” in the latter and “action slips” in thenfer case.

4.4.3 Attribution-dependent activation of uncertainty

In addition to mesial BA 8 significant activations within tMFG, IFJ, and IPS
were found to be activated significantly in internally dititied uncertainty versus
control condition. The same sample of areas was found teaserwith increasing
internally attributed uncertainty (parametric effectjflam direct task contrast be-
tween internally attributed and externally attributedentainty (Exp.1 vs. Exp.2).
These findings confirm the hypothesis that uncertainty duestafficient knowl-
edge will engage brain areas sub-serving WM functions.

The MFG (BA 46/9) is also referred to as mid-dorsolateralfrprd¢al area
(Petrides, 2000). Activations within this region have begported when moni-
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toring and manipulation of information within WM is requitéD’Esposito et al.,
1998). The monitoring of mnemonic information across $rial taken to be the
key feature of tasks activating mid-dorsolateral prefabareas (Kostopoulos &
Petrides, 2003; Petrides, 2002) as in contrast to memartgvak per se which has
been shown to specifically activate the mid-ventrolaterafrpntal cortex.

In the present experiment, mnemonic information refere&R-rules that
were defined by different non-spatial object propertiese firtid-dorsolateral pre-
frontal coordinates in the present study fit to those repdibe non-spatial WM
in a recent meta-analysis by Owen (2000) (Talairach coatdgright: 3532, 19;
left: —42 23,19).

The manipulation of actively maintained information witt/M is suggested
to rely on mid-dorsolateral prefrontal cortex (Hartley &e®p, 2000; Petrides,
2002). Accordingly, the increasing activity within theseas is taken to reflect
increasing demands in computations on stored informaspecifically the re-
duction of all possible SR-rules to a smaller set of valid iBRs. In the case of
trained rules, the cue referred to five valid SR-rules caringrproperty X (e.g.
comic figure). In the case of learned rules, participantswitat the cue referred
to five valid SR-rules concerning property Y (e.g. color)t ot to which exactly.
In the case of explored rules, participants knew that therefegred to five valid
SR-rules, but not to which property they applied. Finalljyemever participants
had to test whether either the trained or the learned ruaggmere valid, the
range of to-be-checked SR-rules was twice as large as imaheed or learned
rules condition. Hence, parametric variations of the nodsdlateral prefrontal
activation is taken to reflect different requirements orupialgy the range of po-
tential SR-rules.

In addition to MFG, posterior parietal areas (IPS) were tbtarbe co-activated,
as typical for WM functions (Owen, 2000). In contrast to tlefpntal compo-
nents of this network, the posterior parietal areas arentéanaintain all SR-
rules that are valid in an experiment (Bunge et al., 2009)nFthis set currently
valid SR-rules are selected by corresponding prefrontak gMiller & Cohen,
2001; Smith & Jonides, 1999). By manipulating the numberR{r8les (sample
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sizes) with which participants started the present studyeemental conditions
differed in their requirement to maintain SR-rules, andé¢f@re draw differently
on posterior parietal areas.

Regarding IFJ activation, it has been shown that the imphtatien of learned
SR-rules elicits activation within the this area (Brass &vramon, 2002; Na-
gahama et al., 2001). This interpretation can be appliedrdaattivation in the
present experiment, where the selection and implementafi@ppropriate SR-
rules is required throughout the experiment and co-varsea function of SR-
knowledge. Activation was found to decrease within the sanwosely adjacent
areas during the course of the experimental session (seeeHg4). This effect
replicated findings from Exp.1, though coordinates diffieskghtly. As discussed
in the previous study, a decrease in IFJ activation wasgraézd to reflect a de-
crease in effort in implementing valid SR-rules. The sanmamation applies to
the parametric modulations of IFJ area: as the range of fialigrvalid SR-rules
is reduced, IFJ activation decreases. Note that activatiotulation in IFJ cannot
be attributed to retrieval success, because increasingssigvould be reflected in
a negative co-variation with decreasing IFJ response.

4.4.4 Conclusion

Together with Exp.1, present data demonstrate that bodrreadty attributed un-

certainty and internally attributed uncertainty moduliatiee posterior frontome-
dian cortex, specifically in mesial BA 8. However, while tloerher attribution of

uncertainty elicited activations within a dopaminergib-ortical network, the

latter induced additional activations within a fronto-p#al network. Findings

thereby confirm that memory search is an appropriate copiategy in this type

of uncertainty. Concluding, mesial BA 8 reflettst we are uncertain, additional
networkswhat we do to achieve future rewards






Chapter 5

Experiment 3

5.1 Introduction

The physician who diagnoses a patient, the broker who hasdide whether or
not to sell (the shares), or the student who needs to ansvestigns in an ex-
amination, all face uncertainty due to incomplete or ual#é knowledge. In all

examples the actor is concerned with the existence of dewatians rather than
with just one and thus uncertainty depicts the personsébaliout the variability

of possible outcomes (Teigen, 1994). But how can this uaceyt be resolved

in order to prescribe drugs, sell shares, or answer exaimingtiestions? A re-
duction of knowledge uncertainty, which constitutes inthduction of the range
of all possibilities to the relevant alternatives, is tylig achieved by gathering
and evaluating external information which is feedback ipezimental situations.
By comparing what has been achieved to what was initiallyhedsto achieve,

feedback contains information about how far someone hagrg@ssed towards
his/her specific goal. Generally, negative feedback (hsaal error ) constitutes
the converse of an efficient action. By indicating that sdrimgt has gone astray,
negative feedback signals for an attitude change. In camtpasitive feedback
serves as a “keep-at-it” signal. Thus, without knowledgeesiults there is no
progress such as learning or performance improvement. fidierpnce for one
option develops over time as it is supported by an increasmgunt of positive

97
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feedback. By the same time an increase in relevant knowledgars. These two
factors, the increasing amount of positive feedback andhitreasing amount of
relevant knowledge are thus confounded by nature.

Exp.1 and 2 suggested that the neural correlate of uncelegisions, regard-
less of the attribution of uncertainty, is mesial BA 8. Basedthese findings
and results from other imaging studies (Elliott & Dolan, 89%oel & Dolan,
2000), itis assumed that this cortical substrate is pdaiittuengaged in feedback-
based hypothesis testing on valid SR-associations thds$ keabehavioral modi-
fications. Furthermore, parametric effects in Exp.1 andv2aked that activation
within mesial BA 8 decreased with increasing certainty.t&aty in experimental
paradigms is supposed to be mediated via an increase af/pdsigdback which,
in this context, indicates an increase in knowledge. Fomgte, in hypothe-
sis testing tasks an increase in positive feedback indidhie successful set-up
of valid SR-rules according to which the task at hand carceffdly be accom-
plished. Therefore, a real learning process is supposetit@e activation within
mesial BA 8.

