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Abstract

Previous ERP studies have found an N400–P600 pattern in sentences in which the number of arguments does not match the number of

arguments that the verb can take. In the present study, we elaborate on this question by investigating whether the case of the mismatching

object argument in German (accusative/direct object versus dative/indirect object) affects processing differently. In general, both types of

mismatches elicited a biphasic N400–P600 response in the ERP. However, traditional voltage average analysis was unable to reveal

differences between the two mismatching conditions, that is, between a mismatching accusative versus dative. Therefore, we employed a

recently developed method on ERP data analysis, the symbolic resonance analysis (SRA), where EEG epochs are symbolically encoded in

sequences of three symbols depending on a given parameter, the encoding threshold. We found a larger proportion of threshold crossing

events with negative polarity in the N400 time window for a mismatching dative argument compared to a mismatching accusative argument.

By contrast, the proportion of threshold crossing events with positive polarity was smaller for dative in the P600 time window. We argue that

this difference is due to the phenomenon of bfree dativeQ in German. This result also shows that the SRA provides a useful tool for revealing

ERP differences that cannot be discovered using the traditional voltage average analysis.

D 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Much has been written on the many different types of

linguistic information that have to be brought together when

we understand a sentence. Generally, it is undisputed that the

verb and its arguments constitute the bcoreQ of a sentence [32].
Thus, mapping the arguments in a sentence to the verb slots is

the crucial point in deriving a coherent sentential interpreta-

tion, that is, for answering the question ofwho is doingwhat to

whom as for example in a sentence such as (1).
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(1). Peter visited Mary at night.

We immediately understand that the sentence tells us

something about a visiting event and that this event has two

participants, namely Peter and Mary. Moreover, we also do

not hesitate to conclude that Peter is doing the visiting (i.e.,

that he is the agent), whereas Mary is the one being visited

(i.e., that she is the patient). In other words, we would not

doubt that it is Peter who visits Mary and not vice versa. But

our feeling that this interpretation is derived fast and

effortlessly should not obscure the fact that much informa-

tion processing has to be performed by our brains in order to

achieve it. Accordingly, this central issue has led to many

studies in both psycholinguistics (see [15], for an overview)

as well as aphasiology (see [17], for an overview). In order
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to characterize this type of information more closely, we will

consider a sentence such as (2), which can immediately be

judged to be unacceptable in English.

(2). *Peter snored Mary at night.

Since the surface structure of (2) is identical to (1), the

reason for the unacceptability must lie in different properties

of the verb to snore in (2) compared to the verb to visit in

(1). More specifically, a verb such as to visit can take a

subject argument (Peter) and an object argument (Mary),

whereas an object is not possible in a verb such as to snore,

but only a subject (Peter). Interestingly, this difference can

be described not only syntactically (i.e., with respect to

sentence structure), but also in terms of semantics (i.e., with

respect to meaning/interpretation), in that the event

expressed by the verb in (1) has two participants (one

doing the visiting and one being visited), whereas the

snoring event in (2) has only one participant (one doing the

snoring). Obviously, our language processing routines have

to determine whether the number of arguments in a sentence

matches with the number of arguments a verb can take, and

a mismatch (such as in (2)) induces both syntactic as well as

semantic problems in processing. It is therefore not

unexpected that electrophysiological patterns in response

to a mismatch such as in (2) seem to reflect this twofold

nature of the violation. Event-related brain potential (ERP)

studies in both English [29] and German [11,15] sentences

in which an argument could not be integrated into the verb’s

argument structure have been reported to elicit a biphasic

N400–P600 response. Friederici and Frisch [11] have

presented sentences with a subject (SUB) and a direct

object (OBJ), but with an intransitive verb (i.e., only

allowing for a subject, but no object) such as in (3).

(3). *Paul weig, dass der Chemiker den Physiker emigrierte...

Paul knows that [the chemist]SUB [the physicist]OBJ

emigrated.

On the mismatching verb, they found an N400 followed

by a P600 compared to a condition with a transitive verb.

Similar to Osterhout et al. [29], they interpreted the N400

for these types of violation as an indicator of the semantic

anomaly induced by a thematic role mismatch, i.e., by the

fact that there are more arguments that need a thematic role

than there are roles provided by the verb. The P600 was

seen to indicate the fact that a transitive structure is built up

which is however not licensed by the lexicon information of

the (intransitive) verb (cf. [10,15]).

A numerical correspondence between the arguments in a

sentence and the argument structure information specified in

the verb’s lexical entry, however, does not suffice to

determine who is doing what to whom. What is necessary

in addition is that the different thematic roles of the verb are

correctly assigned to the different arguments in the sentence.

In a sentence such as (1), it is important to know that the

verb provides two roles (agent and patient) and that there

are two candidates to receive those roles (Peter and Mary),
but this alone does not tell us that Peter is doing the visiting

and Mary is being visited and not vice versa. The arguments

have to be systematically assigned (mapped) to the

respective syntactic constituents. Thereby, the respective

thematic bhierarchizationQ of the arguments has to be

preserved, that is, the fact that verb arguments are

distinguishable on thematic dimensions such as control

[30] (with the agent Peter in (1) having more control over

the visiting event than the patient Mary). There are

important cues in the linguistic input that allow us to

determine the correct assignment effortlessly, at least in

most cases. These cues are not the same for all languages,

and German and English provide good examples for

languages with differing cues. In an English (declarative)

sentence such as (1), the linear order of the arguments is

crucial: Peter is (linearly, in a left-to-right sequence) the first

argument in the clause and therefore the higher argument

(with more agentive properties) compared to the second

argument Mary that is thematically lower. In German, by

contrast, case morphology is the crucial cue for hierarchiz-

ing arguments (cf. [7,13]), as it is in many other languages

with a relatively free word order. In a sentence such as (3),

the subject indeed precedes the object, but in (4), the first

argument bears accusative (ACC) case (direct object),

whereas the second argument is marked with the subject

case nominative (NOM).

(4). Den Dichter hat der Arzt zuerst besucht.

[the poet]ACC has [the doctor]NOM first visited.

Assigning the thematic roles in (4) on the basis of linear

order would lead to a completely different (and wrong)

interpretation of the sentence. That case information of

arguments in German is used immediately for syntactic

analysis as well as thematic interpretation (i.e., hierarchiza-

tion) can also be traced neurophysiologically [7,13,14]. For

example, it can be shown that constructions with two

identically case marked arguments induce a biphasic pattern

of an N400 (reflecting thematic interpretation problems) and

a subsequent P600 (reflecting ill-formedness) compared to

sentences in which the arguments can be hierarchized on the

basis of different case markings [13,14].

With respect to ditransitive constructions, that is,

sentences with two object arguments, English also

strictly relies on argument order. In (5a), it is clear that

the tickets are given and the brother must be the recipient of

the tickets. Swapping the argument noun phrases (NPs)

would result in a semantic anomaly, see (5b).

(5a). Mary gave her brother the tickets.

(5b). ??Mary gave the tickets her brother.

In German, by contrast, this is again different, as it is

again the case marking of the arguments (rather than their

linear order) which determines their grammatical function:

A dative (DAT) marked NP is the indirect object, whereas

an accusative NP is the direct object. This is independent of



1 It has been argued that, in German, there is a similar way to add a

beneficent by means of a PP as in English and that this PP is equivalent to a

benefactive dative [19]. This was taken as evidence that benefactive dative

in German is an adjunct rather than an argument. However, it can be shown

that Anna hat das Motorrad für ihren Bruder repariert (Anna has repaired

the motorcycle for her brother) is not a paraphrase of Sentence 8 [9].

Furthermore, the fact that benefactives are affected by all syntactic

restrictions (for example, recipient passive, topicalization, etc.) in exactly

the same way as brealQ argument datives can be taken as a criterion to give

them argument status [9].
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the linear sequence of the two since (6a) and (6b) have the

same meaning.

(6a). Der Junge hat dem Freund das Buch gegeben.

