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Druck: Sächsisches Digitaldruck Zentrum, Dresden
c© Martin Koch, 2000

Die Deutsche Bibliothek - CIP-Einheitsaufnahme

Koch, Martin:

Measurement of the self-diffusion tensor of water in the human brain / Martin Koch.

[Max Planck Institute of Cognitive Neuroscience]. - Leipzig : MPI of Cognitive

Neuroscience, 2000

(MPI series in cognitive neuroscience ; 14)

Zugl.: Leipzig, Univ., Diss., 2000

ISBN 3-9807282-3-4



Measurement of the Self-Diffusion Tensor
of Water in the Human Brain

Von der Fakultät für Physik und Geowissenschaften

der Universität Leipzig

genehmigte

D I S S E R T A T I O N

zur Erlangung des akademischen Grades

doctor rerum naturalium

Dr. rer. nat.

vorgelegt

von Diplom-Physiker Martin Koch

geboren am 21. Oktober 1968 in Dinslaken

Gutachter: Prof. Dr. rer. nat. J. Kärger
Priv.-Doz. D. G. Norris PhD
D. Le Bihan MD, PhD
Prof. F. St̊ahlberg PhD

Tag der Verleihung: 21. August 2000



Bibliographische Beschreibung

Koch, Martin

Measurement of the Self-Diffusion Tensor of Water in the Human Brain

Universität Leipzig, Dissertation, in englischer Sprache
159 Seiten, 224 Literaturangaben, 26 Abbildungen, davon 7 in Farbe, 8 Tabellen

Referat

Die kernspintomographische Bildgebung ermöglicht ortsaufgelöste Messungen des Selbstdiffusi-
onstensors von Wasser im lebenden menschlichen Gehirn. Da der Diffusionstensor von Wasser
in biologischem Gewebe durch Zellmembranen beeinflusst wird, kann mit Hilfe der Diffusions-
tensorbildgebung (Diffusion Tensor Imaging, DTI) die Richtung von Faserbündeln bestimmt
werden, die aus parallel verlaufenden Nervenzellfortsätzen bestehen.
Für DTI müssen schnelle Bildgebungsmethoden eingesetzt werden, um Störungen durch Be-

wegung zu vermeiden und um eine große Anzahl an Messungen in annehmbarer Zeit durchführen
zu können. Bislang wurde DTI fast ausschließlich mit der Bildgebungssequenz EPI (Echo Pla-
nar Imaging) realisiert. Diese Methode gehört zwar zu den schnellsten Sequenzen in der NMR-
Bildgebung, bringt aber Bildverzerrungen und -auslöschungen mit sich, und eine hohe räumliche
Auflösung kann nur mit sehr starken und schnell schaltbaren Gradientenspulen erreicht werden.
In dieser Arbeit wird deshalb neben EPI die Bildgebungsmethode U-FLARE (Ultra-Fast Low
Angle Rapid Acquisition with Relaxation Enhancement) für die Diffusionstensorbildgebung
verwendet.
Die Dissertation stellt zunächst die physikalischen Grundlagen der Messung und das Prinzip

der NMR-Bildgebung dar. Es werden dann die verwendeten Bildgebungsmethoden und die
Maßnahmen erläutert, die notwendig sind, um in Tensormessungen mit U-FLARE die gleiche
Genauigkeit wie bei EPI und eine höhere Auflösung zu erreichen. Die Arbeit befasst sich im
Weiteren mit einer Analyse der Fehlerquellen bei der Bestimmung des Diffusionstensors und
mit Möglichkeiten der Abhilfe.
Die auf der U-FLARE-Sequenz beruhende Messmethode wurde auf eine Fragestellung aus

der Neuroanatomie angewandt. Dieses Experiment wurde motiviert durch Veröffentlichungen,
die zeigen, dass die Fluktuationen des T ∗

2 -gewichteten NMR-Signals aus dem rechten und lin-
ken motorischen Kortex zueinander zeitlich korreliert sind, auch wenn keine willkürliche Be-
wegung ausgeführt wird. Diese Korrelation beruht möglicherweise auf spontaner neuronaler
Aktivität, die sich über interhemisphärische Fasern auf die Gegenseite überträgt. In dieser
Arbeit wird die Hypothese untersucht, dass korrelierte Fluktuationen des T ∗

2 -gewichteten Si-
gnals immer zwischen solchen kortikalen Gebieten auftreten, die in der auf DTI beruhenden
Faserkarte erkennbar miteinander verbunden sind. Dazu wurden mit Hilfe einer auf U-FLARE
beruhenden Messung des Diffusionstensors von Wasser subkortikale Faserverbindungen abge-
bildet. Die Stärke der gemessenen Faserverbindungen zwischen verschiedenen Kortexarealen
wurde durch einen Monte-Carlo-Algorithmus quantifiziert. Die Ergebnisse wurden verglichen
mit der zeitlichen Korrelation zwischen den Signalverläufen dieser Areale aus einer Zeitreihe
von T ∗

2 -gewichteten Bildern.
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Chapter 1

Introduction

1.1 Anisotropic motion of water in the brain

Despite over 100 years of brain research still relatively little is known about how the human
brain works. Although we know much about the tissue microstructure and a fair amount
concerning the subunits that mediate basic tasks like the control of skeletal muscles, vision,
hearing etc. this is not true for more complex functions of the human brain. One reason for
this lack of knowledge is certainly the brain’s complexity: the human brain contains about 1011

neurons [1, p. 196], some of which have 105 possibilities to communicate with other neurons [2,
p. 26]. Another reason is that the function of a region of brain tissue is by no means obvious:
While the microscopic principles of communication between neurons are more or less the same
in the whole brain the most important property that determines the function of a part of the
brain is the way the neurons in it are connected with each other, and to which neurons in the
rest of the brain they are connected. The histological properties only depend to a small degree
on the function. The microscopic circuit diagram of the network, however, is beyond our reach.
Moreover, the neurons performing a specific function may be distributed over a large portion of
the brain — although we know this is not the case for a number of basic functions. Therefore
an investigation of brain functions must rely on methods that provide information on a more
macroscopic scale. Among the techniques that are available for obtaining in vivo anatomical
images of internal parts of the body, magnetic resonance imaging (MRI) and X-ray computed
tomography (CT) provide the highest spatial resolution (about 1 mm). MRI also benefits
from not relying on potentially harmful ionizing radiation. Since the advent of functional MRI
(fMRI) [3] it can also yield information on task-induced activation of a brain region [4, 5].
Neurons communicate with each other via extensions (axons) of the cell body whose length

can be of the order of many centimeters. In the human central nervous system (CNS) the axons
of different origins often converge to build macroscopic fibre bundles of many thousands of axons
before they diverge again to their individual destinations. Thus the brain tissue separates into
regions containing mainly neuronal cell bodies (grey matter, GM) and other regions mainly
consisting of axons (white matter, WM). While a variety of techniques including fMRI allow
the detection of activated regions in grey matter, measurements of activation in WM fibre
tracts that interconnect different regions of GM lack sensitivity and have only very recently
been reported [6]. Until 1994 neither conventional MRI nor any other imaging method was able
to image the WM fibre tracts in vivo, due to insensitivity to the fibre direction. However, it was
found in 1989 that the tissue structure in WM influences the self-diffusion of water molecules in
brain WM: the mean square displacement of diffusing water molecules in WM is larger along the
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fibre direction than perpendicular to it [7, 8, 9, 10]. This anisotropy was also observed in muscle
tissue [11, 12]. Consequently the ability of MRI to measure diffusion coefficients non-invasively
with high spatial resolution opens up the possibility of imaging the direction of fibre bundles
in white matter. Spatially resolved measurements of the diffusion tensor of water can thus be
used to image fibres in brain white matter [13, 14]. The technique has been termed diffusion
tensor imaging (DTI) [15, 16, 17]. The fibre anatomy measured with DTI can be compared
with the outcome of a psychological experiment or with the fMRI measurement of brain activity
during such an experiment. It is subject to interindividual differences, as is the brain anatomy
in general [18, p. 173]. One of the main concerns of neuroanatomy is to find anatomical criteria
for the definition of functional units in the brain. Since a functional unit of the cortex1 has
been proposed to be defined by both intrinsic structure and as the target zone of fibres from
other specific brain areas [19, p. 14], a measurement of the anatomy of afferent fibres may be
used to delineate such functional units. In some cortical areas microscopic processing units
(“macrocolumns”) of about 0.5 to 1 mm diameter have been identified [19, p. 37]. Histological
definitions lead to considerably larger regions. However, the size of the cortical regions activated
by a specific task in an fMRI experiment is typically in the intermediate range (about 1.5 cm).
As DTI provides information on this “mesoscopic” level of description between the size of a
macrocolumn and that of a histologically defined area, DTI measurements of fibre anatomy
may contribute to an anatomical definition of a functional unit in the cortex.

Since DTI probes tissue microstructure, it can also be used as a tool for the investigation of
diseases that affect this structure [20]. It is expected that DTI will contribute to the diagnosis
and explanation of pathological processes involved in ventricular dysrhythmia [21], in multiple
sclerosis [22], stroke [23, 24], cancer [25, 26], and possibly in mental disorders of organic origin
[27, 28].

1.2 Aim of this thesis

This thesis is concerned with the imaging of human brain white matter fibre tracts by means
of spatially resolved NMR measurements of the self-diffusion tensor of water (diffusion tensor
imaging). The use of different imaging strategies in combination with diffusion tensor imaging
shall be evaluated. The technique shall then be applied to investigate whether there is a direct
relation between fibre anatomy as detected by DTI on the one hand, and results of fMRI
experiments measuring brain function on the other. This introductory chapter will be followed
by:

Chapter 2 which will give an introduction to nuclear magnetic resonance imaging and to
the physics of diffusion. This chapter will also contain a short explanation of the term
“tensor”.

Chapter 3 describes how diffusion coefficients can be measured by means of NMR, and how
the complete diffusion tensor can be obtained.

Chapter 4 is dedicated to the implementation of diffusion tensor imaging experiments on a
clinical magnetic resonance imaging system. It gives a description of the experimental
setup.

1The cortex is the outer 2 to 5 mm thick layer of grey matter that covers the cerebrum.
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Chapter 5 contains a discussion of possible sources of measurement errors, along with strate-
gies for avoiding them.

Chapter 6 reports on experiments that are designed to demonstrate whether two brain regions
that are connected by a dominant WM fibre show a high correlation of neuronal activity.

Chapter 7 summarizes the results of this thesis.





5

Chapter 2

Basics

2.1 Nuclear magnetic resonance

With the discovery of X-rays in 1895 a type of electromagnetic radiation became available that
was able to penetrate biological tissue. This made insights into the intact human body possible
without the need for surgical operation. Biological tissue is also penetrated by sound with
wavelengths above 100 µm. This ultra-sound is also being used for medical imaging. Besides
the wavelength region of X-rays (λ ≈ 1 Å), electromagnetic radiation with wavelengths above
1 m is also able to penetrate tissue. However, if radiation in this radio frequency “window”
is to be used for medical imaging, the imaging principle that is used with X-rays would only
allow a spatial resolution of about 1 m: the radiation wavelength sets a principal limit to the
spatial resolution of any imaging method based upon attenuation.1 Thus for imaging with
radiation wavelengths in the region of 1 m a completely different principle must be applied. A
basis for such a technique is supplied by the phenomenon of nuclear magnetic resonance (NMR)
discovered in 1946 [30, 31]:

• The magnetization of a sample within a static magnetic field can be manipulated by high
frequency radiation. After such an excitation the magnetization vector precesses about
the magnetic field direction.

• The contributions of the atomic nuclei to the measurable magnetization are oscillating
functions of time. The oscillation frequency is proportional to the magnetic field strength
at the location of the nucleus.

NMR tomography methods are widely applied in medicine. Moreover, high resolution NMR
spectroscopy has become an important tool for investigating molecular structure.

2.1.1 The basic NMR experiment

The total angular momentum, J, of an atomic nucleus consists of the orbital angular momenta
and the spins of the protons and neutrons forming the nucleus. J is often referred to as the
spin of the nucleus, although the nucleons’ orbital angular momenta also contribute to the total
angular momentum. For simplicity, we restrict ourselves to hydrogen nuclei. In this case, there

1The minimum half aperture that is required to observe the first minimum of the diffraction pattern of two
point light sources separated by d can be calculated from sinϕ = λ/d.[29, p. 493] With d < λ no ϕ satisfies this
condition.
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is no orbital angular momentum. The angular momentum of a nucleus gives rise to a magnetic
dipole moment, µ. In the case of hydrogen where no coupling between angular momenta needs
to be considered, spin and magnetic moment are parallel,2

µ = γJ. (2.1)

The proportionality constant, γ, is called the magnetogyric ratio. It is a property of the nucleus
under consideration. A classical proton moving in a circular orbit with the angular momentum
J would have a magnetic moment corresponding to γ = e/(2mp).

3 Actually this relation holds
only for orbital angular momenta. In the case of spin we have to write γ = gse/(2mp). For
protons we find experimentally gs = 5, 5858. A classical treatment would always yield gs = 1.