In contrast, solely receiving an increasing amount of pasfieedback inde-
pendent from the actual response should not increase kdgeuld his is because
feedback in a so-callgoseudo learning procestoes not allow to set-up a reliable
knowledge base since it has no informative content.

Accordingly, if activation within mesial BA 8 actually depés on relevant
knowledge, then exclusively an increase of relevant kndgée indicated by pos-
itive feedback, should reduce activation within mesial BAI8 contrast, an in-
crease of solely positive feedback, simulating a learniraggss (pseudo learn-
ing), should not lead to an activation reduction within ra&BiA 8.

Using the same experimental paradigm as in the precedingriexgnts, the
third one set out to investigate whether an independent pukation of knowl-
edge and feedback would lead to different cerebral effettirmmesial BA 8. A
dissociation on the brain level was hypothesized such tiaedion within mesial
BA 8 would solely be reduced by a real learning process bubyatpseudo learn-
ing process. For the real learning process a replicatioheofdésults of Exp.2 was
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expected such that real learning would induce activatich lgthin mesial BA
8 and within WM networks. By using a subtractive design tHfedint contribu-
tions of an increasing amount of knowledge and that of areasing amount of
positive feedback on activation within mesial BA 8 were stigated.

5.2 Method

5.2.1 Stimuli and task

In order to allow for a comparison between Exp.3 and Exp.2y snome fea-
tures of the experimental paradigm were modified. As befeagtjcipants had to
predict which of two concurrently presented stimuli woulghvn a virtual com-
petition game. The same stimulus material was used as il Exyul 2 but with
two modifications. First, the shape of the UFO’s was not aatéin the present
paradigm and therefore it stayed the same throughout tive experimental ses-
sion. Second, within both remaining stimulus dimensiores,(color and figure
dimension), all six possible pairings were generated bylioimg their four dif-
ferent levels (e.g., within the color dimension, the pajsmed-yellow, red-blue,
yellow-blue, yellow-green, blue-green, and red-greereveesented).

In order to induce aeal learning condition and gpseudo learningcondi-
tion, participants were provided with differently validefgbacks. The distinct
feedback validity was unbeknown to the participants. Inréad learning condi-
tion, one stimulus dimension represented a rule group stimgiof six different
sub-rules specifying the correct feedback. The six rulesewalid throughout
the experiment. Feedback depended on participants’ respamd was therefore
informative in order to set-up valid SR-rules. In the pselghrning condition
participants were instructed that one stimulus dimensgnasented a rule group
consisting of six different sub-rules. However, feedbaelswot specified by the
rules but modeled according to a pre-determined reinfoecgrachedule relating
trial number to feedback quality. Hence, feedback was onnétive in order
to set-up valid SR-rules. The assignment of stimulus dinoassto either real
learning or pseudo learning was balanced between partisipa
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In order to model a realistic time course of successful leggn.e., the distri-
bution of increasing positive respectively decreasincatieg feedback over time,
a learning model was extracted from pilot data. In the pitodg one group
of participants learned the color rules, another groupnieérthe figure rules.
Since the learning curves did not differ significantly betwethe two groups
(F(3,16) = .58;p = .63), the two learning curves were averaged. The resulting
distribution relating trial number to the value of the feadbk was subsequently
employed to simulate a learning process in the pseudo fepaondition in the
fMRI session.

In the real as well as in the pseudo learning condition gpeids were in-
structed to press the response button spatially corresmphal the stimulus they
excepted to win (e.g., after the task cue “color rules araliaif the red stim-
ulus will win against the blue, or conversely). In the cohtrondition, pairings
showed two identical stimuli (same color, shape, and figurk)ee arrows in the
middle of the screen indicated which of these two stimuli ldawin. Participants
were asked to simply indicate the stimulus that was indichtethe arrows.

Modifications due to pilot data

As before, the implementation of the manipulation was te@tea pilot study.
This was done to investigate whether the presence of thedpdearning con-
dition would deteriorate or even prevent successful legrim the real learning
condition. Participants were instructed that the two ctoi$ did not differ in
any respect.

Ten volunteers (5 female, mean age 22.2, range 19-25 yeant®)ipated in
the pilot study. A repeated measures ANOVA with the 2-lewasltdr condition
yielded a significant main effect for RF(1,9) = 64.8;p < .0001) such that par-
ticipants were slower (in choosing their response) in theuge learning con-
dition (meanRT = 1217.3ms SD= 1518) than in the real learning condition
(meanRT = 7851ms SD= 71.3) The assumption that the presence of a pseudo
learning effect would impair successful learning was proteebe incorrect. Par-
ticipants learned the correct SR-rules in the course of Hper@mental session
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as indicated by a significant difference in the rate of cdrresponses against
chance level in the fourth quartilé(9) = 19.4;p < .0001). As well a repeated
measures ANOVA with the 4-level factor quartile yielded gngicant main ef-
fect for the rate of correct responses indicating a signifidearning progress
(F(3,7) =412;p < .0001) (see Table 5.1).
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Figure 5.1: The rate of correct responses for the real learning conditio the
pilot study are plotted per quartile (20 blocks).

However, after completion participants reported #@nething was oddith
the pseudo learning condition. This feeling of oddness wasnly supported by
a significant difference in reaction times (as reported aepbut also by a signif-
icant difference in uncertainty judgments with regard &panse selection in the
two conditions as revealed by a post-experimental survalc@odn signed-rank
test:Z = —2.7; p(1tailed) < .001). After the experiment participants had to indi-
cate their (un-) certainty in response selection with rédgarthe two rule groups
on a fivefold graded ordinal scale of measurement. Gengegalyicipants indi-
cated a higher uncertainty in response selection in thepestive pseudo learn-
ing condition. In order to determine whether the degree efdhserved differ-
ence reflects a substantial one a non-parametric Wilcoxgmedirank test was
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calculated.! Furthermore, as revealed by the post-experimental sunabgdy
suspected the feedback to be invalid in the pseudo learpindjtion but anybody
reported that it was very difficult and demanding to figure thetvalid SR-rules
in this condition.

Decelerated reaction times and the presence of “odd” fgelnight be an in-
dicator for higher uncertainty in decision making in theymb®learning condition.
However, it is also correct to assume, that odd feelingscceubntually result in
suspiciousness about feedback validity such that it mighbe conceived of as
self-induced. Subsequently, the attribution of successtwib assumed to lead to
a reduction in uncertainty would not occur. If this holdstrthe contrast between
real learning and pseudo learning would be confounded bsattter attribution
of success

In order to control for this possible confound, an additiooantrol condi-
tion was prepared for the fMRI experiment. This conditioser@bled the pseudo
learning condition but assured that feedback was concaivexs self-induced.
Since this second control condition was designed as a hipetideen the pseudo
learning and the control condition it was termgskeucocondition. Contrasting
the pseuco condition with the pseudo learning conditiorukhgive information
about a possible confounding effect of attribution of sgsosith regard to activa-
tion within the region of interest, i.e., mesial BA 8. Accigly, in the additional
control condition participants were not required to leasmsthing but to accom-
plish a perceptually very demanding task. By supplying angasing amount of
positive feedback, delivered according to a pre-deterchiminforcement sched-
ule, an improved perceptual performance was simulated.f8ddback distribu-
tion in the pseuco condition correlated significantly whk feedback distribution
employed in the pseudo learning conditiogseucd pseud9 = .89;p < .0001).

