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Geometry-Adapted Hexahedral Meshes Improve
Accuracy of Finite-Element-Method-Based EEG

Source Analysis
Carsten H. Wolters*, Alfred Anwander, Guntram Berti, and Ulrich Hartmann

Abstract—Mesh generation in finite-element- (FE) method-
based electroencephalography (EEG) source analysis generally
influences greatly the accuracy of the results. It is thus important
to determine a meshing strategy well adopted to achieve both
acceptable accuracy for potential distributions and reasonable
computation times and memory usage. In this paper, we propose
to achieve this goal by smoothing regular hexahedral finite ele-
ments at material interfaces using a node-shift approach. We first
present the underlying theory for two different techniques for
modeling a current dipole in FE volume conductors, a subtraction
and a direct potential method. We then evaluate regular and
smoothed elements in a four-layer sphere model for both potential
approaches and compare their accuracy. We finally compute
and visualize potential distributions for a tangentially and a
radially oriented source in the somatosensory cortex in regular
and geometry-adapted three-compartment hexahedra FE volume
conductor models of the human head using both the subtraction
and the direct potential method. On the average, node-shifting
reduces both topography and magnitude errors by more than
a factor of 2 for tangential and 1.5 for radial sources for both
potential approaches. Nevertheless, node-shifting has to be carried
out with caution for sources located within or close to irregular
hexahedra, because especially for the subtraction method extreme
deformations might lead to larger overall errors. With regard
to realistic volume conductor modeling, node-shifted hexahedra
should thus be used for the skin and skull compartments while we
would not recommend deforming elements at the grey and white
matter surfaces.

Index Terms—Dipole, direct potential approach, EEG, finite-el-
ement method, geometry-adapted hexahedra, realistic head mod-
eling, regular hexahedra, source reconstruction, subtraction po-
tential approach.

I. INTRODUCTION

THE localization of current sources in the human brain from
surface electroencephalography (EEG) measurements (the

inverse problem) requires a model for the forward problem, i.e.,
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the determination of surface potentials from current sources in
the volume. Because of its ability to treat volume conductors of
arbitrary complexity and model inhomogeneous and anisotropic
tissue conductivity, the finite-element method (FEM) has be-
come popular to solve the forward problem [1], [2], [4], [5],
[14], [19], [25]–[27]. An essential prerequisite for FE modeling
is the generation of a mesh which represents the geometric and
electric properties of the volume conductor. So far, surface-
based tetrahedral tesselations were mainly used [1], [2], [4], [5],
[14], [25], [27]. Only few studies examined regular hexahedral
elements exploiting the spatial discretization inherent in med-
ical tomographic data [19], [23], whose excellent performance
has been shown in a recent accuracy study [19], and found to
perform better than the surface-based tetrahedra [23]. Adap-
tive methods [2], [4] disallow use of lead field bases [7], [8],
[21], [24] (discussed later) and loose efficiency when solving
the inverse problem. The problematic stair-like approximation
of curved boundaries with regular hexahedra has been addressed
by [6] in a biomechanical context, where it was shown that a
node-shifting approach can significantly reduce errors in von
Mises stress at the surface, in spite of detrimental effects of de-
formed elements.

In this paper, we first present the underlying theory for two
different techniques for modeling a current dipole in FE volume
conductors, a subtraction and a direct potential method. We then
test the hypothesis that node-shift hexahedra surface smoothing
reduces EEG forward modeling errors. We evaluate the new
mesh-generation approach in a four-layer sphere model for both
the subtraction and the direct potential method, using statis-
tical metrics for a comparison of the numerical results with
an analytical solution at surface measurement points. We then
present electric potential visualization results for a tangentially
and a radially oriented source in the somatosensory cortex in
regular and geometry-adapted three-compartment hexahedra FE
volume conductor models of the human head using both the sub-
traction and the direct potential method. We finally discuss our
results and conclude in the last chapter.