4

The observation that the angular momentum, and thus the magnetic dipole moment, of
a nucleus in a magnetic field cannot be oriented arbitrarily is essential for an understanding
of nuclear magnetic resonance. This behaviour of angular momenta is called quantization of
orientation. In quantum mechanics it follows from the eigenvalue equation for the operator that
represents the measurement of the component of the angular momentum along the magnetic
field direction. If the z direction is chosen to be the magnetic field direction, this operator is
denoted as Ĵz. For convenience, Ĵx, Ĵy, Ĵz are often replaced by the dimensionless operators

Îi = Ĵi/�, with i = x, y, z and � = h/(2π) where h is Planck’s constant. The eigenvalue
equations for Îz and Î2 are commonly written in the form

Î2 |Im〉 = I(I + 1) |Im〉 (2.2)

Îz |Im〉 = m |Im〉. (2.3)

The magnetic quantum number, m, can assume the values −I,−I + 1, . . . + I. For hydrogen
nuclei the angular momentum or “spin” quantum number is I = 1

2
, hence m = ±1

2
. This means

that a measurement of the z component of the angular momentum, can only yield the results
±1

2
�. These two possible results correspond to the two possible orientations of the angular

momentum with respect to the direction of the magnetic field. In contrast to the direction of
J, recorded as a result of the measurement, the direction of the vector of expectation values of
the components of J is not quantized, i.e. it can point to any direction in space [33, p. 16].
The energy of a proton in a magnetic field is determined by the orientation of the magnetic

moment relative to the magnetic field direction. The Hamilton operator which corresponds to
a measurement of the energy is Ĥ = −µ̂ · B. Assuming the field to be aligned along z and
using equation (2.1) the Hamiltonian can be written as

Ĥ = −γ�ÎzB. (2.4)

Thus, if the magnetic field vector points in z direction, the energy depends on the z component
of the proton’s angular momentum. The two states corresponding to m = ±1

2
differ in energy

2If orbital angular momenta are present the situation is more complicated. However, the magnetic moment
vector may still be defined in such a way that it is parallel or antiparallel to I.[32, p. 58] The property of two
quantum mechanical (vector) operators of being parallel is expressed in terms of their matrix elements.[33, p. 2]

3This coincides with the value we would calculate for a rotating charged sphere with angular momentum J

in the classical picture. mp is the mass of a proton, e is the elementary charge.
4An explanation of why the classical expectation does not coincide with the experimental value requires

quantum electrodynamics in the case of the electron. The anomalous magnetic moment of protons and neutrons
can be explained by their substructure which is dealt with in the framework of the standard model [34, sections
2.2.4.1 and 2.4.5.2].
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by ∆E = �ω where

ω = γB (2.5)

is called the Larmor frequency. At B = 3 Tesla the Larmor frequency for hydrogen nuclei is
ω = 2π · 125.3 MHz.
To derive the equation of motion for the magnetic moment, we use the equations of motion

for the operators Îx, Îy, Îz which are not explicitly time-dependent,

dÎx
dt
=

i

�

[

Ĥ, Îx

]

(and cyclic permutations of x, y, z). (2.6)

By means of the commutation relations for angular momenta,
[

Îx, Îy

]

= iÎz (and cyclic permutations of x, y, z), (2.7)

and using equation (2.1) and the definition of the time derivative of operators, we obtain

d〈µ̂〉
dt

= 〈µ̂〉 × γB (2.8)

where 〈µ̂〉 is the vector composed of the expectation values of the components of µ̂. Hence
the expectation values 〈µ̂x〉 and 〈µ̂y〉 are time dependent. They behave as if µ precessed about
the magnetic field direction with the Larmor frequency ω. The classical description would also
yield this result: in a magnetic field a body that carries a magnetic dipole moment is subjected
to a torque T = µ × B that tries to align the magnetic moment with the direction of the
external field. If the body possesses angular momentum due to a rotation about the direction
of the magnetic moment then the magnetic moment is not simply flipped to the field direction
but rather precesses about this axis.
In order to find out how the wave function of a spin is related to the time evolution of

the expectation values of 〈µ〉, we realize that the state of a single spin (with I = 1
2
) can be

expressed as a complex linear combination of the two eigenstates,

|ψ(t)〉 =
+ 1

2
∑

m=− 1
2

am(t) |m〉 (2.9)

with

am(t) = cm e−
i
�
Emt, Em = −γ�Bm. (2.10)

Equation (2.9) is the general solution of the stationary Schrödinger equation. If we express the
cm by

c+ 1
2
= aeiα, c− 1

2
= beiβ (a, b, α, β ∈ R, a, b � 0), (2.11)

where due to normalization a2 + b2 = 1, it can be shown [33, section 2.2] that the expectation
values 〈µi〉 follow

〈µ̂x(t)〉 = r sin θ cos φ(t) (2.12a)

〈µ̂y(t)〉 = r sin θ sin φ(t) (2.12b)

〈µ̂z(t)〉 = r cos θ (2.12c)
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with r =
γ�

2
, φ(t) = β − α− ω0t, cos θ = a2 − b2. (2.13)

These functions satisfy the equations (2.8). a2 and b2 describe the probabilities of finding a
spin in the eigenstates, and φ(t) = β − α − ω0t may be considered as the phase

5 of the spin.
Equations (2.12a)–(2.12c) can be interpreted as the equation of motion in polar coordinates for
a vector of length r and azimuth θ that precesses with angular velocity −ω0 about the vertical
axis. In accordance with (2.5) we define a vector ω = −γB such that ω = |ω| > 0.
So far, equation (2.8) only concerns the expectation values of the components of magnetic

moment of a single spin. We now wish to measure the vector M of macroscopic magnetization
which is the magnetic dipole moment per unit volume. In order to calculate the magnetization
of an ensemble of many spins, we have to average over these without knowing the exact wave
functions of the individual spins. Equation (2.8) is also valid for the expectation values of the
components ofM, provided that the spins in the ensemble do not interact with each other [33,
section 2.3]:

d〈M̂〉
dt

= 〈M̂〉 × γB. (2.14)

The vector 〈M̂〉 is an implicit average over the ensemble.6
The population of the two eigenstates in thermal equilibrium at the temperature T can be

described by a Boltzmann distribution,

N−1/2

N+1/2

= exp

[

−�ω

kT

]

(2.15)

where Nm is the probability of finding a spin in the eigenstate |m〉, averaged over the ensemble,
and k is Boltzmann’s constant. At the magnetic field strengths that can be produced in a
laboratory the energy difference �ω at room temperature is so small that the ratio of the pop-
ulation numbers deviates from unity by only approximately 10−5. The difference in population
gives rise to a macroscopic magnetization of the sample. In thermal equilibrium M points in
the direction of the external magnetic field because the dipole moments 〈µ̂〉 of all protons do
not precess in phase but all phases β − α between 0 and 2π occur with the same probability
(hypothesis of random phases [33, section 5.4]).

The rotating frame of reference

Equation (2.14) remains valid if we replace 〈M̂〉 by the classical vectorM. Morevover, it is also
valid for time varying B fields [33, p. 19]. Therefore it can be used as a classical equation of
motion for M to study how a time dependent magnetic field influences the magnetization. In
the presence of an oscillating magnetic field in the radio frequency range7 the main magnetic
field, B0, and the applied oscillating field, B1(t), add to give an effective magnetic field, Beff(t),

5or, to be more exact, the expectation value of the observable “phase”
6The state of the ensemble can be described with the statistical operator, ρ̂. For the state of the ensemble

after a measurement, cf. [35, section 3.7§3]. For the time evolution of the statistical operator, see [35, section
3.7§4] and [33].

7The oscillating field has to be dealt with in near field approximation, i.e. for the distance r to the source of
the magnetic field, r ≪ λ may be assumed.
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and the spins now precess about the time dependent direction of this effective field. Assume a
circularly polarized magnetic field

B1(t) = B1 cos(ωt)ex − B1 sin(ωt)ey (2.16)

that rotates in the xy plane in the same sense as the spin precession. In a coordinate system
S′ that rotates relative to the laboratory frame of reference, S, with frequency ω about the z
axis, the situation can be described in a simple way. In the rotating frame B1 is stationary.
The magnetic moments behave as if they experienced the effective field

B′
eff = (B0 −

ω

γ
)ez′ +B1ex′. (2.17)

(The origin of time was chosen to be the time when the x axes of the two frames of reference
are coincident.) If, moreover, ω = ω0, the z′ component of the effective field vanishes, and we
remain with B′

eff = B1ex′ . In this case the magnetization vector simply precesses about the
x′ axis. Viewed from the laboratory frame of reference, M simultaneously precesses about the
directions of B0 and B1 [36, p. 36]:

M(t) =M0 (sinω1t sinω0t ex + sinω1t cosω0t ey + cosω1t ez) (2.18)

with the initial condition M(0) = M0ez. The vectors ex, ey, ez are unit vectors along the x,
y, and z axes of the laboratory frame, respectively, and ω1 = γB1. Since the precession about
B0 is usually much faster, the vertex of the vectorM moves on a spiral-shaped trajectory on a
spherical surface. If the oscillating field is applied in the form of a short high frequency pulse of
duration ∆t the magnetization precesses during this time period about the x′ axis (according
to the left-hand rule) through the angle

θ = γB1∆t. (2.19)

This flip angle is an important property of such a radio frequency (RF) pulse. It depends
on the amplitude and duration of the RF pulse, whereas the precession axis is determined by
the phase of the rotating field B1(t). A pulse with θ = π/2 and B1 = B1ex′ is termed a 90x
pulse. While in thermal equilibrium B0 andM are parallel, after the application of a 90◦ pulse
the magnetization vector, M, precesses within the xy plane about B0. In an appropriately
positioned receiver coil this induces an alternating voltage. This actual NMR signal decays
over time and is termed the free induction decay8 (FID).

RF perturbation of the spin state

In quantum mechanical terms, the B1 field modifies the time dependency of the complex factors
am(t) in equation (2.9). In the rotating frame of reference the time dependency of the am(t)
that arises from the stationary magnetic field is removed. The presence of the oscillating B1

field reintroduces a time dependency. It can be shown [33, section 2.6] that the spin state in
the rotating frame,

|ψ′(t)〉 = ã(t) |+ 1
2
〉+ b̃(t) |− 1

2
〉, (2.20)

8The term free induction emphasizes the absence of a B1 field.
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with ã(t), b̃(t) ∈ C evolves according to

ã(t) = ã(0) cos(ω1t/2) + ib̃(0) sin(ω1t/2) (2.21)

b̃(t) = b̃(0) cos(ω1t/2) + iã(0) sin(ω1t/2), (2.22)

still assuming that B1 is aligned with the x
′ axis. These equations allow the calculation of the

spin phases after the application of a 90◦ pulse. For a time t that satisfies ω1t = π/2 and that
may be called tπ/2, they simplify to

ã(tπ/2) = [ã(0) + ib̃(0)]c (2.23)

b̃(tπ/2) = [̃b(0) + iã(0)]c (2.24)

with c = cos(π/4) = sin(π/4). By recalling from equation (2.13) that in the rotating frame the
phase of a spin is given by

φ(t) = arg[̃b(t)]− arg[ã(t)] = arg[̃b(t)ã∗(t)], (2.25)

where arg[z] = ϕ if z = reiϕ and r, ϕ ∈ R, and by setting ã(0) = aeiα, b̃(0) = beiβ we obtain

φ(tπ/2) = arg[̃b(tπ/2)]− arg[ã(tπ/2)] (2.26)

= arg[̃b(0) ã∗(0)− i|b̃(0)|2 + i|ã(0)|2 + b̃∗(0) ã(0)] (2.27)

= arg[(b̃(0) ã∗(0)) + (b̃(0) ã∗(0))∗ + i(a2 − b2)] (2.28)

= arg[ 2 Re(b̃(0) ã∗(0)) + i(a2 − b2)] (2.29)

= arg[2ab cos(β − α) + i(a2 − b2)]. (2.30)

If we further take into account that a2 > b2 due to (2.15), assume without loss of generality
that a, b � 0, and rename φ(tπ/2) to g(δ) to emphasize that it is a function of δ = β − α, we
can write

g(δ) = φ(tπ/2) =







arctan a2−b2
2ab cos(δ)

+ π if cos(δ) < 0

arctan a2−b2
2ab cos(δ)

otherwise
. (2.31)

This function is symmetric about δ = π as can be seen by taking the complex conjugate of both
a(0) and b(0). Through differentiation we further find its maximum and minimum at δ = 0
and δ = π, respectively:

max
δ∈[0,2π)

g(δ) = g(π) = arctan
a2 − b2

−2ab + π = π − ε

min
δ∈[0,2π)

g(δ) = g(0) = arctan
a2 − b2

2ab
= ε

with some small ε > 0. Hence, if the phases at t = 0 are evenly distributed over the interval
[0, 2π), then after the 90◦ pulse the phase distribution will be centred at δ = π/2 and will cover
only the range [0 + ε, π− ε). The distribution width, π− 2ε, decreases with increasing a2 − b2.
Thus the random distribution of phases in equilibrium is disturbed by the RF pulse.9 This

9The resulting phase distribution is in fact the probability distribution function of a random variable that is
created by applying a deterministic function to another variable (the original phases). A method of calculation
can be found in [37, section 3.8].
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is the reason why the expectation values of the transversal magnetization components are not
zero after the pulse. Finally we use the relation [38]

π

2
− arctan x = arccos x√

1 + x2
(2.32)

to prove that

ε =
π

2
− θ (2.33)

with θ as defined in equation (2.13). Hence, the classical expectation agrees with the quantum
mechanical calculation: in equilibrium, the vectors µ = 〈µ̂〉 of the individual spins are equally
distributed over a cone with aperture θ aligned with the z axis. After the 90◦ pulse the
cone is tilted by 90◦, now being aligned with the positive y axis, resulting in a phase range
of [π/2 − θ, π/2 + θ] = [0 + ε, π − ε]. For the realistic estimate a2/b2 ≈ 1 + 10−5 at room
temperature we obtain ε ≈ 5 · 10−6.