It was assumed that participants would experience an apipl@agning progress
because of an improvement of perceptual discriminationalithtout the need to
set up a knowledge base of valid SR-rules. Due to the lack @$ida rules, par-

1This was done since the scale cannot be assumed to have frertjigs of an equal-interval-
scale.
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ticipants had no chance to control for the correctness oftipplied feedback.
Therewith a suspiciousness about the feedback validityprasented.

In the additional control condition, pairings showed tweritical stimuli (same
color, shape, and figure). Three of five arrows in the middiéeftcreen indicated
which of these two stimuli would win. Participants were aske simply indicate
the stimulus that was indicated by the three arrows. Paraggifficulty was in-
duced by the presentation time of the arrows, i.e., all fiveves were presented
for only 20ms. Participants were told that their performr@amould increase due
to a significantly better perception by time, i.e., simphadanction of time. Note
that participants were again completely ignorant aboudlfaek validity.

As before, the additional control condition was tested inlet [study. Six
volunteers (3 female, mean age 24, range 23-25 years)ipatéd in the pilot
study. A query past the experiment revealed that all pagitis believed that
their perception got better in the course of the experimehis is supported by a
significant decrease in reaction times over the course aétperimental session
(F(3,3) = 3.4;p=.044). Therefore, it was inferred that participants atteiou
successful accomplishment to themselves.

For an overview over the interrelations of the experimentaiditions and
associated manipulated factors, see Table 5.1.

Table 5.1:Interrelations between the employed conditions and theipodated

factors.
increase of ...
Condition ...knowledge ...positive feedback ...success
real learning yes yes yes
pseudo learning no yes ?
pseuco condition no yes yes

control condition no no no
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5.2.2 Experimental design

The experimental design was identical to that used in ExpdlL2with regard
to presentation, time course, randomization, and jitteriRarallel to Exp.2 (but
different to Exp.1) a verbal cue at the beginning of eachlbleas presented to an-
nounce the respective experimental condition. Overalhla8ks were presented
for the real learning, pseudo learning and pseuco conditespectively, and 10
for the control condition, resulting in 79 blocks or 395 Isialtogether.

5.2.3 Participants

Fifteen (10 female, mean age 25.9, range 23-33 years) hayided, healthy vol-
unteers participated in the fMRI experiment. After beinfipimed about potential
risks and screened by a physician of the institution, stbjgave informed con-
sent before participating. The experimental standards approved by the local
ethics committee of the University of Leipzig. Data were died anonymously.

5.2.4 Procedure

The procedure was conducted as described in chapter 2.6.

5.2.5 Data analysis

In order to investigate whether activation within mesial BAs reduced only by
increasing the amount of knowledge or also by increasin@theunt of positive
feedback a subtractive design was realized. The conditegidearning, pseudo
learning, pseuco, and control were all modeled as sepanstet gectors within
the same model. Contrast maps were generated that extthetéour effects of
interest independently from each other. Accordingly, thlieofving comparisons
were carried out: First, it was tested for the main task effaceither real learning
and pseudo learning. That is, testing the hypothesis tleaie tis no activation
within mesial BA 8 (the parameters for both conditions are same) against
the hypothesis that there is activation (the parameterhf@réspective learning
condition is greater than that for the control condition)niyOthe contrasteal
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learning versus control conditiowas expected to show a significant decrease of
activation within mesial BA 8 over the course of the expernitmé&econd, in order

to control for the factor attribution of success with regéwdactivation within
mesial BA 8, a direct contrast between pseudo learning anggbuco condition
was calculated. In the case of no difference within mesial8B#etween pseudo
learning and the pseuco condition, the fourth comparisahaakculated: In order

to look at voxels where the difference between real learaimg) pseudo learning
accounts for a significant amount of variance a direct cehtratween the two
conditions was calculated.

5.2.6 MRI data acquisition

The acquisition of the MRI data was conducted as describetiapter 2.6. One
functional scan consisted of 1108 images and each image SIices.

5.2.7 MRI analysis

All preprocessing and evaluation steps were calculated diyguthe software
package LIPSIA (Lohmann et al., 2001) as described in ch&pie

5.3 Results

5.3.1 Behavioral data

In Table 5.2 error rates for the real learning condition afddf& each condi-
tion are shown per quartile. In Figure 5.2 RT are plotted fachecondition
per guartile. One quartile consisted of 20 blocks, i.e., frifls. A repeated
measures ANOVA with the 4-level factor condition yieldedign&ficant main
effect for RT ¢(3,33) = 80.6;p < .0001). Also the single contrast between
real learning and pseudo learning yielded a significant reffect for RT, such
that participants were slower in the pseudo learning candithan in the real
learning condition (F1,11) = 1129;p < .0001). RT in the pseuco condition
as well as in the control condition decreased significantlgrahe course of
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the experiment (pseucd: (3,42) = 3.5;p = .024; control: F(3,42) = 4.7;p =
.007). This does not apply to the distribution of the RT in thaldearning and

pseudo learning condition, respectively (real learniR@3,42) = 2.6;p = .067;

pseudo learningf(3,42) = 1.8;p = .158). Reaction times in the pseuco con-

dition were faster in general since stimuli were presentadohly 20ms and

participants could respond as soon as the stimuli appeatetbarning effect

was indicated by both a significant decrease of error rates the course of
the experimentK(3,42) = 5.1;p = .004) (see Table 5.2) and a significant dif-
ference of the rate of correct responses against chandandbe fourth quartile
(t(14) =5.0; p < .0001). The distribution of decreasing negative feedbadhkén
real learning condition correlated significantly with betimployed learning mod-
els ((real/pseud9 = .72;p < .0001y(real/pseucd = .65;p < .0001). Also,
the two models simulating learning effects correlatedificantly with each other
(r(pseudgpseucd = .89;p < .0001) (see Figure 5.3).

Table 5.2:Error rates (mean and SD in percent) for the real learning YRhd

reaction times (RT) (mean and SD in ms) per quartile (Q1-dydal learning

(RL), pseudo learning (PL), pseuco condition (PC), and tbetrol condition
(CC) in the fMRI experimenhE15).