II. METHODS

A. The FEM-Based EEG Forward Problem

In the quasistatic approximation of Maxwell’s equations, the
distribution of electric potentials in the head domain of
conductivity , resulting from a primary current is governed
by the Poisson equation with homogeneous Neumann boundary
conditions on the head surface [18]

(1)
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with the unit surface normal, and a reference electrode with
given potential, i.e., .

The primary currents are generally modeled by a mathemat-
ical dipole at position with the moment [18],

(2)

1) The Subtraction Approach: For the subtraction method
[1], [2], [4], [14], [19], [23], the total potential is split into
two parts

(3)

where the singularity potential is defined as the solution for
a dipole in an unbounded homogeneous conductor with constant
conductivity (the conductivity at the source position). The
solution of Poisson’s equation for the singularity potential

(4)

can be formed analytically by use of (2)[18]

Subtracting (4) from (1) yields a Poisson equation for the cor-
rection potential

(5)

with inhomogeneous Neumann boundary conditions at the sur-
face

(6)

The advantage of (5) is that the right-hand side is free of
any source singularity, because in a subdomain around the
dipole, the conductivity is zero. For the numerical
approximation of the correction potential, we use the FE
method with isoparametric transformations of the deformed
cube elements to the reference cube element and piecewise
trilinear basis functions at nodes , i.e., and

for all . When projecting both the sin-
gularity and the correction potential into the FE space, i.e.,

with
and , and applying
variational and FE techniques to (5),(6), we finally arrive at a
linear system

(7)

with the stiffness matrix

(8)

the right-hand side vector

(9)

with matrices

and with being the coefficient
vector for . We then seek for the coefficient vector

and, using (3), the total potential
can be computed. In a small subdomain around the dipole
position, the linear approximation of the singularity potential

through is quite rough, but is zero so that,
under the condition that the source is not too close to a next
conductivity jump, (5) and (6) are appropriately modeled with
the presented linear FE approach.

2) Direct Potential Approach: Even if the mathematical
dipole (2), consisting of an infinitesimal separation between
the two poles, an infinite current sink and source and a finite
dipole moment, is widely used in source analysis, a smoother
model based on finite monopolar source and sink distributions
and separations might be even more realistic [5], [19], [21],
[26], [27]. However, from a more practical point of view, dipole
vectors contain more information (strength and orientation)
and ease the interpretation of inversely calculated source con-
figurations. Therefore, it has been proposed to approximate the
mathematical dipole with a smoother blurred dipole using a
collection of monopolar sources and sinks on all neighboring
FE mesh nodes in order to optimally match a given dipole
moment vector [5]. In the following, we present the theory for
the direct potential approach using the blurred dipole model.
We will closely follow the ideas of [5], where the blurred dipole
model was used in tetrahedra volume conductors, but our
matrix-based reformulation easifies understanding and imple-
mentation and allows a direct comparison with the subtraction
approach especially with regard to the computational effort
in both tetrahedra and regular and node-shifted hexahedra FE
volume conductors. Starting from the basic relation for a dipole
moment at position ( being an arbitrary
position in the grey matter compartment, i.e., not necessarily
an FE node), (see, e.g., [16, formula
(2.92)]), and assuming discrete sources on only neighboring
FE mesh nodes, it is with denoting
the vector from FE node to source position . When using
higher moments with and the Cartesian
direction , it is

(10)
(for a motivation of higher moments see [5]). The bar indicates
a scaling with a reference length , so that

(11)

is dimensionless and the physical dimension of the resultant
scaled order moment, , is that of a current (i.e., A,
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Ampère). has to be chosen so that is smaller 1. This
is expressed by the exclamation mark in (11). The equation is
well known from mechanical engineering, where small forces
in combination with long lever arms have the same effect on the
system as large forces in combination with short lever arms. If
we now define the matrix , the moment vector

, computed from the given dipole moment vector
, and the diagonal source weighting matrix by

(12)

with or , then we compute the monopole load vector
of the blurred dipole on the neighboring FE nodes from

the given dipole moment vector at position by means of
minimizing the following functional:

The first part of the functional ensures a minimal difference
between the moments of the blurred dipole and the target
ones , while the second part, a Tikhonov-Phillips regular-
izer with the dipole regularization parameter, smoothes the
monopole distribution in a weighted sense and enables a unique
minimum for . The solution of the minimization problem is
given by

(see, e.g., [13, Theorem 4.2.1]) so that the final solution for the
monopole source vector of the blurred dipole is given by

(13)

The highest order is generally chosen as or ,
where the latter effects a spatial concentration of loads in the
dipole axis. Furthermore, stresses the spatial concentra-
tion of loads around the dipole.

In the direct potential approach in combination with
the blurred dipole, the total potential

is projected into the FE space and, using varia-
tional and FE techniques for (1), a linear system

(14)

is derived with the same stiffness matrix as in (8). The right-
hand side vector has only nonzero entries at the
neighboring FE nodes to the considered dipole location. It is
determined by

(15)

for a source at location , where the function deter-
mines the global index to each of the local indices .

3) Efficient Solution Methods: We employ an algebraic
multigrid preconditioned conjugate gradient (AMG-CG)
method for solving the linear systems (7) and (14). We solve up
to a relative error of in the controllable -energy
norm (with being one V-cycle of the AMG) [22].

As shown above, the linear systems (7) and (14) have the
same stiffness matrix (8), but the right-hand side vector is dense
for the subtraction approach (9) and sparse with entries (the
number of neighboring FE nodes) for the blurred dipole ap-
proach (15). This has implications for the computational effort
when using the lead field basis approach [24] (additionally, see
[7], [8], [21]), which limits the total number of FE linear equa-
tion systems to be solved for any inverse method to the number
of sensors . After computing the vectors of the
lead field basis, each forward problem can be solved by a single
multiplication of the right-hand side with the basis [24], re-
sulting in a computational effort of operations,
where for the subtraction approach and for the
blurred dipole direct potential approach. Note that the lead field
basis can not be used when the mesh is adapted according to
varying source positions within the inverse problem. We there-
fore attempt to avoid local mesh refinement techniques as used
in [2] and [4].

B. FE Volume Conductor Models

In source reconstruction, head modeling is generally based on
segmented magnetic resonance (MR) data, where curved tissue
boundaries have a stair-step representation. We segmented a
three tissue realistically-shaped head model with compartments
skin, skull and brain and an isotropic voxel size of 1 from
a T1- and proton-density-weighted MR dataset of a healthy
32-year-old male subject. The bi-modal MR approach allowed
an improved modeling of the skull-shape as described in detail
in [23]. We chose conductivities of 0.33, 0.0042, and 0.33 S/m
for the three compartments [5].

For node-shift hexahedra evaluation purposes, we further-
more discretized a four-compartment sphere model in a 3-D
data volume with 1 voxel resolution. The layers represent
the compartments skin, skull, cerebrospinal fluid and brain with
outer surfaces of radii 92, 86, 80, and 78 mm, respectively. We
chose conductivities of 0.33 S/m, 0.0042, 1.0, and 0.33 S/m for
the four compartments [2], [19].

C. Generation of Hexahedral FE Meshes

Voxels from a segmented MR volume can be used directly
as hexahedral elements, possibly reducing resolution by prior
subsampling of the volume as we do below for our volume con-
ductor models. In order to increase conformance to the real ge-
ometry and to mitigate the stair-case effects of a voxel mesh, a
technique was proposed in [6] to shift nodes on material inter-
faces in order to obtain smoother and more accurate boundaries.
Nodes on a two-material interface are moved into the direction
of the centroid of the set of incident voxels with minority mate-
rial, i.e., the material occuring three times or less in the 8 sur-
rounding voxels. If the centroid of these minority voxels relative
to a node is , it is shifted by

(16)
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Fig. 1. Concept of the hexahedral node-shift approach for the smoothing of interface boundaries in a 2D scenario: On the left side of the figure, the procedure is
illustrated for only two boundary nodes from which one is moved outside and the other one is moved inside towards the centroids of their minority elements. The
final result of the node-shift, a smoothed boundary representation using deformed hexahedra, is shown on the right side.

with the user-defined node-shift factor (cf. Fig. 1).
The choice ensures that interior angles at element
vertices remain convex and the Jacobian determinant remains
positive [6].