[the boy]NOM has [the friend]DAT [the book]ACC

given.

dthe boy has given the book to his friendT.

(6b). Der Junge hat das Buch dem Freund gegeben.

[the boy]NOM has [the book]ACC [the friend]DAT

given.

dthe boy has given the book to his friendT.

With respect to the earlier studies testing constructions

with a surplus argument [11,15], there is – at first sight – no

reason not to expect a biphasic N400–P600 effect for a

transitive verb that occurs in a sentence with three argu-

ments such as (7).

(7). *Der Junge hat dem Freund das Buch gekannt.

[the boy]NOM has [the friend]DAT [the book]ACC

known.

However, although the argument bdem FreundQ in (7)

cannot be integrated into the argument structure of a verb

such as kennen (to know), the question arises whether the

resulting processing problems might differ from those

induced by the verb in (3). Such an assumption could be

derived from the fact that the mismatching NP bears dative

(indirect object) case and that dative case in German can be

used in order to expand the argument structure of a

transitive (nominative–accusative) verb, see (8).

(8). Anna hat ihrem Bruder das Motorrad repariert.

Anna has [her brother]DAT [the motorcycle]ACC

repaired.

dAnna has repaired the motorcycle for her brotherT.

The verb reparieren (to repair) itself has only two

arguments (a repairer and something being repaired),

according to the criterion of semantic necessity [33]. Adding

a so-called benefactive dative serves to indicate someone

who profits from (or is harmed by) the event expressed by

the verb. Adding an argument expressing a beneficent is

possible in many languages, although it is achieved by

different syntactic means. In English, for example, such a

beneficent is not realized as an indirect object, but by means

of a prepositional phrase (PP) with bforQ (see (8)). In

German, by contrast, it is realized as an indirect object with

dative case, which behaves syntactically exactly like a btrueQ
(i.e., semantically necessary, cf. [33]) dative argument of a

ditransitive verb such as dem Freund in (6a) and (6b) and is

therefore syntactically indistinguishable from the latter.1

There is some controversy concerning the exact conditions

which have to be met so that a benefactive dative in German

can be added (such as in (8)) or whether such a procedure

results in an unacceptable construction (such as in (7))

[34,37]. It has been argued, for example, that a benefactive

dative is not possible if such a status of the dative argument
was not intended by the agent [37], as it is normally not the

case with experiencer verbs. Furthermore, it was proposed

that (8) is not possible when the benefactive dative is not

physically affected [34]. Although none of these accounts

gives an exhaustive characterization, they converge in the

view that the benefactive dative has to fulfill restrictions by

the verb that are by and large semantic in nature (cf.

[34,36,37]). By contrast, there is no such possibility of

adding an accusative object in German sentences with

transitive verbs that mark their object irregularly with dative

case, such as in (9).

(9). *Anna hat ihrem Bruder die Hausaufgaben geholfen.

Anna has [her brother]DAT [the homework]ACC

helped.

This principal possibility – however limited – for adding

a dative–but not an accusative–argument to a transitive

relation might affect the ERP patterns for an extra-dative

compared to an extra-accusative differently. With respect to

the present study, therefore, the following questions arise:

First, is the biphasic N400–P600 pattern as found for

argument structure violations in intransitive (Frisch et al.,

2004) and transitive structures (Friederici and Frisch, 2000)

also found in ditransitives such as (7) or (9)? Second, do the

linguistic differences between adding a dative and adding an

accusative affect the N400–P600 differently for an incorrect

dative compared to an incorrect accusative?
2. The present study

From the fact that adding a dative argument in German is

only semantically restricted whereas adding an accusative is

both syntactically and semantically impossible, one might

expect different electrophysiological responses for sentences

with a mismatching dative (inducing mainly semantic

processing problems) compared to sentences in which an

accusative marked argument cannot be integrated (inducing

both semantic and syntactic processing problems). Although

sentences with a mismatching argument have been consis-

tently found to elicit biphasic N400–P600 patterns in ERPs

[11,15], these patterns might be different depending on the

type of argument, that is, if the mismatching argument bears

accusative or dative case. Therefore, we presented sentences

with a surplus accusative as well as with a surplus dative

object and compared the ERP responses on the verb to those
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elicited by correct sentences. Seeing that traditional voltage

average analysis was only able to replicate the generally

expected ERP pattern, but not the fine-grained differences

between the two mismatching conditions, a newly devel-

oped analysis procedure, the symbolic resonance analysis

[4], was employed.
3. Materials and methods

3.1. Subjects

Sixteen monolingual native speakers of German (mean

age 23 years, six female), all students from the University of

Leipzig, participated in the experiment. They were all right-

handed according to Oldfield [27] and had normal or

corrected-to-normal vision. They were naRve with respect to

the aims of the study and were paid for their participation.

3.2. Materials

All sentences were created out of 40 sets of three NPs and

a sentence final PP. Each of these sets had four different

verbs, two ditransitive ones that completed the sentence

correctly, a transitive verb that marked its sole object in the

accusative, and one whose sole object had to bear dative case.

The second ditransitive verb was used to create another 80

sentences in order to balance the number of correct and

incorrect conditions. Sentences in this latter condition were

treated as fillers and were not analyzed any further as the

verbs in this condition were not matched with respect to

lexical parameters. By contrast, such a matching was done for

the three groups of critical verbs that were kept similar in

logarithmic lemma frequency as determined on the basis of

the CELEX database (cf. [1]). The mean for correct verbs was

1.19, for the verbs not subcategorizing a dative 1.28, and for

the verbs that could not take an accusative 1.10. An ANOVA

performed for these frequencies revealed an F b 1 and no

differences in direct single comparisons [correct vs. dative:

F b 1; correct vs. accusative: F b 1; dative vs. accusative:

F(1,78) = 1.62, P = 0.21].

Seeing that German declarative sentences have an

unmarked order with respect to the object arguments (with

the dative object preceding the accusative object, see (5a)

and (5b)), we were faced with the possible confound that the

distance between the mismatching argument and the critical

verb was different for the dative and the accusative object.

We therefore decided to use welcher/which-questions where

the which-constituent is always in the same position (i.e., at

the beginning of the subclause) irrespective of its case.

Furthermore, we varied the argument in the which-position

systematically between direct/accusative and indirect/dative

object, as exemplified in (10a) and (10b).

(10). Jochen weig,
Jochen knows
(a) [welchen Betrag]ACC [der Bl7ser]NOM [dem

Geiger]DAT neulich VERB-te

[which amount]ACC [the trumpeter]NOM [the violinist]

DAT recently VERB-ed

(b) [welchem Geiger]DAT [der Bl7ser]NOM [den

Betrag]ACC neulich VERB-te

[which violinist]DAT [the trumpeter]NOM [the amount]

ACC recently VERB-ed

bei jener Reise nach Paris.

during that visit to Paris.

Examples for the VERB-position for each of the three

critical conditions are provided in (11), (12), and (13):

(11). COR: correct (ditransitive) verb: borgte (lent).

(12). DAT: verb which cannot take a dative argument:

verbrauchte (consumed).

(13). ACC: verb which cannot take an accusative argument:

half (helped).

After the verb, a complex (and therefore preferably

extraposed) prepositional phrase (PP) such as bduring that

visit to ParisQ in (10) was added in order to avoid

confounding sentence final wrap-up effects (cf. [11,28]).

3.3. Procedure

There were 80 sentences in each of the three critical

conditions (40 with the dative argument in which-position

and 40 with the accusative argument in which-position). All

sentences were presented in randomized order in the center

of a computer monitor as words or phrases, respectively. All

three NPs and the second PP were presented for 500 ms, the

first PP for 550 ms. All other items were presented word-by-

word for 400 ms. The ISI was 100 ms. 800 ms after the

sentence final PP, the subjects were asked to judge the

acceptability of the sentence within a 2500-ms interval by

pressing a button. 1000 ms after their response, the next trial

began.