RL
Errors

RL
RT

PL
RT

PC CcC
RT RT

Q1
Q2
Q3
Q4

38.6 (10.9)
30.5 (16.6)
32.4 (15.0)
24.0 (18.1)

1275.1 (119.4)
1199.0 (168.0)
1222.8 (183.8)
1194.0 (180.0)

1237.3 (135.5)
1202.8 (159.3)
1193.9 (162.8)
1170.2 (206.7)

959.1 (197.0§6.97(136.4)
970.5 (143.8)1.67(123.4)
947.1 (167.3)7.8/(114.9)
854.6 (167.1J0.3(122.0)
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Figure 5.2:Reaction times (RT) are plotted per quartile (20 blocks)dibrondi-
tions.

5.3.2 Post-session survey

After completion of the functional session, confidence juégts were collected,
i.e., participants were interviewed about their confidenadecision making over
the course of the experiment with regard to each conditioarthErmore, they
were asked to report in more detail what they thought and hewfelt during the
experimental session.

In general, all participants reported that the two condgio which they were
asked to figure out valid rules (real learning and pseudmieg) differed with
respect to the experienced confidence in decisions. Retits indicated a higher
uncertainty in response selection in pseudo learning asahlearning as indi-
cated by a significant difference in (un-)certainty judgtsefWilcoxon signed-
rank test.Z = —2.2; p=.027). All participants reported difficulties in identifygn
the valid rules in the pseudo learning condition. Howevehaudy suspected the
feedback to be incorrect or invalid, rather they distrugtezir memory of event
occurrences and ability in drawing inferences. In unisamtigipants noticed that
they acquired the rules in some way due to the increasingym&edback. How-
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Figure 5.3:The decreasing distribution of erroneous responses indadearning
condition and the modeled distributions of decreasing tiegadeedback for the
pseudo learning condition and the pseuco condition are shower the course of
the experiment (1 block consisted of 5 trials).

ever, they were astonished by the fact that they still madsakes in the end and
that they could not repeat the rules as fluently as in the ezahing condition

past the experimental session. Hence, introspective jadtgrdid not indicate
suspiciousness about the feedback validity in the pseatiteg condition. Also

turned out by the survey was participants’ ignorance abiminhature of the feed-
back in the pseuco condition, i.e., participants reallydveld that their perception
got better by time. Together, the survey revealed that tinelation of a pseudo
learning process respectively the simulation of improvectcgption was highly
effective.
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5.3.3 MRl data
Effects of real learning

The main effect of task was tested by contrasting the reahileg condition
against the control condition. As shown in Table 5.3 and f&du4, significant
activations were found within the left posterior frontoriatcortex (mesial BA
8), the right pre-SMA, the left inferior prefrontal areaf@rior frontal junction
area (IFJ), i.e., at the cross-section of the inferior fabstlcus and the inferior
pre-central sulcus), bilaterally within the antero-sigemsula, within the left
posterior parietal cortex (along the banks of the intragatisulcus (IPS)), bilat-
erally within the precuneus, the left cuneus, dorsal premairtex, aqueduct, and
the right cerebellum.

Table 5.3: Anatomical specification, hemisphere, Talairach coortbsdx,y, z),
and maximal z-scores (Z) of significantly activated voxel®al learning versus
control condition.

Area Hemisphere x y z Z
Frontomedian Cortex (mesial BA 8) L -5 19 4446
Pre-supplementary motor area (pre-SMA) R 1 6 587
Inferior frontal junction area (IFJ) L 41 7 3841
Antero-superior Insula L 29 22 6 4.0
R 34 18 12 4.1
Intraparietal sulcus (IPS) L -35 -51 445.0
Precuneus L -5 -68 5346
R 10 -71 23 3.8
Cuneus L -17 -74 15 49
Cerebellum R 4 -68 -153.8
Aqueduct L -2 -35 -15 4.0

Dorsal premotor cortex L 26 -2 654.1
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real learning vs. control condition pseudo learning vs. control condition

BA 8

IPS

Figure 5.4:The left panel shows the main task effect(2.09) for real learning
versus control condition; the right panel the main taskeatffer pseudo learning
versus control condition. Group-averaged activations sttewn on sagittal (x=-
5) and axial (z=32;50) slices of an individual brain normedid and aligned to
the Talairach stereotactic space. For activation coordesasee Table 5.3 and 5.4.
Abbreviations: BA 8, mesial BA 8; Pcu, Precuneus; IFJ, imiefrontal junction
area; IPS, intraparietal sulcus.

Effects of pseudo learning

The main task effect of pseudo learning was tested by cdimgathe pseudo
learning condition against the control condition. As shawfable 5.4 and Figure
5.4, significant activations were found within left mesiah B, the left IFJ, the

left mid-portion of the middle frontal gyrus (MFG), bila@dly within the antero-

superior insula, within the left posterior parietal cor{@ong the banks of the
IPS), the right precuneus, the left extra-striate visuahathe left parietoccipital
sulcus, and dorsal premotor cortex.

Control for the attribution of success

In order to control for the factor attribution of successhwiggard to activation
within mesial BA 8, a direct contrast between pseudo legrind the pseuco
condition was calculated. As a result, no significant atitvawas found within

the region of interest, i.e., mesial BA 8. Accordingly, sirtbe factor attribution
of success did not lead to different cerebral effects withésial BA 8, the pseuco
condition will be neglected in the following.
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Table 5.4: Anatomical specification, hemisphere, Talairach coortisgx,y, z),
and maximal z-scores (Z) of significantly activated voxelsseudo learning ver-
sus control condition.

Area Hemisphere x y z Z
Frontomedian Cortex (mesial BA8) L -5 24 3&%.0
Inferior frontal junction area (IFJ) L -44 6 383.9
Middle frontal gyrus (MFG) L 41 22 294.2
Antero-superior Insula L -32 22 643
R 34 18 9 47

-35 -51 4454
4 -60 5044
-96 343
-20 -66 153.7
-26 0 5334

Intraparietal sulcus (IPS)
Precuneus

Extra-striate visual area
Parietoccipital sulcus

r - - A r
1
=
\‘

Dorsal premotor cortex

Direct contrast between real learning and pseudo learning

The question if activation within mesial BA 8 is reduced obly increasing the
amount of knowledge (real learning) or if activation is aleduced by increasing
the amount of positive feedback (pseudo learning) was figated by calculating
a direct contrast between real learning and pseudo leatrialg. The resulting
contrast image contained contrast values describing feetiek difference be-
tween these experimental conditions (i.e., the differdrateveen the two means).
As a result, the comparison between real learning and pseadoing trials re-
vealed no significant difference within any brain region.