Relaxation and Bloch equations

In thermal equilibrium M is stationary and parallel to the direction of the magnetic field,
M = M0ez. (The magnetic field may be oriented along z again). The transverse components
ofM that are measured in an NMR experiment decay when the system returns to equilibrium.
To discuss the processes that reestablish the equilibrium, it is convenient to consider the vector
components of M separately. The process that returns Mz to M0 is called spin-lattice or
longitudinal relaxation whereas the attenuation of Mx and My is called spin-spin or tranversal
relaxation. The return to equilibrium is usually modelled by an exponential time course. The
corresponding time constants are denoted by T1 for Mz (longitudinal) relaxation and by T2 for
Mx and My (transversal) relaxation such that

Ṁx = −Mx

T2
, Ṁy = −My

T2
, Ṁz = −Mz −M0

T1
. (2.34)

In MRI, the relaxation times T1 and T2 have an important influence on the signal-to-noise ratio
(SNR) in the image and the signal contribution of a specific tissue type. T1 relaxation involves
a change in the population of the two eigenstates. This requires an exchange of energy between
the spin system and its environment, the “lattice”. T2 relaxation, in contrast, does generally
not require an energy transfer to a reservoir [33, p. 34]. The reason for T2 relaxation is that the
spins exchange energy with each other, and phase differences between the spins arise. However,
the transversal magnetization components are also reduced by the eigenstate populations re-
turning to the equilibrium values. Therefore the mechanisms underlying T1 and T2 relaxation
cannot strictly be separated. Apart from the dephasing due to spin-spin interaction, a further
dephasing and consequent decrease of the Mx and My components occurs if the B0 field is
not perfectly homogeneous. In this case (which is the normal situation encountered in medical
imaging) the spins at different locations encounter a slightly different B0 and will accumulate
different phases over time. The totalMx and My of the sample will thus decay even faster than
they would due to T2 relaxation alone. The decay of transversal magnetization components
that arises from both dephasing due to spin-spin interaction and dephasing due to magnetic
field inhomogeneity is often described with the time constant T ∗

2 . It will later become apparent
that in contrast to T1 and T2 relaxation, the dephasing due to B0 inhomogeneities is reversible.
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Once Mz has reached its equilibrium value M0, there are no remaining transverse compo-
nents of M. Thus in summary the time constants always satisfy

T ∗
2 � T2 � T1. (2.35)

By combining the classical version of equation (2.14) with the phenomenological description
(2.34) of the relaxation processes we obtain the classical Bloch equations [39]:

dMx

dt
= γ(M×B)x −

Mx

T2
dMy

dt
= γ(M×B)y −

My

T2
(2.36)

dMz

dt
= γ(M×B)z −

Mz −M0

T1
.

The Bloch equations represent an equation of motion for M including relaxation, on a phe-
nomenological level of description. In the rotating frame of reference the effective field from
equation (2.17) has to be used instead of B. Flow and diffusion effects have been neglected in
this formulation but may also be included in the description (see also section 3.1) [40].
All relaxation processes arise from the motion of molecules, atoms, nuclei, or electrons. Ran-

dom motion of particles that carry electrical charge or magnetic moment produces fluctuating
magnetic fields. These fields influence the spins because they exert a torque on them. The effect
of fluctuating fields on the magnetization is described by equation (2.14). If we use the symbol
b for the fluctuating fields we find that dMi/dt does not depend on bi (with i = x′, y′, z′).
Consequently, T1 relaxation is only due to bx′ and by′ , whereas T2 relaxation may arise from
bx′ , by′ , or bz′ . On this basis, another statement can be made concerning the frequencies of the
field fluctuations (i.e. of molecular motion) responsible for each type of relaxation. In order to
perturb M, a torque has to be in effect over a period of time. fluctuations (i.e. of molecular
motion) cause which type of relaxation. Thus components of b that are static in the rotating
frame of reference most effectively perturb M. Static bz components in the laboratory frame
are also static in the rotating frame of reference. Hence the zero frequency in the motional
spectrum contributes to T2 relaxation. On the other hand, a static bx′ or by′ component in
the rotating coordinate system arises from a high (ω0) frequency component in the laboratory
system. Only the (laboratory) high frequency contributions lead to a static bx′ or by′ in the
rotating frame and consequently to T1 relaxation. These qualitative results are summarized in
Table 2.1. A more quantitative discussion can be found in [36, p. 59 ff.] and in [41, p. 46 ff.].

laboratory frame: rotating frame:
ω = 0 → static bz′ → T2 relaxation
ω = ω0 → static bx′ , by′ → T1, T2 relaxation.

Table 2.1: Contributions of different frequency components of molecular motion to relaxation (see
text).

Relaxation mechanisms

We now briefly describe the most important mechanisms that can lead to relaxation. They
rely upon some sort of interaction between a spin and its surroundings, and a fluctuating time
dependency of either the interaction or some property of the environment.
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magnetic dipole-dipole interaction. In many cases (especially for I = 1/2) this is the
most important relaxation mechanism. Although the separation of nuclei is very large
compared to their dimensions, the magnetic field produced by the magnetic moment of
spins influences the neighbouring spins. The interaction Hamiltonian fluctuates due to
molecular motion, leading to relaxation. The T2 values in solids are only of the order
of 10 µs [36, p. 48] due to the zero-frequency contribution to transverse relaxation (see
Table 2.1) [42, p. 93]. In liquids and in biological tissue T2 is usually much longer (see
Table 2.2).

electric quadrupole interaction. Nuclei with I > 1/2 can possess a nonspherical charge
distribution. In this case they have an electrical quadrupole moment that interacts with
local electrical field gradients produced by the electron shell of the molecule that contains
the nucleus. Reorientation of the molecule changes the electrical field gradient at the
location of the nucleus which establishes a relaxation mechanism.

chemical shift anisotropy. The electronic shells of atoms and molecules modify the magnetic
field that is experienced by a nucleus. The reason is twofold [43, p. 175]: moving electric
charges in a magnetic field are subjected to the Lorentz force such that circular electric
currents arise in the electronic environment of a nucleus. These currents give rise to a
small additional magnetic field Bl. Furthermore, the electronic shells are polarized by
the magnetic field. This distortion also produces an additional magnetic field, Bp. The
magnitude of both Bl and Bp is proportional to B0. The magnitude of the effective
magnetic field at the location of a nucleus can be written as

Blocal = B0 +Bl +Bp = (1− σ)B0 (2.37)

where σ is called the shielding factor. The resulting resonance frequency offset from ω0

is called the chemical shift. It is characteristic of the chemical environment of a nucleus
which is used in NMR spectroscopy to identify chemical compounds. The shielding factor
can depend on the orientation of the molecule relative to B0. The additional field −B0σ
and B0 need not be parallel, such that σ is a rank 2 tensor10. If σ is anisotropic then
random motion of molecules causes the tensor σ to fluctuate, modulating the magnetic
field at the nucleus and thus providing a relaxation mechanism.

spin-spin interaction (scalar coupling, J coupling). Spin-spin interaction is an indirect
interaction between nuclei in the same molecule. In contrast to the direct magnetic
dipole-dipole interaction, it is mediated through covalent bonds: The nuclear magnetic
moment causes a polarization of the molecular orbital. The resulting magnetic moment
of the orbital influences some other nucleus in the molecule. A time dependence of the
Hamiltonian is introduced if either the relative orientation of the magnetic moments of the
nuclei or their interaction via the molecular orbital fluctuates. The spin-spin interaction is
sometimes called scalar coupling since it is independent of the orientation of the molecule
with respect to the external magnetic field. Scalar coupling can also occur between a
nuclear and an electronic spin in paramagnetic substances and is then referred to as
contact interaction.

10See section 2.3 for a definition of the term tensor.
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spin-rotation. When a molecule rotates, its electrons give rise to a magnetic moment that
produces a magnetic field at the location of a nucleus in the molecule. Collisions between
molecules cause this local field to fluctuate, thereby generating a relaxation mechanism.

The relaxation time constants T1 and T2 depend both on the type of molecules that contain the
nuclei in question, and on the molecular environment. Thus different types of biological tissue
exhibit different relaxation rates while their proton densities are often very similar. In medical
applications of NMR the relaxation properties of tissues are the major basis for a distinction
between healthy and pathological tissue.

NMR measurements can yield information on a number of other parameters including pH,
temperature, concentration of different chemical species, diffusion coefficients, level of blood
supply within living tissue, and velocity or acceleration of flow.

1.5 T [44] 3 T [45]
T1/ms T2/ms T1/ms T2/ms

White matter 510 67 832 80
Grey matter 760 77 1331 110
CSF 2650 280

Table 2.2: Typical relaxation times in brain tissue and cerebrospinal fluid at 1.5 T and 3 T magnetic
field strength.

The free induction decay

We now consider the properties of an NMR signal following a single RF pulse, the free induction
decay. It is often useful to write the transverse components of the magnetization vector,M, as
a complex number

Mxy(t) =Mx(t) + iMy(t) ∈ C. (2.38)

The equations (2.36) imply that the transverse magnetization after a 90◦ pulse in a liquid can
be written as

Mxy(t) =M0e
iωte−t/T

∗

2 (2.39)

where T2 was replaced by T ∗
2 to account for dephasing due to magnetic field inhomogeneities.

11

The magnetization for flip angles θ other than 90◦ can be obtained by multiplying the right
hand side with sin θ. Commonly the voltage signal induced in the receiver coil by the precession
ofM is mixed (multiplied) with a reference that oscillates with the frequency ω0. The remain-
ing signal only contains the frequency offsets ω∆ = |ω| − |ω0|. Only these lower frequencies
can be processed by digital-to-analog converters. In order to discriminate between positive
and negative difference frequencies ω∆ the voltage signal is usually mixed with two reference
oscillations that are π/2 out of phase, which yields two signals that are proportional toMx and
My, respectively, due to (2.14) [46]. This process is called quadrature detection. The detected

11In solids, the FID can be approximated by a Gaussian [36, section 2.4].
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signal can thus also be thought of as a complex time-dependent quantity, S(t) ∼ Mxy(t). After
the 90◦ pulse this signal may be written as

S(t) = S0e
iω∆te−t/T

∗

2 eiφ (2.40)

where φ is an arbitrary, adjustable parameter of the mixing process (receiver phase). In most
applications of NMR, the frequency spectrum of S(t),

S̃(ω) = S0

(

(T ∗
2 )

−1

(T ∗
2 )

−2 + (ω − ω∆)2
− i

ω − ω∆

(T ∗
2 )

−2 + (ω − ω∆)2

)

eiφ, (2.41)

is to be investigated. For φ = 0, the real part of S̃(ω) is a Lorentzian symmetrical lineshape
of 2/T ∗

2 full width at half maximum (FWHM), centred at ω = ω∆. It is called the absorption
spectrum. The imaginary part in the case φ = 0 is antisymmetric about ω = ω∆. It is
called the dispersion spectrum.12 If φ �= 0 then real and imaginary parts of the spectrum
are linear combinations of absorption and dispersion spectrum. However, pure absorptive and
dispersion parts can be obtained by shifting the complex phase of S̃(ω). This process is known
as “phasing” the spectrum. A time delay between the end of the RF pulse and the start of
acquisition has the same effect as a deviation of φ from 0. Since nuclei with different resonance
frequencies develop different phase shifts during this time, the phase shift necessary to separate
absoprtion and dispersion part may depend on the frequency. In this case a phase correction
that is proportional to frequency must be applied. Since the magnitude spectrum is broader
than the purely absorptive Lorentzian part [48, section 3.4], in spectroscopy the real part of the
phase corrected spectrum is generally preferred to the magnitude spectrum. T2 relaxation and
magnetic field inhomogeneity determine the observed angular frequency linewidth according to
[41, p. 4]

ω1/2 =
1

T ∗
2

=
1

T2
+

γ

2
∆B0 (2.42)

where ∆B0 is the FWHM of the B0 distribution.

The spin echo

It is technically impossible to produce an absolutely homogeneous magnetic field within the
sample. This problem is particularly important in medical imaging where sample dimensions
are large. To reduce the effects of main field inhomogeneity a second RF pulse after the
excitation may be used. After the magnetization has been tipped away from its equilibrium
orientation parallel to the main field axis, z, the magnetic moments of the protons precess
in-phase. The phases of two protons that experience a slightly different magnetic field start
to diverge immediately after the excitation. If at the time τ after excitation a 180◦ pulse
is applied, then the spins precess after the pulse about B0 as before but their “order” has
changed: now the spins with the higher Larmor frequency precess “behind” the spins with
lower frequency, and the phase difference between them now decreases. After another time
delay τ after the second RF pulse the phase difference will be zero. At this time point the
transverse magnetization component and the detectable signal assume a maximum before they

12The absorption spectrum represents the absorption of energy by the nuclear spins as a function of angular
frequency[47, section 7.6]. The term “dispersion” spectrum is based on an optical analogy.
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decay with the time constant T ∗
2 again. This signal maximum is called the Hahn Spin Echo.

The symbol TE is commonly used for the time 2τ between excitation and the signal maximum.
In contrast to the reversible T ∗

2 decay, the T2 decay is irreversible.
At the centre of a spin echo the phase shift due to magnetic field inhomogeneity is zero.