The EEG was recorded by means of 59 Ag/AgCl

electrodes with a sampling rate of 250 Hz and was

referenced to the left mastoid (re-referenced to linked

mastoids off-line). In order to control for eye movement

artifacts, a horizontal electro-oculogram (EOG) was moni-

tored from electrodes at the outer canthus of each eye and a

vertical EOG from two electrodes located above and below

the subject’s right eye. Electrode impedances were kept

below 5 kV. EEG and EOG channels were recorded

continuously with a band pass filter from DC to 30 Hz

with a digitization rate of 250 Hz.

3.4. EEG data analysis

EEG data were high pass filtered with a cutoff frequency

of 0.4 Hz in order to compensate for drifts. Only correctly

performed trials without ocular or amplifier saturation



3 As one of the referees suggested, one could compute the standard

deviation of the signal in the pre-stimulus time window and express the

threshold in standard deviation units. We actually attempted this during the

development of the SRA. Compared to the use of absolute voltages, this

approach has one serious disadvantage: the standard deviation is obtained

for each single EEG time series, and the standard deviations of different
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artifacts entered the EEG data analysis (83% of all trials,

evenly distributed across conditions).

3.4.1. Voltage average data

ERPs were averaged in a 1300-ms time window (relative

to the onset of the critical verb) and aligned to a 200-ms pre-

stimulus baseline. ERPs were additionally filtered with a 10-

Hz low pass filter for presentation purposes only.

3.4.2. Symbolic resonance analysis

3.4.2.1. General idea. The naming conventions of ERP

research suggest that only polarity and latency of a voltage

deflection are to be taken into consideration even at the level

of single EEG trials. This has, of course, some tradition in

ERP analysis: by counting the number of EEG epochs

which have a positive or negative voltage value at a certain

instance of time, one obtains the polarity histogram

reflecting the intertrial coherence of the ERP [8]. Lehmann

[22] suggested to consider only positive and negative

maximal field values. The common overlap of their time

ranges across trials yields again a measure of the intertrial

coherence. However, these coarse-graining techniques were

lacking a theoretical foundation that has recently been

provided by beim Graben et al. [6] (cf. [3,5,16]) in the

framework of symbolic dynamics [18,23]. In this branch of

nonlinear science, measured or predicted time series of

dynamical systems are mapped onto sequences of very few

symbols by partitioning the range of values that is assumed

by the data. In the case of ERP data, for example, one can

take the pre-stimulus baseline as a threshold and assign the

symbols b+Q or b�Q to each sample point if the measured

EEG in a single trial is above or below the baseline at this

time point, respectively, thus obtaining a sequence of b+Q
and b�Q.2 After collecting all the sequences corresponding

to one experimental condition in an ensemble, the number

of b+Q or b�Q symbols across all trials yields the polarity

histogram [8]. beim Graben et al. [6] have shown that these

polarity histograms can be formally captured by probability

measures of cylinder sets, which are subsets drawn from an

ensemble of sequences having a common building block,

which is called a word. beim Graben et al. [6] have further

argued that ERP components are characterized by large

cylinder sets corresponding to a particular word. The

likelihood of these cylinders is then assessed by generalized

polarity histograms, the word statistics [5,16], and by

information theoretic measures such as the Shannon entropy

or measures of complexity [2,31], which serve as indicators

of the intertrial coherence [24].

In particular, Lehmann’s idea to encode the maxima and

minima of the EEG time series has led us to developing the
2 Note that the particular symbols assigned to the measurements are

completely arbitrary. So one might also use b0Q instead of b�Q and b1Q
instead of b+Q, or baQ instead of b�Q and bbQ instead of b+Q, or any other

representation.
symbolic resonance analysis (SRA) of ERP data [4]. In the

approach pursued in the present paper, three symbols

instead of two are assigned to the EEG data at each sample

point by introducing two thresholds which partition the

range of voltage values of the EEG into three intervals. This

results in the following encoding rule (cf. [4]):

(14). One symbol (b0Q) is assigned to all sample points

below the lower threshold, the second one (b1Q) for the

sample points above the lower and below the upper

threshold, and the third (b2Q) for all data points above the

upper threshold.

The distance between both thresholds can be varied, but

the absolute value, abbreviated h, of both thresholds must be

the same (i.e., both thresholds are equidistant from the

baseline and only different in their signs).3

An EEG epoch is thereby mapped onto a sequence of

b0Qs, b1Qs, and b2Qs. For instance, b10122Q means that the

signal was between the thresholds at times t = 1 and t = 3,

below the lower threshold at t = 2, and above the upper

threshold at t = 4 and t = 5. Since time is represented by

discrete sampling points, for a sample rate of, e.g., 250 Hz,

t = 1 corresponds to 4 ms, t = 2 to 8 ms, and so on. It is

clear that the symbolic representation of the EEG epoch

depends on the chosen threshold. If h is too small, the

intermediary symbol b1Q will not occur often since the

signal is oscillating between its maxima and minima. If, on

the other hand, h is too large, that is, larger than the

maximum of the absolute value of the upper and lower

boundaries of the signal, the symbols b0Q and b2Q will

never occur, and one observes only sequences of b1Qs.
Let us assume that the absolute value h of the threshold is

slightly larger than the amplitude of the ERP content of the

signal, which results from the ensemble average of the

baseline aligned EEG epochs. Employing the encoding rule

(14) at the signal yields a sequence of only b1Qs since the

thresholds �h and +h will not be exceeded by the signal at

all.

However, because a single epoch of the raw EEG is

regarded in the traditional voltage averaging analysis as the

sum of the underlying nonstationary ERP wave and some

noise, rule (14) applied to the raw EEG yields b2Qs
whenever the noise drives the signal across the upper

threshold +h near the maxima of the ERP, and b0Qs if the
trials could thus differ significantly. As a consequence, using standard

deviation units, one would abandon any information about the amplitude of

the ERP. As we will point out below, the critical encoding threshold

represents this important information. Thus, absolute voltage thresholds

make the SRA results more compatible with the averaged ERPs than

standard deviation thresholds would do.
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sum of the ERP and the noise is smaller than the lower

threshold �h, which is the case around the minima of the

ERP. Thus, the local maxima and minima of the ERP are

encoded by b2Qs and b0Qs, respectively. This is illustrated

in Fig. 1, where we display in Fig. 1(A) a nonstationary

ERP-like test signal (a Bessel function) having a local

maximum at t = 0 with amplitude 1 and two local minima

around t = �4 and t = +4. Adding noise to this

subthreshold signal (Fig. 1(B)) makes threshold crossing

events probable, resulting in the symbol b2Q around t = 0

and the symbol b0Q around t = �4 and t = +4.

As we have already mentioned, while the background

EEG superimposed with the ERP is commonly regarded as

being detrimental noise in the customary ERP analysis that

has to be eliminated by averaging, our three-symbol

encoding rule (14) utilizes it constructively to drive the

subthreshold ERP signal across the encoding thresholds.

By encoding each EEG epoch for a fixed threshold, we

obtain a set of sequences, which can be arranged as an array

of the symbols b0Q, b1Q, and b2Q. Table 1 displays such a
Fig. 1. (A) An ERP like test signal (the zero-order Bessel function of the

first kind) with a positive voltage deflection at t = 0. (B) The test signal

superimposed with Gaussian white noise of variance 0.64 and encoding

thresholds yielding a symbolic dynamics with b0Q, b1Q, and b2Q.
possible array, where the time is given by the columns while

the rows denote the trial index.

The next step of the SRA is determining the word

statistics (i.e., the polarity histogram). We restrict ourselves

to the statistics of the three symbols across trials. The word

statistics count the relative frequencies of b0Qs, b1Qs, and
b2Qs depending on time. Considering Table 1 again, we

observe that at t = 1, the frequency of b0Qs is P0 = 0.25, the

frequency of b1Qs is P1 = 0.50 and the frequency of b2Qs is
P2 = 0.25. At t = 2, we have P0 = 0.50, P1 = 0, P2 = 0.50,

and so on. Table 2 shows the resulting symbol distributions.