In order to explore this finding of no difference with regandhe percent sig-
nal change in real learning and pseudo learning, the signakes were analyzed.
In order to attain this information, trial-averaged sigoalirses for each condition
(and subject) were taken from a specified voxel within meBfB, plus 8 adja-
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cent neighbors within the same slice (2B)-urthermore, differences between the
minimum and maximum activation for real learning and psdaedming were cal-
culated. The minimum activation was sought in the time rasfg&to 5s and the
maximum activation in the time range of 3 to 8s. These timgearwere chosen

in accordance with reports about the usual time ranges eftoyonset and time-
to-peak (Neumann, Lohmann, Zysset, & von Cramon, 2003).ev¢aled that
the signal courses of both conditions showed a significasgitige correlation

(r = .66;p = .01) and that the differences between the minimum and maximum
activation did not differ significantlyt(14) = —.60;p = .56).

5.4 Discussion

Exp.3 was designed to investigate whether activation imkaeeas identified to
be involved in higher and lower degrees of knowledge uniceytés reduced ex-

clusively by increasing the amount of knowledge or also loydasing the amount
of positive feedback . Accordingly, it was investigated tiee an alternative way
to reduce activation within mesial BA 8 may be to increaseaim@unt of solely

positive feedback in the absence of knowledge acquisition.

5.4.1 Activation within mesial Brodmann Area 8

As a result, the activation patterns of real learning andigisdearning did not
differ in any respect. Accordingly, in contrast to the iaithypothesis it made
no difference on the cerebral level whether activation wwitmesial BA 8 was
reduced by increasing the amount of knowledge or by inangatsie amount of
positive feedback .

As revealed from Exp.1 and 2, mesial BA 8 can be taken to becphkatly
engaged in feedback-based hypothesis testing on validueR-rMoreover, re-
sults from Exp.2 suggested that the more positive feedizamceived indicating
a successful set-up of SR-rules the less activation idedicivithin mesial BA 8.

2As a specified voxel the activation focus within mesial BA 8 friira main effect real learning
was takenX= —5,y = 19,z= 44).
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As revealed from Exp.3, the increasing amount of positieslfack is sufficient
to lessen activation within mesial BA 8 regardless of thesotdye possibility to

set-up valid SR-rules. That is, an increased frequency sifipe feedback is sug-
gested to be powerful to lower uncertainty in decision mgkirhis may be due to
the fact that the supply of increasing positive feedbacéidd¢a an overconfidence
in correctness, i.e., the overestimation of the likelihobthe favored hypothesis.

In general, the assessment of confidence or the degree ef bela given
hypothesis integrates different kinds of evidence, ite strength of the evidence
and its weight or predictive validity, respectively. Thetifiction between strength
and weight of evidence is closely related to the distincbetween the size of an
effect (e.g., the difference between two means) and itabidity (e.g., the stan-
dard error of the difference) (Griffin & Tversky, 1992). Onajor finding of the
literature on judgments under uncertainty indicated thajests are often more
confident in their judgments than it is warranted by the fdas being overconfi-
dent (Ayton, & McClelland, 1997; Griffin & Tversky, 1992; Sie & Yates, 2001,
Stone & Opel, 2000). Particularly, it has been shown thatanrdidence results
from the fact that subjects are more sensitive to the sthesigtvidence than to its
weight (Griffin & Tversky, 1992). This means that subjectshfidence is deter-
mined by the balance of arguments for and against the congplyipotheses but
with insufficient regard to the credence of the evidence. l@nather hand, this
mode of judgment leads to underconfidence when subjectsvaide the strength
of evidence and overvalue the weight of evidence. For examyten evaluating
a letter of recommendation for a student written by a forreacher two aspects
of the evidence have to be considered: How positive is therlahd how credible
is the writer? If it is focussed primarily on the positivity the recommendation
with insufficient regard to the credibility of the writer, exconfidence will occur.
In contrast, if it is focussed mainly on the credibility ofetlwriter with insuffi-
cient regard to the positivity of the recommendation, uodefidence will occur
(Griffin & Tversky, 1992).

Accordingly, we suggest that in Exp.3 subjects’ tendencyotus on the
strength of evidence led to an undervaluation of the priobability of the hy-
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pothesis in question. Consequently, the low or even notestipredictive validity
of evidence could not be considered in the balance assessfraguments. Sub-
sequently, the degree of belief in a given hypothesis wadbiased by informa-
tion about the credence of evidence but strengthened bytneased frequency
of positive outcomes.

Other explanations of overconfidence puts it down to urstalioptimism
(e.g., Weinstein, 1987, 1989) or wishful thinking (e.g.,bBd, 1987; Harvey,
1992). According to this view, overconfidence is caused lygbneralized ten-
dency to overestimate the likelihood of positive outcomed # underestimate
the likelihood of negative outcomes. Yet, this assumptiaises the question
about the mechanisms responsible for producing this biassiBly, it could be
due the recruitment process of arguments, i.e., the gémerat arguments fa-
voring the selected alternative in order to produce confidguadgments (Koriat,
Lichtenstein, & Fischhoff, 1980). In Exp.3 participantgpexenced an increas-
ing amount of positive feedback in all three experimentalditions except for
the control condition in which the amount of positive outamstayed the same
throughout the experiment (see Table 5.5). Therefore, highly probable that
participants overestimated the likelihood of positivecoumes and underestimated
the likelihood of negative ones. The recruitment process@iments favoring the
current working hypothesis is thus supported by an incngeaimount of positive
feedback. Subsequently, confidence in correctness is sego rise.

This assumption is supported by the finding that subjectsfidence in cor-
rectness increases with experience. Behavioral studiesotor skill tasks showed
that the relationship between subjects’ confidence in coress and the length of
practice seemed to depend more on subjects’ expectatian tigoeffects of prac-
tice than on the actual effects of practice (Harvey, 1994xirAilar explanation
may apply to our data too, such that the temporal duratioassf performance in-
fluenced the confidence in correctness. In the pseudo Igacoimdition both the
expectation and the experience about the effects of peagtidicated by increas-
ing positive outcomes) were validated. This may subsetyubate produced an
illusion of learning. The simulated improvement of skillddknowledge may thus
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Table 5.5:For the three conditions real learning, pseudo learningd siseuco the
ratios ofcorrect to incorrect responses are listed per quartile (1 quartimsisted
of 28 trials). Ratios of correct and incorrect responsesdaliearning and pseudo
learning did not differ significantlyx?(3,15) = .06;p = .99).

real learning pseudo learning pseuco condition

quartlel 61 : 39 58 : 42 52 48
quartie2 70 : 30 68 : 32 68 32
quartle3 68 : 32 72 28 74 . 26
quartile 4 76 : 24 82 : 18 96 4

have resulted in a reduction in decision conflict.