At a time period ∆t before or after the echo centre the phase of a spin at a location r can be
expressed as ω0(t−∆t)−ϕ(r) or ω0(t+∆t)+ϕ(r), respectively, where ϕ is the phase error due
to field inhomogeneity. By choosing the origin of time at the echo centre (which is equivalent to
applying a constant phase shift) we achieve that the complex signal of the spin echo is invariant
under simultaneous conjugation and reflection about the echo centre since

ei(−ω0∆t−ϕ(r1)) + ei(−ω0∆t−ϕ(r2)) =
(

ei(ω0∆t+ϕ(r1)) + ei(ω0∆t+ϕ(r2))
)∗

(2.43)

holds for the superposition of signal contributions from different locations. Hence, provided that
the centre of the spin echo is sampled in the middle of the acquisition window, the (inverse)
Fourier transform of the data is a purely real Lorentzian, in contrast to the FID spectrum. A
constant phase factor renders it complex but does not increase the linewidth of the magnitude
spectrum: there is no necessity for “phasing” the spectrum.13

The full removal of field inhomogeneity effects is only possible if the protons do not move
during the experiment. Moving spins experience different magnetic fields over time such that
the phase differences cannot be refocused by applying an RF pulse. Hence, although the
signal intensity at the spin echo centre is not directly affected by the T ∗

2 decay, it is affected
by diffusional motion of spins if the magnetic field is not perfectly homogeneous. The signal
amplitude at the echo centre depends on the gradient G of the magnetic field, according to (see
section 3.2) [49, 50, 40]

S(2τ) = S(0) exp

(

−2τ
T2

)

exp

[

−Dγ2G22

3
τ 3
]

(2.44)

where G and the diffusion coefficient D are assumed to be stationary. In order to reduce the
dependence on diffusion, Carr and Purcell [50] used a train of 180◦ pulses to repeatedly refocus
the magnetization with a train of refocusing RF pulses, 90◦–τ–180◦–2τ–180◦–2τ–· · · . At times
τ after each 180◦ pulse, a spin echo occurs. The signal amplitude at the centre of the echo at
time t is [41, section 2.4]

S(t) = S(0) exp

(

− t

T2

)

exp

[

−Dγ2G2 1

3
tτ 2
]

. (2.45)

By adjustment of τ the diffusion term may in principle be made as small as desired. However,
imperfections of the 180◦ pulses can render the refocusing in the experiment by Carr and Purcell
incomplete. Phase errors due to deviations of the flip angle from 180◦ accumulate if the phase
of 90◦ and 180◦ pulses are the same. This can be avoided if the precession axis of all refocusing
pulses is chosen to be parallel to the current direction of the transverse magnetization that was
created by the initial 90◦ pulse in the x′y′ plane. Hence 90◦ and 180◦ pulses have to be 90◦ out
of phase. As this scheme was proposed by Meiboom and Gill [51] this requirement is called the
CPMG condition.
Dephasing due to magnetic field inhomogeneities (either intra-voxel dephasing or diffusion

effects) is significant if samples are investigated that have a strongly nonuniform distribution
of magnetic susceptibility, χ. At the boundaries between tissue and air, for example, strong
background gradients can occur, in particular at high magnetic field strengths (cf. p. 26).

13T2 relaxation and non-refocusable phase changes have been neglected in this consideration. See [36, p. 72 f.].



2.1. Nuclear magnetic resonance 17

Coherence pathways

It is also possible to generate echoes by RF pulses with flip angles other than 180◦. For example,
a 90◦–τ–90◦–τ sequence can also generate an echo [49]. The echo that forms at the end of the
sequence 90◦–τ1–90

◦–τ2–90
◦–τ1 irrespective of the value of τ2 is called a stimulated echo (τ1 �= τ2)

[49]. In principle all echoes that occur can be accounted for by considering the magnetization
vectors of groups of nuclei that experience the same magnetic field (isochromats). If the number
of pulses is large it is difficult to account for the echo formation using the isochromat approach.
However, it is possible to predict time and amplitude of the echoes by means of a formalism
that is based on the Bloch equations.
The effect of a large number of RF pulses on the magnetization can be derived by successive

application of the Bloch equations in both the presence and absence of the rotating RF fields
[52]. It may be assumed that the pulses have rectangular shape (constant amplitude during
the pulse), and that the pulse duration tw is small compared to T1, T2, and 1/|ω0−ω|, and that
B1 is large (ω ≫ |ω0 − ω|, 1/T1, 1/T2). Equation (2.18) describes the effect of an RF pulse on
the magnetization vector as a rotation of M about the axis of the RF field such that in the
rotating frame of reference14

Mx′(t+ tw) = Mx′(t)

My′(t+ tw) = My′(t) cos θ −Mz′ sin θ (2.46)

Mz′(t+ tw) = My′(t) sin θ +Mz′ cos θ

with B1 = B1ex′, B1 > 0 as in equation (2.16), and θ = ω1tw. Relaxation effects have been
neglected. With the definition F (t) = Mx′(t) + iMy′(t) as in (2.38) and using the identity
2 cos2 θ = 1 + cos(2θ) we can rewrite this to

F (t+ tw) = F (t) cos2
θ

2
+ F ∗(t) sin2

θ

2
− iMz′(t) sin θ ∈ C (2.47)

Mz′(t+ tw) =Mz′(t) cos θ + ImF (t) sin θ ∈ R . (2.48)

This is the basis for the “partition formalism” proposed by Woessner [52]. By successive
application of these rules it is possible to calculate the echo amplitudes of complicated pulse
trains with any refocusing flip angle [53, 54, 55].
Let us consider a pulse sequence 90◦–τ–θ–2τ–θ–2τ–θ · · · . The 90x pulse is applied to the

equilibrium situation with M = M0ez′. After the subsequent dephasing in the presence of
magnetic field inhomogeneities and applied gradients the magnetization is

F (0) =Mx′ + iMy′ =M1, M
(0)
z′ = 0 (2.49)

where we have introduced a new symbol M1. If we want to calculate the effect of a train of
RF pulses we repeatedly have to apply equations (2.47) and (2.48). We always specify the
magnetization in terms of F and Mz′ which may be combined to a vector in C × R. The
magnetization components after the nth pulse following the 90◦ pulse are denoted by F (n) and
M

(n)
z′ . After the first RF pulse with flip angle θ1 we obtain

(

F (1)

M
(1)
z′

)

=

(

F (0) cos2 θ1
2
+ F (0)∗ sin2 θ1

2

ImF (0) sin θ1

)

=

(

M11 +M1−1

M10

)

(2.50)

14For positive θ the equations (2.46) describe the result of a 90x RF pulse as a rotation of M about the
x′ axis according to the left-hand rule. B1 is oriented along the positive x′ axis. If R(θ) is a twodimensional
matrix representing a mathematically positive rotation by θ about ex′ then the effect of the pulse is a mapping
(

M
z′

M
y′

)

�→ R(−θ)
(

M
z′

M
y′

)

, or
(

M
y′

M
z′

)

�→ R(θ)
(

M
y′

M
z′

)

.
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where the last equal sign defines new symbols forM
(1)
z′ and the parts of F

(1) (in the same order
as before the equal sign). The symbolsM11,M1−1,M10 can serve to predict the echoes occurring
with the given pulse sequence. In Equation (2.50) two parts of the transverse magnetization
are considered separately: M11 is proportional to Mx′ + iMy′ , and M1−1 is proportional to
Mx′ − iMy′ . This latter part of the transverse magnetization is phase reversed relative to the
situation immediately after the 90◦ pulse. It will be completely rephased at time τ after the θ1
pulse which is equal to the duration of the dephasing period between the 90◦ and the θ pulse.
For θ1 = 180

◦,M11 = 0 and |M1−1| = |Mx′+iMy′ | which is the Hahn spin echo described above.
For θ1 �= 180◦ however, the echo amplitude will be reduced relative to the spin echo amplitude
by the factor sin2(θ/2).
Let us now consider how the formalism works for n pulses. Through repetitive application

of the transformation rules starting from M
(1)
z′ = ImF (0) sin θ1 we can prove that any M

(n)
z′ can

be expressed as

M
(n)
z′ =

n−1
∑

j=0

ImF (j)cj =
i

2

n−1
∑

j=0

(F (j) − F (j)∗)cj (2.51)

with some cj ∈ R. Equation (2.47) yields for the transverse component after the nth pulse

F (n+1) = F (n) cos2
θn+1
2
+ F (n)∗ sin2

θn+1
2

− i sin θn+1M
(n)
z′ . (2.52)

With the expression for M
(n)
z′ from equation (2.51) we can rewrite this as a linear combination

of the F (0), . . . F (n) and their complex conjugates,

F (n+1) =

n
∑

j=0

F (j)cj +

n
∑

j=0

F (j)∗dj, with some cj , dj ∈ R . (2.53)

Thus F (n+1) is a linear combination of F (0), . . . F (n), F (0)∗, . . . F (n)∗. Since this holds for all n
we conclude that F (n+1) must also be a linear combination of F (0) and F (0)∗. Hence we can
assume that any F (n) may be written in the form15

F (n) =
∑

i

Mqi
0···qi

n−1,1
+
∑

i

Mqi
0···qi

n−1,−1 (2.54)

M
(n)
z′ =

∑

i

Mqi
0···qi

n−1,0
(2.55)

with Mqi
0···qi

n−1,1
= uF (0) and Mqi

0···qi
n−1,−1 = vF (0)∗ (2.56)

where u, v ∈ R and qij ∈ {0, 1,−1}. Using this nomenclature, the magnetization after an RF
pulse can be expressed in terms of the magnetization before the pulse. We assume that F (n)

and M
(n)
z′ are expressed in the form (2.54) and (2.55) and aim at expressing F (n+1) and M

(n+1)
z′

in the same form. From equation (2.48) we can infer that

M
(n+1)
z′ =

∑

i

Mqi
0···qi

n−1,0
cos θn+1 + Im

[

∑

i

Mqi
0···qi

n−1,1
+
∑

i

Mqi
0···qi

n−1,−1

]

sin θn+1 (2.57)

15The symbols qi
0 · · · qi

n etc. represent any train of indices. If qi
j occurs in different equations it can represent

different values.
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for which we define (in the same order) the symbols

∑

i

Mqi
0···qi

n−1,0,0
+
∑

i

Mqi
0···qi

n−1,1,0
+
∑

i

Mqi
0···qi

n−1,−1,0 (2.58)

such that M
(n+1)
z′ assumes the form (2.55). In order to express the transverse component,

F (n+1), in the form (2.54), we have to reform the last term in equation (2.52). Using again
that all F (n) can be expressed as a linear combination of F (0), F (0)∗, we can express the F (j) in
equation (2.51) by F (0), F (0)∗ and obtain by reordering

M
(n)
z′ =

i

2

∑

i

(F (0) + F (0)∗)di, di ∈ R. (2.59)

Due to this relation we can write equation (2.52) in the form

F (n+1) = F (n) cos2
θn+1
2
+ F (n)∗ sin2

θn+1
2
+
∑

i

Mqi
0···qi

n−1,0,1
+
∑

i

Mqi
0···qi

n−1,0,−1 (2.60)

where Mqi
0···qi

n−1,0,1
and Mqi

0···qi
n−1,0,−1 satisfy (2.56), with real proportionality constants. The

first two terms in this equation can be expressed as

F (n) cos2
θn+1
2
+ F (n)∗ sin2

θn+1
2
=

=

[

∑

i

Mqi
0···qi

n−1,1
+
∑

i

Mqi
0···qi

n−1,−1

]

cos2
θn+1
2
+

[

∑

i

M∗
qi
0···qi

n−1,1
+
∑

i

M∗
qi
0···qi

n−1,−1

]

sin2
θn+1
2

=
∑

i

Mqi
0···qi

n−1,1,1
+
∑

i

Mqi
0···qi

n−1,−1,1 +
∑

i

Mqi
0···qi

n−1,1,−1 +
∑

i

Mqi
0···qi

n−1,−1,1 (2.61)

where the last line is a definition that corresponds to the summands in the preceding line in
the same order. Combining (2.60) and (2.61) we can finally rewrite equation (2.52) as

F (n+1) =
∑

i

Mqi
0···qi

n,1
+
∑

i

Mqi
0···qi

n,−1 (2.62)

such that F (n+1) has the same form as F (n) in equation (2.54).
We can successively express the magnetization after the nth pulse following the 90◦ pulse in

terms of theMq0···qn−1
that describe the magnetization before the pulse, and then introduce new

symbols Mq0···qn−1qn
for the rephasing and dephasing parts of M after the pulse. The history

of a magnetization part Mq0···qn
can then be derived by inspection of its indices. The train of

indices 1, 0,−1 for example characterizes a magnetization part that can be thought of as being
first in the transverse plain, after θ1 parallel to z′, and after θ2 transversal again and rephasing.
This is the mechanism that leads to the stimulated echo. If the RF pulses are assumed to be
infinitesimally short and if the θn pulse occurs at the time t = tn, the term Mq0···qn

will give
rise to an echo at t = tn + T if

q0τ +
n−1
∑

i=1

qi2τ + qnT = 0 and qn �= 0. (2.63)
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This condition is equivalent to requiring that the accumulated phase of a spin is zero at t = tn+T
irrespective of its position. The echo amplitude will be determined by the sum of all |Mq0···qn

|
that satisfy the condition (2.63). Each (q0, . . . qn) represents a “coherence pathway”, i.e. a part
of the magnetization with a common history in the sense described above.
Woessner [52] gives a physical interpretation of equations (2.47) and (2.48). The probability

of finding a spin at the time t + tw in the state |+ 1
2
〉 if it was in the state |− 1

2
〉 at time t (and

vice versa) is sin2(θ/2), and it is cos2(θ/2) of finding it in the same state as before (transition
probability) [56]. He describes the effect of an RF pulse as follows [52]: If θ �= π the RF pulse
separates the transverse magnetization into two parts. The first is proportional to F (n)∗ and
due to nuclei that have “undergone a quantum transition”. The second is proportional to F (n)

and due to those nuclei of which the state is untouched by the pulse. However, this would
be in contradiction with the discussion on page 9 where we have seen that every spin state is
modified by the RF pulse. Woessner’s interpretation is hence incompatible with our quantum
mechanical description of the NMR experiment.
The effect of pulsed magnetic field gradients can be incorporated in the formalism. During

a time period [a, b] they impose an additional position-dependent phase shift

La,b =

∫ b

a

γr ·G(t)dt (2.64)

on the spins. The condition (2.63) for echo formation then assumes the form

q0L0,τ +
n−1
∑

i=1

qiL(2i−1)τ,(2i+1)τ + qnL(2n−1)τ,(2n−1)τ+T = 0 and qn �= 0 (2.65)

which is identical with (2.63) for a constant gradient. By appropriate application of gradient
pulses it is therefore possible to suppress unwanted coherence pathways. This is sometimes
desired to avoid interference between echoes that are due to different pathways. In a spin echo
experiment for example signal contributions due to transverse magnetization created by an
imperfect 180◦ pulse can be removed by applying two identical gradient pulses before and after
the 180◦ pulse, respectively. Such gradients are generally called spoiler gradients.

