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1 Introduction 

Living in a constantly changing environment requires continuous updating of 
performance plans. This is necessary to receive maximal positive outcome from 
one’s actions. A particular brain system monitors ongoing human performance 
and signals the need for adaptation whenever the outcome of an action is at risk 
or worse than expected. If a person is confronted with the same situation again, 
s/he remembers this situation and behaves in an appropriate manner. Performance 
monitoring needs to interact with learning to provide the organism with tools to 
face future challenges. Different areas in the brain are potentially involved in this 
process: the posterior medial frontal cortex (pMFC) is heavily involved in proc-
essing of errors and negative feedback – cases in which activity of a performance 
monitoring system is needed. Holding relevant information online, in order to 
guide human performance, the lateral prefrontal cortex (PFC) seems a promising 
target. Finally, to enable long term adaptation of behavior also learning-related 
brain areas have to be considered, for example the hippocampus. 

The neuromodulator dopamine (DA) is thought to play a major role within the 
process of performance monitoring and learning from action outcomes. Phasic 
changes in DA concentration signal the valence of the outcome of an action: 
whenever the outcome of an action is better than expected there is a phasic in-
crease in dopaminergic activity, whereas when the outcome of an action is worse 
than expected, a phasic decrease in dopaminergic activity can be observed. This 
dopaminergic signal is conveyed for example to the pMFC, where in case of ne-
gative action outcomes remedial actions can be triggered. Another major target of 
dopaminergic projections from the midbrain are the basal ganglia (BG), a struc-
ture involved in habit learning. They presumably use phasic dopaminergic signals 
to learn only actions that are associated with a positive outcome. In contrast to 
this slowly-acting process of habit formation in the BG another system is moni-
toring action outcomes within a more restricted time range: the PFC is thought to 
be the “home” of working memory, an ability of holding information online over 
a given time period.
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Under standard conditions BG and PFC work in parallel. DA is the neuro-
modulator which ties these two systems together: DA is also highly relevant for
processes like working memory. The processes outlined above rely on the func-
tional integrity of the DA system. Dopaminergic signaling can be challenged in 
many ways – over the last years it turned out that not only pathological processes 
or drugs of abuse are potent modulators of dopaminergic function. Also the ge-
netic makeup of a person can contribute to subtle alterations in dopaminergic 
neurotransmission. 

In the present work we show that human performance monitoring is dependent 
on the neurotransmitter DA. A genetic polymorphism modulating the DA D2 
receptor density in the striatum can influence how the performance monitoring 
system responds to negative feedback. Furthermore, we show how this negative 
feedback is used to enable long term adaptations of performance, i.e. learning.
Timing of the experimental paradigm should have an influence on the perform-
ance in the task. Related to this there should be differential interactions between
the genotype and the timing influence. The role of DA in triggering performance-
monitoring-related activity in the pMFC will be discussed as well as genotype-
dependent differences in learning. The latter differences are discussed in terms of 
habit learning vs. working memory processes. Differential influences of a lower 
or normal1 D2 receptor density on these two systems of action guidance are also 
covered. 

After a short introduction into the theoretical background of performance 
monitoring and the brain areas involved in this process we will turn to the role of 
DA in this process. We will show how dopaminergic signaling can be influenced 
by genetic polymorphisms within the dopaminergic system. We will present evi-
dence from functional magnetic resonance imaging (fMRI) and electroencephalo-
graphy (EEG) showing that alterations in dopaminergic signaling lead to corre-
sponding alterations in the processing of negative feedback and related to this, to 
alterations in the use of negative feedback for feedback-guided learning. Implica-
tions of these findings will be shortly discussed. A general discussion will be 
provided which includes also an outlook to future research topics.

1 “Normal” refers to the fact that 70% of the population have this receptor density – therefore nor-
mality is meant in terms of frequency. 
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2 Theoretical Background

2.1 Performance Monitoring

How does the human brain realize that an error occurred in the continuous stream 
of performance? Either the brain signals that something in the performance was 
suboptimal or the person receives negative feedback from the environment. There 
is evidence from electrophysiological and fMRI studies that these two modalities 
of signaling erroneous performance are processed in similar regions of the human 
brain (Ullsperger & von Cramon, 2003; Miltner et al., 1997). 

Reason (1990) distinguished three error types:

• Mistakes: errors in planning an action

• Lapses: failures in the storage phase, i.e. between planning and execut-
ing the action

• Action Slips: failures in the execution of an action, i.e. the correct re-
sponse is known, but the incorrect response is executed

Mistakes are hard to detect because of the large temporal offset between the 
time of error commission and the consequence of the error. Action slips are very 
easy to detect. Considering the option of endogenous error detection the question 
arises how the brain “knows” which answer would have been the correct one and
subsequently how the process of error detection and error signaling is imple-
mented in the brain. Alternative theories dealing with this question have one
property in common: They require representations of the correct and the actually 
executed action. This is necessary for a comparison of or a conflict between these 
two actions. This comparison is taking place either at the stage of prepara-
tion/execution of the action (Response Conflict Model) or the stage of evaluation 
of the executed action (Mismatch Hypothesis and Reinforcement Learning Hy-
pothesis). Another common feature of these theories is that error detection is used 
to enable adaptive behavior in an unstable environment. These adaptations can 
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take place on different timescales: Probably the fastest reaction to an error is the 
immediate error correction. This is execution of the correct response (Rabbitt, 
1966a, 1966b). A further quick adaptation after an error is slowing down in the 
trial following an error. This so-called post-error-slowing was first discovered by 
Rabbitt (1966b) and interpreted as a hint for a more cautious response strategy 
after an error. Ridderinkhof (2002) proposed the so-called post-error-reduction in 
interference. That means that after an error had occurred more cognitive control is 
employed in order to improve subsequent behavior. If now the trial after an error
is a trial with interference between competing response alternatives, this interfer-
ence is more easily resolved because of the higher amount of cognitive control in
this trial. In the long run, errors serve as teaching signals enabling learning. As 
errors are rather rare events they carry more information about how to perform 
than correct responses do. Therefore, errors are often highly valuable for learning. 
Error-driven learning may be the consequence of an error with the longest tempo-
ral impact. Assuming learning from errors requires a functional relationship be-
tween performance monitoring and learning-related areas in the brain. 

2.2 Correlates of Performance Monitoring

2.2.1 Electrophysiological Correlates of Performance Monitor-

ing

In 1990, Falkenstein and colleagues reported a sharp negative deflection with a 
fronto-central scalp distribution in the human electroencephalogram (EEG) after 
subjects had committed an error. Falkenstein and colleagues called this peak er-
ror-negativity (Falkenstein et al., 1990; Ne, also referred to as error-related-
negativity, ERN Gehring et al., 1993). It occurs between 50-100 ms after the on-
set of the erroneous action. It is often followed by a positive deflection at about 
300 ms post-error with a more parietal scalp distribution, the so-called error-
positivity (Pe). The functional significance of the ERN can be described as being 
an electrophysiological correlate of error detection or conflict monitoring. The
role of the Pe is much less clear. A recent review by Overbeek and colleagues
(2005) found weak support for the assumption that the Pe is related to the emo-
tional reaction to an error. Others describe the Pe as being a correlate of error-
awareness (Nieuwenhuis et al., 2001; Endrass et al., 2005). 

The ERN can be triggered by errors committed with different effectors: hand 
(Fiehler et al., 2005), foot (Holroyd et al., 1998), voice (Masaki et al., 2001) or 
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eye movements (Nieuwenhuis et al., 2001; Van`t Ent & Apkarian, 1999). In situa-
tions in which subjects do not have enough information to decide whether or not 
an action was erroneous, an ERN-like negativity can be triggered by negative 
performance feedback (Miltner et al., 1997). The so-called feedback-ERN or 
feedback-related negativity (FRN) is similar in topography to the response ERN 
(medial frontal distribution) and is supposed to be generated by the same brain 
regions as the response ERN (Gehring & Willoughby, 2002; Nieuwenhuis et al., 
2004). According to Holroyd and Coles (2002) the amplitude of the FRN varies 
with the degree of experience/knowledge the subject has about the task. At the 
beginning of a new task subjects do not know which response to perform. There-
fore, performance monitoring must rely on external feedback. With increasing 
knowledge about the nature of the task the information value of the feedback 
decreases as does the amplitude of the FRN. 

Source localization and fMRI studies (Dehaene et al., 1994; Gehring et al., 
2000; Ullsperger & von Cramon, 2003) constantly point to a region within the 
pMFC as being the source of the ERN and the FRN: the rostral cingulate zone 
(RCZ; Ullsperger & von Cramon, 2004). 

2.2.2 Hemodynamic Correlates of Performance Monitoring

There is good evidence for the RCZ being a key player in performance monitor-
ing. In case of an error, increase in RCZ activity can be observed (Ullsperger & 
von Cramon, 2001, 2003; Klein et al., 2007a). This error-related activity can be 
triggered by self-generated errors (Ullsperger & von Cramon, 2001) or by exter-
nal error feedback (Holroyd et al., 2004).

A recent metaanalysis combining results from various fMRI studies on error 
processing (red triangles), pre-response conflict (blue dots), decision uncertainty 
(green circles) and negative feedback (yellow triangles; Ridderinkhof et al., 2004, 
see figure 2-1) gives further support to the notion of a central role for RCZ in 
performance monitoring. 
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Figure 2-1 Metaanalysis on Performance Monitoring (taken from Ridderinkhof et al., 2004)

As can be seen from fig. 2-1 performance monitoring related processes cluster 
within the RCZ. From an anatomical (see section 2.4) and functional perspective 
this brain area seems to be well suited to play a central role in performance moni-
toring and subsequent behavioral adaptations. 

DA is assigned a central role in current theories of cognitive control. A dip in 
dopaminergic activity following negative performance outcome/performance 
feedback is thought to trigger RCZ activity with the goal of optimizing future 
behavior (Holroyd & Coles, 2002).
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2.3 Models of Error Detection

Different models have been developed to explain how the brain detects an error. 
They vary in terms of the signal that serves as the error correlate or in terms of 
the potential consequences of an error. In the following section three main theo-
ries will be briefly introduced: the mismatch hypothesis, the response conflict 
model and the reinforcement learning model. 

2.3.1 Mismatch Hypothesis

The mismatch hypothesis assumes that a comparison process in the brain reveals 
a mismatch between the intended and the actually performed action when an error 
was made (Falkenstein et al., 1990, 2000; Gehring et al., 1993, Coles et al., 2001, 
Falkenstein, 2004). While the stimulus is still processed and the representa-
tion/implementation of the correct response is built up, a second, in this case in-
correct response is being executed. After execution of the incorrect response an 
efference copy of this response is compared to the now available representation 
of the correct response. If a mismatch is detected an error signal is generated 
which in turn leads to measurable correlates of error detection.

2.3.2 Response Conflict Model

The response conflict model assumes that the measurable correlates of error proc-
essing are not due to error detection. They are assumed to be a direct expression 
of conflict between competing response alternatives (Botvinick et al., 2001, 
2004). Two types of conflict can be distinguished by their time of appearance in 
human performance: If two response tendencies are triggered at the same time 
and these two tendencies compete, a pre-response conflict occurs. On the other 
hand, if a premature response has been given and the tendency for the correct 
response evolves later, a post-response conflict is assumed. 

2.3.3 Reinforcement Learning Model

Holroyd and Coles (2002) proposed a model of performance monitoring that 
combines error processing with mechanisms of reward signaling. The reinforce-
ment learning model stresses the importance of errors for improvements in subse-
quent task performance implementing principles of reinforcement learning (Hol-
royd & Coles, 2002). The model holds strong assumptions with respect to brain 
areas involved in error processing. The theory describes a central role for the 
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neurotransmitter DA in performance monitoring. This is done by incorporating 
findings from the animal literature showing that dopaminergic neurons in the 
midbrain signal the value of the outcome of an action. If an unexpected reward is 
presented, a phasic increase in activity of midbrain dopamine neurons can be 
observed. Whenever the outcome of an action is worse than expected an “error in 
reward prediction” is detected by the BG and signaled via a phasic dip in dopa-
minergic activity (Schultz, 2000, 2002). This phasic DA dip is thought to disin-
hibit apical dendrites of layer V neurons in the RCZ. RCZ activity in turn can be 
used to improve the performance of the task or to trigger subsequent adaptations 
in performance. According to Holroyd & Coles (2002) the BG learn to predict the 
outcome of an action and therefore to detect a discrepancy between an expected 
and the actual outcome. This learning improves over time enabling BG to play 
the role of an adaptive critic in performance monitoring.

Given the important role ascribed to the medial frontal cortex anatomical and 
functional details of this brain region should be introduced. 

2.4 Anatomy of the Medial Frontal Cortex

Based on cytoarchitectonic maps Brodmann (1909) divided the cortex into 43 
cortical regions, so-called Brodmann Areas (BA). Regions most interesting for
performance monitoring within the frontomedian wall are BA 6 (premotor isocor-
tex), BA 8 (prefrontal isocortex), BA 32 (paralimbic dysgranular cortex) and BA
24 (“limbic” agranular cortex).

2.4.1 Performance Monitoring Related Areas of the Medial 

Frontal Cortex

In the following, performance monitoring related areas will be described in 
more detail. 

• BA 6 can be divided into two areas based on functional and connectivity
criteria: the pre-supplementary motor area (pre-SMA) and the supplemen-
tary motor area (SMA; Picard & Strick, 2001). Based on cytoarchitectonic 
and histochemical monkey data, Matelli and colleagues (1985) suggested 
that monkey F6 (in monkeys, frontal cortex is subdivided into areas from 
F1 to F7) corresponds to the human pre-SMA, whereas monkey F3 is cor-
responding to the human SMA (see also Luppino & Rizzolatti, 2000). In 
humans the level of the anterior commissure (VCA line) constitutes the 
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border between SMA and pre-SMA (Picard & Strick, 2001). Vorobiev et 
al. (1998) further subdivided the SMA based on architectonic features into 
the caudal SMA and rostral SMA. The SMA is more closely related to 
motor functions as it projects directly to the primary motor cortex and the 
spinal cord. The pre-SMA on the other hand is interconnected with the 
prefrontal cortex (Bates & Goldman-Rakic, 1993) thus functionally re-
lated to selection and preparation of movement as well as controlling of 
movements in terms of when to start the movement triggered by external 
contingencies or motivation (Luppino & Rizzolatti, 2000). 

• BA 8, superior to BA 32 and anterior to pre-SMA, covers the posterior 
part of the superior and middle frontal gyri and extends medially to the 
paracingulate sulcus (Petrides & Pandya, 1999).

• BA 32 is located between the cingulate sulcus and the paracingulate sul-
cus (if existent) and forms a belt around BA 24 (Petrides & Pandya, 
1999). The width of this transition cortex in humans is currently under de-
bate.

• BA 24 is constituted by the anterior cingulate cortex (ACC). The ACC is 
located on the anterior portion of the cingulate gyrus. Superiorly the ACC 
is bordered by the sulcus cinguli, inferiorly the border of the ACC is 
marked by the sulcus corporis callosi. The role of dorsal ACC, i.e., the 
part located superior to the corpus callosum, in behavioral control is high-
lighted by three key features: projections to the motor cortex and the spi-
nal cord (role in motor control); reciprocal connections between ACC and 
the lateral prefrontal cortex (role in cognition); extensive afferents from 
midline thalamus and brainstem monoamine nuclei (ACC function influ-
enced by arousal/drive states (Paus, 2001)). 

2.4.2 The Rostral Cingulate Zone

In the primate brain the cingulate sulcus contains three different motor areas
(Picard & Strick, 2001):

1. the rostral cingulate motor area (CMAr)

2. the caudal cingulate motor area located in the ventral bank of the 
sulcus (CMAv)

3. the caudal cingulate motor area located in the dorsal bank of the 
sulcus (CMAd).
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Picard and Strick (2001) proposed that corresponding areas exist in the human 
brain. They distinguish a rostral cingulate zone (RCZ with two subdivisions: an-
terior RCZ (RCZa) & posterior RCZ (RCZp)) and a caudal cingulate zone (CCZ; 
see fig. 2-2). The CCZ is activated in relation to movement execution and seems 
to be comparable to the monkey CMAd. Based on functional data the CCZ seems
clearly distinct from the SMA despite their close proximity. 

Figure 2-2 Medial frontal cortex (taken from Picard & Strick, 2001)

Motor and cognitive functions may both be represented within the RCZ: 
movement-related activations (rostral to VCA line) as well as activations related 
to a word generation task (in or near cingulate or paracingulate sulci; Crosson et 
al., 1999) can be found within this area. Two major views have been proposed to 
describe the overall function of the RCZ: performance monitoring (evaluative 
function of RCZ) and attention/selection for action (motor function of RCZ). Ac-
cording to Picard and Strick (2001) these two views relate to different subdivi-
sions of RCZ: Performance monitoring is proposed to be located in RCZa (poten-
tially corresponding to monkey CMAr) whereas selection for action is correlated 
to RCZp (potentially corresponding to monkey CMAv) function. While an earlier 
review of neuroimaging studies suggested evidence for this separation in humans 
(Picard & Strick, 2001), more recent metaanalyses demonstrated that perform-
ance-monitoring-related activity increases can be found in the entire RCZ (Rid-
derinkhof et al., 2004; figure 2-1).

Holroyd & Coles (2002) proposed the reinforcement learning model of error 
detection/processing (see section 2.3.3). Within this theoretical framework a cen-
tral role in triggering performance monitoring related activity in the frontomedian 
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wall is proposed for the mesocortical DA system. Therefore the anatomy as well 
as the functionality of the human dopaminergic system will be described in the 
following sections.

2.5 Dopamine and Dopaminergic Neurotransmission in 

the Brain

2.5.1 Midbrain Dopamine Neurons and the Striato-Nigro-

Striatal Network

Midbrain Dopamine Neurons

Roughly 50 years ago the neurotransmitter DA was first discovered in the human 
brain (Carlsson et al., 1958). In the meantime DA has become a well-known actor
in different brain functions. Besides playing a central role in many major illnesses 
like Parkinson’s disease, schizophrenia, attention deficit hyperactivity disorder 
(ADHD) or drug addiction, DA has become a major target for research questions 
in cognitive neuroscience as well. DA is thought to play a role in different cogni-
tive functions such as reinforcement learning, motivation (thereby linking cogni-
tion and action), working memory, attention and goal directed behaviors. Classi-
cally, midbrain DA neurons are divided into two tiers (Haber, 2003) based on 
cellular as well as on neurochemical features and on different patterns of connec-
tivity (Bentivoglio & Morelli, 2005):

1. dorsal tier containing

• ventral tegmental area (VTA)

• dorsal substantia nigra, pars compacta (dorsal SNc)

• retrorubral cell groups

2. ventral tier containing most of the SNc (a densocellular group and the 
cell columns).