Further support comes from the clinical domain. Very earfykaby Jenkins
and Ward (1965) on response-outcome contingency demtetstieat not the ob-
jective degree of control but tharoportion of positive outcomds the primary
determinant of perception of control (see also Tennen, DK@itten, & Stanton,
1982). That way, the subjective judgment of control is edato the probability
of receiving the desired outcome rather than to the difieeen outcome prob-
abilities of all possible outcomes. The authors concludhed the perception of
control should therefore be manipulable by systematioalying the frequency
of non-contingent positive outcomes. This is exactly, wivat done in Exp.3.
Hence, it is assumed that the (manipulated) increased Ipititpa@f desired, pos-
itive outcomes in the pseudo learning condition produceitiiion of control or
an illusion of learning, respectively.

The presumption that the duration of task execution canenfie (over-) con-
fidence in performance is in conflict with the literature odgments of learning
(e.g., Koriat, 1997; Koriat, Sheffer, & Ma’ayan, 2002). Acding to the literature,
the duration of task execution results inamerconfidence-with-practiq@ WP)
effect, i.e., an increased underconfidence in performamdgmjents despite a per-
formance improvement (Koriat et al., 2002). Yet, the UWReedfffis shown to
occur withrepeatedpractice. This means, still on the first presentation a tecyle
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towards overconfidence was observed and only from the squesdntation on a
UWP effect (Koriat et al., 2002). Since these findings wereipabserved with
the estimation of one’s future recall performance of wostsli there is no clue
for a temporal estimation from when on the UWP effect shodddkpected with
hypothesis testing.

Together the monitoring of one’s own performance via feeldlmould have
led to an overconfidence and the illusion of knowing in reatméng and pseudo
learning. Consequently, knowledge uncertainty decreasai is supported by
the fact that the two conditions did not differ in their aetion pattern within
mesial BA 8. However, whether subjects’ tendency to focutherstrength of ev-
idence with simultaneous undervaluation of the weight idewce is responsible
for an (unduly) increase in certainty or rather the duratibperforming a task
remains to be elucidated in future studies.

5.4.2 Activation within dorsolateral and posterior parietal areas

As in Exp.2, significant activations, in addition to mesi&l 8, were found within
the MFG, IFJ, and IPS.

Activations within the MFG and IFJ are in accordance with pior hypothe-
ses and results from previous imaging studies. The sustanoaitoring and ma-
nipulation of feedback information across the experimiesgasion was required
in the present experiment in order to accomplish the taskesstully. This de-
mand, which is taken to be the key feature of tasks activatiidydorsolateral
prefrontal areas (MFG) (D’Esposito et al., 1998; Petrid)2), was instructed
to apply to both real learning and pseudo learning. In thenésras well as in the
latter condition participants were required to implemepprapriate task rules.
This demand could be accomplished by updating task repegs®rs which has
been shown to be reflected within the IFJ area (Brass & von Gnai2002; Na-
gahama et al., 2001).

Activations within posterior parietal areas are taken tontaén all SR-rules
that are valid in an experimental session (Bunge et al., R(Ee also 4.4.3).
In Exp.2 it has been shown that different amounts of to be tamed SR-rules
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co-varied systematically with posterior parietal areaher&fore, more activa-
tion within posterior parietal areas could have been exuktir pseudo learn-
ing as compared to real learning (direct contrast) as thebeumf possible SR-
rules, consistently reinforced by feedback, differed leetwthe two conditions.
In such a manner, that in pseudo learning the reduction piakible SR-rules to
a smaller set of the valid SR-rules was not as clear-cut arekpgditious means
as in real learning. Therefore, pseudo learning could haes lexpected to draw
more on posterior parietal areas than real learning. TBismaption was indicated
by an activation difference within the IPS for pseudo leagnin the direct con-
trast (Talairach coordinates:= 22y = —56,z = 38;Z = 3.7; volume: 11®n?).
However, since the volume was less than 22%° (equivalent to 5 voxels), this
activation was not considered as activated.

The involvement of WM networks in real learning as well as sepdo learn-
ing are supposed to confirm that a typical coping strategyleyed with per-
ceived knowledge uncertainty constitutes in an intensieenary search, most
likely in combination with the utilization of external infimation (Kahneman &
Tversky, 1982).






Chapter 6

General discussion and future
perspectives

The main findings of the experiments can be summarized asm®ill First, un-
certainty in decision making is reflected within mesial BA 8econd, different
variants of uncertainty entailing different coping stoaés can be dissociated on
the basis of additionally activated networks. And thirg gvaluation of increas-
ing positive feedback, not exclusively the acquisition nbWwledge, reduces ac

tivation within mesial BA 8. Together, activation within sial BA 8 appears to
be engaged in setting up an environmental model that isdtestd helps us to
adapt our behavior stepwise and in a cumulative manner teatfying situational
requirements. That way, mesial BA 8 can be conceived of agemthat tracks
more or less uncertain outcomes with regard to an internaleirand acts like a
steering wheel that directs how uncertainty is dealt with.

In view of the existing literature and the employed paradiginis suggested
that activation within mesial BA 8 on the one hand and adtwatvithin BA
32/24 (often in company with pre-SMA) on the other are preferdiytiengaged
in different decisions under uncertainty such that the faria elicited by well-
defined problems whereas the latter is elicited by well-éefitasks. The present
chapter will outline three major issues considering (1)ghmposed fundamental
difference between BA 8 activation as in contrast to BA/32 activation, (2)
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in as much activation within mesial BA 8 can be differentihfeom activation
within anteriorly located BA 10, and (3) the final section qoises an outlook on
worthwhile investiagtions in the near future.

BA 8 activation was found within a number of studies investilgg uncertainty-
related paradigms like detection and application of abjtr'SR-rules (Fletcher
et al., 1999; Goel & Dolan, 2000; Goel et al., 1997; Knutsoalgt2003) or hy-
pothesis testing (Elliott & Dolan, 1998). Uncertainty ireie tasks as well as
in the presently employed one is induced by cognitive diffjcuAlthough the
initial state, the goal state and the operators (rules) wwhie used to transform
one state into the other are clearly defined in the consideaealdigms, the spe-
cific combination or sequence of the operators is not giveprerdetermined.
Rather, subjects have to logically reason how the differdmetween the initial
state and the goal state is reduced in beeline. Aggravaditigei fact when the
operators are unknown and subjects have to figure out thatopern addition
to the specific combination of those. A reduction of uncatiacan be achieved
by a careful feedback evaluation. The returning infornratipresumed it is valid
- signals whether or not the goal state is successfully getlie By comparing
different combinations of initial states and actions, canrfeatures of success-
ful situation-responses-associations can be obtainedtiresin the learning of a
general strategy. Thus, this incremental solution appriaamanaged by an ex-
amination of drawn conclusions via feedback evaluationcoiding to the prob-
lem solving approach, all considered features meet theitiefircriteria for well-
defined problems and at the same time for reflective decisime the problem
solving approach comprises the sub-process of decisioingnéompare 1.1.4).