D. Error Measures in Sphere Models

In [15], series expansion formulas were derived for a mathe-
matical dipole in a multilayer sphere model, denoted now as the
analytical solution. We compare analytic and numeric solutions
using two error criteria that are commonly evaluated in source
analysis [2], [14], [19], the relative difference measure (RDM)

and the magnification factor (MAG)

where denotes the Euclidian norm and
the analytic or numeric solution vectors at measure-

ment electrodes. The RDM is a measure for the topography error
and the MAG indicates changes in the potential amplitude.

We furthermore define the node-shift improvement factor for
the RDM (MAG) as the ratio of the RDM (MAG-1) in the reg-
ular versus the RDM (MAG-1) in a node-shifted

hexahedra model.

E. Parameter Choice for the Blurred Dipole in the Direct
Potential Approach

We choose the parameters of the blurred dipole as follows:
The maximal dipole order (10) and the scaling reference
length (11) are set to and , respec-
tively. Since the chosen mesh size (discussed later) is a large
factor smaller than the reference length, the second order term

is small and the model focuses on fulfilling the dipole
moments of the zeros and first order. The exponent of the source
weighting matrix in (12) is fixed to and the regularization
parameter in (13) is chosen as . The settings effect
a spatial concentration of the monopole loads in the dipole
axis around the dipole location and gave best results in former

Fig. 2. Subtraction potential approach: Comparison of the numerical accuracy
for regular (ns = 0) and node-shifted (ns = 0:49) 2- and 3-mm hexahedra
models for radially and tangentially oriented sources.

evaluations of the presented blurred dipole model in tetrahedra
[5], [23] and also regular hexahedra volume conductors [23].
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TABLE I
SUBTRACTION APPROACH: RDM AND MAG NODE-SHIFT IMPROVEMENT

FACTORS FOR 2-mm HEXAHEDRA MODELS

III. RESULTS

As a programming platform for the presented subtraction and
direct potential approach, we used our software environment
IP-NeuroFEM [20].

A. Evaluation of the Hexahedra Node-Shift in Sphere Models

Hexahedral models of the 4-layer sphere were subsampled to
2- (426 K nodes) and 3-mm (130 K nodes) voxels and node-shift
factors (16) of 0 (regular), 0.2, 0.4, and 0.49 were used for our
evaluation. To achieve independence of the specific choice of the
sensor configuration, we distribute electrodes in
a most-regular way over the outer sphere surface. Comparisons
between the numeric and the analytic solutions at the electrode
positions are carried out for dipoles located on one axis at depths
(eccentricities) of 0%–97% (in 1-mm steps) of the inner layer
(78-mm radius) using both radial and tangential orientations.
We limit the eccentricity to 97%, because it can be expected
that the dipole location is at least 2 mm below the surface of the
innermost sphere in the middle of the grey matter compartment.
We use dipole strengths of 1 nAm.

1) Subtraction Potential Approach: Fig. 2 plots RDM and
MAG for the regular and the node-shifted
2- and 3-mm hexahedra models for all realistic source eccentric-
ities. In the 2-mm model, we observe a maximal RDM of 0.105
and a maximal MAG of 9.2% over all depths and for both source
orientations. For the 3-mm model, RDM accuracies below 0.14
are only achieved for eccentricities up to 91% and therefore for
the vast majority of realistic source positions, but the results for
higher eccentricities are above this threshold and the MAG is
equipped with an error of up to 16.1%. In Table I, minimal, max-
imal and average RDM and MAG node-shift improvement fac-
tors are shown for the 2-mm model. For the 3-mm model, the
results are very similar (only shown for in Fig. 2).
The average improvement factors for both mesh resolutions in-
crease continuously with increasing node-shift values and, for
the maximal examined deformation, they are higher than 2.28
for tangential and 1.6 for radial sources. However, as it can be
observed in both Fig. 2 and Table I, the node-shift might cause