Figure 2-3 shows a coronal section through the human midbrain displaying 
some key structures of the human dopaminergic system. 
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Figure 2-3 Photomicrograph of a tyrosine hydroxylase positive-stained coronal section through 
the human midbrain (taken from Haber, 2003) showing the distribution of dopaminergic cells in 
the substantia nigra and the nearby ventral tegmental area. SC = superior colliculus; RN = red 
nucleus; SNc = substantia nigra pars compacta; CP = cerebral peduncle; VTA = ventral tegmen-
tal area; SNr = substantia nigra pars reticularis

The dorsal tier is relatively low on DA transporter (DAT) and D2 Receptor 
messenger-RNA (mRNA), whereas the ventral tier shows a high expression of 
DAT and D2 receptor mRNA. The ventral tier is especially vulnerable to neu-
rodegeneration whereas the dorsal tier is not (Haber et al., 1995).

Striato-Nigro-Striatal Network

The midbrain striatal projections are oriented in an inverse dorsal-ventral topog-
raphic organization. Dorsal and medial DA cells send projections to ventral and 
medial parts of the striatum whereas ventral and lateral cells project to dorsal and 
lateral parts of the striatum (Haber, 2003). The most limited input from the mid-
brain, primarily derived from the VTA, is going into the ventral striatum. The rest 
of the ventral striatum is innervated by the entire dorsal tier (most medial and 
dorsal part of the densocellular group). Central striatal areas receive input from 
the densocellular group. The ventral tier projects to the dorsolateral striatum (cell 
columns projecting exclusively there). Projections from the striatum to the mid-
brain are also inversely dorsally-ventrally arranged. Dorsal aspects of the striatum 
project to the ventral regions of the midbrain whereas ventral areas of the stria-
tum project dorsally (Haber, 2003). 
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Mesocortical Projections

Besides projections to the striatum, axons of DA neurons project topographically
to most areas of the neocortex with most prominent projections to the prefrontal 
cortex. Projections to the prefrontal cortex are not as strictly organized in terms of 
topography as projections to the striatum. They mostly arise from VTA. 

Projections to anterior cingulate cortex instead arise from cells of the lateral 
portion of the VTA and of the medial portion of the SNc. Dopaminergic axons in 
the cortex branch, thus reaching more than one cortical area. Neurons from the 
medial portion of the SNc are sending collaterals to the frontal cortex as well as 
to subcortical targets (striatum and septum; Bentivoglio & Morelli, 2005).

Three major pathways from midbrain DA neurons have been identified corre-
sponding to distinct functional roles (Iversen & Iversen, 2007): 

1. To the dorsal striatum: central role in coordinating loops linking the 
midbrain, the BG, the thalamus and the cortex thereby orchestrating 
motor behavior (Haber , 2003)

2. To the ventral striatum (including nucleus accumbens): implicated in 
motivation, thereby providing a link between affect and action. Also 
highly relevant for reward-based learning of goal directed behavior
(Iversen & Iversen, 2007)

3. To the lateral and medial frontal cortex: DA release in prefrontal cor-
tex, mainly acting through D1 receptors, is thought to influence spatial 
working memory (Sawaguchi & Goldmann-Rakic, 1991; Wang et al., 
2004).

2.5.2 The Striatum

The striatum is one of the major projection areas of midbrain DA neurons and 
represents the main input structure into the BG. Neurons within the striatum re-
ceive large inputs from all areas of the cortex and the thalamus which underlines 
the important computational role of the striatum especially in the acquisition of 
motor and cognitive action sequences (Calabresi et al., 2007). Inputs from the 
cortex converge on GABA-ergic medium spiny neurons (90-95% of all striatal 
neurons are medium spiny neurons (MSNs); projection cells to the BG output 
structures) and exert a strong glutamatergic excitatory influence on these neurons.
Dopaminergic signals from the substantia nigra pars compacta converge with 
these cortical inputs enabling the striatum to play a key role in processing of re-
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ward signals. Thereby associations of DA mediated transmission and sensory cue 
processing from cortical areas are established.

Functional subregions of the striatum are defined on the basis of the organiza-
tion of the corticostriatal input. Motor and premotor cortex project to the dorso-
lateral striatum and to parts of the central and caudal putamen. The ventromedial 
striatum (nucleus accumbens, rostral, ventral nucleus caudatus and putamen) re-
ceives input from the medial frontal cortex, which is involved for example in the 
development of reward-guided behavior. The region between the dorsolateral and 
the ventromedial striatum receives input from the dorsolateral prefrontal cortex, 
an area involved for example in working memory. 

The Corticostriato-Thalamocortical Loop – Classical View

The striatum projects to the pallidal complex and the substantia nigra pars reticu-
lata (SNr; Haber & Gdowski, 2004) via two main pathways (Frank, 2005). The 
output from the globus pallidus internal segment (GPi) and the SNr goes to the 
thalamus and from there to the cortex, thereby forming the basic cortico-
basalganglia loop, referred to as direct pathway. In addition an indirect pathway 
is also assumed, connecting the striatum via the globus pallidus external segment 
(GPe), subthalamic nucleus to the GPi, thalamus and cortex. The two pathways 
appear to differ with respect to their response to dopamine (see below).

These two organizational schemes most likely work together. This allows co-
ordinated behavior to be maintained but also to be modified by appropriate exter-
nal and internal stimuli. The direct pathway is thought of as facilitating a re-
sponse, the indirect pathway inhibits responses. Cells in the direct pathway 
project from the striatum and if firing, inhibit the GPi. As the GPi is tonically 
inhibiting the thalamus, inhibition of the GPi results in disinhibition of the thala-
mus. This disinhibition allows the thalamus to get excited by other excitatory 
projections. Cells in the indirect pathway instead inhibit the external segment of 
the globus pallidus (GPe), which tonically inhibits the GPi. The effect of excita-
tion of indirect cells is increasing the inhibition of the thalamus. If now striatal 
cells in the direct pathway disinhibit the thalamus, the activity of the motor com-
mand that is currently present in the motor cortex is enhanced thereby facilitating 
the execution of this response (“Go” signal). Activity in the indirect pathway 
suppresses a response thereby sending a “No-Go” signal. 
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Challenges for the Classical View

The idea of a movement releasing direct pathway and a movement inhibiting indi-
rect pathway has recently been challenged by Ann Graybiel (Graybiel, 2005). The 
most relevant challenges concerning our work should briefly be mentioned: 

1. Target nuclei of the direct and indirect pathway: In monkeys the direct 
and indirect pathway have collaterals that target all nuclei of the BG
(GPe, GPi and SNr). The conventionally accepted segregation into di-
rect pathway (GPi, SNr) and indirect pathway (GPe) thus seems to be 
challenged. 

2. Inhibition by pallido-thalamic pathway: Taking into account rebound 
excitation of thalamic neurons caused by GABAergic inputs, the view 
is challenged that BG output to the thalamus is always inhibitory in na-
ture.

3. Unique role of DA: Recent evidence suggests that DA neurons of the 
VTA produce fast excitations of the ventral striatum by releasing glu-
tamate (Chuhma et al., 2004). This glutamate release is thought to push 
striatal neurons into an upstate with DA determining how long the neu-
rons will stay in this state. 

4. The same cortical input into both pathways: The classical view that the 
motor cortex sends the same cortical information to striatal projection 
neurons in either the direct or the indirect pathway has been challenged 
recently. Lei and colleagues (2004) showed that collaterals of pyrami-
dal tract neurons project to indirect pathway in the sensorimotor stria-
tum. Neurons in the direct pathway on the other hand receive input 
from distributed terminals of non-pyramidal-tract neurons having intra-
telencephalic projections. 

Thus the question is not whether or not the BG play a central role in integra-
tion of reinforcement and action-related signaling. Rather existing models will 
have to be extended in order to integrate recent findings, thus making models of 
BG function more comprehensive. 

As the classical model of BG loop activity is offering the opportunity to derive 
testable hypotheses about the differential role of D1 and D2 receptors, this model 
will be the basis for our investigations – keeping in mind that modifications may 
be necessary. 
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A Model of Dopamine Influencing Basal Ganglia Loop Activity

The activity within the BG loops is strongly influenced by phasic changes in DA. 
The DA D1 receptor family is mainly excitatory whereas receptors from the D2 
family are mainly inhibitory in nature. D1 receptors are mainly expressed in stri-
atal cells of the direct pathway whereas D2 receptors can be mainly found in the 
indirect pathway (Frank, 2005). Figure 2-4 illustrates this in more detail. 

Figure 2-4 The corticostriato-thalamocortical loops (VTA = ventral tegmental area; SNc = sub-
stantia nigra pars compacta; SNr = substantia nigra pars reticularis; GPi = Globus pallidus 
internal segment; GPe = Globus pallidus external segment; taken from Frank, 2005)

As mentioned above, cells in the striatum can be divided into two subclasses 
(based on biochemistry and projections). The “Go” cells project through the GPi
disinhibiting the thalamus. They facilitate execution of an action represented in 
the cortex. The “No-Go” cells on the other hand are integrated in the indirect 
pathway therefore having an opposing effect: suppression of a response (Frank, 
2005). In case of an increase in DA, e.g. following reward, due to the asymmetry 
in receptor density (D1 vs. D2 receptors in the direct and indirect pathway, resp.)
the direct pathway is getting active whereas the indirect pathway is suppressed.
DA depletion, for example following a response error, in turn has the opposite 
effect, triggering the indirect pathway to be more influential. 

A basic principle in learning theory holds that more active cells undergo long-
term potentiation (LTP) whereas less active ones show long-term depression 
(LTD). Due to the phasic modulation of DA in response to an action outcome one 
would expect in case of a positive action outcome more DA driven “Go” learning.
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This should in turn lead to a higher probability of a re-execution of this rewarded 
action (LTP on “Go” cells, LTD on “No-Go” cells) because cells are much more 
active following a “Go” signal. If the outcome of an action is worse than expected 
“No-Go” learning should be increased to prevent the erroneous action from being 
re-executed (LTP on “No-Go” cells, LTD on “Go” cells; Calabresi et al., 1997).
A fundamental property of DA in the human cortex is that it can exert its influ-
ence in two different ways: through tonic and phasic signaling (Grace, 1991). All 
the theories mentioned above heavily rely on phasic changes in dopaminergic
activity. The following section will describe these implications in some more 
detail. 

2.6 Dopamine and Reward

It is not (non-)reward per se that is coded by the activity of midbrain dopaminer-
gic neurons, it is the so-called “prediction error” or “error in reward prediction”.
This means that the expectation of receiving a reward is violated by the actually 
experienced action outcome. By definition this prediction error can have two 
signs: On the one hand, an agent can get more than expected (positive error in 
reward prediction), on the other hand, the outcome of an action can be worse than 
expected (negative error in reward prediction). The DA response can therefore be 
formalized in the following equation (Schultz, 2007): 

DA response = prediction error = reward occurred – reward predicted

The dopaminergic response resembles the principle learning term of the Res-
corla-Wagner Model (Rescorla & Wagner, 1972) and other models using tempo-
ral difference learning (Sutton & Barto, 1981). Learning only takes place if the 
organism encounters a difference between an expected and an actual action out-
come. In order to contribute to learning a reinforcer must be unpredicted by the 
organism. Reinforcers that turn out to be better than expected trigger learning, 
reinforcers that are fully predicted do not contribute to learning, and reinforcers 
that turn out to be worse than expected lead to extinction of previously learned 
behavior. In terms of firing rates of dopaminergic neurons in the ventral tegmen-
tal area (VTA), this can be visualized as follows:

In the upper panel of figure 2-5 the reaction of dopaminergic cells confronted 
with an unexpected reward (R) is depicted. A phasic increase in firing rate can be 
observed. After several trials of conditioning a conditioned stimulus (CS) that is 
reliably followed by reward can elicit a “reward-response”. When the real reward 
is presented no further change in the firing rate can be observed (middle panel). 
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Finally (bottom panel), when a CS predicts a reward, but no reward occurs, a 
phasic decrease in the activity of the dopaminergic neurons can be observed 
(Schultz et al., 1997). There is evidence that these outcome-dependent changes in 
extracellular DA level are critical for learning. In animals, D1 receptor stimula-
tion leads to LTP, on the other hand, D2 receptor stimulation restricts LTP (Nishi 
et al., 1997). 

Figure 2-5 Phasic changes in dopaminergic firing ( taken from Schultz et al., 1997)

Associative learning may be enhanced by the presence of DA. Thus, DA may 
act as a teaching signal (Schultz, 2002). Associative learning could be realized by 
converging input of cortical and DA afferents on a medium spiny neuron in the 
striatum (see figure 2-6). The cortical afferent delivers specific aspects of the 
reward-related event (for example sensory modality) using glutamatergic signal-
ing. The occurrence of a positive or negative error in reward prediction leads to a 
global, spatially unspecific change in DA concentration. Only synapses that are 
activated at the same postsynaptic spine will be influenced by this dopaminergic 
teaching signal.
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Figure 2-6 Medium spiny neuron of the striatum: inputs from cortex and dopaminergic cells 
(taken from Schultz, 2002)

2.7 Dopamine and Working Memory

The PFC also receives strong dopaminergic input which influences information 
processing in this area. An interesting example is the dose-dependent effect of 
DA on working memory function. Following the work of Patricia Goldman-Rakic 
and colleagues (e.g. Goldman-Rakic, 1995) only an optimal level of DA guaran-
tees a proper working memory function. Either too much or too little of DA is 
detrimental for working memory performance (e.g. Vijayraghavan et al., 2007).
This dose-dependent effect of DA can be illustrated as an inverted U curve (see 
figure 2-7), showing optimal performance only on medium levels of DA.
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Figure 2-7 Dose-dependent effect of a selective D1 agonist on activity of a prefrontal neuron 
(taken from Goldman-Rakic et al., 2000)

Taken together these notions imply that DA could be the chain binding to-
gether performance monitoring and memory formation to enable long-term adap-
tations of performance. The following section will cover this topic in more detail. 

2.8 Interactions of Performance Monitoring and Mem-

ory Systems

Recent theories and empirical findings highlight the role of pMFC in learning 
based on the results of performance monitoring. The reinforcement learning the-
ory of performance monitoring suggests a close interaction of the midbrain DA
system, the striatum, and the pMFC (Holroyd & Coles, 2002). Phasic DA signals 
indicate that the action outcome is worse or better than expected. These signals
are conveyed to the pMFC, where they are used to improve task performance in 
accordance with the principles of reinforcement learning. Electrophysiological 
findings on the response and feedback error-related negativity (Holroyd & Coles, 
2002; Nieuwenhuis et al., 2002) and fMRI data (Mars et al., 2005) on the dynam-
ics of error-related activity support the view that the pMFC is important for opti-
mizing behavior by rule learning based on previous experience. Lesion data in 
monkeys provide further support that the pMFC is critical for learning of action-
outcome history (Kennerley et al., 2006).
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The hippocampus has been shown to be involved in associative learning, par-
ticularly in early acquisition (Toni et al., 2001). In the task underlying the empiri-
cal part of this work (see section 3.4), participants had to learn the association of 
different symbols with reward probabilities by “trial and error”. To adjust rule 
representations, i.e. associations between symbols and rewards, on unexpected 
outcomes (Ridderinkhof et al., 2004) pMFC needs to interact with memory-
related structures such as the hippocampus. To enable information exchange be-
tween these two brain systems, fiber connections lead from the dorsal cingulate 
cortex in the pMFC to the hippocampus via the cingulate bundle (Morris et al., 
1999; van Hoesen et al., 1993). 

A recent study by Hester and colleagues (2007) provides evidence pointing to 
a close interaction between performance monitoring and learning-related areas. 
Using an associative learning task they showed that activity within the pMFC was 
significantly greater for errors that were corrected in the subsequent trial as com-
pared to repeated errors. The error-related pMFC activity during the recall phase 
of the experiment predicted future responses (correct vs. incorrect). Interestingly,
also activity in the hippocampus predicted future performance and was correlated 
with error-driven pMFC activity. 

2.8.1 Action-Outcome vs. Habit Learning

Two learning mechanisms may work in parallel during acquisition of a new task.
A fast subsystem allowing work with very recent information (working memory 
or goal-directed learning) and a learning system with a broader temporal perspec-
tive that is capable of integrating rewards over time thereby building up a reward 
history (stimulus-response or habit learning). The first process is often referred to 
as action-outcome learning. Actions in this framework are goal-directed, that is,
they are performed with the aim of obtaining a goal. Within the second learning 
process, instrumental behavior is acquired through the coupling of responses and 
stimuli. Formation of stimulus-response associations is reflected in this process. 
Reward primarily serves the function of strengthening the stimulus-response as-
sociation. The reward itself is not encoded as a goal (Everitt & Robbins, 2005). 
This latter system would be able to signal which action led to positive feedback 
more often in a given period of time. For the neural implementation of this
mechanism the BG, especially the striatum, seem to be a promising candidate 
region because of massive dopaminergic input from the substantia nigra and the 
ventral tegmental area (Ashby & Spiering, 2004; Graybiel, 1998; Packard & 
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Knowlton, 2002). The faster memory system might be represented in the PFC
(see also section 4.6). 

Evidence from animal research suggests that there are two distinct processes 
that contribute to instrumental conditioning, i.e. learning to perform a particular 
action in response to a stimulus in order to obtain reward (Valentin et al., 2007). 
It is assumed that there is a goal-directed component in learning which involves 
establishing an association between a response and the respective incentive value 
of the response. A second system is habit learning which is involved in stimulus-
response learning. At least in animals, researchers suggest that there are distinct 
neurobiological systems subserving these two processes. The prefrontal cortex 
and the dorsomedial striatum are proposed to be involved in goal-directed learn-
ing, whereas the dorsolateral striatum is involved in habit learning. In humans the 
neostriatum (caudate and putamen) is assumed to play a central role in habit 
learning (Knowlton et al., 1996). 

Concerning the interplay of the two systems in instrumental responding it is 
assumed that both forms of learning are active in parallel (Killcross & Coutureau, 
2003). Alternatively, it is possible that one system dominates behavioral control 
at a particular point in time. Habit learning is thought to develop much slower 
and more gradually. It is thought to start dominating responses when action guid-
ance via goal directed learning declines (Killcross & Coutureau, 2003). 

Related to this, a model built on monkey data by Fusi et al. (2007) suggests 
that there are two learning components involved in a conditional sensorimotor 
learning task: fast and slow components. The fast components might be responsi-
ble for choosing the response operated in PFC while the slow components are 
more responsible for controlling these choices, operated by circuits in the BG. If, 
for example, the task is to learn that a balloon (see fig. 2-8) has to be responded 
to by a left saccadic eye movement (see Fusi et al., 2007), the fast component 
captures the last instance of the respective stimulus and the adequate answer (due 
to rapid decay in memory). The slow component captures more than the last in-
stance of a stimulus-response presentation. It is therefore able to span over more 
than one experimental block. 