In contrast, activation within BA 3224 (often plus BA 6) is found in a num-
ber of studies investigating uncertainty related paradidjike response conflict
or error detection and error processing (e.g. Bunge et @)2;2Garavan et al.,
2002; Luks et al., 2002; Ruff et al., 2001; Ullsperger & vorafon, 2001). These
studies used paradigms like the Eriksen flankers task, sdemddified flankers
tasks, or go/no go tasks. Uncertainty in these tasks is adlbg time pressure or
perceptual difficulty resulting in a co-activation of twesp®nse tendencies such
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that conflicts arise on the response level. Usually, theatpes are known and in-
structed beforehand. That way, feedback does neither bawve sampled across
trials nor does it provide new information but simply serassan affirmative an-

swer on a trial by trial basis. According to the problem swdviapproach, all

considered features meet the definition criteria for wefirted tasks and at the
same time for routinized or stereotype decisions.

Concluding, it appears that activation within mesial BA 8éstrally involved
in well-defined problems or reflective decisions, respetfiv It is suggested
that tasks requiring a sustained feedback-dependenceslofprformance will
elicit activation within the posterior frontomedian cottdn contrast, activation
within BA 32//24 has been shown to be centrally involved in well-defined tasks
or routinized decisions, respectively. It is suggested thsks requiring forced
responses based on perceptual cues will elicit activatitmmBA 32'/24'.

Accordingly, it is not peculiar to find BA 8 activation for ems compared
to correct responses within some paradigms (Cools et ab2;2Rieuwenhuis
et al., 2003) and activation within BA 324 for the same contrast within other
paradigms (Carter et al., 1998; Ullsperger & von Cramon12@003). The for-
mer investigated errors with probabilistic tasks, which aefined as reflective
decisions, whereas the latter investigated errors in respoonflict, which we de-
fined as routinized decisions. Thus, it is suggested thateoccurring with de-
cision conflicts draw on different brain areas than errouaing with response
conflicts.

In error research the determination of cognitive effort mfagtion is used to
distinguish different types of errors, i.e., mistakes fraation slips. Also in de-
cision research the factor “cognitive effort” is used totidiguish more or less
uncertain decisions. Relating the taxonomy of errors totheof decisions, it is
suggested that different types of decisions are assocwatadifferent kinds of
errors such that reflective decisions generate mistaketnized decisions action
slips. Action slips are defined as errors resulting from sdéailare in the exe-
cution and/or storage stage of an action sequence and aafotleebe observed
as externalizedctions-not-as-planne(Reason, 1990). In contrast, mistakes are
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defined as “failures in the judgmental and/or inferentialggsses involved in the
selection of an objective or in the specification of the mdarechieve it” (Rea-
son, 1990, p.9). That way, mistakes refer to complex errdvistwcould only be
solved with a substantial amount of cognitive effort. Intrast, action slips refer
to simple errors, mostly movement errors, which can eaglcdrrected with-
out much of cognitive effort. Reconciling mistakes anda@tlips with errors in
different types of decisions-problems, it appears thatrsiin routinized or stereo-
type decisions signal for a failure in the execution of knaeeision rules or for
a failure in the storage of heurisitcs, whereas errors iectfle decisions signal
for a failure in the inferential process involved in the gfieation of the decision
rules. Therefore, it is suggested that qualitatively défd errors engage different
brain areas.

Considering the existing literature and the present resu#t conclude that
the posterior frontomedian cortex is involved in cognitprecesses like feedback
evaluation and hypothesis testing, i.e., tasks which recmisustained feedback
evaluation of task performance. However, at first glancis, ¢onclusion is in
conflict with the proposition that mesial BA 10 is centralhywdlved in these very
cognitive processes (for a review see Christoff & Gabr300). It appeared that
the anterior-most parts of the middle and superior fronyal e involved in rea-
soning tasks like the Tower of London task (TOL) (Baker etE#)96), inductive
reasoning tasks (Goel et al., 1997; Osherson et al., 1998}ha Raven’s Progres-
sive Matrices Test (RPM) (Prabhakaran, Smith, Desmondyégla& Gabriel,
1997).

It could be hypothesized that the cause for this differesd@unded within
the type of tested problem such that studies reporting BActi@adion employed
ill-defined problems whereas studies reporting mesial BAt&ation employed
well-defined problems. Several imaging studies reportictiyaion within BA
10 used tasks with a closed problem, i.e, clearly definedabqesx, and an open
solution situation, i.e., an ill-defined goal state. By défin these ill-defined
problems are divergent-production problems which areatttarized by an open-
endedness of the solutions and by a knowledge base spectiyin to solve the
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problem. The open-endedness of the problem is induced bskeaofafeedback.

That way, participants cannot test whether or not their @anamas correct. For
example, due to the lack of feedback in the RPM participategesl ignorant
whether or not their analytic reasoning was correct. Thk tddeedback could
also give rise to the possibility that there is more than areect answer or that
the correct answer varies inter-individually dependingooe’s one internal ref-
erence system. The latter is supported by studies invéistigavaluative judg-

ments (Zysset, Huber, Ferstl, & von Cramon; Zysset et aD3p@nd coherence
judgments (Ferstl & von Cramon, 2001, 2002) which foundvatiton within the

aMPFC. Feedback was delivered in neither study. Subjeats asked to judge
statements with regard to personal preference (Zysset, 2Qfl2, 2003) or co-
herence (Ferstl & von Cramon, 2001, 2002), respectivelys#gects were not
supplied with an objective reference system (which wouldehaeen confirmed
by feedback) they had to assess the external stimulus ortemahscale. Stud-
ies investigating pleasantness judgments in which oblyious feedback could
be given, also found activation within the aMPFC and relatexl activation to

introspectively oriented mental activities (Gusnard gt2001).

However, inconsistent with our hypothesis is evidence estjgg that mesial
BA 10 may also be involved in feedback evaluation (Elliotakt 1997). Feed-
back evaluation is also a central component of the WiscoB@sird Sorting Test
(WCST) and some studies using the WCST reported activatitninBA 10 (Na-
gahama et al., 1996; Ragland et al., 1998). Elliott and cd«grs (1997) inves-
tigated the neural response to feedback versus no feedlackirg a version of
the TOL. They found BA 10 activation when participants reedifeedback versus
not receiving feedback. However, feedback was entirelgpendenfrom partic-
ipants’ response. Positive feedback was supplied in 10089%s of the cases,
respectively, regardless whether or not the response wesctoA past-session
survey revealed that all participants realized the feeklbmbe invalid. That way,
participants had to engage in the evaluation of self-gée@rsequences of moves
independent from the supplied feedback. Due to the invglafithe feedback this
kind of TOL resembled the TOL employed without feedback &erances had to
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be made without an external reference system.