Fig. 3. Direct potential approach: Comparison of the numerical accuracy for
regular (ns = 0) and node-shifted (ns = 0:49) 2- and 3-mm hexahedra
models for radially and tangentially oriented sources.

a deterioration of the overall error for sources located within a
deformed element or in its direct neighbor element.

2) Direct Potential Approach: In Fig. 3, RDM and MAG are
plotted for regular and node-shifted 2-
and 3-mm hexahedra models for all realistic source eccentric-
ities. Again, the error curves are rising with increasing source
eccentricity. When compared to the numerical performance of
the subtraction approach, the direct approach is less sensitive
with smaller errors for sources close to conductivity discontinu-
ities. However, due to variations of the dipole approximation of
the blurred dipole model depending on the location within an el-
ement, error curve oscillations can be observed. The node-shift
improvement factors for the 2-mm model are shown in Table II.
All factors are above 1.0, so that a general improvement through
node-shifting can be concluded. We achieve very similar results
for the 3-mm model, the only significant difference to the 2-mm
results is that the MAG improvement factors for the two most
eccentric radial sources is slightly below one (see Fig. 3). The
average improvement factors for both mesh resolutions increase
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TABLE II
DIRECT APPROACH: RDM AND MAG NODE-SHIFT IMPROVEMENT FACTORS

FOR 2-mm HEXAHEDRA MODELS

continuously with increasing node-shift values and, for the max-
imal deformation, they are higher than 2.05 for tangential and
1.56 for radial sources.

B. Application of Node-Shift Hexahedra Meshing to Realistic
Volume Conductor Modeling

The three-compartment realistic volume conductor model
was meshed using 2-mm regular and node-shift
hexahedra. This resulted in hexahedra FE models with 386 K
nodes and 366 K elements. The dipole strengths are 100 nAm.

The potential distribution in the regular and node-shifted hex-
ahedra models were then computed and visualized using both
the subtraction (Fig. 4) and the direct potential approach using
the blurred dipole (Fig. 5) for a radially and a tangentially ori-
ented source in somatosensory cortex. As it can be observed in
the figures, with regard to the mesh properties, the three surfaces
skin, outer and inner skull are represented in a much smoother
way in the node-shifted mesh compared to the stair-step approx-
imation in the regular hexahedra model. While the surfaces of
outer and inner skull are directly visible in the node-shift hex-
ahedra model, they otherwise can only be estimated indirectly
from the bends in the isopotential lines at both skull surfaces.
The consequence with regard to the field patterns is, that the
smoothness property of the mesh is taken over to the isopoten-
tial-lines, which at both skull surfaces appear smoother in the
node-shifted meshes.

IV. DISCUSSION AND CONCLUSION

The focus of our study is the validation of a node-shift hexa-
hedral meshing approach for a subtraction and a direct potential
approach in FE-based EEG source analysis, a method which was
shown to perform well in a biomechanical FE application [6].
The node-shifted hexahedra better describe the smooth tissue
boundaries, but, following convergence proofs in FE numerical
analysis, they might also cause larger numerical errors.

We chose a four compartment sphere model with the classic
conductivity values of 0.33, 0.0042, 1.0,and 0.33 S/m (see, e.g.,

[2] and [19]), i.e., a ratio of 1:80 between the skull and the brain
compartment. Recent works suggest that the skull conductivity
should be only 15 [17] to 25 [10] times lower than the brain
conductivity. However, in [11], we presented a low resolution
conductivity estimation algorithm that we recently applied to
the estimation of the brain:skull conductivity, where we found
the classic ratio of 1:80 [12]. In any case, when applying the
nodeshift hexahedral meshing approach to a four layer sphere
model with a skull to brain ratio of 1:15, the results are very
similar to the results shown in this paper, the overall numerical
errors of both presented numerical approaches are only lower.