The example given in figure 2-8 shows that the slow component conveys in-
formation about a particular stimulus being associated with a right saccadic 
movement in one block of the experiment, whereas in the other block a left sac-
cadic movement was the required with the same stimulus. Thus the slow compo-
nent represents the reward history that is the overall probability that a certain 
response is rewarded given a certain situation.
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Figure 2-8 Fast and slow components in learning (taken from Fusi et al., 2007)

Consistent with this, other authors assume that the BG are specialized in 
slowly integrating positive and negative action outcomes over many trials. This 
finally results in establishing a motor habit (Frank & Claus, 2006; Jog et al., 
1999; Knowlton et al., 1996). PFC in contrast is assumed to actively maintain 
information in working memory via persistent neural firing (Goldman-Rakic, 
1995). This information can have a biasing effect on guiding behavior in a top-
down manner (Miller & Cohen, 2001). This very recent information from work-
ing memory can complement as well as compete with more habitual representa-
tions, at least during early stages of a task where no habit has evolved yet.

2.8.2 Dopamine in the PFC: State 1 vs. State 2

An agent encountering a new situation may be faced with multiple elements all 
potentially relevant for actions within this situation. In order to find the best 
suited action, the agent needs to keep track of all different elements in the situa-
tion. This requires holding multiple items in working memory. According to a 
model of Seamans and colleagues (2001; see fig. 2-9) this is achieved by the so-
called state 1 of dopaminergic effect on frontal information processing (D2 domi-
nated). After a certain time of exposure it might be adaptive to develop one domi-
nant representation that is used to guide performance. This is called state 2 and is 
mainly dominated by D1 receptors.
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• State 1: D2 modulation predominates which leads to a net reduction in in-
hibition. This reduction in inhibition causes a loss of robustness of the 
system. This may be caused by D2 receptor activation reducing GABAA

and NMDA currents (Trantham-Davidson et al., 2004; Seamans & Yang, 
2004). Thus, multiple inputs have access to working memory buffer. This 
allows building up multiple representations. Hence, the working memory 
network shows less stimulus specific tuning because many items are rep-
resented simultaneously within the system. None of these items is repre-
sented strongly enough to become a dominant representation.

• State 2: D1 modulation predominates, leading to a net increase in inhibi-
tion. Inputs therefore have difficulties getting into PFC networks. If one 
representation gets into working memory buffer, it can produce very long 
lasting and stable network activations. Via activation of D1 receptors, DA 
enhances response-related firing over background activity. Thus, compli-
mentary influences on task-related neural activity are exerted. One way by 
which DA may cause such a differential influence is to increase the excit-
ability of local interneurons and GABAergic conductance. The tuning of 
pyramidal cells is thereby sharpened and activity is focused on task-
relevant items (Seamans et al., 2001). Especially GABAergic activity is 
thought to sharpen the memory field of pyramidal neurons thereby tuning 
PFC mechanisms to the task at hand. 
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Figure 2-9 Two-state model of DA action in PFC (taken from Seamans & Yang, 2004)

DA at low concentrations seems to act via D1 receptors, whereas at high con-
centrations DA is acting via D2 receptors (Seamans et al., 2001). High micromo-
lar DA levels are needed to stimulate D2 receptors in PFC. D1 receptors are 
mainly located extrasynaptically. Thus, high intrasynaptic DA concentrations 
would first stimulate synaptically located D2 receptors. Before DA diffuses into 
the extrasynaptic space this D2 activation causes a transient state 1 dynamic. Sub-
sequent activation of D1 receptors leads to a re-establishment of state 2 dynam-
ics. The function of the transient state 1 dynamic could be to reset cortical net-
works allowing new information to be processed in working memory. Thus, new 
goal state representations may be established. These representations would then 
be maintained by a subsequent D1-mediated state 2 dynamic (Seamans & Yang, 
2004; Seamans et al., 2001).

Dopamine, acting on structures in the pMFC, the PFC and potentially the hip-
pocampus, appears to play a major role in outcome-dependent learning and opti-
mization of behavior. Influences on dopaminergic signaling are manifold: Exoge-
nous influences such as drugs of abuse and endogenous influences like 
Parkinson’s disease can be differentiated. They influence the level of DA avail-
able for tonic or phasic signaling. In recent years a further endogenous influence
came into focus of DA research: Genetics, especially genetic polymorphisms 
affecting different parts of the dopaminergic system. One of these polymor-
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phisms, the DRD2 TAQ IA was taken into account as a modulator of dopaminer-
gic neurotransmission in the empirical part of this work. 

2.9 The DRD2 TAQ IA Polymorphism as a Mediator of 

Dopaminergic Signaling

The DRD2 TAQ IA polymorphism is a restriction fragment polymorphism on 
chromosome 11 at q22-q23 which is caused by a single nucleotide mutation (sin-
gle nucleotide polymorphism; SNP). A SNP is a variation in the DNA sequence 
occurring when a single nucleotide in the genome differs between members of a 
species or between paired chromosomes in an individual. To be called a SNP, a 
variation must occur in at least 1% of the population. In case of the DRD2 TAQ 
IA the prevalence of the mutated A1 allele is 28% and that of the homozygous 
A1A1 genotype is roughly 3% in the population. Because of the small prevalence 
of the A1A1 genotype, A1 allele carriers are often contrasted with non A1 allele 
carriers. Therefore, the homozygous A1A1 allele carriers are collapsed with the 
heterozygous A1A2 allele carriers forming the A1+ group. The homozygous 
A2A2 allele carriers on the other hand are commonly referred to as A1- group.
Individuals carrying the A1 allele have an up to 30% reduction in DA D2 recep-
tor density compared to individuals that are homozygous for the A2 allele 
(Thompson et al., 1997; Pohjalainen et al., 1998; Jönsson et al., 1999; Ritchie & 
Noble, 2003).

Although the polymorphism is located in the 3´-untranslated region of the 
DRD2 gene, it has functional consequences, possibly due to linkage disequilib-
rium with another functional relevant D2 variant. A recent study by Zhang and 
colleagues (2007) showed functional relevance for two frequent intronic SNPs 
(rs2283265 & rs1076560) which decrease expression of the DRD2 short splice 
variant (which is expressed mainly presynaptically) as compared to the DRD2 
long splice variant (which is expressed mainly postsynaptically). These two SNPs 
are in strong linkage disequilibrium with each other. The DRD2 TAQ IA poly-
morphism we investigated in our sample is also in linkage disequilibrium with 
these two SNPs (SNPs 17/19: D´ = .855; Zhang et al., 2007). This linkage might 
provide a mechanistic basis for functional/clinical associations observed with the 
DRD2 TAQ IA polymorphism. 
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2.10 Consequences of an Altered Dopamine D2 Receptor 

Density

Given the important role of DA in performance monitoring, it seems very likely 
that genetic polymorphisms acting on the D2 receptor density should influence 
performance monitoring. Two mechanisms are possible: On the one hand a reduc-
tion in receptors can lead to a disruption of dopaminergic transmission, especially
of the part of transmission that is relying on the D2 receptors. On the other hand,
D2 receptors are the main DA autoreceptors. This could mean that a reduction in
these autoreceptors automatically leads to a tonically higher DA level. This toni-
cally higher level in DA should interact with phasic dopaminergic signalling. For 
example, a dip in dopaminergic function after a negative action outcome should 
be much less pronounced when the dopaminergic system is tonically very high on 
DA. These relationships are schematically drawn in figure 2-10, pointing espe-
cially to the influence of the A1 allele. 

Positive action outcome: Increase in DA, “Go” learning is stimulated. DA con-
centration regulated by presynaptic D2 Autoreceptors
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Negative action outcome: Dip in DA, “No-Go” learning is stimulated because D2 
receptors can not cause an inhibitory influence any more

A1+ subjects: Potentially missing D2 autoreceptors lead to high tonic DA, dip 
due to negative action outcome has less consequences resulting in “Go” learning 
of the not rewarded action

Figure 2-10 Schematic of modulatory dopaminergic influences on “Go” and “No-Go” learning
with genetic influences on D2 receptors. 

Figure 2-10 illustrates the principles of DA action in “Go” and “No-Go” learn-
ing (see also section 2.5.2). If DA level raises following a reward, the “Go” 
pathway gets activated. The “No-Go” pathway is being inhibited by activation of 
inhibitory D2 receptors. Thus, learning following the principles of reinforcement 
learning can take place. A dip in dopaminergic activity has the opposite effect.
Excitatory D1 receptors get not activated and no “Go” learning is triggered. D2 

DA

DA

DA

DA

D2 Receptor 
Family 

(inhibitory)

D1 Receptor 
Family 

(excitatory)

D2 Receptor 
Family 

(inhibitory)

D1 Receptor 
Family 

(excitatory)

Negative 
Outcome

Lower Probability of re-
execution of the not 

rewarded action

Lower Probability of re-
execution of the not 

rewarded action

Dopaminergic Neuron
Auto-

receptor 
(D2)

DA

Dopaminergic Neuron
Auto-

receptor 
(D2)

DA

Go-Learning

No Excitation

Go-LearningGo-Learning

No Excitation

NoGo-Learning

No Inhibition

NoGo-Learning

No Inhibition

Negative 
Outcome, but 
DA-dip has 

no 
consequences 

A1+

DA

DA
DA

DA
DA

DA
DA

DA

DA
DA DA

DA

DA

DA
DA

DA
DA

DA
DA

DA

DA
DA DA

DA

Dopaminergic NeuronDopaminergic Neuron

D2 Receptor 
Family 

(inhibitory)

D1 Receptor 
Family 

(excitatory)

D2 Receptor 
Family 

(inhibitory)

D1 Receptor 
Family 

(excitatory)

Higher Probability of re-
execution of the not

rewarded action

Higher Probability of re-
execution of the not

rewarded action

Impaired learning from 
negative feedback

Impaired learning from 
negative feedback

Go-Learning

Excitation

Go-LearningGo-Learning

Excitation

NoGo-Learning

Inhibition

NoGo-Learning

Inhibition



Theoretical Background

29

receptors are also not activated, so no inhibition is exerted on the “No-Go” path-
way therefore “No-Go” learning can take place. This in turn leads to learning to 
avoid not rewarded actions. Reduced D2 receptor density could mean that the DA
level is tonically elevated due to missing D2 autoreceptors. Therefore, a dip in 
DA can not exert its full influence. As a result “Go” learning for non-rewarded
actions can take place.

2.11 Outline of the Present Studies

Dopaminergic neurons in the midbrain are assumed to signal whether or not an 
action was successful in terms of receiving reward. Thus, alterations in dopa-
minergic transmission caused by genetic influences should interfere with per-
formance monitoring and subsequent performance adaptation. If the reinforce-
ment learning model (Holroyd & Coles, 2002) holds true, dips in dopaminergic 
activity should lead to activity in the performance monitoring area. This error-
related activity should in turn lead to performance adaptations like learning. This
implies that also learning-related brain areas should be activated to enable long 
term adaptation of performance. 

Functional integrity of DA system is not always given. Alterations in dopa-
minergic signaling can occur due to illness (e.g. Parkinson’s disease or schizo-
phrenia), drug addiction (e.g. alcohol or cocaine) or pharmacological intervention 
(e.g. DA agonists/antagonists). As described in the previous section, genetic in-
fluences can also interfere with dopaminergic transmission. In our empirical stud-
ies described in chapter 4 we investigated how a single nucleotide polymorphism 
(SNP) interacts with processing of negative feedback and subsequent learning 
from this negative feedback. The SNP we investigated (DRD2 TAQ IA) is known 
to modulate the striatal DA D2 receptor density thereby dividing subjects in two 
groups: one group with an unaffected receptor density, the other one with an up to 
30% reduction of DA D2 receptors. First of all, this reduction in DA receptors 
could interfere with error processing in the pMFC as error processing is assumed 
to be highly dependent on dopaminergic signaling (Holroyd & Coles, 2002). Fur-
thermore the reduction of D2 receptors could interfere with “No-Go”-Learning
either by reducing the amount of (postsynaptic) D2 receptors, or by reducing the 
density of presynaptic D2 autoreceptors leading to a higher tonic DA level. This 
elevated tonic DA should interfere with phasic dopaminergic signaling triggered 
by the midbrain DA neurons. 



Theoretical Background

30

If activity in learning-related areas is indeed coupled to performance monitor-
ing – which seems plausible given the importance of long term behavioral adapta-
tion to optimize future action outcomes – changing interactions between monitor-
ing and learning related brain areas due to variations in D2 receptor density could 
be expected. Finally as DA also affects prefrontal functioning, genetically driven
working memory differences could be expected, too.

In chapter 4 we will report an fMRI study (Klein et al., 2007b) and an EEG
study employing a probabilistic learning task. By using subjects invited with re-
spect to their genetic configuration we tried to capture genetically driven differ-
ences in performance and/or brain activity associated with the respective geno-
type. Our results show a central role of the neurotransmitter DA in human 
performance monitoring and outcome-dependent learning.
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3 Methods

In the following the reader should be familiarized with methods employed in our
set of empirical studies. We will briefly introduce functional magnetic resonance 
imaging (fMRI), electroencephalography (EEG), genotyping, the probabilistic 
learning task we used and computational modeling. 

3.1 Functional Magnetic Resonance Imaging

This section should provide a short introduction into functional magnetic reso-
nance imaging (fMRI). After giving the physical and physiological background,
we will briefly explain the statistical analysis of fMRI data. For a more detailed 
introduction into fMRI see Buxton (2002) or Jezzard et al. (2002).

3.1.1 Basic principles of fMRI: Physics 

Nuclear Magnetic Resonance

Atoms with an odd number of protons built the basis for magnetic resonance im-
aging. Protons in an atom nucleus spin about themselves (therefore they are often 
referred to as spins). This rotation or spin causes an angular momentum. If now 
the number of protons is uneven, this property results in a magnetic moment
(which can be described as a vector). In biological tissue like the human body, 
hydrogen nuclei are a perfect candidate for magnetic resonance imaging (MRI)
mainly for three reasons:

1. They only have a single proton.

2. High concentration in the human body

3. High magnetic susceptibility (resulting in a large nuclear magnetic 
resonance (NMR) signal)
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If no external magnetic field is applied to the tissue, magnetic vectors are ori-
ented randomly. As soon as a hydrogen nucleus is moved into a strong external 
magnetic field (B0), its magnetic moment aligns with the direction of this external 
field. As slightly more neurons will align (parallel direction; low-energy-state of 
the neurons) rather than counter-align (anti-parallel direction; high-energy-state 
of the neurons) with this external field B0, the net magnetic vector will point to 
the direction of the magnetic field. It is only this small surplus of spins oriented 
with the external magnetic field that can be used for imaging. The orientation in 
the direction of the magnetic field is not the only consequence of placing the 
spins in an external magnetic field. The field forces the magnetic moment to 
preccess around the direction of the field. The precession frequency is known as 
“Lamor” frequency and is proportional to the strength of the magnetic field. 

Excitation and Relaxation

As only magnetization perpendicular to the magnetic field can be used for mag-
netic resonance imaging, the nuclei have to be transferred from an aligned to a 
counter-aligned orientation. This is done using a radio frequency (RF) pulse. The 
pulse causes the net magnetic vector to be tilted towards the plane perpendicular 
to the external magnetic field. This is achieved by energy absorption of the pro-
tons from the radio frequency enabling the protons to switch to the high-energy-
state of anti-parallel orientation. Therefore the process is called excitation. There 
is a second effect of this RF pulse: The precession of the spins is synchronized,
i.e. they preccess in phase. 

If the radio frequency is switched off two independent processes start:

1. Protons start to turn back into their original orientation (T1-relaxation).

2. Due to random interactions of the spins with each other the phase coher-
ence between the spins decays over time (T2-relaxation).

Not only random interactions between nuclei (spin-spin interactions) but also 
inhomogeneities in the magnetic field cause nuclei to preccess with different fre-
quencies. The effect of rephasing caused by local field inhomogeneities plus the 
decay due to spin-spin interactions is referred to as time constant T2*. As the role 
of the local field inhomogeneities is especially important for functional magnetic 
resonance imaging this phenomenon will be explained in some more detail in the 
section about the physiological basis of fMRI.
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Spatial Encoding

The signal per se does not say anything about the place of its origin – therefore 
additional magnetic field gradients have to be superimposed over the original 
external magnetic field. A slice within the volume is selected by applying an ex-
citation pulse (with the proper frequency). Therefore only spins from this slice 
contribute to the signal that is measured. For the remaining dimensions two more 
gradients are employed. One of these gradients is used for changing the preces-
sion frequency (frequency encoding) of the spins the other one is used for phase 
encoding. The signal finally measured is not made out of a single frequency but a 
frequency spectrum in which all information necessary for spatial encoding in all 
three dimensions is included. 

3.1.2 Basic Principles of fMRI: Physiology

Because T1 and T2 are depending on the tissue, it is possible to distinguish be-
tween different tissue types by looking at differences between T1 and T2 gener-
ated signals. The signal that is most relevant for fMRI is T2*, because this con-
stant is, as mentioned before, also depending on local field inhomogeneities and 
not just on spin-spin interactions. Such inhomogeneities can be caused by the 
level of blood oxygenation. This is the link between magnetic resonance imaging 
and “function” of the brain (Ogawa et al., 1990, 1993). Oxygen in the blood is 
coupled to hemoglobin molecules. Oxygenation causes the hemoglobin to be-
come diamagnetic, whereas hemoglobin without oxygen becomes paramagnetic. 
This paramagnetic effect causes small local field inhomogeneities in the magnetic 
field. This in turn leads to faster dephasing of the spins after being brought in 
phase by a RF pulse. The opposite is true for oxygenated hemoglobin: If the 
blood primarily contains oxygenated hemoglobin, the phase coherence is evident 
for much longer time. Applied to the T2* time constant, this means that T2* is 
shorter if not much oxygen is around, whereas it is longer in case of high oxy-
genation. Functional MRI makes use of this phenomenon by measuring this T2*
signal, commonly referred to as blood-oxygen-level-dependent (BOLD) signal,
which represents changes in blood oxygenation over time.

Nevertheless the physiological basis of the fMRI signal is not fully under-
stood. The hemodynamic response to neuronal activity is a complex interplay 
between cerebral blood flow, cerebral blood volume and local oxygen uptake near 
active neurons. Neuronal activity is followed by an increase in local oxygen up-
take, a large increase in cerebral blood flow and a small increase in cerebral 
blood volume. This means that compared to the oxygen uptake at the active neu-
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ronal site the increase in oxygenated blood is disproportional high, leading to 
corresponding changes in T2*-sensitive signals (the signal decay is much slower).
This overflow of oxygenated blood at active neuronal site leads to an increase of 
T2*-relaxation time which is in turn interpreted as being an index of (neuronal) 
activation at this particular brain area.