Let us assume that there is a local maximum in the ERP

at t = 4 with no effects at other times for this example. beim

Graben and Kurths [4] presented an algorithm to transform

the distribution of three symbols to a distribution of only

two symbols, b0Q and b2Qs, where b0Q denotes a local

minimum in the ERP, while b2Q denotes a local maximum.4

This transformation, which is inspired by the theory of spin

lattice models in statistical mechanics [35] works in the

following way: The differences of the symbol frequencies

M0 = P0 � P1 and M2 = P2 � P1 are regarded as competing

bmagnetic fieldsQ (so-called mean-fields) which act at the

symbol distribution across the columns of Table 1 trying to

flip the bundecidedQ symbol b1Q either into a b0Q, ifM0 z 0 N

M2 (i.e., there are more b0Qs than b2Qs, which thereby win the
competition), or into a b2Q, if M0 b 0 V M2 (when there are

more b2Qs than b0Qs). We present the magnetic field strengths

for the example from Table 1 in Table 3.

By looking at the mean-fields in Table 3, we can now

decide how the b1Qs of Table 1 must be flipped into b0Qs or
b2Qs, according to the spin-flip transformation. At t = 1 we

have M2 V M0 b 0, where the transform is still undefined.

We close this gap by saying that, if M2 V M0 b 0 or M2 z
M0 N 0, the b1Qs should be equally converted into the same

number of b0Qs and b2Qs, i.e., one half of the b1Qs becomes

b0Qs while the other half becomes b2Qs. Thus, at t = 1, we

obtain column one of Table 4 where the b1Q in the first row

of Table 1 is converted into b0Q and the b1Q in row 3 is

flipped into a b2Q. The particular symbol that has to be flipped

was chosen randomly. At t = 2 we see thatM2 zM0 N 0, the

second case where the b1Qs are equally converted into b0Qs
and b2Qs. However, in our example, there is no b1Q to which

the transformation applies so that nothing happens. At t = 3

and also at t = 5, we encounter the same situation as at t = 1.

However, at t = 4, there is a real winner of the competition,

namely, b2Q, where M0 b 0 V M2. Here, all b1Qs are flipped
into b2Qs. The mean-field transformation might remind the

reader of the game bReversiQ, where single-colored chips

have to be flipped when they are trapped by chips of the

converse color. We will therefore call this transformation the

Reversi transformation (see Table 4).
4 Our presentation of the mean-field transformation here deviates a bit

from that given by beim Graben and Kurths [4] in order to make the idea

more clear.



Table 3

Magnetic mean-fields obtained from the word statistics of Table 2

Prob\ t 1 2 3 4 5

M0 �0.25 0.50 �0.25 �0.25 �0.25

M2 �0.25 0.50 �0.25 0.50 �0.25

Table 1

Example of a three-symbol ERP dynamics

Epoch\ t 1 2 3 4 5

1 1 0 1 2 2

2 0 2 2 1 1

3 1 0 0 2 0

4 2 2 1 2 1

Rows denote EEG trials, columns denote sample points.
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After employing the Reversi transformation, we obtain

an array of only b0Qs and b2Qs (cf. [4]) where b0Q denotes
bnegative polarityQ and b2Q denotes bpositive polarityQ with
respect to the chosen threshold. From this recoded array, we

determine again the word statistics that are shown in Table 5

for the present example.

The symbols b0Q and b2Q are obviously uniformly

distributed for t = 1, 2, 3, 5 but not at t = 4, where the

distribution is highly degenerated. As we have pointed out

above, in our example model, an ERP deflection was

assumed at t = 4, thus the spin-flip transformation enhances

threshold crossing events in the positive and negative

direction in a strongly nonlinear way, while suppressing

random fluctuations around the baseline which leads either to

a large number of b1Qs in the original three-symbol encoding

for large thresholds, or to an almost uniform distribution of

b0Qs and b2Qs for small thresholds. Both cases are mapped by

the Reversi transformation onto a uniform distribution of

b0Qs and b2Q.
From the word statistics, we then derive the running

cylinder entropies [6] that are presented in Table 6 for the

example data.

Entropy is a measure of uncertainty of a given

probability distribution. It reaches its maximum value 1.0

for uniformly distributed events and it assumes its minimum

0.0 if there is only one certain event with probability 1.0 (cf.

[31]). Entropies of symbol distributions measure the amount

of order in the system at one instance of time and thereby its

intertrial coherence. Since ERP components are reflected by

highly degenerated word statistics, the corresponding

cylinder entropies generally decrease within the time range

of an ERP. It was therefore tempting to relate the amplitude

of an entropy drop to the signal-to-noise ratio (SNR) of the

EEG data. This has been accomplished by beim Graben [3],

who found that the time-averaged entropy is inversely

proportional to the SNR incremented by a constant. Applied

to our example from Table 6, we state that the SNR of the

signal is zero at t = 1, 2, 3, 5 and high at t = 4.

So far, we have described the SRA for a fixed encoding

threshold that is approximately as large as the amplitude of a
Table 2

Word statistics of the model data from Table 1

Prob\ t 1 2 3 4 5

P0 0.25 0.50 0.25 0 0.25

P1 0.50 0 0.50 0.25 0.50

P2 0.25 0.50 0.25 0.75 0.25
voltage ERP. But how can the appropriate threshold be

found? The answer is, by trial-and-error. We therefore

employ the abovementioned algorithm over a range of

reasonably chosen threshold parameters. After computing

the SNR within some interesting time window, we plot these

results against the encoding threshold. We have seen that if

the threshold is too small, we observe mainly b0Qs and b2Qs in
the original three-symbol encoding, which are mapped onto

a uniform distribution of b0Qs and b2Qs by the Reversi

transformation, as was the case at t = 2 in our example. This

distribution has maximal entropy and therefore a low SNR.

On the other hand, if the threshold is too large, prohibiting

any threshold crossing events, we observe almost all b1Qs in
the three-symbol encoding, which are again mapped onto a

uniform distribution of b0Qs and b2Qs by the Reversi

transformation. This was the case at t = 1, t = 3, and t = 5

in our example. As a result, we have a low SNR here as well.

However, an ERP component gives rise to a maximum of the

SNR at a critical threshold h*, indicating most probable

threshold crossing events in the positive or negative

direction, or, technically speaking, an aperiodic stochastic

resonance effect [4,25,26].

The critical threshold, h*, where this resonance takes

place, depends, of course, on the time window where the

SNR is computed. This time window can be heuristically

determined by the latency of the averaged voltage ERP.

Slight variations of the onset and the end of the window yield

only slight differences between the resonance curves; the

dependency is therefore rather robust against arbitrary

changes of the analysis parameters. Moreover, one has to

observe that the determination of h* compensates for the

alleged loss of information entailed by the symbolic coarse-

graining. The critical threshold contains all information

about the btrueQ amplitude of the ERP. In contrast to the

voltage-averaged ERP, where amplitude and coherence

information are mixed up into one dimension, the symbolic

resonance analysis pulls both kinds of information apart into

two different dimensions: amplitude is represented by the

critical encoding threshold, whereas intertrial coherence is

contained in the time-dependent word statistics or cylinder

entropy. The SRA is also robust against outliers in the EEG,

whereas the amplitudes of the voltage-averaged ERP are
Table 4

Mean-field transformed symbolic dynamics from Table 1

Epoch\ t 1 2 3 4 5

1 0 0 2 2 2

2 0 2 2 2 0

3 2 0 0 2 0

4 2 2 0 2 2



Table 5

Word statistics of the mean-field transformed example data

Prob\ t 1 2 3 4 5

P0V 0.50 0.50 0.50 0 0.50

P2V 0.50 0.50 0.50 1 0.50
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very susceptible to them. Consider two cases: First, a

possible outlier is consistent with an ERP effect, i.e., the

outlier has the same polarity as the ERP. By means of the

coarse-graining, the outlier will be represented by the very

same symbol (either b0Q or b2Q) as the ERP, but will

contribute only one trial to the word statistics. On the other

hand, in the averaging paradigm, an outlier is weighted by its

numerical value in the ERP average, which might cause a

large deviation. In the second case, when the outlier is not

consistent with the ERP component, the ERP average is

diminished by its numerical extent. Conversely, one incon-

sistent outlier-trial is treated by the Reversi transformation of

the SRA either as being undecided (b1Q) or as a loser in the

competition of the mean-fields. Thus, the coarse-graining of

the SRA combined with the multiple-threshold analysis does

not involve any renunciation of information, but is very

robust against statistical outliers on the other hand.