2.1.2 NMR imaging

For the investigation of large inhomogeneous samples it is often important to obtain the spatial
distribution of a measured parameter in the object. Due to the large abundance of water in
biological tissues, such imaging experiments are most widely applied in the field of 1H NMR.
In NMR imaging the dependence of the resonance frequency on the magnetic field is used to
localize the protons that give rise to an NMR signal. By means of a DC current in a coil the
magnetic field may deliberately be rendered inhomogeneous. If the coil is suitably designed
the magnetic field strength depends (at least within a certain volume) linearly on the spatial
coordinate in the direction of the applied field gradient, or in other words, G = ∇B(r) is
independent of r:

B(r) = (B0 + r ·G)ez, ω(r) = γ(B0 + r ·G). (2.66)

The additional magnetic field is chosen to be much larger than magnetic field inhomogeneities
and field shifts caused by the chemical environment of the spins. By using pulsed field gradi-
ents in three orthogonal directions instead of a constant gradient in one direction, the spatial
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localization in three directions can be achieved. Slice-selective excitation, frequency and phase
encoding are the main concepts used today to this purpose. The imaging principle (“back-
projection”) that was applied in the first imaging experiments [57] was largely replaced by the
two-dimensional Fourier transform or “spin-warp” method [58] that is presented below.

Slice selection

Due to the finite duration of an RF pulse, its spectrum contains more than one frequency.
Let us denote the full width at half maximum of the angular frequency profile by ∆ω1. Only
protons with a Larmor frequency that matches one of these frequencies can be excited by the
RF pulse. A spatially constant field gradient during the application of an RF pulse means
that only protons within a slice of the sample are excited. The slice will be perpendicular
to the direction of the field gradient, and its width will be proportional to the width of the
frequency spectrum of the RF pulse. For the purpose of the following discussion the slice will
be considered as oriented perpendicular to the z axis If we denote the centre frequency of the
pulse profile and the centre of the slice with ωcent

1 and zcent, respectively, and the RF bandwidth
and the slice thickness with ∆ω1 and ∆z, respectively, ∆z and zcent may be calculated by

ωcent

1 = γ(B0 +Gzcent) (2.67)

∆ω1 = γG∆z. (2.68)

For small tip angles (θ < 60◦) the amplitude of transverse magnetization as a function of the
resonance frequency (i.e. as a function of z) can be approximated by the Fourier transform of
B1(t) [36, p. 105]. This function is called the slice profile.
Since the protons within a slice of finite thickness have different resonance frequencies,

they will have different phases after the excitation. To avoid signal loss due to this intra-slice
dephasing, we have to rephase the spins with a further gradient pulse with inverted amplitude.
On the simplifying assumption that the spins are tipped instantaneously after half the duration
of the RF pulse, the spins will be completely refocused if the rephasing gradient has half the
duration of the slice excitation gradient pulse [36, p. 105]. For a refocusing RF pulse this
rephasing gradient pulse is not necessary because the magnetization will dephase during the
first half of the RF pulse, and rephase during the second half.

Frequency encoding

The protons within a selectively excited slice can also be distinguished by using the linear
spatial variation of the Larmor frequency in the presence of a magnetic field gradient. If the
slice is oriented perpendicular to z and a gradient G = Gex is applied,

ω(r) = γ(B0 + xG). (2.69)

If this field gradient is present during signal detection, the different frequencies in the detected
signal can be unravelled using Fourier analysis (see below). The number of spins in the selected
slice that have x coordinates in the range x+ dx then is proportional to the magnitude of the
signal found in the corresponding frequency range ω + dω. The gradient used for frequency
encoding is often called the readout gradient.
To avoid the necessity of phasing (see p. 15) the signal is usually acquired in the form of a

spin echo or a gradient echo: In the gradient echo alternative the readout gradient is preceded by
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Figure 2.1: Principle of phase encoding. The real part of the signal arising from nuclei at different
y positions is shown on the left. On the right, the real part of the initial signal, Sr0, is shown as
a function of the strength of the phase encoding gradient. The frequency at which Sr0 oscillates is
proportional to the y coordinate of the nucleus. Figure after [47].

a gradient pulse in the readout direction but with inverted amplitude (read dephase gradient).
This has the effect that the first part of the readout gradient neutralizes the dephasing effect
of the inverted gradient, and the signal maximum occurs when

∫ t

0
G(t′) dt′ = 0. The signal

acquired in this way is called a gradient echo. If a spin echo is to be measured the same
gradient scheme can be used, adjusting the read dephase in such a way that gradient and spin
echo coincide, i.e.

∫ t

0
G(t′) dt′ = 0 at the time of the spin echo centre. With the spin echo,

instead of the inverted gradient immediately before the readout gradient a gradient pulse of
the same polarity as the readout can be used before the 180◦ RF pulse.

Phase encoding

To resolve the spatial locations also along the y axis within the sample slice, the frequency
encoding mechanism cannot be used. A gradient perpendicular to the readout gradient would
superimpose on the readout gradient, and the precession frequency would be proportional
to the sum of the x and y coordinates. Nevertheless the fundamental relation (2.5) can be
used. The relative phase of a spin can be manipulated by switching to a higher or lower
precession frequency for a short period of time. If this is realized through a magnetic field
gradient pulse with G = Gyey, then after the pulse the spins will have acquired a phase shift
proportional to their y position. This experiment is repeated with many different, equally
spaced gradient strength values. The phase shift changes linearly with Gy, and the transverse
magnetization components of a contributing spin as a function of Gy oscillate with a frequency
that is proportional to the y coordinate of the spin. This behaviour is shown schematically
in Fig. 2.1. A Fourier analysis of the data acquired after this phase manipulation, using the
y gradient strength as the independent variable, can reveal the density of spins at a certain y
position.
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The concept of k space

Using slice selection, frequency encoding, and phase encoding, a two-dimensional image of
a sample slice can be produced. A complete three-dimensional representation of the sample
can be attained by frequency encoding in one and phase encoding in two other perpendicular
directions, or by phase encoding in all three directions. We now put the concepts of frequency
and phase encoding in a more mathematical form.
If we use the Bloch equations (2.36), neglect the relaxation terms, and denote by ρ(r) the

proton density at the position r, then the signal originating from an infinitely small volume dV
in complex notation is

dS(r, t) = ρ(r)dV eiφ(r,t). (2.70)

The time t may be measured from the centre of the excitation pulse. The exponent can be
written as

iφ(r, t) = iγ

[

B0t+

∫ t

0

r ·G(t′) dt′
]

. (2.71)

We may henceforth neglect the B0 term by considering only the quadrature signal after mixing
with the ω0 reference, such that only the offset frequencies ω − ω0 appear in the signal. By
integration of (2.70) over the sample volume we obtain the total received signal,

S(t) =

∫∫∫

ρ(r)e
iγr·

t
∫

0

G(t′) dt′

d3r. (2.72)

With the definition

k =
γ

2π

∫ t

0

G(t′) dt′ ∈ R
3 (2.73)

this equation assumes the form

S̃(k) =

∫∫∫

ρ(r) ei2πk·r d3r. (2.74)

Realizing that the right hand side is the Fourier transform of ρ(r), we can obtain ρ(r) by inverse
Fourier transformation of S̃(k),

ρ(r) =

∫∫∫

S̃(k) e−i2πk·r d3k. (2.75)

The equations (2.74) and (2.75) are fundamental to NMR imaging. They state that the detected
signal, S̃(k), is the Fourier transform of the proton density, ρ(r). This is the mathematical
representation of the principle of frequency and phase encoding. It helps to understand the
effect of complicated trains of gradient pulses in imaging experiments and to compare the
properties of imaging sequences [59]. The domain of definition of S̃ is called “k space”. In
two-dimensional Fourier imaging the term only refers to the kxky plane.
Let us assume that the frequency encoding, phase encoding, and slice selection gradients are

aligned along the x, y, and z axis, respectively, and that the gradient pulses have rectangular
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shapes. Then the components of the vector k are

kx =
γ

2π

∫ t

0

Bx(t
′) dt′

ky =
γ

2π

∫ t

0

By(t
′) dt′ =

γ

2π
Ga
yτ

kz = 0

where τ and Ga
y denote the duration and amplitude, respectively, of the phase encode gradient

pulse. The z component of k is zero since the time integral over the slice selection gradient
pulses vanishes if we have correctly refocused the slice gradients. The measurement yields the
complex values of S̃(k) for a finite range of discrete k values that are accessed through variation
of t and Ga

y. The signal is sampled at different times t during the readout gradient, and for
different values of Ga

y where both t and Ga
y values are usually equidistant. To avoid aliasing,

the Ga
y increment, G

a
y,inc, is chosen such that the phase increment between successive phase

encoding steps does not exceed π at the furthermost edges of the region to be imaged (the field
of view, FOV). This requirement leads to

Ga
y,inc =

2π

γτ FOV
and ky,inc =

1

FOV
. (2.76)

The starting value of Ga
y must be such that G

a
y = 0 is included. The order in which the kx and

ky values are accessed during the measurement can be represented as a graph in k space called
the k-space trajectory. By means of a two-dimensional inverse Fourier transform according
to equation (2.75) the measured S̃(k) values may be converted into an image of the proton
density distribution in the selected slice, ρ(r). Since phase shifts can render the inverse Fourier
transform of S̃(k) complex, its magnitude is usually displayed.

2.1.3 Fast imaging

The time required to image a slice of the human body can be of the order of minutes. In
particular the phase encoding steps require much time, for after each phase encoding step it
takes the magnetization several T1 periods to recover before the sample can be re-excited for
the next phase encoding step. The number of phase encoding steps is typically about 256 in
medical applications. Given an experiment that contains a single θx pulse which is repeated
with TR, the longitudinal magnetization immediately before the RF pulse is given by [36, p. 65]

Mz =M0
1− exp(−TR/T1)

1− cos θ exp(−TR/T1)
. (2.77)

Long acquisition times are a serious drawback in human applications. There are three main
reasons why short acquisition times are desirable:

1. Subject motion between successive phase encoding steps causes image artefacts. Physio-
logical motion due to respiration or cardiac activity can also induce artefacts. Particularly
in diffusion weighted imaging the effects of motion can be devastating (see section 5.8).

2. Experiments that require the acquisition of many images may take unacceptably long
for the subject, or patient. This problem is encountered for example in diffusion tensor
imaging since here averaging is crucial for an acceptable signal-to-noise ratio, and images
under different conditions have to be acquired.
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3. In some applications a train of images is acquired to sample the evolution of a time
dependent quantity. Often a subsecond temporal resolution is required. Examples are
the measurement of haemodynamic changes due to brain activity (see ch. 6), or the
observation of the passage of a contrast-agent bolus through a vascular network.

Different approaches have been proposed to minimize the acquisition time in MR imaging.
In most cases their application is a trade-off between scan time and image quality or spatial
resolution. Fast imaging techniques can be grouped into two categories.

1. Imaging sequences that minimize the time required for the spin system to recover from
an excitation. This can be achieved by excitation with small flip angles. In this case
the longitudinal magnetization has recovered shortly after each excitation such that the
time between the excitations can be minimized. The FLASH method [60, 61] is the most
common method in this category.

2. Sequences which try to minimize the number of excitations. Sequences that contain only
one excitation are called single-shot techniques. The complete image information is then
collected during the lifetime of transverse magnetization. In general, more than one line
of k space needs to be sampled per excitation. After a single excitation the transverse
magnetization is repeatedly refocused, and each echo is phase encoded independently.
The echo train can either be generated by a train of successive RF pulses (e.g. RARE),
or by magnetic field gradients that induce a train of gradient echoes (EPI).

As sequences in the first category have not been used for this thesis the following paragraphs
will be restricted to the principles and properties of sequences in the second category.

RARE — refocusing with RF pulses

In the RARE (rapid acquisition with relaxation enhancement) sequence [62], a train of spin
echoes is generated by means of 180◦ RF pulses. Each echo is phase encoded differently. This
is achieved by application of a phase encoding gradient pulse before each echo and variation of
the pulse amplitude from echo to echo. After the acquisition of an individual echo a gradient
pulse called “rewinder” brings

∫ t

0
Gph(t

′)dt back to zero such that for each echo
∫ t

0
Gph(t

′)dt
is solely determined by the gradient pulse directly preceding the echo. The k-space trajectory
consists in this case of straight16 lines in the two-dimensional k space, the order of which can
be determined at will.
The contrast in the image largely depends on TEeff which is the time between the excitation

and the centre of the echo with
∫ t

0
Gph(t

′)dt = 0, i.e. kph = 0. This is generally true for
most sequences and objects because low spatial frequencies largely determine the overall image
intensity whereas high k values are responsible for sharp edges and fine details in the image.
The acquisition order of the lines of k space determines TEeff and thus the contrast properties
of the image. Since at the centre of each spin echo any dephasing due to B0 inhomogeneities
is refocused, the image contrast is determined by T2 rather than by T ∗

2 . An image where the
intensity of a pixel largely depends on the T2 value at that location is said to be T2 weighted.
Long effective echo times produce strong T2 contrast whereas T1 weighting can be achieved by
short repetition times between excitations.
To increase the sensitivity it is possible, and common practice to use more than one excita-

tion and to sample only a part of k space after each excitation. By such k-space segmentation
16provided that the readout gradient pulse is rectangular in shape
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the echo train length per excitation is reduced. RARE provides images of high resolution and
with a low artefact level. However, its applicability suffers from the large amount of energy
the RF pulses deposit in the tissue. To avoid heating up the tissue long echo times have to be
used. Since the resulting echo train length is incompatible with the limited relaxation times
found in tissue RARE, is usually applied with k-space segmentation.
This drawback led to the development of RARE variants that employ refocusing angles

below 180◦ (e.g. U-FLARE, see ch. 4). In these sequences a problem becomes crucial which
is apparent in the RARE sequence to a lesser degree: if the flip angle of the refocusing pulses
is not exactly 180◦ then stimulated echoes appear that can interfere with the spin echoes. If
the CPMG condition (see section 2.1.1) is not fulfilled this can lead to severe artefacts. A
contravention of the CPMG condition can occur for example in diffusion weighted imaging
(see section 4.2.3). Due to equation (2.45) RARE sequences are less sensitive to diffusion
than sequences that contain less refocusing pulses. However, diffusion sensitization can be
deliberately introduced (see ch. 3) by means of a preparation experiment.