3.1.3 Processing and Statistical Analysis of fMRI Data

Preprocessing

Aim of the processing steps in the analysis of fMRI data is to detect with a high 
spatial resolution changes in the BOLD response which are related to the experi-
mental design. Before entering the statistical analysis, a number of pre-processing 
steps have to be performed to clean the data from artifacts and make different 
datasets from different subjects comparable across time and space. First step of 
pre-processing is the slicetime correction. This is necessary because not all slices 
in the brain are acquired simultaneously but with a certain temporal displacement. 
This is usually done using a linear or sinc-interpolation (Lohmann et al., 2001). A 
further potential source of noise in fMRI data is motion of the subjects during 
image acquisition. Motion can be corrected using a matching metric based on 
linear correlation for geometrical alignment. This means that the 2D images are 
rotated and shifted until they match a reference scan. A final step is removing 
slow signal drifts over the course of the experiment for example by applying a 
high-pass filter. 

To determine the anatomical localization of brain activity and to perform sta-
tistical analysis over groups of subjects the functional datasets have to be aligned 
with anatomical data and have to be transferred into a standardized coordinate 
system. This registration is performed by shifting and rotating the 2D functional 
slices so that they fit with a high-resolution 3D anatomical dataset, which is usu-
ally acquired before the functional scan. This dataset is commonly provided 
within a standardized coordinate system, as for example the Talairach system 
(Talairach & Tournoux, 1988). To allow comparisons between subjects the regis-
tered datasets have to be normalized, that is, they are scaled to match in size. This 
scaling can be done either in linear or in non-linear fashion.
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Statistical Analysis

Once the data is free of artifacts and aligned in the same reference space, statisti-
cal analysis can start. Aim of performing fMRI studies is to detect brain areas that 
significantly co-vary in activity with a given experimental design. This can be 
achieved by applying a General Linear Model (GLM; Friston, 1994; Worsley & 
Friston, 1995) to the data. The key assumption in this model is that the observed 
data can be explained by a linear combination of explanatory variables and an 
error term. Aim of applying GLM to the data is to obtain statistical parametric 
maps (SPMs) or contrast images. SPMs give the statistical significance of each 
voxel being activated by a certain experimental condition. A contrast image first 
shows the differential activity between two experimental conditions, expressed as 
the difference between two or more model parameters, the so-called beta-values. 
These beta-values represent an estimate of signal change in the BOLD time 
course in relation to the experimental stimulation. SPMs are then obtained by 
means of a Student’s t-test. The resulting t-values are transformed into z-scores 
which finally results in an individual SPM{z}. The z-scores indicate whether the 
conditions of interest differ on a voxel-wise basis. This step is referred to as first-
level analysis. In the analysis of an entire group of subjects, the t-test is applied to 
model parameters of all subjects (second-level analysis). In yet further analysis 
steps one can test for example for group differences (higher-level analysis) by 
means of a two-sample t-test. Alternatively, on the second or higher levels of 
analysis, beta-values can be subjected to Bayesian statistics (e.g. Neumann & 
Lohmann, 2003) to gain probabilistic values for differences between conditions 
or groups. 

Psychophysiological Interaction Analysis (PPI)

As we employed a Psychophysiological Interaction Analysis (PPI) for our fMRI 
data this method should be briefly explained. The idea of PPI is to look for inter-
actions between brain areas which correlate with an external (psychological) 
variable (Friston et al., 1997). For example looking at changing interactions be-
tween brain areas under two experimental conditions: condition 1: attention to the 
stimuli vs. condition 2: no attention to the stimuli. The external psychological 
variable in this case would be “attention on/off”. A possible result could be that 
interactions between brain areas are much stronger if the subject is paying atten-
tion to the stimuli. 

In our study, the external variable was the time the subjects were working on 
the task. We divided the experiment into three parts of equal length thereby cap-
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turing the difference between steep rule acquisition (“learning”, first third) at the 
beginning of the experiment and more stable rule exploitation at the end of the 
task (last third). We were primarily interested in time-dependent changes in the 
interplay between performance monitoring and all other brain areas. Therefore,
we contrasted the functional connectivity between the rostral cingulate zone 
(RCZ) and all other brain areas in the first third of the experiment against the 
functional connectivity in the last third of the experiment.

3.2 Electroencephalography

3.2.1 Measuring Human Electroencephalogram

Attaching a pair of electrodes to the human scalp and connecting them to an am-
plifier reveals a pattern of variations in voltage over time, called electroencepha-
logram (EEG). The amplitude of this signal varies between -
with frequencies of up to 40 Hz or more (Rugg & Coles, 1995). The number of 
electrodes used for recording the EEG varies with the reason for which the EEG
is conducted. In most cases several electrodes are placed over different cortical 
areas. The system for naming and placing the electrodes is usually the interna-
tional standardized 10-20 system (Jasper, 1958). Frontal electrodes are labeled
with an “F”, temporal ones with a “T”, central electrodes with a “C”, parietal 
ones with “P” and occipital ones with an “O”. The letter “z” refers to electrodes 
on the midline, electrodes on the left side are numbered odd, and electrodes on 
the right side have an even number. Electrodes need to be connected to a refer-
ence. This could for example be the so-called linked-mastoid reference (elec-
trodes on the left and right mastoid, respectively) or every electrode is referenced 
against the average electrical activity of all other electrodes (average reference). 

The EEG signal is often contaminated by artifacts, caused for example by
muscle activity or eye blinks. High frequency muscle activity can be filtered out 
by applying a low-pass filter. Artifacts with a very low frequency can be removed 
using a high-pass filter. Eye blinks can be detected by means of an independent-
component analysis (Jung et al., 2000). The respective components are then re-
moved from the signal to obtain an eye-blink free EEG. One of the biggest advan-
tages of EEG over fMRI is the high temporal resolution with which ongoing brain 
activity can be measured. This advantage comes at the cost of a very low spatial 
resolution. It is not always clear where a potential that is measured on the surface 
of the scalp is originally generated. Even source localization techniques address-
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ing this so-called inverse problem do not provide a highly reliable spatial tracking 
of underlying sources.

3.2.2 Event-Related Potentials (ERP)

An event taking place while continuous EEG is recorded might cause changes in 
the ongoing electric activity of the brain. These event-related changes are referred 
to as event-related potentials (ERP). An event can be any experimental manipula-
tion a researcher is interested in (sounds, pictures, reactions of the subjects etc.). 
Thus ERPs reflect brain activity that is time-locked to ongoing processing of the 
particular event. Although the precise localization of the electrical activity is 
largely unknown, the following aspects of ERP generation seem to be clear (Rugg 
& Coles, 1995):

1. Activity measured at the surface reflects activity of a sizeable popula-
tion of neurons.

2. These neurons must be synchronously active and must share a certain 
geometric configuration: Parallel orientation perpendicular to the cor-
tex, so that a dipolar electric field can evolve.

3. ERP waveforms seem to reflect post-synaptic dendritic potentials.

It has to be pointed out that there is a lot of neural activity present that is not 
detected by the EEG. The orientation of neurons in the thalamus for example 
guarantees that recording electrodes are unable to detect their electric activity.

Often the ERP signal is weak compared with the overall electrical activity of 
the brain. Therefore, the ERP needs to be separated from the background “noise”. 
A popular technique for achieving this is averaging. If the ERP is time-locked to 
the event but the background activity is random, one should be able to cancel out 
the random noise by averaging. To obtain a stable and clean ERP several epochs 
within the EEG containing the event of interest are needed. The waveform result-
ing from averaging many epochs is characterized by different negative and posi-
tive voltage deflections. Naming of these deflections is related to their polarity 
relative to baseline or the preceding peak (negative deflection (N) and positive 
deflection (P) in
ms). Figure 3-1 gives an example for obtaining an ERP from several epochs of 
ongoing EEG. The P300 for example is a positive deflection occurring 300 ms 
after onset of the stimulus. 
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Figure 3-1 Obtaining an ERP: Event-related activity after a stimulus S is obtained by averaging 
several epochs containing the event of interest (taken from Hillyard & Kutas, 1983)

3.3 Genotyping

3.3.1 Real Time Polymerase Chain Reaction and Melting Curve 

Analysis

Real Time Polymerase Chain Reaction

Deoxyribonucleic acid (DNA) analysis was performed for our experiments using 
real time polymerase chain reaction (RT-PCR; Reuter et al., 2005). This tech-
nique allows quantification of polymorphic DNA regions and detection of single 
nucleotide polymorphisms (SNP) in one run. Hybridization probes are used to 
perform genotyping by melting curve analysis. This hybridization probes are oli-
gonucleotides labeled by a fluorescent dye. For detecting a SNP two probes are 
necessary: One that covers the DNA strand so that the polymorphic region is cov-
ered (sensor hybridization probe) and a second one (anchor probe) that is located 
in a site of close proximity to the sensor probe. While the sensor probe is labeled 
by fluorescein, the anchor probe is marked with LC Red 640. During the amplifi-
cation process the hybridization probes anneal to the amplified DNA. With an 
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LED the fluorescein of the hybridization probe is exited which in turn emits green 
light. This green light then excites the LC Red 640 dye which starts emitting red 
light. The optical unit of the RT-PCR machine is able to measure the intensity of 
the red light. The more new target DNA sequences are built, the stronger is the 
light signal. This light signal is a direct measure of DNA copies in a PCR run. In 
the now following elongation phase the temperature is raised resulting in a dis-
placement of hybridization probes from the DNA. 

Melting Curve Analysis

In order to detect point mutations on the DNA strand, a melting curve analysis 
can be performed. For this the temperature of the probe is slowly raised from 
40°C to 75°C. The temperature by which the hybridization probes are melted off
the DNA strand is an indicator for the presence or absence of a point mutation. If 
there is a mismatch between the DNA strand and the hybridization probe in terms 
of one nucleotide, then the probe melts off at a lower temperature than in case of 
a perfect fit between DNA and probe. Three characteristic curves can be obtained 
by the melting curve analysis: a curve with a single early peak (homozygous wild 
type), a curve with a single late peak (homozygous mutant) and a curve with two 
peaks (heterozygous genotype).

3.3.2 Detecting the DRD2 TAQ IA Polymorphism

In our study DNA was extracted from buccal cells to avoid selective drop-out 
of subjects with blood and injection phobia. The samples were purified with a 
standard commercial extraction kit. Using the Light Cycler System genotyping 
was performed by real time PCR (RT-PCR) using fluorescence melting curve 
detection analysis (see above). Single nucleotide polymorphisms (SNP) can
hereby be detected without conducting gel electrophoresis and ensuing sequenc-
ing after purification. Furthermore, PCR has a high precision with a reliability of 
1.0. The following primers and hybridization probes were used:

Forward primer: 5'-CGGCTGGCCAAGTTGTCTAA-3';

Reverse primer: 5'- AGCACCTTCCTGAGTGTCATCA -3';

Anchor hybridization probe: 5'-LCRed640-TGAGGATGGC-
TGTGTTGCCCTT-phosphate-3';

Sensor hybridization probe: 5'-CTGCCTCGACCAGCACT-fluorescin-3'
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The PCR comprises 55 cycles of denaturation (95°C, 0s, ramp rate 20°C/s), 
annealing (63°C, 10s, ramp rate 20°C/s) and extension (72°C, 10s, ramp rate 
20°C/s). This procedure was followed by an incubation period of 10 min to acti-
vate the Fast-Start Taq DNA polymerase of the reaction mix (Light Cycler Fast-
Start DNA Master Hybridization Probes). After this amplification time a melting 
curve was generated. The temperature was held constant at 40°C for 2 min and 
then slowly heated up to 95°C (ramp rate 0.2°C/s). The fluorescence signal was
plotted against the temperature to obtain a melting curve with the respective melt-
ing points (Tm). For the DRD2 polymorphism the following melting points can be 
observed: Tm for the A1 allele is 55°C, for the A2 allele Tm is 64.8°C. 

Figure 3-2 Result of the melting curve analysis of the DRD2 TAQ IA polymorphism (taken from 
Reuter et al., 2005)

In figure 3-2, melting temperature is calculated by taking the first negative de-
rivative of the melting curve. The height of the amplitudes is not informative in 
this figure. What is of relevance is the temperature of the peak (Tm). A single 
early peak is indicative of a mutation on both alleles (A1/A1 genotype), whereas 
a single late peak speaks in favor of the homozygote wild type (A2/A2 genotype). 
Two peaks are typical for a heterozygote sample (A1/A2 genotype).
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3.4 Probabilistic Learning Task

We employed a probabilistic learning task known to be sensitive to dopaminergic 
manipulations (Frank et al., 2004).

Figure 3-3  Schematic of the probabilistic learning task and the trial timing (fMRI)

Participants were presented on each trial with a pair of symbols that were re-
warded using a probabilistic schedule (see fig. 3-3). From each pair the more 
often rewarded symbol had to be guessed and indicated by a button press. The 
quality of the choice was immediately signaled by valid feedback after the re-
sponse. After learning, participants were confronted in a behavioral post-test with 
the same symbols, now paired with all symbols but the one from the learning 
phase. In the behavioral post-test data, we determined how often participants 
chose the most often rewarded symbol "A" in all possible recombinations and 
how often they avoided the least often rewarded symbol "B", reflecting rein-
forcement and avoidance learning, respectively.

In more detail the experimental setup looked as follows: Three pairs of sym-
bols were presented: "AB", "CD", and "EF" in random order. In "AB" trials 
choosing symbol "A" led to positive feedback in 80% and negative feedback in 
20% of all trials (vice versa for choosing "B"). Symbol "C" was rewarded in 70% 
of "CD" trials and "E" was rewarded in 60% of "EF" trials. Over the course of the 
acquisition phase, subjects learned to choose the "good" symbols "A", "C", and 
"E" more often than their respective counterparts. 
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Every pair of symbols was presented 140 times during the course of the ex-
periment. In the fMRI session participants worked on 462 trials, 42 of which were 
null events used to improve the modeling of the BOLD response. Trial timing 
was as follows: The onset of the trial was jittered with 400, 800, 1200, 1600 and 
2000 ms. During this interval, participants saw a blank screen. They were simul-
taneously presented with two stimuli for up to 1500 ms. In case of a response, a 
smiling or grimly looking face was presented for 700 ms, corresponding to posi-
tive and negative feedback, respectively. If no response occurred, participants 
saw a face with a question mark instead of the mouth. After the feedback, the 
screen went black again until the next trial started. Trial duration was 5 seconds. 
Trials appeared in random order, and the presentation of the symbols was bal-
anced between the right and left side of the screen. The winning symbol was ran-
domly determined within the before mentioned probabilistic schedule. 

After this learning session, participants were confronted in a behavioral post-
test with the same symbols, now paired with all symbols but the one from the 
learning phase ("AC", "AD", "AE", "AF", "BC", "BD", "BE", "BF", "CE", "DF", 
12 times per new pair, i.e. each symbol was presented equally often). Again, sub-
jects had to choose one symbol, now without receiving feedback. The choice be-
havior was analyzed as follows: The portion of "A" choices in pairs containing 
"A" reflects preference (learning from reinforcement); the portion of non-"B" 
choices in pairs containing "B" reflects avoidance (learning from errors). The 
post-test took place outside the scanner. We also added completely new symbols 
to the post-test, so participants were also confronted with "AX", "BY", "CT", 
"DU", "EV", and "FW" (presented 24 times each). In these latter combinations, 
however, subjects employed some kind of recognition heuristic and only chose 
the known symbols. Therefore, these trials were excluded from analysis of pref-
erence resp. avoidance of A and B.

3.5 Computational Modeling

For our experiments, subjects' behavior and responses were modeled in a modi-
fied Rescorla-Wagner model adapted from Rodriguez et al. (2006). Rescorla-
Wagner models capture the core principle that learning of stimulus-reward asso-
ciations is based on the difference between a prediction and an actual outcome of 
an action (O’Reilly et al., 2007). With the extension of the delta learning rule by a 
parameter that forces the model to make the same choice as the subject, we mim-
icked each subject's behavior during learning on a trial-by-trial basis, which is 
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required in order to relate the subject's behavior and model predictions to the 
measured fMRI signal.

Figure 3-4 Schematic of the computational model

The model consisted of six input nodes Ij, j = 1...6 (see figure 3-4), corre-
sponding to the six possible input symbols, with weighted connections to two 
output nodes O1 and O2. Activity of the output nodes was computed on each trial 
as

Oj = Σi Vij Ii,

where Vij is the weight of the connection from input node Ii to output node Oj.
Weights were updated on each trial by

ΔVij = λ Si (Ei – Oi) Ij,

where Ei is the target value of the ith output node according to the probabilistic 
schedule described earlier (section 3.4). Si is the symbol that was actually chosen 
by the subject, which was included to make the model simulate the behavior of 
the individual subject. The learning rate λ was determined for each subject indi-
vidually such that over all valid trials the sum of the squared difference between 
the model's output and the subject's response was minimized:

Σik(Sik – Oik)2 → min,

where i = 1...2, and k is the number of valid trials. 

Such computational models facilitate the extraction of parameters that can not 
directly be measured and their inclusion in the subsequent fMRI data analysis. In 
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our application, the parameter "certainty of the given response" was derived from 
the model for each trial as the absolute value of the difference in the two output 
neurons that represented the presented pair of symbols:

certainty-of-response = | O1 – O2 |.

Before learning, the difference is zero reflecting a complete state of uncer-
tainty. During the learning process, the difference between the output neurons 
generally increases (as a general tendency, not for any particular trial). However, 
this increase differs between different symbol combinations in a probabilistic 
learning task, depending on the difference of reward probability between different 
stimuli (see section 3.4). Thus, the "certainty of the response" captures how well 
the subject is learning over time and in addition the probabilistic schedule of the 
task which, of course, strongly influences the certainty about the expected reward 
in a particular trial.



45

4 Empirical Studies

4.1 fMRI Study

4.1.1 Rationale

“You learn from your mistakes”, people say. In fact, improving our performance 
is based on learning about the relation of positive and negative outcomes and the 
actions carried out under certain conditions. Rewards strengthen associations 
between contextual stimuli and actions thereby reinforcing and maintaining suc-
cessful behavior (Thorndike, 1911); whereas punishments induce avoidance of 
erroneous actions. While we usually learn from both, positive and negative rein-
forcement, it has been shown that the relative amount of learning from success 
and errors may vary across individuals (Frank et al., 2004). As errors usually 
occur at a lower frequency than successful actions, they often carry more infor-
mation about necessary adaptations of behavior, which renders error processing a 
major constituent of learning. An important factor in the use of negative and posi-
tive feedback for learning seems to be the neurotransmitter DA (Schultz, 1998, 
2002; Frank, 2005). The BG, in particular the nucleus accumbens (NAC), have 
been shown to play a major role in reward-based learning (Cools et al., 2002; 
Pagnoni et al., 2002). When action outcome – usually a negative feedback or er-
ror – calls for adaptations, a performance monitoring system in the posterior me-
dial frontal cortex (pMFC) signals the need for adjustments (Ridderinkhof et al., 
2004; Ullsperger & von Cramon, 2003). The rostral cingulate zone (RCZ) located 
in the pMFC has been suggested to be involved in learning from errors (Mars et 
al., 2005; Holroyd & Coles, 2002). A neurobiological theory holds that this re-
gion receives dopaminergic teaching signals from the midbrain coding whether an 
event is better or worse than predicted (Holroyd & Coles, 2002). These signals 
are presumably used for immediate behavioral adjustments as well as learning. 
The dynamic interaction of the performance monitoring system and brain struc-
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tures underlying long-term memory formation, such as the hippocampus, during 
reinforcement learning is still poorly understood. 