3.4.2.2. Symbolic resonance analysis of the present EEG

data. The EEG data were epoched in a time window

beginning 200 ms before and ending 1300 ms after the onset

of the critical verb. Each EEG epoch had been firstly encoded

in sequences of the three symbols b0Q, b1Q, and b2Q according
to the encoding rule ((14)), after aligning their baselines to the

time average of the 200-ms pre-stimulus interval. The

encoding thresholds h were tuned from 0.5 AV up to 9.8

AV in steps of 0.1 AV. Afterwards, the symbolic sequences of

all subjects per threshold and per condition were swept up to

the grand epoch ensembles (GEE, cf. Table 1) fromwhich the

relative frequencies of the symbols in each time slice have

been determined (cf. Table 2). These three-symbol distribu-

tions were subjected to the Reversi transformation, leading to

a distribution of two symbols b0Q and b2Q, whose relative

frequencies yield the transformedword statistics (cf. Table 5).

Fig. 2 illustrates the effect of the Reversi transformation

by showing the original three-symbol distribution for the

mismatching dative ERPs at electrode PZ in Fig. 2(A) for the

encoding threshold h = 4.8 AV. The N400 is reflected by the

largest frequency of b0Qs around 400 ms after stimulus onset,

while the P600 is indicated by the largest frequency of b2Qs
around 750 ms. By contrast, Fig. 2(B) shows the two-word

statistics resulting from the Reversi transformation. In the

400-ms window, the between-threshold symbols b1Q are

completely reverted into b0Qs due to the impact of the mean-
Table 6

Running cylinder entropies of the mean-field transformed example data

t 1 2 3 4 5

H(t) 1.0 1.0 1.0 0.0 1.0
fields. Hence, the N400 corresponds to a highly degenerated

word statistics of almost constant amplitude over the

characteristic time window. Correspondingly, the between-

threshold symbols b1Q are flipped into the symbol b2Q in the

P600 time range. When the b1Qs predominate the three-

symbol distributions, such as before 400 ms or after 1000

ms, the resulting two-symbol distributions are uniform. Note

that both the symbolic encoding rule ((14)) and the Reversi

transformation act instantaneously and independently at

each sampling point in time across all measured epochs.

This assures that the word statistics of different ERP

components are independent from one another. This might

not be the case for other symbolic encoding procedures,

such as the median threshold encoding (cf. [6]).
Fig. 2. (A) Relative frequencies of the symbols b0Q (solid), b1Q (dotted), and
b2Q (dashed) in the coarse of time of the grand ensemble EEG of the

mismatching dative condition for encoding threshold h = 4.8 AV at

electrode PZ. (B) Relative frequencies of the symbols b0Q (solid), and b2Q
(dashed) after the spin-flipping Reversi transformation applied to the same

data. N400 and P600 are indicated by arrows.



Fig. 4. (A) Resonance curves (signal-to-noise ratio against encoding

thresholds) for the ERP data of three conditions obtained by averaging the

cylinder entropy in the time window from 300 to 600 ms for the N400 ERP.

Conditions: correct (solid), accusative (dashed), and dative (dotted). (B)
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In order to achieve the aim of the symbolic resonance

analysis, we have to compute the estimator of the signal-to-

noise ratio (SNR) [4] depending on the noise strength of the

EEG. Since the noise itself is not accessible in single EEG

epochs, we have systematically varied the encoding thresh-

olds. The first step towards determining the SNR is

computing the running cylinder entropies of the mean-field

filtered two-symbol statistics for each condition, respec-

tively. Fig. 3 displays the cylinder entropies of the dative

condition for three different encoding thresholds: h = 2.0

AV, h = 4.8 AV, and h = 6.0 AV.
Fig. 3 illustrates the resonance effect of the three-symbol

encoding combined with the Reversi transformation. For

thresholds that are too small (h = 2.0 AV, dotted line) or too

large (h = 6.0 AV, dashed line), the ERP appears either as

noise or remains subthreshold, both leading to uniform

distributions of the spin-flipped three-symbol encoding, thus

having large entropy.

Finally, we average the cylinder entropies over the same

time windows that were used for the ANOVA of the

voltage-averaged ERPs, i.e., 300 to 600 ms for the N400,

and 700 to 1000 ms for the P600. This yields the SNR

estimators that are shown in Fig. 4.

Fig. 4 reveals particular differences in the ERP between

conditions. All conditions lead to a bell-shaped resonance

curve indicating the presence of a signal that is not simply

noise recorded during the experiment. On contrast, both

experimental conditions (accusative: dashed, dative: dotted)

possess resonance curves with larger amplitude than the

control condition (solid). The amplitude of the resonance

indicates the intertrial coherence of the ERP, while its

abscissa is a direct measure of the amplitude of the ERP

signal. Fig. 4(A) shows that the ERP effect elicited by the

mismatching dative has a much larger SNR and thus a

larger intertrial coherence than the ERP that is related to

the mismatching accusative in the N400 time window. On
Fig. 3. Running cylinder entropies of the grand ensemble EEG of the

mismatching dative condition for three different encoding thresholds h = 2

AV (dotted), h = 4.8 AV (solid), and h = 6.0 AV (dashed) at electrode PZ.

Resonance curves (signal-to-noise ratio against encoding thresholds) for the

ERP data of three conditions obtained by averaging the cylinder entropy in

the time window from 700–1000 ms for the P600. Conditions: correct

(solid), accusative (dashed), and dative (dotted).
the other hand, Fig. 4(B) discloses a contrary effect where

the mismatching accusative leads to a higher SNR maxi-

mum than the mismatching dative case in the P600 time

window.

Since we are interested in differences between con-

ditions, we introduce the concept of the optimal threshold,

meaning those threshold values which maximize the SNR

difference of two conditions. While the optimal thresholds

for the accusative condition compared to the correct

condition and for the dative condition with respect to the

correct condition are both around 4.0 AV in the N400

window (Fig. 4(A)), the optimal threshold for the dative

condition compared to the accusative condition is just 4.8

AV, the value we have used in our illustrations. In the

P600 time window, we obtain an optimal threshold of
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5.3 AV at PZ between the dative condition and the

accusative condition.

3.5. Statistical analysis

The statistical analyses of the voltage average data were

computed in an ANOVA with repeated measures on the

basis of the original data. Analyses were computed

separately over the midline and the lateral electrode sites.

The design consisted of a condition factor Violation

(VIOL) with the three levels correct (COR) vs. mismatching

dative (DAT) vs. mismatching accusative (ACC) and a

topographical factor Electrode (ELEC) for the midline

analysis and a factor Region of Interest (ROI) for the

analysis of the lateral sites, respectively. The factor ELEC

had three levels, namely, the midline electrodes FZ vs. CZ

vs. PZ. The factor ROI had six levels, namely, the following

lateral ROIs: left-anterior (electrodes F3, F5, FC3, FC5),

right-anterior (electrodes F4, F6, FC4, FC6), left-central

(electrodes C3, C5, CP3, CP5), right-central (electrodes C4,
Fig. 5. Averaged ERPs from the onset of the critical item (verb, onset marked by ve

nine electrodes. Negativity is plotted upwards.
C6, CP4, CP6), left-posterior (electrodes P3, P5, PO3,

PO7), and right-posterior (electrodes P4, P6, PO4, PO8).