EPI — refocusing with gradient pulses

In the EPI (echo planar imaging) sequence [63] the magnetization is refocused by gradient
pulses instead of by RF pulses. The magnetization is alternately dephased and rephased by
an oscillating read gradient. Phase encoding of the train of gradient echoes thus generated
can be accomplished in different ways. With a very weak, constant phase gradient the k-space
trajectory is a zig-zag curve [63]. With weak, short phase gradient pulses (“blips”) simultaneous
with the sign changes of the read gradient, the k space is sampled in a rectangular grid [64].
A further alternative is “spiral” EPI with oscillating read and phase gradients resulting in
a spiral-shaped k-space trajectory. The echo train length is limited by the T ∗

2 decay but the
spatial resolution can be increased by k-space segmentation. However, this renders the sequence
sensitive to motion, in particular if diffusion weighting is involved (see section 5.8).
The major disadvantage of EPI is that dephasing due to magnetic field inhomogeneities

is not refocused which can cause serious image artefacts [65]. In in vivo NMR main field in-
homogoneity can arise from the different magnetic susceptibilities of air, muscle tissue, brain
parenchyma, and CSF. The magnetic field B in a (non-ferromagnetic) material with the (di-
mensionless) magnetic susceptibility χ is given by [29, p. 361]

B = µ0(1 + χ)H (2.78)

where µ0 is the vacuum permeability andH is the “macroscopic” magnetic field [66, p. 18]. The
term χH is the magnetization, i.e. the magnetic moment per unit volume. The magnetized
sample itself gives rise to a field Hs within the sample and in the environment that is superim-
posed on the externally applied field H and depends on the sample geometry. This additional
field is responsible for the fact that the magnetic field at some location r in an inhomogeneous
sample is not simply determined by χ(r). On account of the resulting magnetic field gradients
(susceptibility gradients) echo planar images of biological samples are often distorted near tis-
sue borders: a field offset Bχ causes a phase evolution between successive phase encoding steps
(the phase evolution between successive sampling points during echo acquisition is negligible
since the time between sampling points is much shorter than the time between phase encoding
steps). The resulting phase ramp over the data in phase encode direction appears after Fourier
transformation as a bulk shift in this direction. This can be concluded from the shift theorem
of the Fourier transform ([67, p. 104], cf. 95) or from the expression for the signal phase at the
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centre of the nth echo acquisition,

φ = γ

∫ t

0

Bz(r, t) dt = γyGyτrampn+Bχτpen = γ

(

y +
Bχτpe
Gyτramp

)

Gyτrampn, (2.79)

which was derived from 2.66 assuming triangular phase blips with ramp time τramp and am-
plitude Gy, and where τpe is the time between successive phase encoding steps. In addition,
intravoxel dephasing can lead to complete extinction in regions of low main field homogeneity
(short T ∗

2 values). The inhomogeneity problem can be reduced by image correction algorithms
that are based on field mapping techniques [68]. It is most prominent at high magnetic field
strengths where susceptibility differences cause large background gradients, rendering T ∗

2 con-
siderably shorter than the echo train length. Since high resolution requires a long echo train,
the T ∗

2 decay limits the achievable resolution.
The influence of main field inhomogeneity can be reduced by incorporating a second RF

pulse with a flip angle of 180◦ in the sequence and acquiring the train of gradient echoes during
the time when the spin echo forms. This variant is called spin-echo EPI (SE-EPI) as opposed
to gradient-echo EPI which has only an excitation RF pulse. The sequence timing is usually
adjusted in such a way that the spin echo centre and the phase encoding step with k = 0
coincide. In this case the image contrast is mainly determined by T2. The phase difference
between spins at different locations is zero at k = 0 but the phase difference between successive
phase encoding steps remains the same. Therefore SE-EPI is also prone to image distortions
although the extinction problem is mitigated.
The implementation of EPI requires strong and rapidly switchable magnetic field gradients

and a high level of sequence adjustment, and it must include the implementation of a correction
algorithm that takes account of slight differences between the echoes acquired with a positive
read gradient (odd echoes) and the echoes acquired with a negative read gradient (even echoes).
A phase correction needs to be applied before the actual images are formed by two-dimensional
Fourier transform. Without correction the difference between odd and even echoes causes a
shifted image of reduced intensity to be added to the image of the object [69, 70]. The shift
occurs in the phase encode direction and is always equal to half the field-of-view. The signal
intensity in the ghost can be space-dependent and is often accompanied by signal variations or
extinctions in the object image. This artefact is known as Nyquist orN/2 ghost. The correction
parameters can be determined from a separate reference scan which in comparison to the image
scan only lacks the phase encoding gradient.
Since chemical shift dephasing is not refocused in EPI, the long time between the gradient

echoes causes the frequency shift of fat protons in biological tissue to be translated into a spatial
shift in the image in the phase encode direction. RF pulses tuned to the fat frequency are often
used before the EPI sequence to saturate the fat protons and thus to suppress their signal in the
image. In spite of its technical and fundamental disadvantages, EPI is widely used in imaging
studies for psychological research since it can supply images within 30–100 ms. It is one of the
fastest MR imaging techniques that are currently available.

2.2 Diffusion

Diffusion is the process by which matter is transported from one part of a system to another as
a result of random molecular motion [71]. Consider for example a fluid system which consists of
two types of molecules, denoted A and B, that are nonuniformly distributed. The concentrations
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of A and B change with time until they have reached the equilibrium situation where both
concentrations have the same value throughout the system — although they may be different
from each other. The mechanism underlying this process is the random translational motion
of molecules which is commonly called Brownian motion. A particle in the system has a mean
kinetic energy 3

2
kT of irregular “thermal” motion, regardless of its mass (only the velocity

depends on the particle’s mass).17 This energy manifests itself in rotations and translations of
the particle. The transport of molecules of type A, say, can be described by the flux density
j. If v(r) is the velocity at position r, and c the concentration in terms of particles per unit
volume, then the flux density is defined by j = cv. The number of particles crossing a surface S
per unit time is given by the flux ΦS =

∫

S
j · ds. Since the particle flux density is proportional

to the concentration gradient, we can define by [72]

j = −D∇c (2.80)

a positive real quantity D which is called the diffusion coefficient. Equation (2.80) is called
Fick’s first law. If the surface A encloses a volume V , we can use the divergence theorem to
write the flux through the closed surface out of the volume V as

ΦA =

∮

A

j · ds =
∫

V

∇ · j dV. (2.81)

The surface element vectors ds are by convention oriented towards the outside of the volume.
If the number N of particles contained in V changes during the time interval ∆t by ∆N =
N(t+∆t)−N(t), we can equate the loss of particles in V to the flux of particles through the
surface of V,

∆N

∆t
= −ΦA = −

∫

V

∇ · j dV. (2.82)

For an infinitesimally small volume V we may approximate the right hand side by −∇ · jV .
Division by V yields

∆c

∆t
= −∇ · j. (2.83)

In the limit of an infinitesimally short time period ∆t and by means of equation (2.80) we
obtain

dc

dt
= lim

∆t→0

∆N

∆t
= −∇ · j =∇ · (D∇c) (2.84)

and consequently, if the diffusion coefficient is independent of the concentration,

ċ = D div grad c. (2.85)

This relation is Fick’s second law [72]. It is also called the diffusion equation [71, p. 5].

17k is Boltzmann‘s constant, and T is the temperature in Kelvin.
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2.2.1 Transport and self-diffusion

Random motion of molecules also takes place in a fluid containing only one type of molecule.
It is termed self-diffusion [73] as opposed to transport diffusion as described above. For self-
diffusion the above equations remain valid if we think of a part of the molecules as being
labelled. The quantities j and c have to be replaced by flux and fraction, respectively, of
the labelled molecules, j∗ and c∗. The self-diffusivity can be defined by equation (2.80). The
question of how the labelling is accomplished is irrelevant. However, while the self-diffusivity
can depend on the total concentration of the molecules considered, it cannot depend on the
fraction of labelled molecules, c∗, which is arbitrary and assumed not to affect molecular motion.
Although self-diffusion and transport diffusion rely on the same mechanism, the corresponding
diffusion coefficients are not necessarily the same.18 We shall be dealing with self-diffusion
throughout the rest of this thesis and will denote the corresponding coefficient by D.

2.2.2 Random walk model of diffusion

At this point we should introduce a more microscopic view of the self-diffusion process. Einstein
[76] related diffusion processes to Brownian motion by modelling the path of a single diffusing
molecule as a “random walk”. The molecule is thought of as performing a large number of
small jumps, each in a random direction. The direction of each jump is independent of the
preceding jump.19 The probability density of finding at a time t a particle at the position r is
given by

P (r, t) =

∫

P (r0, 0)Ps(r, t|r0) d3r0, (2.86)

in terms of Ps(r, t|r0) which is the conditional probability density to find a particle at the
time t at the position r provided that it (the same particle) was at position r0 at t = 0.
The function P (r, t) satisfies equation (2.80) with the concentration c replaced by P (r, t).
As the spatial derivatives in (2.80) refer to the coordinates r we can conclude that Ps(r, t|r0)
satisfies an analogous equation. In this equation j must be interpreted as the flux of conditional
probability [36, section 6.2]. The continuity equation for conditional probability then leads to
Ṗs = D divr gradr Ps which is analogous to the diffusion equation (2.85). With the boundary
conditions Ps(r, 0|r0) = δ(r − r0) and Ps(r, t|r0) → 0 as |r − r0| → ∞ this equation has the
solution [36, 77]

Ps(r, t|r0) = (4πDt)−3/2 exp

[

−(r− r0)
2

4Dt

]

. (2.87)

The function Ps(r, t|r0) is called the propagator. In homogeneous systems it has Gaussian form
as in equation (2.87), and its FWHM increases linearly with

√
t. The probability density for

any particle to have a displacement s = r− r0 after the time t,

P s(s, t) =

∫

Ps(r0 + s, t|r0)ρ(r0) d3r0, (2.88)

18The Darken equation [74] relates transport and self-diffusivity to each other by means of the activity
coefficient [75, p. 280].

19In fact Brownian motion must be modelled as a Markoff process [73, p. 577], i.e. the probability for the
direction of a jump does not depend on the complete history but it can be determined from the direction of a
jump at some earlier time. The “loss of memory” is characterized by the correlation time τc [36, p. 335].
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where ρ(r) is the particle density, is called the “average propagator” [78]. If Ps does not depend
on the starting position r0 then P s(s, t) = Ps(s, t|0). The ensemble average over s2(t) is [36,
section 6.2]

〈s2(t)〉 =
∫

s2P s(s, t) d
3s. (2.89)

In the case of free diffusion described by the propagator given in (2.87) this leads to

〈s2(t)〉 = 6Dt. (2.90)

This important relation means that the root mean square displacement of a particle is propor-
tional to

√
t in the isotropic case. It is generally referred to as Einstein’s equation, and it can

serve as an alternative definition of the diffusion coefficient D.

The function Ps in equation (2.87) has a maximum at r = r0 for all times t. However, this
does not mean that the majority of the particles have no net displacement since the probability
of finding a particle within a sphere of radius

√
ε centred about r = 0 is

P (r2 � ε) =

2π
∫

0

π
∫

0

√
ε

∫

0

Ps(r, t|0) r2dr sin ϑdϑdϕ <

2π
∫

0

π
∫

0

∞
∫

√
ε

Ps(r, t|0) r2dr sinϑdϑdϕ = P (r2 > ε)

(2.91)

for sufficiently large t. Note further that 〈r2〉 > 0, and that 〈r〉 = 0 due to symmetry.