Here, we show that a human genetic polymorphism (DRD2 TAQ IA) known to 
modulate DA D2 receptor density influences rule learning, particularly the use of 
negative feedback for avoidance learning. Using fMRI we demonstrate that RCZ, 
NAC, and hippocampal activity as well as their interactions are modulated by the 
genetically determined dopaminergic transmission. These differential activations 
and interactions in turn lead to increased or decreased avoidance of actions asso-
ciated with negative outcomes. 

4.1.2 Materials and Methods

We included N = 26 subjects (mean age ± SEM: A1- genotype: 26.9 years ± 1.1, 
A1+ genotype: 25.3 years ± .68)) in our sample. Only male subjects were in-
cluded to avoid interactions between the DA level and the menstrual cycle. All 
subjects were healthy, from Caucasian origin and native speakers of German. 
Prior to the fMRI measurement subjects gave written informed consent to be in-
formed about incidental pathological findings by an in-house neurologist. All 
participants gave written informed consent both before genotyping and before 
fMRI measurement. Subjects were invited with respect to their DRD2 TAQ IA 
polymorphism configuration from a larger sample which was in Hardy-Weinberg 
equilibrium. The study was approved by the Research Ethics Committee of the 
University of Leipzig, Germany. We employed the probabilistic learning task as 
described in section 3.4.

4.1.3 FMRI Data Acquisition and Processing

The fMRI data was acquired at 3 T. A standard head coil was used. Twenty-six 
slices were measured (thickness 3.5 mm, 0.7 mm gap) positioned parallel to the 
anterior commissure-posterior commissure (AC-PC) plane. Before recording of 
the functional data, a set of 2 dimensional (2D) images was measured for each 
participant using a modified driven equilibrium Fourier transform (MDEFT) se-
quence. Functional images were acquired using a single-shot gradient echo-planar 
imaging (EPI) sequence (Tr = 2000 ms, Te = 30 ms ; 64x64 pixel-matrix, flip 
angle 90°; field of view = 192 mm). To improve the localization of activation, 
high resolution brain images (3D reference data) were taken for each participant 
in a previous session.
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We processed the fMRI data using the software package LIPSIA (Lohmann et 
al., 2001). Low frequency signals were suppressed using a 1/120 Hz highpass 
filter. For spatial smoothing we applied a Gaussian filter with 5.65 mm full width 
at half maximum (FWHM). To correct for slice-time acquisition differences, a 
spline-interpolation algorithm was used. To remove motion artifacts, we cor-
rected functional data using a matching metric based on linear correlation. For co-
registration of functional and anatomical data, the anatomical slices (MDEFT) 
were aligned geometrically with the functional slices (EPI-T1). From these data, 
rotational and translational parameters were calculated, constituting a transforma-
tion matrix that registered the anatomical slices with the 3D reference data set. 
For standardization, we scaled each transformation matrix to the Talairach stan-
dard brain size (Talairach & Tournoux, 1988) by means of linear scaling. Finally, 
the individual transformation matrices were applied to the functional raw data set 
of each participant.

The statistical analysis was based on a least-squares estimation using the gen-
eral linear model for serially autocorrelated observations (Friston et al., 1995; 
Worsley & Friston, 1995). The design matrix was created with a synthetic hemo-
dynamic response function (Friston et al., 1998) and its first derivative. The 
model equation, including the observation data, the design matrix and the error 
term, were convolved with a Gaussian Kernel of dispersion of 4 s FWHM to ac-
count for the temporal autocorrelation of the model (Worsley & Friston, 1995).
As all functional data sets were aligned to the same reference space, a group 
analysis was performed. 

Group differences were tested using a second-level Bayesian analysis (Neu-
mann & Lohmann, 2003; Friston & Penny, 2003; Friston, 2002; Woolrich et al., 
2004), because this technique has been shown to be highly reliable when applied 
to different groups of subjects (Neumann & Lohmann, 2003). Bayesian analysis 
compared to null hypothesis significance tests can be more tolerant against out-
liers as the influence of individual subjects on group statistics is weighted by the 
within-subject variability. The technique allows to directly assess hypotheses of 
interest. Specifically, the posterior probability of an effect directly reflects the 
probability that the effect of interest is true in the light of the observed data.

Furthermore, we calculated a Psychophysiological Interaction Analysis (PPI, 
see section 3.1.3; Friston et al., 1997; Gitelman et al., 2003) to investigate, 
whether or not correlation between the RCZ and other brain areas were changing 
over time. A seed voxel for the correlation was determined for each subject by 
searching for the individual frontomedian maximum within a search radius of 10 
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mm around x = 4, y = 24, z = 33. The psychological variable was determined by 
the time course of the experiment, such that the first third of the study phase was 
contrasted with the last third.

4.1.4 Behavioral Results

The groups defined by the presence or the absence of the A1 allele (A1- vs. A1+)
did not differ in the average frequency of selecting favorable symbols nor in the 
rate of negative feedback (see table 4-1). However, we found a remarkable group 
difference in avoidance learning (fig. 4-1). 

Figure 4-1 Results from the behavioral post-test

In the post-test, A1 allele carriers (A1+ group) avoided the negative symbol 
“B” significantly less than they chose the positive symbol “A” (p=.03). More-
over, their avoidance of “B” was reduced as compared to the non-A1 allele carri-
ers (A1- group; p=.03), who did not show a significant difference between select-
ing symbol “A” and avoiding symbol "B" (p = .17; group x selection interaction, 
p = .009).
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Table 4-1 Behavioral results from the learning phase (1) and the behavioral post-test (2) sepa-
rately for the members of the two genetic groups

A1+ A1-

(1) Behavioral results from the learning phase (given in mean percent chosen ± SEM)

Choosing symbol "A" 86.2% ± 3.1 84.3% ± 3.6

Choosing symbol "C" 72.8% ± 3.4 71.4% ± 3.8

Choosing symbol "E" 70.8% ± 4.7 75.8% ± 3.9

Percent Negative Feedback 39.2% ± 1.3 40.8% ± 1.4

(2) Behavioral results from the post-test (given in mean percent chosen ± SEM)

Choosing symbol "A" 

(A1+ > A1-; t = -1.5, p = .15)
72.9% ± 4.1 60.5% ± 6.5

Avoiding symbol "B"

(A1+ < A1-; t = 2.4, p = .03)
52.0% ± 6.5 71.6% ± 4.8

4.1.5 FMRI Results

The behavioral results suggest that subjects from the A1+ group learn less to 
avoid actions associated with negative feedback than subjects in the A1- group. 
Consistent with that they also showed reduced negative-feedback-related fMRI 
signal increases in the RCZ (x = 4, y = 24, z = 33, z-score 3.5, 324 mm3) com-
pared to the A1- group (see figure 4-2, a; table 4-2 shows a list of additional feed-
back-related activation maxima). 
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Figure 4-2 Genetic influences on the fMRI results. Only clusters with at least 81 mm³ activated at 
z >= 3.09 are shown. For visualization the maps are thresholded at z = 2.33 (unless stated dif-
ferently). (a) Contrast "negative vs. positive Feedback" for the two genetic groups, projected onto 
a coronal (y = 24), and two sagittal slices (x = 4 and x = 16); negative Feedback > positive 
Feedback = red, positive Feedback > negative Feedback = blue. Percent signal change for posi-
tive (Pos.) and negative (Neg.) feedback (Fb.) taken from RCZ (x = 4, y = 24, z = 33). MFG = 
middle frontal gyrus, RCZ = rostral cingulate zone, NAC = nucleus accumbens. (b) Parametric 
within subject fMRI analysis using the certainty of the given response as a regressor, projected 
onto a coronal (y = -39) and a sagittal (x = 22) slice. HIP = Hippocampus. (c) Psychophysi-
ological Interaction Analysis between RCZ (x = 4, y = 24, z = 33) and other brain areas, pro-
jected onto a coronal (y = -42) and two sagittal (x = -26 and x = 16) slices. Red: stronger inter-
action in the first third than in the last third of the experiment, blue: stronger interaction in the 
last than in the first third.

In the Bayesian analysis we observed a posterior probability of 95.8% for a 
group difference in RCZ activity induced by negative feedback, again implying 
that negative feedback processing was reduced in the A1+ group. This notion is 
further supported by the finding that only for members of the A1- group, positive 
correlations of negative-feedback-related RCZ activity and preference of symbol 
"A" (r = .53, p = .05) and avoidance of symbol "B" (r = .55, p = .04) was found. 
The correlation between the hemodynamic activity and the performance in the 
behavioral post-test was calculated for the RCZ coordinate with the highest prob-
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ability of a difference between the two groups (x = 4, y = 29, z = 33, 99.24% 
probability of a difference).

Table 4-2 Additional brain regions, Brodmann areas, and Talairach coordinates (x, y, z) of vox-
els co-varying significantly with feedback processing. Only clusters with more than 10 voxels 
activated are reported here.

Talairach coordinates

Brain region Brodmann 
area (BA)

z-value mm³ x y z

A1+ group

Negative > Positive

R anterior Insula BA 13 4.73 1296 34 20 3

A1- group

Negative > Positive

R precentral gyrus BA 6 3.71 270 40 -1 36

R middle frontal 
gyrus

BA 9 4.64 2808 49 20 33

R superior temporal 
gyrus 

3.52 270 49 -40 18

R Insula BA 13 4.05 486 28 26 3

Positive > Negative

L superior frontal 
gyrus

BA 8 3.90 270 -11 47 39

R cingulate gyrus BA 31 3.49 324 4 -31 33

R ventral striatum 
(nucleus 

accumbens)

3.96 1323 16 8 -6

R dorsal striatum 
(putamen)

3.80 *) 19 12 3

L ventral striatum 
(putamen)

4.37 837 -23 11 -3

anterior fronto-
median cortex

BA 10 3.67 324 -5 50 -3

R parahippocampal 
gyrus

BA 27 4.11 324 25 -28 -6

Note: R/L = right/left; *) this activation is connected with the nucleus accumbens activity such that 
the volume cannot be determined separately.
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A further strong signal increase on negative feedback in the right middle fron-
tal gyrus (x = 40, y = 21, z = 27, z-score = 4.3, MFG) was found only in the A1-
group (posterior probability of group difference: 97.1%). As this brain region is 
commonly found in working memory tasks (Petrides et al., 1993; Petrides, 2005),
it may be speculated that A1- participants used a monitoring-within-memory 
strategy of keeping track with selection-outcome history.

To study learning over the time course of the probabilistic learning task, we 
modeled subjects’ behavior using a modified Rescorla-Wagner reinforcement 
learning model (Rodriguez et al., 2006; see section 3.5 and fig. 3-4 for details). In 
this computational model, the difference of activity in the output neurons pro-
vides a trial-by-trial estimate of certainty of the given response. Overall, the A1-
group reached a significantly higher response certainty in the last third of the 
experiment (F = 2.7, p = .04). The development of the certainty over the course of 
the experiment is shown in fig. 4-3.

Figure 4-3 Result from computational model: certainty of the given response, binned in bins of 
20 consecutive trials each (binning in all following figures showing binned trials performed like 
that)

In both groups, the curves resemble a logarithmic learning curve with a steep 
increase in the first third and an asymptotic course at the end of the experiment. 
After an initial period of about 200 trials, the A1- group develops a higher re-
sponse certainty than the A1+ group. For both genetic groups response certainty 
negatively correlated with pMFC activity (see fig. 4-4), thus replicating earlier 
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reports that demonstrated a role of this region in processing decision (un)certainty 
(Ridderinkhof et al., 2004; Ullsperger & von Cramon, 2003; Volz et al., 2003).

Interestingly, in the A1-group the time course of certainty showed a positive 
correlation with activity in the posterior hippocampus bilaterally (x = 22, y = -39, 
z = 6; z-score = 3.9, 216 mm³ and x = -23, y = -39, z = 3; z-score = 3.5, 81 mm³), 
whereas no such correlation was found in A1+ participants (Bayesian posterior 
probability of group difference, right: 94.9%, left: 96.2%; see fig. 4-2, b). 

In other words, the hippocampal complex changes its activity over the time 
course of the experiment, and this change is stronger in A1- subjects who develop 
higher response certainty and better avoidance of unfavorable selections (for ad-
ditional correlations see table 4-3). 

Figure 4-4 Parametric within-subject fMRI analysis using the certainty of the given response as 
a regressor. Projected onto a coronal (y = 18) and a sagittal (x = -5) slice. Positive correlation 
= red, negative correlation = blue; RCZ = rostral cingulate zone; aFMC = anterior frontome-
dian cortex
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Table 4-3 Additional brain regions, Brodmann areas, and Talairach coordinates (x, y, z) of vox-
els co-varying significantly with certainty of the given response. Only clusters with more than 10 
voxels activated are reported here.

Talairach coordinates

Brain region Brodmann 
area (BA)

z-value mm³ x y z

A1+ group

Positive correlation with response certainty

anterior 
frontomedian cortex

BA 10 4.3
4.7

2727 -2
4

42
57

0
18

R retrosplenial 
cortex

BA 29 4.06 432 10 -49 18

anterior fronto-
median cortex

BA 10 3.80 378 7 59 12

R pregenual anterior 
cingulate cortex

BA 24 3.96 486 10 32 9

Negative correlation with response certainty

L intraparietal 
sulcus (ascending 

branch)

BA 40 3.74 972 -44 -46 51

L intraparietal 
sulcus (ascending 

branch)

BA 7 3.62 324 -29 -43 39

L middle frontal 
gyrus

BA 8 3.95 270 -38 29 39

A1- group

Positive correlation with response certainty

R cingulate cortex 
(caudal cingulate 

zone)

BA 23 3.92 324 4 -16 33

L Putamen 3.90 540 -23 -10 15

R Putamen 3.76 378 22 -1 12

L posterior insula 3.87 297 -38 -13 3

subcallosal anterior 
cingulate cortex

BA 24/25 4.02 1080 -8 20 -6

L anterior fronto-
median cortex

BA 10 4.84 540 -11 62 -6

L amygdala 3.82 891 -20 -7 -18

R amygdala 4.99 378 22 -1 -18
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Negative correlation with response certainty

L intraparietal 
sulcus (horizontal 

branch)

BA 40 3.62 405 -50 -49 48

L inferior frontal 
junction

BA 9 3.85 513 -44 5 36

L middle occipital 
gyrus

BA 18 4.57 702 -35 -91 0

R inferior occipital 
gyrus

BA 18 3.56 405 31 -88 -6

cerebellum 
(superior posterior 

fissure)

4.28 459 -35 -64 -21

cerebellum
(superior posterior 

fissure)

3.52 270 34 -55 -27

Note: R/L = right/left. 

How does feedback monitoring in the RCZ interact with forming memories in 
the hippocampus? Anatomically, these areas are connected via the cingulate bun-
dle. To investigate learning-related changes in functional interactions of the RCZ 
and other brain areas over time, we performed a Psychophysiological Interaction 
Analysis (PPI; Friston et al., 1997; Gitelman et al., 2003; see section 3.1.3 for 
details). The experiment was divided into three parts of equal length. We then 
contrasted the functional connectivity of the RCZ observed in the first third with 
the connectivity observed in the last third of the learning experiment, thereby 
capturing the difference between steep rule acquisition in the beginning and more 
stable rule exploitation at the end. Again, in the A1- group we observed a signifi-
cant change over time: In the first third of the experiment the functional coupling 
between RCZ activity and the bilateral hippocampus (left (x = -26, y = -42, z = 3; 
z-score = 4.4, 459 mm³) and right (x = 28, y = -42, z = -3; z-score = 3.4, 135 
mm³)) was significantly stronger than in the last third (fig. 4-2, c). The A1+ group 
showed no such correlation (Bayesian posterior probability of group difference:
left hippocampus, 99.98%; right hippocampus, 99.91%). Furthermore, only the 
A1- group showed a similar change in functional coupling between nucleus ac-
cumbens and RCZ over the time course of the experiment (x = 16, y = 9, z = 3; z-
score = 3.4, 108 mm³; Bayesian posterior probability: 99.54%). The nucleus ac-
cumbens, another major target of dopaminergic projections, has been implicated 
in feedback-based decision making as well (Ullsperger & von Cramon, 2003; 
Knutson et al., 2001; Cools et al., 2004; Heekeren et al., 2007). In accordance 
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with previous findings, the fMRI signal in the nucleus accumbens on both sides is 
increased on positive feedback as compared to negative feedback (fig. 4-2, a). 
This reward-related activity increase is reduced in the A1+ group in the right nu-
cleus accumbens (x = 16, y = 9, z = -6; z-score = -3.96; Bayesian posterior prob-
ability of group difference 94.8%; on the left side, posterior probability reaches 
only 74.1%). This finding is consistent with the findings of lower striatal DA D2 
receptor densities associated with this allele (Ritchie & Noble, 2003; Jönsson et 
al., 1999; Pohjalainen et al., 1998).

In addition, we extracted trial-by-trial prediction errors from the computational 
model (Pessiglione et al., 2006) and used it as a parametric regressor to analyze 
the fMRI data (fig. 4-5). 

Figure 4-5 Parametric within subject fMRI analysis using the prediction error as a regressor, 
projected onto a coronal (y = 12 ), a sagittal (x = -23 ) and a horizontal slice (z =-3)

As expected from previous research (Pessiglione et al., 2006; Yacubian et al., 
2007), activity in the striatum (x = 19, y = 6, z = 0, 783 mm³, z-score = 3.91; x = -
23, y = 11, z = -3, 756 mm³, z-score = 4.17) as well as the frontomedian cortex (x 
= -2 , y = 35, z = 12, 513 mm³, z-score = 3.97; x = 1, y = 47, z = -3, 351 mm³, z-
score = 3.64) co-varied with the prediction error in the A1- group. Also in the 
A1+ group the prediction error co-varied with activity in the striatum. Posterior 
probabilities are relatively low but speak in favor of a group difference (striatal 
activations: 64.9% and 77.63%; pMFC: 88.24% and 67.64%). 
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To test whether the reduction in fMRI signals observed for the A1+ subjects is 
specific for performance monitoring processes, a contrast of all responses with 
the right hand against implicit baseline was calculated (positive and negative out-
comes collapsed). This contrast focuses on task-related brain activity while ex-
cluding the specific difference of processing negative and positive feedback. As 
can be seen in fig. 4-6, the same set of brain structures (mainly consisting of the 
dorsal frontoparietal network, visual areas and the cerebellum) is activated. It can 
be concluded that the effect of genotype on brain activity is highly specific to 
learning from feedback and does not generalize to other task-related activity.

Figure 4-6 Task-related fMRI signal increases independent of the difference between positive 
and negative feedback processing (baseline contrast of right-handed responses, all outcomes 
collapsed). In both genotype groups, the same set of brain structures is activated.