When computing post hoc single comparisons between

the three levels of the factor Violation, the probability

level was adjusted according to the modified Bonferroni

procedure (cf. [21]). To protect against excessive type 1

errors, resulting from violations of sphericity, the correction

proposed by Huynh and Feldt [20] was applied when

evaluating effects with more than one degree of freedom in

the numerator. In these cases, we report the original degrees

of freedom and the corrected probability level.

The symbolic resonance data were statistically evaluated

using the same ANOVA design as for the voltage average

data. In order to do this, we determined the optimal

thresholds for both time windows for each single electrode

of the arrays displayed in Figs. 5–7. In order to allow for

employing an ANOVA statistics for the symbolic resonance

analysis as well, we decomposed the Reversi transformed

GEE of two symbols into the single subject ensembles.

Then, we could compute the relative frequencies of b0Qs and
rtical line at 0 ms) up to 1200 ms thereafter for all 16 subjects at a subset of



Fig. 6. Distribution of b0Qs (relative frequency of trials with negative polarity) in each of the three critical conditions averaged over 16 subjects and over

threshold range (I) (4.0 to 4.8 AV) from the onset of the critical item (verb, onset marked by vertical line) up to 1200 ms thereafter.
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b2Qs for each subject separately and computed ANOVAs

with exactly the same design as for the voltage-averaged

ERPs (see above). In order to reduce the impact of singular

resonance events and also of the selected reference electro-

des for which the optimal thresholds have been computed,

we averaged the symbol statistics over a threshold window

ranging from the smallest optimal threshold determined for

one reference channel to the largest optimal threshold

determined for another reference.
4. Results

4.1. Behavioral data

Although the acceptability judgments served only as a

control task in order to make sure that subjects judged the

sentences in the way we expected them to do, we report the

mean accuracies (in %) and mean response latencies (in ms)

for the correctly performed trials.

Subjects made 6.9% errors in the correct condition

(COR), 9.9% in the condition with a mismatching dative
(DAT), and 9.2% in the condition with a mismatching

accusative (ACC). There was no main effect of Violation

[F(2,30) = 1.02, P = 0.35] and none of the single

comparisons was significant [DAT vs. COR: F(1,15) =

1.11, P = 0.31; ACC vs. COR: F(1,15) = 1.20, P = 0.29;

DAT vs. ACC: F b 1].

Mean response latencies were 507 ms in condition COR,

523 ms in DAT, and 535 ms in ACC. Again, there was no

main effect of Violation [F(2,30) = 1.08, P = 0.35] and

none of the single comparisons was significant [DAT vs.

COR: F b 1; ACC vs. COR: F(1,15) = 1.52, P = 0.24; DAT

vs. ACC: F b 1]. Results show that subjects did not have

problems in processing the sentences and that they were

able to tell correct from incorrect sentences in the way we

expected them to do.

4.2. Voltage-averaged ERP data

4.2.1. Descriptive results

Fig. 5 depicts the voltage-averaged ERPs at the critical

word (verb, onset at 0 ms) in all three critical conditions for

all 16 subjects at a subset of 9 electrodes. As can be clearly



Fig. 7. Distribution of b2Qs (relative frequency of trials with positive polarity) in each of the three critical conditions averaged over 16 subjects and over

threshold range (II) (3.9 to 5.3 AV) from the onset of the critical item (verb, onset marked by vertical line) up to 1200 ms thereafter.
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seen from the figure, both violation conditions show a

negativity peaking at around 400 ms (N400) and a positivity

peaking at around 750 ms (P600) compared to the correct

condition. However, the patterns in the two violations are

very much alike and seem to differ neither in the N400 nor

the P600 time window.

4.2.2. Statistical results

4.2.2.1. Negativity time window (300 to 600 ms). Over

midline sites, we found a main effect of Violation

[F(2,30) = 14.23, P b 0.01], due to more negative going

waveforms in both DAT [F(1,15) = 28.32, P b 0.01] and

ACC [F(1,15) = 14.90, P b 0.01] compared to the correct

condition. However, there was no difference between the two

violation conditions (F b 1). An interaction Violation �
Electrode [F(4,60) = 11.10, P b 0.01] was due to significant

main effects of Violation at electrodes CZ [F(2,30) = 18.38,

P b 0.01] and PZ [F(2,30) = 22.60, P b 0.01], but only a

marginal one at FZ [F(2,30) = 2.92, P = 0.07]. Sentences in the

DAT condition were more negative going compared to correct

sentences at FZ [F(1,15) = 6.88, P b 0.05], CZ [F(1,15) =

33.64, P b 0.01], and PZ [F(1,15) = 41.84, P b 0.01]. ACC
sentences differed from correct ones at CZ [F(1,15) = 21.24,

P b 0.01] and PZ [F(1,15) = 22.22, P b 0.01], but not at FZ

[F(1,15) = 2.81, P = 0.11]. However, the comparison between

the two violation conditions did not reveal any significant

differences at FZ (F b 1), CZ (F b 1), or PZ [F(1,15) = 2.08,

P = 0.26].

Over lateral sites, we found a main effect of Violation

[F(2,30) = 13.72, P b 0.01], which was due to a negativity

for both DAT [F(1,15) = 25.43, P b 0.01] and ACC

[F(1,15) = 11.80, P b 0.01] compared to COR. However,

there was no difference between the two violation con-

ditions [F(1,15) = 2.28, P = 0.23]. Furthermore, we found

an interaction Violation � ROI [F(10,150) = 9.78, P b

0.01] which was due to main effects of Violation in the

right-anterior [F(2,30) = 7.38, P b 0.01], the left-central

[F(2,30) = 6.41, P b 0.01], the right-central [F(2,30) =

27.44, P b 0.01], the left-posterior [F(2,30) = 14.59, P b

0.01], and the right-posterior [F(2,30) = 33.49, P b 0.01].

Mismatching datives induced negativities compared to

correct sentences in each of these ROIs, as did the

mismatching accusatives [right-anterior: DAT: F(1,15) =

15.43, P b 0.01, ACC: F(1,15) = 5.85, P b 0.05; left-

central: DAT: F(1,15) = 10.96, P b 0.01, ACC: F(1,15) =



Table 7

Optimal thresholds for the comparison DAT versus ACC

Optimal threshold

(AV) at channel
Time window (I)

N400: 300 to 600 ms

Time window (II)

P600: 700 to 1000 ms

F5 3.9 3.6

FZ 4.0 3.9

F6 4.1 3.0

C3 3.8 4.2

CZ 4.5 4.8

C6 3.8 3.6

P5 3.4 4.1

PZ 4.8 5.3

P6 3.9 4.5
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4.83, P = 0.07; right-central: DAT: F(1,15) = 45.89, P b

0.01, ACC: F(1,15) = 32.56, P b 0.01; left-posterior: DAT:

F(1,15) = 22.14, P b 0.01, ACC: F(1,15) = 15.29, P b 0.01;

right-posterior: DAT: F(1,15) = 58.04, P b 0.01, ACC:

F(1,15) = 46.64, P b 0.01]. However, both violation

conditions did not differ from each other in any of these

ROIs (all P N 0.21).

4.2.2.2. Positivity time window (700 to 1000 ms). Over

midline sites, we found a main effect of Violation

[F(2,30) = 6.36, P b 0.01] due to positivities in both the

DAT [F(1,15) = 7.42, P b 0.05] and the ACC condition

[F(1,15) = 9.77, P b 0.05] compared to the correct

condition. Similar to the N400 time window, the two

violation conditions did not differ from one another (F b 1).

Resolving an interaction Violation � Electrode

[F(4,60) = 5.04, P b 0.05] revealed main effects of

Violation at CZ [F(2,30) = 5.19, P b 0.05] and PZ only

[F(2,30) = 10.46, P b 0.01], but not at FZ [F(2,30) = 1.60,

P = 0.22]. Both violation conditions differed from the

correct condition at CZ [DAT vs. COR: F(1,15) = 7.36, P b

0.05; ACC vs. COR: F(1,15) = 7.15, P b 0.05] and at PZ

[DAT vs. COR: F(1,15) = 14.44, P b 0.01; ACC vs. COR:

F(1,15) = 12.51, P b 0.01]. Again, the violation conditions

did not differ from one another at CZ or PZ (both F b 1).