From the evaluation in this paper we can conclude that, with
average node-shift improvement factors around 2 for a 2-mm
hexahedra resolution, both topography and magnitude errors
at surface measurement locations are strongly reduced by the
node-shift approach, if the source is not located within a de-
formed element or its direct neighbor. For a 2-mm mesh resolu-
tion, the node-shift always improved the results for the direct po-
tential method, while for sources within the deformed element
or its direct neighbor, results of the subtraction approach were
slightly spoiled for radial sources. With regard to realistic head
modeling, we conclude that the boundaries of the skin, outer and
inner skull should be smoothed using the hexahedra node-shift,
while we would not recommend deforming elements at the grey
and white matter surfaces.

For the used zero-mean EEG data, the RDM can be related to
the correlation coefficient (CC) through
[19] and a CC above 0.99 (i.e., RDM below 0.14) was associated
with a localization error of no more than 1 mm [9], [19]. We can
therefore conclude that, for the presented sphere model and for
both the direct and the subtraction approach, regular and espe-
cially node-shifted 2-mm hexahedra models achieve satisfying
numerical accuracy. No mesh adaptation is needed in contrast
to tetrahedral local mesh-refinement strategies [2], [4], where
elements are refined depending on the varying source position
within the inverse problem. We can therefore exploit lead field
bases [24], the computationally very efficient solution strate-
gies for the EEG and magnetoencephalography (MEG) inverse
problem as described in Section II-A. With increasing eccen-
tricity, the errors begin to rise, a behavior, which has also been
observed in [1], [2], [4], [5], [14], and [19]. The decrease in nu-
merical accuracy with increasing eccentricity is stronger for the
presented subtraction approach compared to the presented direct
method. For the direct potential approach, due to the mesh-de-
pendent implementation of the blurred dipole, we observe oscil-
lations in the error curves. This can be explained by the choice
of the neighboring nodes to the source position in formula
(10). In our implementation, the FE nodes are chosen like
follows: First, the closest FE node to is determined. For
the modeling of the blurred dipole, we then compute monopole
sources on those FE nodes, which have a common edge with

. As Fig. 3 shows, the best approximation to the mathemat-
ical dipole can thus be achieved if the distance is zero
(the source is positioned at a FE-node), while the approximation
is worst if approaches the center of an element. With regard
to continuous dipole fits during an inverse EEG analysis, this
might be a disadvantage of the presented direct approach com-
pared to the presented subtraction method, where error curves
and thus inverse cost functions are smooth.



1452 IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, VOL. 54, NO. 8, AUGUST 2007

Fig. 4. Subtraction potential approach in 3-compartment realistic volume conductor of the human head: Visualization of the total potential for a tangentially and
a radially oriented dipole in the somatosensory cortex in a regular (a) and a node-shifted (ns = 0:49) hexahedra FE model (b). The sagittal cutplane was chosen
in a distance of 9mm from the source position. 15 isopotential lines are shown from the minimal to the maximal potential value in the given plane (upper row)
and for an interval of �20 �V to 20 �V (lower row). Visualization was carried out using BioPSE [3]. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this paper).

Fig. 5. Direct potential approach using the blurred dipole in a 3-compartment realistic volume conductor of the human head: Visualization of the potential dis-
tribution for a tangentially and a radially oriented dipole in the somatosensory cortex in a regular (a) and a node-shifted (ns = 0:49) 2mm hexahedra FE model
(b). The sagittal cutplane was chosen in a distance of 9mm from the source position. 15 isopotential lines are shown from the minimal to the maximal potential
value in the given plane (upper row) and for an interval of � 20 to 20 �V (lower row). Visualization was carried out using BioPSE [3]. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version of this paper).
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