4.1.6 Discussion

Our results confirm that DA plays a major role in performance monitoring and 
behavioral modification for reaching optimal performance levels. Alterations in 
dopaminergic transmission lead to corresponding alterations in negative feedback 
processing and related to this, to differences in learning from negative feedback. 
It appears that reduced DA D2 receptor density is associated with reduced capac-
ity to learn negative characteristics of a stimulus from negative feedback. High 
receptor density in the A1- group is associated with clear avoidance of the most 
negative stimulus whereas a reduced receptor density in A1+ subjects is not. Cor-
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responding to this, subjects with a reduced receptor density show a weaker BOLD 
response to negative feedback in the pMFC and the MFG. These genetically 
driven differences in avoidance learning seem to result from a weaker neuronal 
response to negative feedback and a reduced interaction of performance monitor-
ing in pMFC and memory-formation in the hippocampus.

At first sight, our findings that subjects with lower D2 receptor densities show 
reduced avoidance learning may appear to conflict with the results by Frank and 
colleagues (Frank et al., 2004) who showed that patients with Parkinson's disease 
on medication, i.e., with enhanced dopaminergic transmission, have problems in 
learning the negative value of stimuli. However, a recent study revealed a higher 
rate of DA synthesis in the striatum for subjects with the A1+ configuration com-
pared to A1- subjects (Laakso et al., 2005). This higher level of DA might be 
caused by a lack of D2 autoreceptors. Missing autoreceptors lead to a higher syn-
thesis rate of DA, which in turn leads to a higher level of DA. This may 
strengthen transmission via D1 receptors and relatively reduce modulation of 
post-synaptic D2 activity by phasic changes in DA release. According to the 
model by Frank and colleagues (Frank et al., 2004; Frank, 2005) this should be 
associated with a relative decrease in avoidance learning and a shift to learning 
mainly from positive reinforcement. Parkinson’s disease is often treated with 
tonically acting direct D2 agonists which also reduce phasic modulations at post-
synaptic D2 receptors. A phasic decrease in DA, as suggested to occur on nega-
tive feedback (Schultz, 2002; Holroyd & Coles, 2002), may thus be less effective 
in both studies. This dulled D2 mediated dopaminergic signal in turn would fi-
nally lead to a weaker hemodynamic response in the RCZ. Further studies are 
needed to unravel the complex interactions of DA D2 receptor density and dopa-
minergic transmission in frontal cortex and the striatum.

As stated before, EEG has one major advantage over fMRI: higher temporal 
resolution. To get an impression of electrophysiological processes underlying 
negative feedback processing in the probabilistic learning task we repeated the
task while concurrently measuring the EEG.
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4.2 EEG Study

4.2.1 Rationale

As described in section 2.2.1, the electrophysiological correlate of error-
processing is the error-related negativity (ERN; Falkenstein et al., 1990; Gehring 
et al., 1993). Numerous source localization studies (e.g. Luu & Tucker, 2001) and 
fMRI studies (Ullsperger & von Cramon, 2001; Debener et al., 2005) have local-
ized the source of the ERN in the pMFC, specifically in the rostral cingulate zone 
(RCZ). Not only error processing but also negative feedback processing seems to 
take place in this brain area (Ullsperger & von Cramon, 2003; Holroyd et al., 
2004). As mentioned before, outcome coding of an action as better as or worse 
than expected seems to rely on dopaminergic activity in the midbrain (Schultz, 
2002). In the previously described fMRI study (section 4.1 and Klein et al., 
2007b) we showed that a genetic polymorphism known to affect DA D2 receptor 
density in the striatum influences how negative feedback is processed in RCZ and 
how subsequent learning from negative feedback varies in accordance with D2 
receptor density. 

With the following study we wanted to address the same question now using 
the higher temporal resolution of electroencephalography (EEG). We investi-
gated, whether the differences in negative feedback processing can also be found
in the feedback-related negativity (FRN; Miltner, Braun & Coles, 1997), a fronto-
medially distributed component following negative performance feedback some-
times also referred to as medial-frontal negativity (MFN; Gehring & Willoughby, 
2002). The FRN can be observed 200-400 ms after the onset of negative feedback 
and it seems to be generated also in the dorsal ACC (Holroyd et al., 2004). Typi-
cally, the potential is larger on negative feedback compared to positive feedback 
(Gehring & Willoughby, 2002). The FRN also seems to rely on dopaminergic 
signaling (Holroyd & Coles, 2002). Supporting evidence for this comes from 
performance monitoring studies with older subjects in whom DA release is re-
duced (Baeckman et al., 2000): Subjects with higher age show a reduced FRN 
amplitude (Nieuwenhuis et al., 2002; Eppinger et al., 2007). Therefore, a straight-
forward prediction is that the FRN should show the same influence of a variation 
in DA D2 receptor density as it was the case for RCZ activity following perform-
ance feedback. A genetically driven reduction in amplitude in response to nega-
tive feedback would thus be expected.
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Furthermore, we aimed at replicating our findings of a genetically determined 
learning bias for negative and positive action outcomes. Computational modeling
was employed in the same fashion as in the fMRI study. 

4.2.2 Materials and Methods

30 people took part in the EEG study, 14 of which belonging to the A1+ group 
(mean age ± SEM = 25.4; 0.85), the remaining 16 subjects belonging to the A1-
group (mean age ± SEM = 24.5; 0.76). We employed the same probabilistic 
learning task (Frank et al., 2004) as in the fMRI study (for a description of the 
task see section 3.4) with two differences. First, as EEG is not relying on the 
BOLD response, we adjusted the trial timing as follows: Participants saw the 
respective pair of symbols for up to 1500 ms. Immediately after the response the 
performance feedback was displayed for 700 ms. After this a blank screen was 
displayed until a total trial duration of 2.8 s was reached. For the reasons men-
tioned before and for practical reasons we decided to choose this faster trial tim-
ing. Second, we employed different characters (Hiragana) as symbols (see table 
4-4 for examples of the stimuli we used). 

Table 4-4 Stimuli of the probabilistic learning task (fast and slow version). Reward probabilities 
are given in brackets.

Stimuli of the fast version (EEG) Stimuli of the slow version (fMRI)

“A” (80%) “C” (70%) “E” (60%) “A” (80%) “C” (70%) “E” (60%)

“B” (20%) “D” (30%) “F” (40%) “B” (20%) “D” (30%) “F” (40%)

Besides these two changes the procedure was the same as in the fMRI meas-
urement, including the behavioral post-test, which also took place in the EEG
booth. As no null events had to be included, subjects worked on 420 trials (140 
per symbol pair). The same logic to determine the “choose A” and “avoid B” 
performance in the post-test data was applied as in the fMRI study.
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During recording of the EEG, participants sat in a dimly lit, sound-attenuated 
electrically and acoustically shielded chamber with a monitor in front of them. 
The EEG was recorded from 64 Ag/Ag-Cl electrodes mounted in an elastic cap 
(BrainCap – MR 64 Channel, Easy Cap, TM) and named after the international 
10-20 system (Jasper, 1958). During measurement all electrodes were referenced 
against CPz. Offline they were re-referenced against the arithmetic mean of the
mastoid electrodes. For controlling eye movement artifacts a bipolar vertical and 
horizontal electroocculogram (EOG) was recorded. All impedances were kept 

s sampled with 70 Hz and digitized with 250 Hz fre-
quency (16 bit resolution). 

Further data processing was done using EEGLAB v5.02 (Swartz Center of 
Computational Neuroscience, Institute for Neural Computation, University of 
California, San Diego). First, the data was filtered using a high-pass filter of 2.0
Hz and a low-pass filter of 40 Hz. A manual correction for technical and muscle 
artifacts was done, followed by a correction for eye movements based on inde-
pendent component analysis (ICA; Jung et al., 2000). After re-coding of the trig-
gers the response locked signal was averaged for every electrode and every per-
son for trials with positive and trials with negative feedback separately. The mean 
amplitude between -1000 and -800 relative to the response was used as baseline. 
Based on existing literature showing a peak for the FRN 200-400 ms after feed-
back, we decided to take the minimum in a time window of 200-400 ms after the 
response (as the feedback appeared immediately on the response) as time frame 
to look for the FRN. Thus, the FRN was defined as the minimum in a time win-
dow of 200-400 ms. 

4.2.3 Behavioral Results

In the learning phase of the experiment A1+ subjects chose the more often re-
warded symbols (“A”, “C”, or “E”) reliably more often than subjects from the 
A1- group. Table 4-5 summarizes the main behavioral results from the learning 
phase and from the post-test. A1+ subjects show better overall performance in the 
task as indexed by central measures of learning and learning success. It should be 
noted, however, that the performance of the A1- subjects with respect to choosing 
symbol “A”, “C” or “E” in the learning phase was significantly above chance (p-
values < .013).
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Table 4-5 Summary of the behavioral results from the probabilistic learning task

A1+ A1-

(1) Behavioral results from the learning phase (given in mean percent chosen ± SEM)

Choosing symbol "A"

(A1+ > A1-: t = -4.0; p = .000)
81.3% ± 2.2 65.2% ± 3.3

Choosing symbol "C"

(A1+ > A1-: t = -2.1; p = .05)
78.4% ± 3.5 67.4% ± 3.9

Choosing symbol "E"

(A1+ > A1-: t = -2.1; p = .04)
67.6% ± 4.3 56.9% ± 2.5

Percent Negative Feedback 

(A1+ < A1-: t = 2.6; p = .01)
41.4% ± 1.1 45.0% ± 0.9

(2) Behavioral results from the post-test (given in mean percent chosen ± SEM)

Choosing symbol "A" 

(A1+ > A1-: t = -1.8; p = .09)
65.3% ± 3.9 54.4% ± 4.6

Avoiding symbol "B"

(A1+ > A1-: t = -1.7; p = .1)
66.3% ± 5.8 53.1% ± 5.1

Analysis of the development of choosing the good symbol (“A”, or “C”, or “E”; 
see fig. 4-7) over time reveals that carriers of the A1 allele (A1+ subjects) show a 
strong tendency to choose the good symbol already in very early stages of the 
experiment (main effect genotype: F = 16.6; p = .000). Furthermore, subjects 
from the A1+ group received significantly less negative feedback (t = 2.6; p = 
.01). 



Empirical Studies

63

Figure 4-7 Choosing the good symbol (“A”, 
“C“ or “E”), binned 

Figure 4-8 Certainty of the given response 
derived from the computational model, binned

The development of response certainty over time (the same computational 
model architecture was employed as in the fMRI study, see section 3.5) shows a 
similar pattern (see fig. 4-8): Subjects from the A1+ group develop a higher re-
sponse certainty already in very early stages of the experiment (main effect of 
genotype: F = 18.7; p = .000).

A remarkable difference between genetic groups is evident from the learning 
rates of the computational model, i.e. the coefficient by which the weights of the
model are updated after having received feedback: A1+ subjects show a higher 
learning rate, i.e., a stronger updating of their model after feedback (t = -2.7; p = 
.01). 

In the post-test (see fig. 4-9) A1- subjects show a rather poor performance: 
They neither showed a strong tendency of choosing symbol “A” (preference 
learning), nor a strong tendency to avoid symbol “B” (avoidance learning). In 
fact, both values did not differ significantly from chance (Choose “A”: t = 1; p = 
.4; Avoid “B”: t = 0.6; p = .6). Subjects from the A1+ showed a choosing behav-
ior significantly above chance level (Choose “A”: t = 3.9; p = .002; Avoid “B”: t 
= 2.8; p = .01). A significant main effect for genotype (F = 8.3; p = .008) but no
interaction between genotype and choosing behavior in the post-test could be 
observed (F = .05; p = .8). Here, genotype did not differentiate between prefer-
ring to learn from positive or negative feedback. 
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Figure 4-9 Post-test: Choosing the good symbol “A” and avoiding the bad symbol “B”

With respect to response-switching behavior after having received positive 
feedback, A1+ subjects are less likely to switch responses, i.e. choosing the other 
symbol (t = 4.3, p = .000) when compared to A1- subjects. Furthermore, subjects 
from the A1+ group also switch significantly less after negative feedback (t = 3.0, 
p = .005) as compared to A1- subjects.

4.2.4 ERP Results

We extracted the FRN as the minimum in the time-window 200-400 ms after 
feedback. In fact ERPs were locked to the response as feedback was provided
immediately after button press. As the FRN is known to have a centro-medial 
scalp topography we included the following electrodes for further analysis: F3, 
F4, Fz, FC3, FCz, FC4, C3, Cz. ERP data were subjected to a repeated measures 
ANOVA with the within subject factors feedback (negative vs. positive) x ante-
rior-posterior dimension (anterior, middle, posterior) and laterality (left, median,
right), and the between subject factor genotype (A1+ or A1- subjects). We re-
vealed no main effect for feedback, but a significant main effect for the anterior 
posterior dimension (F = 6.6, p = .003) and the laterality dimension (F = 39.8, p = 
.000). 
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There was a weak trend for an interaction between genotype and feedback (F = 
2.8, p = .11). The significant interaction between anterior-posterior dimension 
and laterality (F = 14.2, p = .000) showed that the FRN was most pronounced at 
electrode FCz. Figures 4-10 and 4-11 show response locked averages for negative
and positive feedback separately for the two genetic groups.

Figure 4-10 ERPs locked to negative feedback; electrode FCz; topographies at 250 ms after 
response

Following negative feedback the FRN was significantly more pronounced at 
electrode FCz for A1- subjects (t = -3.2, p = .004; see fig. 4-10) as compared to 
A1+ subjects. We found no significant difference following positive feedback (t = 
-1.5, p = .15; see fig. 4-11). Within-group comparisons between positive and 
negative feedback revealed that A1- subjects showed a significantly more nega-
tive FRN for negative as compared to positive feedback (t = 2.1, p = .05). No
such difference could be found for the A1+ subjects, in fact their negativity for 
positive feedback was slightly higher. 
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Figure 4-11 ERPs locked to positive feedback; electrode FCz, topographies at 250 ms after 
response

We observed a correlation between FRN amplitude and choosing behavior in 
the training phase of the task. A1- subjects showed a negative correlation between 
the FRN amplitude following negative feedback and choosing of symbol “A” or 
“C” (r = -.77, p = .000 and r = -.6, p = .02, respectively). No such correlation 
could be found for A1+ subjects. 

Furthermore, we observed a significant positive correlation between FRN am-
plitude following negative feedback (FCz) and the certainty of the given response 
derived from the computational model for A1+ subjects. Higher certainty was 
coupled with a smaller (i.e. more positive) FRN amplitude (r = .73, p = .003). 
Interestingly, the opposite is true for A1- subjects: Here we found a negative cor-
relation between response certainty and FRN amplitude following negative feed-
back (r = -.82, p = .000). Similar to that the FRN amplitude following positive 
feedback also correlates negatively with certainty in our task (r = -.56, p = .024), 
again only for A1- subjects.

4.2.5 Discussion

On the behavioral level this EEG experiment shows a clear main effect of geno-
type on task performance. A1+ subjects show better learning in the training phase 
of the task. Results from the computational model point to the same direction: 
A1+ subjects develop a higher response certainty during the training phase. Look-
ing at the learning rates of the computational model it can be seen that A1+ sub-
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jects have a higher learning rate, i.e. their internal rule representation is updated 
much more by an individual feedback provided on each trial. 

For the FRN at electrode FCz it can be seen that subjects with a normal recep-
tor density show a more pronounced negativity in response to negative feedback 
as compared to subjects with reduced D2 receptor density. For the A1- group the 
negativity following negative feedback is more pronounced than that following
positive feedback. This was not the case for the A1+ group.

In contrast to our previous findings, in the EEG version of the task subjects 
with a reduced receptor density seem to have some advantages, at least on the 
behavioral level. They do not react as strongly to negative feedback as A1- sub-
jects do, but they are better in choosing the good symbol and they develop higher
response certainty.

Difference in FRN amplitude might have something to do with a developing 
task-related response certainty. Following Holroyd and Coles (2002) the FRN
amplitude decreases with increasing knowledge about which response is appro-
priate in the given task situation. When subjects start working on a task that is
completely unknown, no representation of the correct response is available. In 
this situation performance feedback conveys a lot of information. With increasing
experience the impact of the individual feedback decreases. Following this logic 
the FRN should decrease in amplitude as the certainty of the subject about how to 
handle the task increases.

Pointing to this direction we observed a significant positive correlation be-
tween FRN amplitude following negative feedback (FCz) and the certainty of the 
given response for A1+ subjects. Higher certainty was coupled with a more posi-
tive FRN. Interestingly, the opposite is true for A1- subjects: Here we found a 
negative correlation between response certainty and FRN amplitude following 
negative feedback. A relationship between feedback-related activity and task-
certainty as proposed by Holroyd and Coles (2002) could be observed: Smaller 
certainty was coupled with a higher FRN amplitude. The same relationship can be 
shown, although weaker but still significant, for the FRN amplitude following 
positive feedback, suggesting that also positive feedback might contribute to de-
veloping certainty in our task.

The negative correlation we found between FRN amplitude and choosing be-
havior in the training phase of the task also points to a relationship between the 
FRN and measures of learning success. The more negative the FRN following 
negative performance feedback, the more choosing of a relatively more often 
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rewarded symbol (here demonstrated for “A” and “C”) was observed. This rela-
tionship only holds true for the A1- subjects, although they do not choose the 
relatively more often rewarded symbol as often as A1+ subjects. A1- subjects 
seem to rely more on information provided by the FRN but they are not able to 
establish stable task rules.

The most prominent difference between the two versions of our task was the 
different trial timing. In the fMRI study mean trial duration was 5 s, whereas in 
the EEG study the trial duration was 2.8 s. In the following we will compare the 
fMRI findings with the EEG results, trying to find an explanation for the trial 
timing related differences.

4.3 EEG vs. fMRI Results: A Comparison

To get an impression of potential trial timing influences on task performance we 
considered only version influences (EEG = fast vs. fMRI = slow version) and did 
not look for genotype x version interactions. Looking at the learning performance
displayed as percentage choosing the good symbol (“A”, “C” or “E”, see figure 4-
12) it can be seen that subjects in the slow version of our task choose a good sym-
bol more often than in the fast version. Moreover, their learning curve shows a 
steeper increase. The main effect of version is significant (F = 8.3, p = .006).

Figure 4-12 Comparison between fast and slow 
timing: Choosing the good symbol (“A”, “C”, 
“E”), binned

Figure 4-13 Comparison between fast and slow 
timing: Certainty of the given response, binned

Another index of learning success is response certainty (see figure 4-13). It 
could be expected that subjects in the slow version show higher response cer-
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tainty. Here we found a significant interaction between bin and version (F = 2.4, 
p = .05).