Over lateral sites, there was a main effect of Violation

[F(2,30) = 6.84, P b 0.01] due to a positivity for both DAT

[F(1,15) = 7.12, P b 0.05] and ACC [F(1,15) = 11.08, P b

0.01] compared to correct sentences. However, there was no

difference between the two violation conditions (F b 1).

There was no interaction Violation � ROI [F(10,150) =

1.98, P = 0.12].

4.2.3. Summary

In sum, the statistical results of the ERPs confirm the

visual inspection that both violation conditions induce an

N400 followed by a P600 in comparison to the correct

condition, whereas the two incorrect conditions differ from

one another neither in the N400 nor the P600 time

window.

4.3. Symbolic resonance analysis

4.3.1. Descriptive analysis

The optimal thresholds for the condition DAT versus

ACC at the nine electrodes F5, FZ, F6, C3, CZ, C6, P5, PZ,

and P6 plotted in Fig. 6 are given in Table 7 for the time

windows 300 to 600 ms and 700 to 1000 ms.

According to the results given in Table 7, the Reversi

transformed symbol distributions were averaged (I) over

thresholds from 3.4 to 4.8 AV and (II) from 3.0 to 5.3 AV.
Fig. 6 displays the relative frequencies of the symbol b0Q
(denoting negativity) of the Reversi transformed three-

symbol encoded ERPs in all three conditions in the

threshold range (I) averaged over all 16 subjects at a subset

of 9 electrodes.
As can be seen from the figure, both violation

conditions DAT and ACC induce an N400 in the

threshold range (I) compared to the correct condition.

Moreover, the two violation conditions also differ from

one another in this threshold range, in that the DAT

condition shows a larger N400 compared to the ACC

condition.

Fig. 7 displays the relative frequencies of the symbol b2Q
(denoting positivity) of the Reversi transformed three-

symbol distributions in the threshold range (II) averaged in

each of the three conditions over all 16 subjects at a subset

of 9 electrodes.

As can be seen from the figure, both violation conditions

DAT and ACC induce a P600 in the threshold range (II)

compared to the correct condition. Additionally, the two

violation conditions differ in this threshold range, too,

showing a larger P600 for the ACC condition compared to

the DAT condition.

4.3.2. Statistical analysis

4.3.2.1. Negativity time window (300 to 600 ms). For the

threshold range (I) (3.4 to 4.8 AV) over midline sites,

there was a main effect of Violation [F(2,30) =

110.23, P b 0.01]. Compared to the correct condition,

there was a higher proportion of the symbol b0Q (meaning

negativity) in the dative [F(1,15) = 231.94, P b 0.01]

and in the accusative violation condition [F(1,15) =

120.16, P b 0.01]. Interestingly, there were also more

b0Qs for sentences with a mismatching dative compared to

sentences with a mismatching accusative argument

[F(1,15) = 11.65, P b 0.01]. Additionally, we found an

interaction Violation � Electrode [F(4,60) = 83.77,

P b 0.01], whose resolution revealed a main effect of

Violation at each of the three midline electrodes FZ

[F(2,30) = 17.22, P b 0.01], CZ [F(2,30) = 138.51, P b

0.01], and PZ [F(2,30) = 156.46, P b 0.01]. Both violation

conditions were more negative going compared to the correct

condition at all midline electrodes: DAT vs. COR [FZ,

F(1,15) = 52.07, P b 0.01; CZ, F(1,15) = 264.46, P b 0.01;

PZ, F(1,15) = 307.33, P b 0.01] and ACC vs. COR [FZ,

F(1,15) = 6.25 P b 0.05; CZ, F(1,15) = 170.09, P b 0.01;

PZ, F(1,15) = 171.01, P b 0.01]. More importantly, we
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observed that the symbolically encoded ERPs for the DAT

condition were more negative than those for the ACC

condition at all three midline sites: FZ [F(1,15) = 8.35, P b

0.05], CZ [F(1,15) = 6.61, P b 0.05], and PZ [F(1,15) =

14.05, P b 0.01].

Over lateral sites, there was a main effect of Violation

[F(2,30) = 74.94, P b 0.01] due to more coherence of the

symbol b0Q (denoting threshold crossing events with

negative polarity) in both mismatching datives [F(1,15) =

136.08, P b 0.01] and accusatives [F(1,15) = 65.67, P b

0.01] in comparison to correct sentences. In the SRA, we

additionally got a difference between the two violation

conditions [F(1,15) = 14.07, P b 0.01] due to more b0Qs in
DAT compared to ACC. We found an interaction

Violation � ROI [F(10,150) = 50.10, P b 0.01] due to

main effects of Violation in all six ROIs [left-anterior:

F(2,30) = 6.41, P b 0.01; right-anterior: F(2,30) = 40.98, P b

0.01; left-central: F(2,30) = 26.76, P b 0.01; right-central:

F(2,30) = 133.32, P b 0.01; left-posterior: F(2,30) = 76.27,

P b 0.01; right-posterior: F(2,30) = 158.73, P b 0.01].

Mismatching datives and accusatives induced negative

coherent resonances compared to correct sentences in each

of these ROIs [left-anterior: DAT: F(1,15) = 8.14, P b 0.05,

ACC: F(1,15) b 1; right-anterior: DAT: F(1,15) = 78.04, P b

0.01, ACC: F(1,15) = 38.43, P b 0.01; left-central: DAT:

F(1,15) = 49.63, P b 0.01, ACC: F(1,15) = 17.93, P b 0.01;

right-central: DAT: F(1,15) = 207.78, P b 0.01, ACC:

F(1,15) = 204.53, P b 0.01; left-posterior: DAT: F(1,15) =

143.28, P b 0.01, ACC: F(1,15) = 64.40, P b 0.01; right-

posterior: DAT: F(1,15) = 287.80, P b 0.01, ACC: F(1,15) =

156.98, P b 0.01]. More interestingly, both violation

conditions differed from each other in the all lateral ROIs

[left-anterior: F(1,15) = 12.78, P b 0.01; right-anterior:

F(1,15) = 4.64, P = 0.07; left-central: F(1,15) = 9.24, P b

0.01; right-central: F(1,15) = 5.90, P b 0.05; left-posterior:

F(1,15) = 12.09, P b 0.01; right-posterior: F(1,15) = 23.20,

P b 0.01]. These differences were due to more b0Qs in DAT

compared to ACC.

4.3.2.2. Positivity time window (700 to 1000 ms). The

statistical analysis of the final distribution of b2Qs in the

late time window and in threshold range (II) (3.0 to 5.3

AV) at midline electrodes revealed a main effect of

Violation [F(2,30) = 16.95, P b 0.01] due to a greater

number of positive ERP trials both in the dative violation

condition [F(1,15) = 16.85, P b 0.01] and in the accusative

violation condition [F(1,15) = 23.09, P b 0.01] compared

to the correct condition. The two violation conditions did

not differ from one another [F(1,15) = 3.05, P = 0.15].

Resolving an interaction Violation � Electrode

[F(4,60) = 8.52, P b 0.01] revealed main effects of

Violation at FZ [F(2,30) = 6.64, P b 0.01], CZ

[F(2,30) = 14.29, P b 0.01], and PZ [F(2,30) = 24.33,

P b 0.01]. Both violation conditions differed from the

correct condition at CZ [DAT: F(1,15) = 19.54, P b 0.01;

ACC: F(1,15) = 17.76, P b 0.01] and at PZ [DAT: F(1,15) =
28.72, P b 0.01; ACC: F(1,15) = 28.73, P b 0.01]. At FZ,

there was only a significant difference of the mismatching

accusative condition against the correct condition [DAT:

F(1,15) = 2.04, P = 0.26; ACC: F(1,15) = 11.57, P b

0.01] due to a higher proportion of b2Qs in ACC. Both

violation conditions DAT vs. ACC differed only at FZ

[F(1,15) = 6.79, P b 0.05], but not at CZ [F(1,15) = 1.14,

P = 0.30] or PZ (F b 1). There were more b2Qs in ACC

compared to DAT.