2.2.3 Restricted diffusion

In inhomogeneous media the time dependence of the mean square displacement can deviate
from Einstein’s equation (2.90). This is important for example in biological tissues where cell
membranes obstruct the motion of molecules. In a system consisting of small compartments
that are divided by impermeable membranes, the displacement will follow (2.90) as long as
t is small since only very few molecules collide with the wall of the compartment. But the
displacement cannot increase beyond the cell size, l. The displacement will thus approximate
a constant value for long times, |s| → l as t → ∞.
If we define the diffusion coefficient by (2.90), we can account for this behaviour by making

D a function of time, D(t). Since diffusion coefficients are often (as in NMR) measured by
observing how far the molecules have travelled within a fixed observation time an effective
diffusion coefficient is frequently defined by

Deff(τ) =
〈s2(τ)〉
6τ

(2.92)

where τ is the time of observation [74, section 7.2]. Deff(τ) = D for small τ while for τ →
∞ the mean displacement

√

〈s2(τ)〉 approaches the compartment size l such that Deff(τ) =
l2/(6τ), i.e. Deff(τ)→ 0 as τ → ∞. Unless we know the compartment size, these two domains
are indistinguishable from a measurement of 〈s2(τ)〉 at a fixed τ . The propagator can be
approximated to have the Gaussian shape in (2.87) with D replaced by Deff [74, section 7.2].
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2.2.4 Anisotropic diffusion

If diffusion is restricted by an anisotropic arrangement of barriers then the mean square dis-
placement 〈(s(t)·ř)2〉 along a certain direction ř will depend on this direction (|̌r| = 1). Consider
for example a situation where molecular motion is free (or even facilitated by additional forces)
in a certain direction and obstructed in the perpendicular directions. A concentration gradient
which is oblique to these directions will elicit a flux that is not parallel to the concentration
gradient. Instead the flux will be diverted along the privileged direction. To account for j and
−∇c not being parallel we have to introduce instead of D a tensor20 D of rank two such that
Fick’s law (2.80) assumes the form

j = −D∇c or ji = −
3
∑

k=1

Dik
∂c

∂rk
(2.93)

which can be understood as a matrix equation (cf. equation (2.134) below). Equation (2.93)
implies that a concentration gradient in some direction can lead to a flux density in another
direction: flux and concentration gradient are not necessarily parallel. The tensor element Dik

determines the contribution of the kth component of ∇c to the ith component of j. If the
diffusion is anisotropic, the equations (2.87) and (2.90) have to be replaced by [79]

Ps(r, t|r0) = (4πt)−3/2(detD)−1/2 exp

[

−(r− r0)
TD−1(r− r0)

4t

]

and (2.94)

〈s2〉 = 2tTrD, (2.95)

where D−1 is the inverse of the matrix D, and TrD is the sum of the diagonal elements of D.
We will later show that D−1 exists (see p. 2.2.7). Based on the comparison of (2.90) and (2.95),
one-third of the trace of the diffusion tensor can be interpreted as the mean of the diffusion
coefficient over all directions. In addition, the relation

〈sisj〉 = 2tDij (2.96)

holds, and the diffusion equation (2.85) assumes the form

ċ = div(D grad c). (2.97)

The diffusion tensor D is said to be isotropic if it is proportional to the identity matrix.

2.2.5 Microscopic definition of the diffusion tensor

The diffusion tensor can also be defined in terms of microscopic quantities [36, p. 335]. This
definition is based on the consideration of velocity correlations and will help us to understand
why the diffusion tensor is symmetric.
The cross correlation function of velocity components is defined as

κij(t) =

∫ ∞

0

vi(t
′)v∗j (t

′ + t) dt′/

∫ ∞

0

vi(t
′)v∗j (t

′) dt′ (2.98)

20See section 2.3 for a definition of the term tensor.
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where the complex conjugation may be omitted since v is real. Using the ergodic hypothesis
that in a stationary system a time average can be replaced by an ensemble average, and using
that 〈vi(t)vj(t+ τ)〉 is independent of t, we can write the correlation function as [80, p. 53]

κij(t) = 〈vi(0)vj(t)〉/〈vi(0)vj(0)〉 (2.99)

where 〈. . . 〉 denotes an ensemble average. The relationship between the diffusion tensor and
the velocity correlation functions can be derived from equation (2.96),21

2tDij =
〈

si(t)sj(t)
〉

=
〈

∫ t

0

vi(t1) dt1

∫ t

0

vj(t2) dt2
〉

=
〈

∫ t

0

vi(t1)

∫ t

0

vj(t2) dt2dt1
〉

. (2.100)

By substitution of t2 by τ = t2 − t1 we obtain

2tDij =
〈

t
∫

0

vi(t1)

t−t1
∫

−t1

vj(τ + t1) dτdt1
〉

=

t
∫

0

t−t1
∫

−t1

〈vi(t1)vj(τ + t1)〉 dτdt1 =
t
∫

0

t−t1
∫

−t1

〈vi(0)vj(τ)〉 dτdt1

(2.101)

where we have used the linearity of the ensemble average and the stationary character of the
ensemble. Since the velocity correlation, 〈vi(0)vj(τ)〉, tends to zero as τ → ∞ (i.e. it is very
small if τ is much larger than the velocity correlation time [36]) we introduce a negligible error
by expanding the limits of the τ integral to ±∞ [74, p. 53],

2tDij =

∫ t

0

∫ +∞

−∞
〈vi(0)vj(τ)〉 dτdt1 =

∫ t

0

dt1

∫ +∞

−∞
〈vi(0)vj(τ)〉 dτ = 2t

∫ ∞

0

〈vi(0)vj(τ)〉 dτ

(2.102)

since the velocity correlation function is even (which is shown in the following section). There-
fore the elements of the diffusion tensor and the velocity correlation function are related by

Dij =

∫ ∞

0

〈vi(0)vj(τ)〉 dτ. (2.103)

which is in fact the spectrum of the correlation function κij(t) without normalization evaluated
at zero frequency.22

2.2.6 Symmetry of the diffusion tensor

We have already mentioned that the diffusion tensor is symmetric, i.e. Dij = Dji. This prop-
erty is a consequence of the microscopic reversibility of the particle trajectories [79]. For its
derivation [73, p. 598] we use the definition (2.103) of D in terms of particle velocities.
In equilibrium 〈vi(t)vj(t + τ)〉 can only depend on τ rather than on t itself. Thus it is

invariant under the translations of the origin of time, t �→ t− τ . Therefore

Kij(τ) = 〈vi(0)vj(τ)〉 = 〈vi(−τ)vj(0)〉 = Kji(−τ). (2.104)

21The derivation is a generalization of that in [74, p. 52].
22Sometimes therefore the same symbol Dij(ω) is used for the diffusion tensor and the Fourier transform of

the non-normalized correlation function such that Dij depends on the frequency ω [36]. See also [81, 82, 83].
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But this does not imply Kij(τ) = Kij(−τ) unless i = j, and it does not imply that Kij(τ) =
Kji(τ). Both relations can, however, be derived using an additional physical argument. Under
inversion of the time, t �→ t′ = −t, all velocities change their sign:

vi(t) = −v′i(t
′) = −v′i(−t) (2.105)

where v′i(t
′) is the function that describes the same situation as vi(t) in the new time frame.

Hence we can reform the velocity correlation function to

〈vi(0)vj(τ)〉 = 〈v′i(0)v′j(−τ)〉 = 〈v′i(τ)v′j(0)〉 (2.106)

where we have used the invariance under time shift for the last equal sign. We now can use the
fact that the laws of classical mechanics are invariant under time inversion. This means that
we cannot distinguish by a physical argument between vi and v′i. Both functions are equally
well possible. Therefore

〈v′i(τ)v′j(0)〉 = 〈vi(τ)vj(0)〉 (2.107)

must hold. (The situation would be slightly different for functions like xivi that change sign
under time inversion, or functions that depend on angular velocities or magnetic fields which
also change sign due to the reversed velocities of the charged particles constituting the magnetic
field.) Combining equation (2.107) with equation (2.106) we obtain

〈vi(0)vj(τ)〉 = 〈vi(τ)vj(0)〉, (2.108)

or in other words, it is completely irrelevant which of the functions vi and vj is evaluated at
the earlier time point. Hence we have Kij(τ) = Kji(τ) which via equation (2.103) yields the
symmetry of the diffusion tensor,

Dij = Dji. (2.109)

This equation is a form of Onsager’s reciprocity relations [73, 84]. It shall further be noted that
equation (2.108) combined with the invariance of Kij(τ) under time translations implies that
Kij(τ) is even, Kij(τ) = Kij(−τ) which has been used in equation (2.102). Since Kij(t) ∈ R

it further ensures that its Fourier transform, and hence Dij , is purely real. For completeness
it shall be mentioned that the diffusion tensor of charged particles in a magnetic field is not
necessarily symmetric, due to the Lorentzian forces acting on the particles [15].

2.2.7 The eigenvector basis

The symmetry of D implies [85] that the matrix D can be diagonalized: for any symmetric real
3× 3 matrix D an orthogonal23 matrix S exists such that

S
T
DS =





λ1 0 0
0 λ2 0
0 0 λ3



 = Λ (2.110)

23ST = S−1
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with λ1, λ2, λ3 ∈ R. Application of S to a basis vector produces an eigenvector of D: if the basis
is {e1, e2, e3},

DSei = SΛS
T
Sei = Sλiei = λiSei. (2.111)

This means that we can reduce the matrix of the diffusion tensor to the diagonal form Λ in
(2.110) by a change from the basis {e1, e2, e3} to {Se1, Se2, Se3} consisting of eigenvectors of
D. The eigenvalues λi of D are independent of the chosen basis. Eigenvectors corresponding
to different eigenvalues are orthogonal to each other. If two eigenvalues are equal, for example
λ2 = λ3, then all vectors r in the plane perpendicular to ê1 are eigenvectors, Dr = λ2r = λ3r.
The basis vectors ê2 and ê3 may be chosen at will in this plane. We will always assume that
the eigenvector basis is orthonormal. This will automatically be the case if it is created by
application of the orthogonal matrix S to the old orthonormal basis. We will henceforth use
the symbol êi to represent an element of the orthonormal eigenvector basis. The eigenvector
directions have a useful physical meaning: from Fick’s first law (2.93) we infer that a concen-
tration gradient that is parallel to one of the eigenvectors,∇c = aêi (a ∈ R), leads to a flux
density j that is (anti)parallel to the concentration gradient,

j = −D(aêi) = −λiaêi. (2.112)

By comparison with equation (2.80) a diffusion coefficient λi can be assigned to these directions.
Hence the eigenvector directions are often termed the principal directions.
We can now show the existence of the inverse of D which was used in equation (2.94).

To this end we first prove that the eigenvalues of D are positive (i.e. D is positive definite [85,
section 6.7.2]). Let us assume that one of the eigenvalues would be negative, λi < 0. In this case
equation (2.93) implies that for a concentration gradient∇c = aêi (a ∈ R>0) along the principal
direction corresponding to this eigenvalue the flux density is j = −D(aêi) = −aλiêi = +cêi
with c > 0. Thus j and ∇c point to the same direction. Such a situation would enhance
the concentration gradient which would contradict the second law of thermodynamics. Hence
we conclude that λi � 0 for i = 1, 2, 3. We can further explicitly exclude the case that an
eigenvalue happens to be zero. This would mean that for a concentration gradient along the
corresponding direction the equilibrium would never be reached. Hence, λi > 0 for i = 1, 2, 3.
From D being symmetric and positive definite we can conclude [85, section 6.7.9] that detD > 0
which implies that the inverse of D in equation (2.94) exists. To determine D−1 we realize that
the inverse of Λ is

Λ−1 =





1/λ1 0 0
0 1/λ2 0
0 0 1/λ3



 . (2.113)

It then follows from the relation

D(SΛ−1
S

T) = (SΛS
T)(SΛ−1

S
T) = SΛΛ−1

S
T = SS

T = I

(where I means the identity matrix) that the inverse of D is

D
−1 = SΛ−1

S
T. (2.114)

Its eigenvectors are identical with those of D, its eigenvalues are 1/λi. In addition to (2.95)
we calculate the root mean squared distance travelled along the direction of a given arbitrary
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unit vector p̌, 〈(s · p̌)2〉1/2. This quantity is important in NMR measurements where spatially
constant field gradients are used to make the measurement sensitive to particle displacements
along this direction (see chapter 3). It is given by (cf. (2.89))

〈(s · p̌)2〉 =
∫

(s · p̌)2Ps(s, t|0) d3s (2.115)

where we have assumed that Ps(r, t|r0), which is given in (2.94), is independent of r0. The root
mean square displacement must be independent of the coordinate system, and for convenience
we choose the eigenvector system of D for our calculation (the corresponding coordinates of
s then being ŝi). As the diffusion tensor is diagonal in the chosen basis we can calculate
detD and sTD−1s from (2.110) and (2.113) in terms of the eigenvalues λ1, λ2, and λ3. Let us
suppose that the vector p̌ is the first vector in some other orthonormal basis {p̌, ·, ·}, and that
Sp̌ = ê1 with S being the transformation matrix between the bases. This is always possible by
appropriate choice of the remaining vectors in the basis {p̌, ·, ·}. Then the components of p̌ in
the eigenvector basis are

p̌ = S
Tê1 = S

T





1
0
0



 =





S11

S12

S13



 (2.116)

(the elements of S are the same in both bases due to STSS = S) such that

(s · p̌)2 = (S11ŝ1 + S12ŝ2 + S13ŝ3)
2. (2.117)

Replacing this into the equation obtained from (2.115) with (2.94), (2.110) and (2.113) we
obtain a sum of products of integral terms. Using the identities [38, p. 66]

∫ +∞

−∞
x exp[−α2x2] dx = 0 and

∫ +∞

−∞
x2 exp[−α2x2] dx =

√
π

2α3
(α > 0) (2.118)

we finally obtain

〈(s · p̌)2〉 = 2t(S2
11λ1 + S2

12λ2 + S2
13λ3). (2.119)

From this equation we can calculate the mean square displacement along any given direction
if we know the eigenvalues and the eigenvectors of D. The term in the brackets on the right
hand side is equal to the first diagonal element of D in the basis {p̌, ·, ·},

D̃11 =
∑

i

S2
1iλi, (2.120)

which can be derived from D = SΛS
T. Hence,

〈(s · p̌)2〉 = 2tD̃11 = 2tp̌ · Dp̌ (2.121)

where D̃11 is the first diagonal element of the diffusion tensor expressed in the basis {p̌, ·, ·}.
Equation (2.121) can be taken as a definition of the “diffusion coefficient in the direction of the
unit vector p̌”,

d(p̌) = 〈(s · p̌)2〉/(2t), (2.122)
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which is no diffusion coefficient in the sense of Fick’s first law (2.93) because flux density and
concentration gradient are in general not parallel, and d(p̌) is a scalar. But it determines the
mean square displacement in the direction p̌ which is usually measured in NMR experiments
(see chapter 3). Equation (2.121) can be generalized to

〈sisj〉 = 〈(s · ei)(s · ej)〉 = 2tDij = 2tei · Dej (2.123)

which is equivalent to (2.96). For its derivation we express ei and ej as a linear combination
of the eigenvectors and using the matrix S that transforms the basis into the eigenvector basis
for writing

Dij = (SΛS
T)ij =

∑

k

SikλkSjk and ei · êj = ei · Sej = Sji. (2.124)

With the first identity in (2.118) which removes the cross terms for different eigenvector com-
ponents we can then derive equation (2.123).