The post-test performance of subjects from the two timing conditions was also 
compared with each other. We wanted to test whether the learning bias (learn 
from negative or positive feedback) was influenced by trial timing. From figure 
4-14 it can be seen that no interaction between experimental version (fast vs. 
slow) and choosing symbol “A” or avoiding symbol “B” was evident. As a weak 
trend, subjects in the slow condition seem to learn more than subjects in the fast 
condition (F = 1.8, p = .19) indexed by post-test performance. The average learn-
ing rates of the computational model revealed no difference between the two
conditions. 

Figure 4-14 Comparison between fast and slow timing: Post-test

Taken together these results suggest that longer trial durations lead to better 
results in terms of choosing the good symbol, in terms of response certainty and 
in terms of post-test performance. So far we only looked for timing-related dif-
ferences. Another interesting question is, whether these timing related influences 
are dependent on the genotype of our subjects. We took another look at the tim-
ing-related influences, now considering also genotype of our subjects as a factor. 
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4.4 Equal Timing Influence for Genotypes?

The interaction between genotype and version in terms of choosing a good sym-
bol in the training phase was significant (F = 6.6, p = .01). In the fast condition
(fig. 4-15) A1+ subjects show a better learning performance, but in the slow con-
dition (fig. 4-16) A1- subjects show a better learning performance. 

Figure 4-15 Choosing the good symbol (“A”, 
“C”, “E”), fast timing, binned

Figure 4-16 Choosing the good symbol (“A”, 
“C”, “E”), slow timing, binned

The mean of choosing a good symbol differed significantly between the geno-
types in the fast timing condition (t = -4.1, p = .000). The same difference failed
to reach significance in the slow condition (t = .15, p = .88). 

In case of response certainty the main effect for version and for genotype did 
not reach significance but the interaction was significant (F = 9.3, p = .004). In 
the fast condition (fig. 4-17) A1+ subjects reached a higher response certainty. In 
the slow condition (fig. 4-18) A1- subjects showed a higher response certainty. 
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Figure 4-17 Certainty of the given response, 
fast timing, binned

Figure 4-18 Certainty of the given response, 
slow timing, binned

In the fast condition mean response certainty differed significantly between the 
genotypes (t = -4.3, p = .000) with A1+ subjects showing a higher mean response 
certainty. In the slow timing the two genetic groups reached a significantly dif-
ferent response certainty in the last third of the experiment (F = 2.7, p = .04) with 
A1-subjects reaching higher values. 

A further parameter indicative of individual learning success is the learning 
rate, i.e. the impact an individual feedback has on updating of the computational 
model. Here we found no influence of genotype or version in terms of main ef-
fects. But again, a significant interaction between these factors (F = 4.9, p = .03)
was revealed (see fig. 4-19). In the slow condition A1- subjects showed a higher 
learning rate than the A1+ subjects (ns), but in the fast condition the pattern re-
versed and subjects from the A1+ group showed a higher learning rate (t = -2.7, p 
= .01). For A1- subjects the mean difference in learning rate between the timing 
conditions was significant (t = 2.1, p = .05), whereas this difference for the A1+ 
subjects failed to reach significance.
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Figure 4-19 Learning rate: Interaction between genotype and 
trial timing

In a final analysis step we considered performance in the post-test as an indi-
cator of learning transfer. We observed a significant interaction between version 
and genotype: In the slow condition A1- subjects showed a higher learning suc-
cess (average of choosing the good symbol “A” and avoiding the bad symbol 
“B”), whereas in the fast condition the opposite was true. In this condition sub-
jects from the A1+ group showed a higher learning success (F = 5.2, p = .03).

Dividing the learning performance into preference and avoidance learning
(choose “A” and avoid “B”), there was a significant three way interaction (F = 
4.6, p = .04) between version, genotype and choosing behavior in the post-test
(see also figures 4-20 and 4-21). In the slow condition the A1+ subjects learned
more from positive feedback but less from negative feedback (t = 2.5, p = .03). 
The difference between A1- and A1+ subjects with respect to avoid “B” perform-
ance was significant (t = 2.5, p = .02; see also Klein et al., 2007b). In the fast 
condition there was no interaction between choosing and genotype, but a main 
effect of genotype. Subjects from the A1+ group learned better than subjects from 
the A1- group to choose symbol “A” and to avoid symbol “B” (mean choose “A”: 
t = -1.8, p = .09; mean avoid “B”: t = -1.7, p = .1).
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Figure 4-20 Post-test; fast version Figure 4-21 Post-test; slow version

For choosing the good symbol “A” a significant main effect of genotype (F = 
5.3, p = .03) was found. Subjects from the A1- group showed a poorer choose 
“A” performance compared to subjects from the A1+ group in both timing condi-
tions. Avoiding symbol “B” there was a significant interaction between genotype 
and version (F = 8.7, p = .005). A1- subjects showed better avoid “B” perform-
ance in the slow than in the fast condition (t = 2.6; p = .02). The opposite is true 
for A1+ subjects: In the fast condition they showed a better avoid “B” perform-
ance than in the slow condition (t = -1.7, p = .1). In the slow condition the differ-
ence in avoiding “B” between A1- and A1+ was significant (t = 2.5, p = .02), 
whereas the same difference in the fast condition was not. 

Taken together these findings suggest that the influence of different trial tim-
ing is modulated by genotype. If the task is presented with a higher stimulation
frequency (fast condition) subjects with a reduced receptor density show better 
choosing performance in the training-phase. With a lower stimulation frequency
(slow version) subjects with a normal receptor density show better choosing per-
formance. 

For response certainty the same pattern can be seen: Confronted with the faster 
trial timing subjects from the A1+ group show a higher response certainty, but in 
the slow condition the A1- subjects reach higher response certainty. This is simi-
lar for the learning rate: Higher frequency of stimulation results in a higher learn-
ing rate for A1+ subjects. 

In the post-test there is no interaction between genotype and choosing “A” or 
avoiding “B”. If stimulated with a higher frequency, A1+ subjects learn more in 
general while showing no learning bias. 
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From these results the question arises, why it should be advantageous to have 
less D2 receptors if stimulated with higher frequency, or put the other way, why 
should subjects with a normal receptor density show better results in the slow
condition?

4.5 Different Trial Timing: Behavioral Follow-up

To further investigate the differences between fMRI and EEG results in terms of 
training performance and learning success we tested additional participants (N = 
15 subjects per condition; mean age ± SEM for slow group: 24.7 ± .54; mean age 
± SEM for fast group = 24.5 ± .77; no genetic information). We confronted them 
with either the slow or the fast version of the task. These follow-up measurements 
were purely behavioral. We compared results from the follow-up study with the 
results which were acquired during “real” EEG or fMRI measurements. For all 
measures discussed here (choosing of good symbol in the training; certainty of 
the given response; learning rate of the computational model; choosing behavior
in the post-test) there was a tendency for higher values in the follow-up study, but
significant only for certainty of the given response. Importantly the factor meas-
urement “on/off” did not interact with the factor timing in the above mentioned 
measurements. 

In the slow condition subjects showed better performance in choosing good 
symbols (“A”, “C” or “E” collapsed, see figure 4-22; version: F = 3.2, p = .09).
Mean difference between the versions was significant on a trend level (t = 1.8, p 
= .09). Significance improved when looking only at the last third of the training (t 
= 2.0, p = .06).
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Figure 4-22 Choosing the good symbol, behav-
ioral study, binned

Figure 4-23 Certainty of the given response, 
behavioral study, binned

We found similar results for response certainty. Subjects in the slow condition
reached higher response certainty (version: F = 2.8, p = .1; see figure 4-23). The 
difference in the mean certainty was not significant.

In the post-test a similar main effect of version could be observed (F = 4.9, p = 
.04; see figure 4-24). In the slow condition subjects learned better to choose the 
good symbol “A” (t = 2.1, p = .05) and to avoid the bad symbol “B” (ns). Within 
condition differences between choosing “A” and avoiding “B” were not signifi-
cant (p-values > .3).
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Figure 4-24 Post-test, behavioral study

Thus we replicated the findings of the EEG and fMRI studies showing an in-
fluence of trial timing on central measures of learning performance and learning
success. Subjects presented with the task in a faster version, less often chose a 
rewarded symbol, they reached lower response certainty and they showed a 
poorer post-test performance. Because up until now no genetic information is 
available for these behavioral subjects, we are unable to test for replication of the 
trial timing x genotype interaction. The question remains however, why it is ad-
vantageous to have less D2 receptors when stimulated at higher frequencies. The 
following section is trying to shed some light on this question. 

4.6 Discussion

We demonstrated timing influences on the performance in a probabilistic learning 
task (Frank et al., 2004). If trial duration is 5 s (slow version) subjects learn much 
better as compared to a trial timing of 2.8 s (fast version).

Subjects might employ different strategies working on the different task ver-
sions. Working in the fast condition may force subjects to make use of different 
learning mechanisms than working in the slow condition. It may be speculated 
that the contribution of learning systems (action-outcome learning vs. stimulus-
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response-reward learning) to action guidance is differently accentuated by the 
timing conditions.

In the fast condition subjects may have to rely more on a working memory 
based strategy to handle the task. This could explain that subjects show better
learning in the slow condition: both learning systems can contribute to action 
guidance in parallel. In the fast condition only learning systems able to deal with 
high stimulation frequencies (working memory) can operate.

The slow development of choosing behavior and response certainty might be 
caused by a mixture of action-outcome and habit learning (two learning systems 
working parallel). The differences observed between genetic groups in response
certainty may therefore be due to differences in contribution of the habit learning 
system operated in the BG to action guidance (BG being the brain area where the 
polymorphism used exerts its highest influence).

Why should subjects with a reduced D2 receptor density show a better per-
formance in the fast condition where they have to rely more heavily on working 
memory? Working memory is often discussed in the context of the PFC, whereby 
PFC is assumed as a central component of a network of brain regions responsible 
for working memory (D’Esposito, 2007). Thus the concept of two different states 
of DA acting in the PFC may be helpful (see section 2.8.2): state 1 vs. state 2
(Seamans et al., 2001).

Applying this logic to our genotypes could mean that subjects with a geneti-
cally determined reduction of D2 receptor density may exhibit a more state 2-like
(D1 modulated) information processing in PFC. Subjects with a normal receptor 
density show a higher contribution of state 1 (D2 modulated) to prefrontal infor-
mation processing. In the slow condition subjects assumed to have higher state 1
contribution to information processing show better learning performance. Given 
enough time it is beneficial in this task to be able to have multiple representations 
in working memory simultaneously, thus enabling the system to build up reward
hierarchies between symbols in terms of a reward history. If trial timing gets 
faster, thereby inducing rising stimulation frequencies, a confusion of inputs
might occur. Too much input needs to be processed with too little time available 
in order to establish stable representations. Thus, being in state 1, allowing multi-
ple representations in working memory, may be detrimental. 

The amount of D2 receptors in PFC may be reduced in subjects carrying the 
A1 allele. Thus, A1+ subjects might have a genetically determined bias towards a 
state 2-like (D1 dominated) way of information processing. In the slow timing 
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condition this state 2 bias might cause problems: Subjects may not benefit from 
having multiple inputs in working memory, because, due to slow timing, inputs 
may be too weak to get established as a stable task representation in state 2. In the 
fast condition, however, inputs may be able to become stable representations in 
working memory because items presented with high stimulation frequency are 
potentially strong enough to pass the high threshold of working memory buffer. 
Thus A1+ subjects may be able to build very stable representations on which they 
could work during the task. Furthermore, a reduction in D2 receptors might cause 
difficulties in switching the system back to state 1 dynamics. Switching back to 
state 1 is especially likely given high DA concentrations (see section 2.8.2). It 
may be speculated that the prefrontal DA level is high in the fast trial timing.
Such a saturation of DA in prefrontal brain areas in the fast version of our task 
seems possible, given the slow rates of prefrontal DA turnover (Lapish et al., 
2007; Lavin et al. 2005). State 1 dynamics could cause exploration of new task 
rules by allowing new inputs to be processed in working memory. Thus, the sta-
ble task representations kept in state 2 are not challenged by new representations
in A1+ subjects, because the system is impaired in switching to state 1.

In A1+ subjects, transmission via D1 receptors is more dominant. Thus initia-
tion and stabilization of a few goal-related representations (Seamans & Yang, 
2004) should occur. A1+ subjects should therefore show a more perseverative
response behavior, i.e. sticking with previous choices. This should be especially 
obvious if trial timing stresses contributions of working memory to task perform-
ance. After having received positive feedback for a symbol, A1+ subjects are in 
the fast condition less likely to switch responses than A1- subjects. If there is a 
tendency towards stereotyped responding, this should occur also after having 
received negative feedback. Indeed, subjects from the A1+ group switch signifi-
cantly less also after negative feedback than A1- subjects when working on the 
fast version of the task.

Faster trial timing might induce a bias towards a more working memory based 
strategy of working on the probabilistic learning task. Memory traces of the sym-
bols may be more prominent due to shorter trial timing. A long term integration 
of outcome history (promoting habit learning) would require involvement of the 
BG. Looking at subjects’ performance in the training phase of the task, it seems
that subjects are actually learning. It may be speculated that this learning per-
formance is a predominant result of working memory function. In the post-test,
integration of good or bad performance outcomes over a longer period of time is 
needed to choose the right symbol out of the novel test pairs. Here the relevant
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information from the BG is missing (no “habit” towards one or the other symbol 
was built up). Hence there is no differentiation between choosing a good symbol
and avoiding a bad one. In fact, subjects in the fast condition show a very poor 
performance in the post-test. The slow learning system may not have had the op-
portunity to build up a stable representation of reward history. Contributions of 
this learning system, which are potentially necessary to solve the post-test, are 
therefore missing.

Besides the BG also the ACC seems to play a role in building up a reward rep-
resentation. Kennerley and colleagues (2006) were able to show that functioning 
of the ACC is required in order to built up a reward history thereby enabling 
adaptive (i.e. reward maximizing) behavior. As the ACC has connections to the 
lateral prefrontal cortex (van Hoesen et al., 1993; monkey data) the ability to 
build reward histories might rely on prefrontal “working memory”-like inputs. 
These inputs might in the ACC be coupled with reward-prediction error signals 
from the midbrain DA neurons, finally resulting in a “review” over recently re-
warded/not rewarded actions.

Dopamine in the PFC and the Basal Ganglia

The model of Seamans & Yang (2004) and the model of Frank (2005) differ 
with respect to the brain areas involved. Seamans and colleagues focus their 
model on the PFC whereas Frank’s model is focused on the BG. DA is a neuro-
modulator that might act differently on different processes located in different 
brain structures. It seems reasonable to assume that DA acts differently on infor-
mation in the BG and the PFC. Furthermore, the type of information processed in 
the BG is different from information content in the PFC. Finally, the temporal 
resolution by which the dopaminergic influence is exerted is higher in the BG
than in the PFC. The two models describe complementary systems and processes 
that work in parallel with various interfaces between them. In the future these two
systems need to be integrated in a comprehensive model of DA action in per-
formance monitoring and feedback-guided learning.
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5 General Discussion

We tested dopaminergic influences on human performance monitoring. These 
influences were modulated by a genetic polymorphism affecting the DA D2 re-
ceptor density (DRD2 TAQ IA polymorphism). We confronted subjects grouped 
according to the presence/absence of the A1 allele (A1+ subjects vs. A1- sub-
jects) with a probabilistic learning task. This task was constructed to disentangle
contributions of learning from positive and negative action outcomes to the over-
all learning performance (Frank et al., 2004). An fMRI study and an EEG study 
using the same task were conducted to identify brain areas (or networks of brain 
areas) involved in the task and to gain insights into the temporal resolution of the
brain responses. Table 5-1 briefly summarizes the main findings. First genetic 
influences on correlates of performance monitoring are shown, followed by ge-
netic and/or dopaminergic influences on learning success. This distinction seems
necessary as DA is acting differentially within performance monitoring and feed-
back-guided learning. Interactions between these two systems are discussed in 
section 2.8. The following five theses should guide and structure the discussion:

1. DA is a key player in human performance monitoring.

2. Feedback-guided learning is influenced by DA.

3. The relative contribution of different learning systems to behavior is 
determined by external factors (trial timing) influencing dopaminergic 
transmission.

4. Different learning mechanisms enable subjects to learn a new task in a 
feedback guided way.

5. A simple mechanistic account of DA acting in all these processes is po-
tentially misleading.



General Discussion

82

Table 5-1 Summary of central findings from the slow and the fast version of the task, separated
for measures of learning success and correlates of performance monitoring, and differentiated 
between members of the two genetic groups

slow version (fMRI) fast version (EEG)

Measures of learning success

Choosing good sym-
bol

A1- : better perform-
ance

A1+ : better perform-
ance

Response certainty
(computational 
model)

A1- : higher response 
certainty in the last 
third of the training 
phase

A1+ : higher response 
certainty (early on)

Learning rate of the 
computational model

No difference between 
genotypes

A1+: higher learning 
rate

Response-switching 
behavior

No differences in 
switching behavior

A1-: switch more after 
negative/positive feed-
back

Preference/Avoidance 
learning (post-test)

A1-: better avoid “B” 
performance, A1+: 
learn more to choose 
“A”

No interaction between 
genotype and post-test 
performance

Correlates of performance monitoring

Reactivity to negative
performance feed-
back

A1-: show higher acti-
vation of pMFC

A1-: feedback related 
negativity with larger 
amplitude

Correlation perform-
ance monitoring with 
measures of learning 
success

A1- : pos. correlation 
between negative feed-
back-related signal in 
the pMFC and choose 
“A”/ avoid “B”

A1- : neg. correlation 
between amplitude of 
the FRN, choices in the 
learning phase and 
response certainty
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5.1 Genetic Influences on Performance Monitoring: 

Thesis 1

We showed in the fMRI as well as in the EEG study reduced reactions of A1+ 
subjects to negative feedback as compared to A1- subjects. Subjects in the fMRI 
showed reduced reactivity to negative performance feedback in RCZ, an area 
implicated in performance monitoring (Ridderinkhof et al., 2004). In the EEG,
A1+ subjects showed reduced FRN to negative performance feedback. In both 
cases this might be due to a tonically higher DA level provoked by reduced D2 
autoreceptors normally controlling the amount of DA available. This tonically 
higher DA diminishes the impact a phasic dip in dopaminergic activity following
negative performance feedback can have. This dip, occurring whenever the out-
come of an action is worse than expected (Schultz et al., 1997), is assumed to 
improve behavior following principles of reinforcement learning (Holroyd & 
Coles, 2002).

Following Holroyd & Coles’ (2002) subjects showing higher (negative) feed-
back related activity are less secure about the response to be selected. They have 
to rely more on external information to guide their actions. In the context of the 
present studies this would fit the A1- subjects as they show more signal increase 
in pMFC and more pronounced FRN. Given the behavioral results of A1- sub-
jects in fast trial timing this seems plausible: They show a lower response cer-
tainty, fewer choosing of a more often rewarded symbol, and a higher FRN am-
plitude. In the slow condition the results for the A1- subjects are more 
complicated to interpret: They show a higher response certainty (at the end of the 
training), more choosing of a more often rewarded symbol (again only at the end) 
and more negative feedback related signal increase in pMFC.