In the lateral ROIs, we observed a main effect of

Violation [F(2,30) = 28.79, P b 0.01]. Compared to the

correct condition, there were more b2Qs in both the

mismatching dative [F(1,15) = 29.23, P b 0.01] and the

mismatching accusative condition [F(1,15) = 38.33, P b

0.01]. By contrast, there was no global difference between

the two violation conditions [F(1,15) = 3.58, P = 0.12].

An interaction Violation � ROI [F(10,150) = 8.33, P b

0.01] was due to main effects of Violation in all six

ROIs [left-anterior: F(2,30) = 10.57, P b 0.01; right-

anterior: F(2,30) = 6.82, P b 0.01; left-central: F(2,30) =

36.37, P b 0.01; right-central: F(2,30) = 20.66, P b 0.01;

left-posterior: F(2,30) = 27.02, P b 0.01; right-posterior:

F(2,30) = 35.62, P b 0.01]. In both violation conditions,

we observed higher coherence of positive threshold cross-

ing events in comparison to the correct condition in all

ROIs except in right-anterior, where only the difference

ACC vs. COR became significant [left-anterior: DAT:

F(1,15) = 6.76, P b 0.05, ACC: F(1,15) = 17.24, P b

0.01; right-anterior: DAT: F(1,15) = 3.99, P = 0.09, ACC:

F(1,15) = 11.72, P b 0.01; left-central: DAT: F(1,15) =

42.98, P b 0.01, ACC: F(1,15) = 50.58, P b 0.01; right-

central: DAT: F(1,15) = 25.54, P b 0.01, ACC: F(1,15) =

22.91, P b 0.01; left-posterior: DAT: F(1,15) = 29.45, P b

0.01, ACC: F(1,15) = 31.61, P b 0.01; right-posterior:

DAT: F(1,15) = 45.15, P b 0.01, ACC: F(1,15) = 44.81, P b

0.01]. The violation conditions differed from each other only

marginally at frontal and left sites [left-anterior: F(1,15) =

4.78, P = 0.07; right-anterior: F(1,15) = 3.44, P = 0.12; left-

central: F(1,15) = 5.37, P = 0.05; right-central: F(1,15) b 1;

left-posterior: F(1,15) = 3.51, P = 0.12; right-posterior:

F(1,15) b 1], these differences being due to more b2Qs in

ACC.

4.3.3. Summary

Summing up, the statistical results of the symbolic

resonance analysis of ERPs confirm the results from the

voltage averaging analysis in that both violation conditions

induce an N400 followed by a P600 in comparison to the

correct condition. In addition, the symbolic resonance

analysis was able to reveal a difference between the two

incorrect conditions, too. We observed a larger N400

component for the mismatching dative condition compared

to the mismatching accusative and a marginally larger P600

component at frontal electrode sites for the mismatching

accusative condition in comparison with the mismatching

dative condition.
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5. Discussion

Previous ERP studies have shown that sentences in

which the number of NP arguments does not match the

number of arguments specified in the verb’s lexical entry

lead to a biphasic N400–P600 response [11,15]. This

pattern, which had been found with both intransitive [15]

and transitive constructions [11], has been replicated with

ditransitive constructions in the present study. As would

have been expected, sentences with verbs that could not

integrate either an accusative object or a dative object

elicited a biphasic N400–P600 pattern in the ERP. In the

context of argument structure violations, the N400 has been

interpreted to signal the thematic–semantic integration

problem, whereas the P600 has been argued to reflect the

fact that the syntactic structure is not licensed by the lexicon

information of the specific verb [10,15]. This view supports

the theoretical characterization of argument structure infor-

mation as an interface between syntactic (i.e., syntactic

structure) as well as semantic (i.e., propositional) aspects of

sentences in a crucial way.

In the voltage average analysis, there was no difference

between the two incorrect conditions, that is, between

sentences in which a dative (i.e., indirect) object cannot be

integrated compared to sentences with verbs which could

not take an accusative (i.e., direct) object argument.

However, such a difference was found in the symbolic

resonance analysis (SRA), a specific type of data analysis

that – to our knowledge – was applied to a neurophysio-

logical data set here for the first time. The SRA not only

replicated the voltage average findings of differences

between each of the violation conditions to the correct

condition, but also revealed that a surplus dative construc-

tion leads to a stronger bN400Q (i.e., higher proportion of

symbol b0Q) and a weaker bP600Q (i.e., lower proportion of

symbol b2Q) in the symbolic resonance analysis compared to

a condition with a surplus accusative. Since the N400 has

been seen as a marker of semantic–thematic integration

problems, whereas the P600 has been interpreted as

reflecting syntactic ill-formedness (cf. [10]), one might

conclude that an incorrect dative argument induces more

semantic and less syntactic processing effort compared to an

incorrect accusative argument. Although it should be kept in

mind that the bN400 = semanticsQ versus bP600 = syntaxQ
distinction is only a rule of thumb, it would not be

implausible with respect to the present data to assume that

a surplus dative violation induces a weaker syntactic

mismatch but a stronger semantic mismatch correlate

compared to the mismatching accusative condition. This

would make sense insofar as these two cases in German

exhibit different characteristics: Transitive nominative–

accusative verbs in German allow for an additional dative

expressing who is profiting from what is entailed in the

proposition (i.e., expressing a beneficent). Adding such a

benefactive dative seems to be in principal (syntactically)

possible in these types of verbs, but is semantically
restricted [34,37]. One could therefore speculate that if

such a construction is rejected by a speaker, this could be for

reasons which are primarily semantic in nature. It might

suggest that the language processing system spends more

effort in the semantic analysis, in order to judge whether the

free dative is semantically acceptable. By contrast, a

mismatching accusative argument leads to a violation which

might be more principal in nature, that is, which might also

include syntactic restrictions, seeing that adding an accusa-

tive is not possible at all. One might dispute the possibility

of a free accusative in German also exists in sentences such

as (15).

(15). Anna reparierte das Motorrad den ganzen Tag.

Anna repaired the motorcycle the whole day.

We do not think that this possibility is a problem for our

argument for the following reasons: Free accusatives such as

bden ganzen TagQ (the whole day) are extremely limited

with respect to lexicon, semantics, and syntax (that is, they

are limited to nouns expressing a duration). For example,

leaving out the adjective already results in an argument

structure violation, see (16).

(16). *Anna reparierte das Motorrad den Tag.

Anna repaired the motorcycle the day.

Furthermore, as (15) also shows, the accusative can be

added in a sentence that already has a direct object in

accusative case, which clearly demonstrates that it is not

an argument of the verb at all. The same is shown by the

fact that the free accusative is not involved in processes of

argument reassignment as in passive constructions, see

(17).

(17). *Der ganze Tag wurde von Anna repariert.

the whole day was repaired by Anna.

Benefactive datives in German, by contrast, meet all

requirements for an argument status (cf. [9,12] and

Footnote 1).

We admit that the above interpretation of the difference

between extra-datives and extra-accusatives might be

tentative. In any case, more theoretical and especially

empirical work has to be done in other languages with

morphological case marking as well, in order to further

elucidate how this central issue of sentence processing,

namely, argument interpretation, is achieved by our brains.

What we can clearly say, however, is that our finding of

differences between extra-datives and extra-accusatives in

processing is limited to a specific type of data analysis that

we present here for the first time. As we have shown in the

present paper, the symbolic resonance analysis, in which the

intrinsic noise of the EEG is utilized for enhancing the ERP

signal, offers a new way to distinguish ERP reflections

where the conventional voltage average technique fails.

Thus, the symbolic resonance analysis is more sensitive than

conventional methods, complementing these techniques.

This offers a promising starting point for revealing fine-
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grained differences in a range of data which the traditional

analysis techniques are too insensitive to unveil.
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