While reasoning tasks like the TOL or the RPM are designecetavdirkable
without feedback the WCST is not. For example, in the RPMdabjects could
engage in formal operations applied to sets and subset®ifeat features on
each trial. Feedback is not needed to engage in the nexirtrighich another
set of different element features has to be processed. Tristimulus material
and the operators are designed in a way that challengingegson is possible
without feedback. The same applies to the TOL. In contrbst\WWCST is not de-
signed in a way that the task would be demanding on each titlabut feedback.
The critical feature of the WCST is the temporary rule chamat until feedback
is delivered the task is solvable. By employing this perfance-dependent rule
change (i.e., after a fixed number of correct trials, the milehanged) the goal
state is varying over the experimental session whereagators are identical.
Hence, the WCST could be conceived of as a hybrid betweendeéhed and
ill-defined tasks: Although the WCST has a closed problem atbsed solu-
tion situation the latter changes temporally making thenitédin of the goal state
less definite. On the one hand the WCST resembles rule Igatagks like the
presently employed one but on the other hand differs withaetsto the additional
demand to flexibly change rules. The latter implies that theision from when
on a negative feedback signals for a rule change is intrtispcgenerated. This
may be the reason why studies applying the WCST found aictivatithin BA
10.

The considered reasoning tasks share a common substratelyrthe evalu-
ation of self-generated responses or plans for actions.e¥ample, in the TOL
task the evaluation of self-generated sequence of movesjisred, in inductive
reasoning tasks the evaluation of self-generated hypeshesthe RPM the evalu-
ation of the plausibility of an argument, and in coherencevatuative judgments
the assessment of an external stimulus on an internal stadether, in all cases
subjects evaluate information they have generated by tgassor retrieved. This
assumption is supported by Gusnard and co-workers (200b)sphcified the
cognitive processes in which the (dorsal) aMPFC is involedelf-referential or
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introspectively oriented mental activities. These preessre required when non-
routine cognitive strategies have to be generated andtsdlecnovel situations.
Considering classifications of decisions, ill-defined peais can be conceived of
as constructive decisions. Concluding, it is suggestetabi@vation within BA
10 is involved in self-referential evaluations and intresjive thoughts (Gusnard
et al., 2001; Zysset et al., 2003).

However, it needs further studies investigating well-dedirand ill-defined
problems which should be administered with and without fee#t in order to
test the proposed preliminary model. Furthermore, stuatieseeded that directly
compare neural correlates of well-defined problems anddefihed tasks, at best
within the same experimental paradigm. Another issue wisith be addressed
is the dissociation of uncertainty and difficulty. A task égjuired in which both
uncertainty and difficulty can parametrically be varied sot@ disentangle the
contributions of these two factors to cerebral activation.

The present results help to broaden the state of knowledyseaaing neural
correlates of uncertain decisions. Particularly, thded#nt types of problems en-
tailing different coping strategies may be crucial for tequired brain networks.
However, there are still more open questions than settled.oRor example, it
has been shown that affective states have a highly impostanlittle understood
influence on how people think about, remember, and respoaddal situations
(Forgas, 2001). Recent research and theories illustratealffective states can
play a subtle and often subconscious role in guiding pebileaghts, memories,
judgments, attitudes and behaviors in social situationsg@s, 1992). Moods can
influence decisions as well as the structuring of cognitiegemal. In contrast to
emotions, moods can be described as general and diffusegieathich need not
to be conscious. Generally, moods do not correspond to dfispgaal and need
not to be released by an event (Abele, 1991, 1992). Hent®muah not knowing
where from a specific mood is originating the person feels dapressive, cheer-
ful or glad. Moods have been shown to influence the contenetiawthe process
of cognition. In problem solving situations, subjects iroaifive mood tend to use
simplifying strategies and are quicker in decision makhentneutrally tempered
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subjects (Isen & Means, 1983) whereas subjects in a negatiael tend to use
more analytic strategies (Schwarz, 1990). Dependent oattkeand context both
of these strategies could yield good decisions. In geneegjative moods could
foster an analytic, precise, and detail-oriented proogsshereas positive moods
could foster simplifying and flexible processing as well las tise of heuristics
(Forgas, 1992). It would be interesting to investigate Wwhebr not this behav-
ioral dissociation is also reflected on the brain level. Bameple, well-defined
problems that require analytic strategies should be be sumeessfully solved by
negatively tempered subjects than by positively tempeudgests. According to
our hypothesis, subjects in a negative mood should eligietaactivation within
frontomedian areas than subjects in a positive mood sireegh of appropriate
(analytic) strategies should decrease uncertainty.

Another interesting issue would be the investigation ofantain judgments
as compared to uncertain decisions. In general, decisienmade with regard
to the expected consequences. This implies an implicit pli@kassessment of
the consequences. The resulting evaluative or prefereniggrients are usually
not observable, but the choice for a specific option are E€umngnn et al., 1998).
Consequently, it could be assumed that judgments detettiminehoice for a spe-
cific option. However, in the words of Einhorn and Hogartlidgment “is neither
necessary nor sufficient for choice” (1981, p.73). The tiaddl assumption that
judgment and choice are equivalent was proven to be indobyethe fact that
many heuristics yield a choice among options without priogjcevaluations of
each alternative (Payne et al., 1993). Furthermore, thénfinof the so-called
preference reversalsalled the equivalence of judgment and choice into question
In short, preference reversal describes the robust findiagexpressed prefer-
ences can be reversed depending upon whether a choice angatigesponse is
used. Although there are several explanations for this @inemon, its cause is
placed at the fact that variations in response mode causelarfiental change in
the way people process information.

From this it follows that it would be worthwhile to investigawhether or not
uncertain judgments would involve the same brain areas esriain decisions.
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For example, one could compare brain correlates of judgsnanbut uncertain

gambles to choices of uncertain gambles. To use judgmedtstaices of gam-

bles is advised since there are objective dimensions, sutiheaamount and the
probability of winning, which can be used to determine maré&ss uncertainty

in judgments and choices. It could be hypothesized thatcelsodf uncertain

gambles should draw on different brain areas than judgnafnisicertain gam-

bles since different information procedures are proposedhiese two response
modes (Payne et al., 1993). Information processing in tbecehmode is assumed
to be primarily dimensional whereas processing in the juslgrmode is assumed
to be primarily alternative. In a dimensional-based procedcach dimension of
one option is compared with the same dimension of anothéoropthereas in

an alternative-based procedure one item of informatioruaboe alternative is
used as an anchor and subsequently this anchor is adjusiekktadditional in-

formation into account. Hence, it will be interesting toestigate whether the
behavioral response mode effect will be reflected by difféa¢ brain activations.

That is, whether or not a change in the strategy for procgdsiormation as a

function of the response mode will be related to differemébeal effects.
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