These contradictory observations to Holroyd & Coles (2002) may be resolved 
as follows. Higher response certainty as well as the better choosing performance 
may be carried by the habit learning system primarily influencing later stages of 
the experiment. The stronger signal increase after negative feedback may be pri-
marily found in the early stages of the experiment where subjects are heavily 
relying on external information to establish new task rules.
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5.2 Correlates of Learning and Learning Success: The-

sis 2

5.2.1 Genetic Influences on Measures of Learning Success

In the slow condition of the task we observed an interaction between genotype 
and central measures of learning success. A1- subjects showed higher response 
certainty and clear avoidance learning. We showed a strong positive correlation
for these subjects between activity in the hippocampus bilaterally and the cer-
tainty of the given response. This is indicative of learning related differences be-
tween the genetic groups. We revealed a functional coupling between RCZ and 
the hippocampal formation. This coupling was much stronger in the first third of 
the experiment as compared to the last third but only for subjects with a normal 
receptor density. 

In the fast condition A1+ subjects showed higher learning success in terms of 
choosing behavior in the training, the response certainty and the learning rate of 
the computational model. Interestingly, no post-test interaction between genotype 
and choosing behavior was found. A main effect of genotype could be observed: 
A1+ subjects generally learn better but with no bias towards preference or avoid-
ance learning. A1- subjects show a rather poor choosing performance although
choosing performance in the training was significantly above chance. 

Due to different trial timing, genetic influences on performance seem to be re-
versed. In the slow condition A1- subjects show a superior task performance, in 
the fast version A1+ subjects are much better in working on the task. Thus it 
seems as if genetically caused alterations in dopaminergic transmission have dif-
ferent influences on feedback processing and learning.

5.2.2 Role of the MFG

In the fMRI we observed negative feedback related activity in the middle frontal 
gyrus (MFG) which we attribute to a monitoring-within-memory strategy (Pet-
rides et al, 1993) necessary to accomplish the task. This activation is particularly 
strong for A1- subjects. This may be due to higher computational load within this 
system for A1- subjects, finally leading to a superior task performance. Thus A1-
subjects should show a better task performance in the training. This is only the 
case at the end of the training phase. Alternatively, the higher activation for A1-
subjects is a correlate of a less efficient way of system usage. It might be that A1-
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subjects need to put more computational effort in this area to achieve the same 
output. An alternative or even complementary explanation would be that differ-
ences in MFG activity might relate to differences in state 1 vs. state 2 dominance 
in lateral prefrontal information processing. The concrete mechanism, however, 
by which state 1 and state 2 contribute to working memory function and MFG 
activity still needs to be elucidated. 

5.3 Habit Learning vs. Working Memory: Thesis 3

The process of integrating reward over time seems to rely on dopaminergic sig-
naling. As DA is a relatively slow acting neuromodulator this process might be 
especially vulnerable to violations of temporal prerequisites. If trial timing is too
fast, the system might run into trouble when assigning the outcome of an action to 
the respective action. If performance in this form of task-related memory is re-
duced, the cognitive system has to rely more on another component of memory: 
working memory. This system is limited to keep only the last events in task his-
tory. Thus it is not very reliable when confronted with the transfer test (the be-
havioral post-test) of our task. Choosing between symbols implies that a clear 
representation of the values of the different stimuli is needed. Comparing the 
post-tests of the two versions of the task, we showed that in the fast version the 
overall learning performance expressed in the post-test is rather poor compared to 
the slow version.

Choosing behavior and response certainty differ between the two timing ver-
sions. Behavior in the training phase might thus also depend on the proper func-
tioning of the two learning systems. If working memory performance is dominat-
ing, overall learning performance is weaker compared to the case in which both
memory systems are working in parallel. Response certainty is most likely based 
on the complete history of all trials. Thus, this measure should be especially vul-
nerable to a reduction in function of the slow memory component especially as 
this component might encode reward history. 

In summary, differences between genetic groups in the slow timing condition 
may be driven by a weaker performance of the habit learning system in the BG
for A1+ subjects, whereas the differences observed in the fast condition may be
attributable to differences in working memory function. 
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5.4 Dopamine and Working Memory in the PFC: The-

sis 4

As discussed above differences observed between timing conditions may mainly 
be driven by different memory strategies. In the fast version contribution of goal 
directed learning (working memory) to action guidance is more pronounced com-
pared to that of habit learning. Influences of DA on PFC (being “host” of working 
memory) can be different, depending on the relative configuration of DA recep-
tors. A1+ subjects may have a reduced D2 receptor density in the PFC. Noble and 
colleagues (1997) showed that carriers of the A1 allele show reduced regional 
glucose metabolism in the middle frontal gyrus (BA 46). This is not necessarily 
indicative for reduced D2 receptor density but it may be taken as first evidence
that A1+ subjects might also have alterations in dopaminergic transmission 
within PFC.

Two ways in which DA can act on/in the prefrontal cortex (Seamans & Yang, 
2004) are commonly discussed (see also section 2.8.2):

• State 1, dominated by D2 receptor transmission

• State 2, dominated by D1 receptor transmission 

A1+ subjects are more biased towards state 2 (D1 dominated). This implies
that only very strong inputs will find representation in their working memory 
buffer. Stimulation at high frequencies as in the fast version of our task could 
provide such strong inputs. Thus A1+ subjects should show superior task per-
formance during training, because their working memory is stimulated in an op-
timal way. A1- subjects have a bias towards state 1 (D2 dominated) of prefrontal 
dopaminergic transmission. This is beneficial if multiple inputs have to be man-
aged and stored within working memory. On the other hand, if stimulation fre-
quency is too high this low threshold working memory may “overflow”. No sta-
ble representation can be built, leading to reduced task performance. These 
instable representations are expressed in high rates of response switching after 
either negative or positive feedback. 
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5.5 Dopamine and the PFC: An Alternative Explana-

tion

Optimal working memory performance might need a balance between D1 and D2 
receptor transmission in PFC. Working memory is highly relying on D1 receptor 
signaling (Sawaguchi & Goldman-Rakic, 1991). In the monkey it was shown that 
long-term D2 receptor blockade coincides with a down-regulation of D1 receptors 
in the PFC (Lidow & Goldman-Rakic, 1994; Lidow et al., 1998). A study using 
chronic blockade of D2 receptors by haloperidol and a subsequent pharmacologi-
cal challenge with selective D1 agonist ABT 431 showed that blockade of D2 
receptors leads to severe impairments in working memory which can be reversed 
by administration of a D1 receptor agonist. 

Down-regulation of D1 receptors following chronic D2 receptor blockade 
might lead to suboptimal dopaminergic signaling in the PFC. Subjects from the 
A1+ group might “suffer” also from a reduced D1 receptor density in the PFC
caused by the genetically caused down-regulation in D2 receptors. Thus their 
working memory capacity is limited in “normal” (in this case fMRI trial timing) 
task conditions. If by high stimulation frequency DA in the PFC saturates, this 
group of subjects could reach an optimal level of DA (inverted-U: participants 
would then in the middle of the distribution). The A1- group on the other hand 
would be “over-stimulated” by too much DA (shifted to the right of the inverted 
U). Thus their performance would be worse in the fast condition. A saturation of 
DA in the PFC seems reasonable given the fact that prefrontal DA needs up to 5 s 
to come back to baseline due to lower concentration of DA-transporter in this 
brain region (Lapish et al., 2007; Lavin et al. 2005).

5.6 A Modified Performance Monitoring Model: Thesis 

5

Holroyd and Coles (2002) proposed a model (see fig. 5-1) to explain how per-
formance monitoring interacts with dopaminergic signaling in the midbrain. In 
this model learning is restricted to the BG that learn to predict action outcome 
while working on the task. There is considerable overlap between feedback based 
learning and reinforcement learning in general. Figure 5-2 displays the key struc-
tures and functions in human reinforcement learning. 
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Figure 5-1 Model of performance monitoring (taken from Holroyd & Coles, 2002)

Figure 5-2 Neural systems of reinforcement learning (picture taken from Everitt & Robbins, 
2005)
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In order to explain our findings in a common theoretical framework, it seems 
necessary to extend the model of Holroyd & Coles (2002) by more general prin-
ciples of learning. Adding interactions with other forms of learning might enable 
us to explain the interplay of performance monitoring structures, working mem-
ory related structures and long term memory related structures in the brain (see 
fig. 5-3). 

Figure 5-3 Action selection and action outcome monitoring: Interplay between performance 
monitoring and learning related brain structures.

Two learning related systems seem to work in parallel: 

1. working memory (mainly operated by PFC)

2. habit learning (mainly operated by BG)

Both systems enable an agent to keep previous decisions in mind. In order to 
maximize future outcomes these former decisions need a marker signaling their
valence. One connection between marker and action is made in the pMFC. Out-
come related information (the marker) is provided by dopaminergic neurons in 
the midbrain. Dependent on the valence of this signal, activity in the pMFC is 
triggered to adjust performance in the future. Interactions between PFC, pMFC 
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and the hippocampal formation guarantee learning of rewarded actions in order to 
achieve maximal efficiency of behavioral output.

In principle performance monitoring and learning are interacting processes
with separable contributions to human performance. They interact but are not 
necessarily dependent on each other. Their interaction might depend on the form 
of learning taking place in a given task. One shared influence is DA, acting 
within both systems. The role of DA is not always the same. By means of exter-
nal influences mediating dopaminergic transmission it is possible to shift balance 
between learning systems.

5.7 Thesis 1 to 5: Summary

The following final conclusions about the theses raised at the beginning of the 
general discussion can be drawn:

1. DA is a key player within human performance monitoring: By includ-
ing genetic polymorphisms acting on a central component of the dopa-
minergic system (D2 receptors) we were able to demonstrate that DA is 
indeed a neurotransmitter of central relevance for human performance 
monitoring.

2. Feedback-guided learning is influenced by DA: Here we could show 
that depending on the configuration of dopaminergic transmission the 
ability to learn from negative or positive feedback is differentially pro-
nounced. Our results point to the direction that although performance 
monitoring and learning from feedback are closely related, dopaminer-
gic influences might differentially act on both systems.

3. The relative contribution of different learning systems to behavior is 
determined by external factors (trial timing) influencing dopaminergic 
transmission: We showed that due to different trial timing (fast vs. 
slow) learning performance of our subjects varied considerably. We
also showed that this timing influence is further mediated by genetic in-
fluences affecting dopaminergic transmission. Dopaminergic transmis-
sion is altered not only by genetic factors but also by external influ-
ences. 

4. Different learning mechanisms enable a subject to learn a new task in 
a feedback-guided way: Extending findings from thesis 3 two learning 
mechanisms (action-outcome vs. habit learning) underlie the subjects’
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ability to learn in the probabilistic learning task. These two systems dif-
ferentially suffer/benefit from differences in trial timing. We assume 
that trial timing is affecting dopaminergic transmission thereby shifting 
the relative contribution to behavioral control from the one to the other 
learning system.

5. A simple mechanistic account of DA acting in all these processes is 
misleading: Genetic influences on dopaminergic transmission are al-
tered by external influences. This effect is not the same for all areas of 
the human brain. Depending on brain structure and the informational 
context, dopaminergic and/or timing influences can lead to different ef-
fects. Thus the role of DA in human performance monitoring is not that 
of a constant factor – rather it is a variable neuromodulator, setting the 
stage for different cognitive processes. 

Potential Limitations

Constraints for interpretation of our results should also be mentioned. First of all 
our results need replication with a bigger sample, potentially allowing for the 
analysis of gene/gene interactions. These interactions are particularly interesting 
given the fact that for dopaminergic signaling other receptors/components are 
relevant as well. Also, replication with another paradigm which allows disentan-
gling preference from avoidance learning is needed. 

As the dopaminergic system is more than just the D2 receptor density, our 
findings should not be generalized too much, especially with respect to clinical 
relevance. It may well be that D2 receptor density contributes in a way to addic-
tion or obesity, but the SNP we investigated is by no means the only cause of 
these disorders. Disorders like addiction are not caused by a single gene – they
are polygenic in nature. On average, each gene contributes to only 0.4 to 2% of 
variance of a trait (Comings & Blum, 2000). Polygenetic disorders are further-
more genetically heterogeneous. Variants at 100 different genes can contribute to 
a disorder but each individual may require only 10 such variants to acquire a 
given disorder. Why then do we find differences between genetic groups? This 
may be due to the high sensitivity of our task to subtle differences. No ceiling 
effects that might occur with more salient punishments and rewards, having real
consequences, are masking our findings. The revealed insensitivity to negative 
feedback associated with the DA D2 receptor gene polymorphism may be one 
factor contributing to multifactor problems such as addiction. Maybe it contrib-



General Discussion

92

utes to a predisposition for a disorder. Other components of the dopaminergic 
system (or other transmitter systems) may contribute to pathologies as well.
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6 Conclusion and Outlook

Dopamine is essential for human performance monitoring. Alterations in dopa-
minergic transmission lead to corresponding alterations in negative feedback 
processing and learning from negative feedback. A genetically determined differ-
ence in DA D2 receptor density leads to a reduced sensitivity to negative action 
outcomes. We found a genetically mediated bias to learn either more from nega-
tive or positive action outcomes. Response certainty and choosing rewarded stim-
uli were also influenced by the genetic makeup of our subjects.

Looking at the same task, the same genetic polymorphism but another trial 
timing gives a different picture. Different contributions of prefrontal working 
memory vs. striatal habit learning may underlie these results. Slow timing facili-
tates balance between working memory and long term integration of reward
(habit learning). The fast condition may provoke a bias towards the faster acting
memory system – habit learning is swamped by fast inputs causing disturbances
in action-outcome assignment. 

The relative contribution of D1 and D2 receptor mediated information process-
ing in PFC is shifted accordingly to the genetically biased receptor distribution.
Subjects with reduced D2 receptor densities are biased towards D1 mediated in-
fluences of DA, whereas the opposite is true for subjects with normal receptor 
density. They show a bias via D2 receptor mediated dopaminergic transmission.
If subjects are confronted with fast trial timing their relative receptor configura-
tion may either promote (if D1 transmission dominates) or disturb (if D2 trans-
mission is dominating) task performance. Differences in preference/avoidance 
learning can thus not be expected because the contribution of reward-history 
learning is missing.

Our results demonstrate that DA is an effective neuromodulator in human per-
formance monitoring. A single-nucleotide polymorphism determining the DA D2 
receptor density can influence the way in which subjects react to negative feed-
back and, at least when given enough time, the way in which subjects learn either 
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by preference or by avoidance learning. Significant interactions between geno-
type and learning success in different timing conditions point to differential influ-
ences DA can exert on human information processing mediated by D1 or D2 re-
ceptor dominance, respectively. 

Outlook

This work provides various perspectives for future research. As the dopaminergic 
system is not controlled by a single gene it seems promising to look for influ-
ences of other genetic polymorphisms. In the same vein it could be interesting to 
look for haplotypes thereby widening the focus from single-gene to multiple-gene
influences. In order to get an impression of the functional relevance of carrying 
the A1 allele, positron emission tomography (PET) studies need to be performed. 
These studies could provide insights into the distribution of D2 receptors, not just
limited to the striatum as many studies already showed, but also in prefrontal 
brain areas. This would imply using ligands that are suitable for imaging cortical 
D2 receptor density, because as there are not much of these receptors in this brain 
area it is particularly difficult to detect them. 18F-Fallypride or FLB 457 would be 
suitable ligands for this question (e.g. Mukherjee et al., 2002). 

Combining genetic influences with pharmacological challenges (agonists vs. 
antagonists) of either the D1 or the D2 receptors is highly interesting. It would be 
possible to get an impression of how these receptors interact with performance 
and how pharmacological effects may be different for different genotypes. 
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Abstract

Human performance monitoring is highly dependent on dopaminergic signal-
ing. Learning to maximize future outcomes requires close interaction between 
performance monitoring and learning related structures in the human brain. Ge-
netically determined alterations in dopaminergic transmission (single nucleotide 
polymorphism affecting dopamine D2 receptor density) lead to corresponding 
alterations in negative feedback processing and learning from negative feedback. 
Depending on external factors, the contribution of different learning systems to 
behavioral output is biased either towards working memory in the prefrontal cor-
tex or habit learning in the basal ganglia. One important factor in determining this 
relative contribution is fulfillment of temporal requirements needed for dopa-
minergic signaling. Thus learning performance and learning success are influ-
enced by external factors impinging on dopaminergic transmission. Feedback-
guided learning requires both learning components which in close cooperation 
with performance monitoring enable a subject to successfully perform within a 
probabilistic learning task. In conclusion, dopamine is an effective neuromodula-
tor setting the stage for different cognitive processes dependent on brain area and 
type of information being processed. Dopaminergic signaling is important for 
error signaling and subsequently for error driven learning in the human brain. 

Zusammenfassung

Menschliche Handlungsüberwachung ist abhängig von dopaminerger Signal-
übertragung. Die Fähigkeit zukünftige Handlungsergebnisse zu maximieren be-
darf einer engen Zusammenarbeit zwischen Gehirnstrukturen die der Handlungs-
überwachung dienen und lernrelatierten Hirnarealen. Genetisch bedingte 
Variationen in der dopaminergen Signalübertragung (Einzel-Nukleotid-
Polymorphismus der die Dopamin D2 Rezeptordichte beeinflusst) führen zu kor-
respondierenden Veränderungen in der Verarbeitung negativer Rückmeldungen 
und zu Variationen im Lernen aus negativen Rückmeldungen. Abhängig von ex-
ternen Faktoren ist der Beitrag verschiedener Lernsysteme in der Erzeugung des 



Verhaltens entweder in Richtung eines stärkeren Beitrages des Arbeitsgedächt-
nisses im präfrontalen Cortex oder des Gewohnheitslernens in den Basalganglien 
verschoben. Ein wesentlicher Faktor in der Bestimmung dieses relativen Beitra-
ges ist die Einhaltung zeitlicher Erfordernisse der dopaminergen Signalübertra-
gung. Lernleistung und Lernerfolg werden somit wesentlich von externen Fakto-
ren beeinflusst die das dopaminerge System betreffen. Rückmeldungsbasiertes 
Lernen erfordert einen Beitrag beider Lernkomponenten welche in enger Zusam-
menarbeit mit dem Handlungsüberwachungssystem es einem Menschen ermögli-
chen, eine probabilistische Lernaufgabe erfolgreich zu bearbeiten. Zusammenge-
fasst lässt sich sagen, dass Dopamin ein effektiver Neuromodulator ist, der 
abhängig vom jeweiligen Hirnareal und der zu bearbeitenden Information den 
Hintergrund moduliert, vor welchem wiederum verschiedene kognitive Prozesse 
ablaufen. Dopaminerge Signalübertragung ist wichtig für Fehlerverarbeitung und 
daraus resultierendes fehlerbasiertes Lernen im menschlichen Gehirn.
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