2.2.8 The diffusion ellipsoid

As a means of visualizing the diffusion process originating from a concentration c(r, t = 0) =
δ(r) we could use the surface of constant concentration which is equivalent to the surface of
constant Ps(r, t|0). The positions r that satisfy Ps(r, t|0) = P0 with an arbitrary constant
P0 between 0 and 1 form a surface that changes with time. But for sufficiently large t there
will be no r that satisfies the equation since maxr Ps(r, t|0) < P0. The surface of constant
relative concentration (or probability Ps), c(r, t)/c(0, t), provides a better visualization. It can
be obtained by setting Ps(r, t|0)/Ps(0, t|0) = e−1/2 where the constant on the right hand side
is arbitrary. By replacing the definition (2.94) into this equation and taking the logarithm we
obtain

rT
D

−1r = 2t. (2.125)

In the eigenvector basis this can be written as

rTΛ−1r =
x̂2

λ1
+

ŷ2

λ2
+

ẑ2

λ3
= 2t. (2.126)

The positions r that satisfy this equation form an ellipsoid. By comparison with the standard
form of the ellipsoid equation,

x̂2

a2
+

ŷ2

b2
+

ẑ2

c2
= 1, (2.127)

we conclude that the principal (half) axes of the ellipsoid are aligned with the eigenvector
directions and their length is given by

a =
√

2tλ1, b =
√

2tλ2, c =
√

2tλ3. (2.128)

Hence the length of the position vector re to the intersection of the ellipsoid with the ith
eigenvector axis is

|re| =
√

2tλi =
√

〈(s · êi)2〉 (2.129)
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where the last equal sign follows from equation (2.121). Thus for all t the length of a principal
(half) axis is equal to the mean distance travelled along that principal direction. This physical
interpretation is possible due to the arbitrary constant exp(−1/2) above. However, if the
three eigenvalues are different, the eigenvector directions are the only directions for which the
intersection with the ellipsoid has this meaning, i.e. in general

|re| =
√

〈(s · p̌)2〉 only if p̌ ∈ {ê1, ê2, ê3}. (2.130)

If (2.130) were valid for all directions p̌ then the intersection νp̌ of the ellipsoid with a straight
line parallel to the arbitrary unit vector p̌ would satisfy the ellipsoid equation

(ê1 · νp̌)2
a2

+
(ê2 · νp̌)2

b2
+
(ê3 · νp̌)2

c2
= 1 (2.131)

and on the other hand ν = (2tD̃11)
1/2 (2.121). If we substitute (2.116) into (2.131) we obtain

(

S2
11λ1 + S2

12λ2 + S2
13λ3

)

(

S2
11

λ1
+

S2
12

λ2
+

S2
13

λ3

)

= 1. (2.132)

This equation is only true in the following special cases,

• λ1 = λ2 and p̌ = uê1 + vê2. In this case S13 = 0, and S2
11 + S2

12 = cos
2 ϕ+ sin2 ϕ = 1.

• λ1 = λ2 = λ3

• p̌ = ê1.

Therefore equation (2.130) does not hold for arbitrary p̌. Nevertheless, the ellipsoid given by
(2.126) correctly describes at all times t the surface of constant relative concentration.24

2.2.9 Implications for diffusion measurements in biological systems

In the current section 2.2 we have introduced two different views of the self-diffusion process:
the Fickian view which considers the transport of (labelled) molecules, and the random walk
approach which leads to the Einstein equation stating that the mean square particle displace-
ment is proportional to the diffusion time. The former will be used in chapter 3 to derive the
principle of NMR diffusion measurements. The random walk model allowed us to define an
effective diffusion coefficient in the case of restricted diffusion. Restrictions to diffusion play a
major role for diffusing water molecules in brain tissue (see the discussion in section 3.4.3). An
anisotropic arrangement of diffusion barriers introduces anisotropy into the equations governing
particle motion which is accounted for by the definition of the self-diffusion tensor.
As the symmetry of the diffusion tensor is not obvious from (the anisotropic form of) Fick’s

laws it was derived using an equivalent definition of the diffusion tensor that was based on
particle velocity correlations. This symmetry property together with the propagator formalism
arising from random walk theory allowed us to construct a geometrical representation of the
diffusion characteristics of homogeneous anisotropic substances. The symmetry of the diffusion

24The diffusion coefficient along a direction in the ě1-ě2 plane as a function of the polar angle is given by
d(ϕ) = λ1 cos2 ϕ + λ2 sin2 ϕ. Note that although

√

d(ϕ) resembles the distance from the origin, r, in the

parametric form of the ellipse equation, r(ψ) =
√

a2 cos2 ψ + b2 sin2 ψ, ψ is not the polar angle ϕ of the point
(x, y) = (r cosϕ, r cosϕ) on the ellipse.
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tensor is essential for the possibility to derive the complete diffusion characteristics in all spatial
directions from 6 independent tensor elements in any basis that can be measured in a finite
number of experiments (see ch. 3). This possibility is particularly important if a spatially
resolved measurement of the direction with the largest diffusion coefficient in a macroscopic
sample is intended.

2.3 Tensors

Since the quantity describing diffusion in anisotropic media is a tensor we now define the term
tensor, in order to provide a firmer mathematical basis than previously.

• If in an N -dimensional vector space V, Nk+l numbers aj1...jli1...ik
(iν , jµ = 1, . . . N) are given

which transform under a change of the basis of V according to [38]

a′
j1...jl
i1...ik

=

(

∂x′j1

∂xs1
. . .

∂x′jl

∂xsl

)

(

∂xr1

∂x′i1 . . .
∂xrk

∂x′ik

)

as1...sl
r1...rk

(2.133)

(where we have used Einstein’s summation convention that a summation is carried out
over all indices that appear both as a superscript and as a subscript), then the numbers
aj1...jli1...ik

are called the coordinates of a tensor of rank (k + l), and the tensor is called
covariant of order k and contravariant of order l.

• An equivalent definition of a tensor is the following [86]: a multilinear function α :
V∗l×Vk → R is called a tensor that is covariant of order k and contravariant of order l.25

The Nk+l values of the function α for the basis vectors, Ai1...il
j1...jk

= α(εi1 , . . . εil , ej1, . . . ejk),
are called the coordinates of the tensor. This definition implies that under a change of
basis in V and V∗ the Ai1...il

j1...jk
transform according to (2.133).26

• If a physical law is expressed in terms of tensors, the equations have the same form in any
basis [86, p. 70]. This is the major benefit from expressing equations in terms of tensors.

• A covariant tensor of order two is called symmetric if Aij = Aji in some coordinate system.
This relation then holds for any basis in V. Symmetric contravariant tensors are defined
in an analogous manner. For higher-order tensors the definition relates to a pair of the
indices. For a mixed tensor that is contravariant of order 1 and covariant of order 1, this
definition would not make sense since Ai

j = Aj
i does not necessarily hold for any basis.

However, such a tensor may be called symmetric if for ajk = aj··ig
ik the relation ajk = akj

holds, where gik is the metric tensor [38, section 8.3.1.3].27

• A Euclidean vector space28 of finite dimension is “dual to itself”, i.e. one can define an
isomorphism between the vector space and its dual space such that we can identify the
two spaces with each other [86, section 1.7]. This means that the bases of V and V∗ consist

25V∗ denotes the dual space of the vector space V , i.e. the vector space of all linear functions f : V → R,
given that V is a vector space over the field (german Körper) R. Multilinear means linear in every argument.

26The term covariant derives from the fact that covariant coordinates transform in the same way as the basis
vectors in V [87, p. 295].

27By means of the metric tensor covariant coordinates can be converted into contravariant coodinates.
28A vector space is called Euclidean if there is a scalar product defined on it.
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of vectors in the same space. An orthonormal basis in a Euclidean vector space of finite
dimension is identical with its dual basis. Therefore we need not distinguish between
covariant and contravariant coordinates as long as we restrict ourselves to orthonormal
bases [86, p. 38]. In this case ai = ai holds, for example, for the coordinates of a vector.

• Strictly speaking, the gradient of a scalar field is a covariant tensor of rank 1 [86, p. 191].
It maps a contravariant displacement vector onto the change of the scalar. Forces are
covariant vectors (tensors of rank 1) [86, section 4.1]. Conservative forces for example
can be expressed as f = grad c, or in coordinates fi = ∂ic = ∂c/∂xi.29 Position and
velocity are contravariant tensors of rank 1. Since the current density j is proportional to
a velocity, it is also a contravariant vector. Hence Fick’s first law (2.93) must be written
in the form

ji = −Dij(∇c)j = −Dij ∂

∂xj
c = −Dij∂jc. (2.134)

This can be taken as a definition of D as a contravariant tensor of rank two. Because the
definition (2.103) of the diffusion tensor is based on the contravariant vectors of particle
velocities it is also consistent with Dij being contravariant of rank two.

• Sometimes it is convenient to have a symbol that represents all coordinates of a tensor.
This notation is used for some tensors occurring in physics and is called dyadic notation
[88, 38]. A dyadic can be thought of as a linear vector function Φ : V → V with [38]

w = Φv = viajiej (2.135)

where aji are the coordinates of a rank two tensor, covariant of order 1 and contravariant
of order 1. By equation (2.135) the mapping Φ is related to the function α in the second
tensor definition given above. Comparing this equation with (2.134) we note that the
diffusion tensor deviates from a dyadic in that Φ ≡ D maps a covariant vector with
coordinates ∂jc to a contravariant vector ji. Nevertheless we can adopt the notation
j = −D(∇c) which is nothing else than the matrix notation of equation (2.93).

We will in the following chapters exclusively use orthonormal bases and will therefore not
distinguish between co- and contravariant indices, and will treat D simply as a matrix.

29See [86, section 4.1] for further explanation.





41

Chapter 3

NMR measurement of anisotropic
self-diffusion

There are two possible strategies to measure self-diffusivities. One strategy is based on a
measurement of the concentration of labelled particles. The second possibility is to measure
the mean displacement of the particles within a given time. These two approaches correspond
to the two possible definitions of self-diffusivity, Fick’s first law (2.93) and the Einstein relation
(2.90).

The concentration, or “tracer” techniques often use radioactive isotopes to produce a variant
of the molecule under investigation. The isotope must be detectable by means of the emitted
radiation but still similar enough to the original molecule to diffuse in the same way. Especially
for isotopes with a similar atomic weight this assumption is quite well met.

Among the non-tracer techniques, neutron and light scattering techniques exploit the effect
of molecular motion on the scattering pattern. Hence they are well-suited to investigate the
elementary steps of diffusion [74]. Nuclear magnetic resonance is the only non-tracer technique
that allows the observation of path lengths that are much larger than the mean length of the
elementary jump of a particle in the random walk model [77]. This is necessary since the
Einstein relation is only valid for observation times that are much longer than the velocity
correlation time [36, p. 336].

The investigation of living tissue imposes further requirements on the method of measure-
ment. The experiment should be non-invasive, and it should supply a three-dimensional spatial
resolution in the millimeter range. Moreover, for our purpose it must provide directional in-
formation, i.e. all elements of the self-diffusion tensor. Finally, the mean displacement of a
molecule within the observation time must be larger than or comparable to the cell size. Only
under this condition a measurement can reveal restrictions to molecular motion due to tis-
sue structure. Nuclear magnetic resonance fulfils these requirements to a high degree and is
currently the only method capable of such measurements.

3.1 The Bloch equations including diffusion and flow

In 1956, Torrey [40] modified Bloch’s phenomenological equations (2.36) to account for diffu-
sional motion of spins in a fluid. In order to treat also flow and anisotropic and restricted
diffusion, Stejskal [89] modified Torrey’s approach. To prepare ourselves for diffusion tensor
imaging, we sketch Stejskal’s derivation of the additional terms that have to be introduced in
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the Bloch equations.
In an NMR experiment, both diffusion and flow of spins may be seen as a “transport

of magnetization”. The magnetization (i.e. the magnetic moment per unit volume) in an
infinitesimally small volume element depends on the population of the spin eigenstates and the
spin density in the volume element. If the spins move, both populations and spin density may
change at the location of the volume element. To analyze the effect of diffusion and flow it is
thus reasonable to consider the magnetization to be a function of position and time. The three
axes of a Cartesian coordinate system may be chosen arbitrarily with respect to the direction
of the magnetic field. Recalling that the quantization of angular momentum does not require
a magnetic field, we state that a measurement of the x component of the magnetic moment
of a spin can only yield the results ±�γ/2. For simplicity we restrict ourselves to the spin
I = 1/2 case but the result shall be independent of I. The spins may be grouped according to
the orientation of their magnetic moment relative to the x axis, such that we can define two
separate spin density functions, n+ and n−, and corresponding current densities, j+ and j−.
For the fluxes it follows from equation (2.93) that

j± = vn± − D∇n± (3.1)

in a medium flowing with the velocity v. The diffusion tensor D, v, and n± may be functions
of both position and time. The net flux of magnetization can be written as

µ(j+ − j−) = vMx − D(∇Mx) (3.2)

where µ = �γ/2. For simplicity the notation does not explicitly show that M (and possibly v
and D) are functions of position and time. The continuity equation equates the rate of change
of the x component of the total magnetic moment, MxV , of a small volume element V to the
flux through its surface ∂V , such that

(

∂

∂t
MxV

)

D,v

= −
∮

∂V

µ(j+ − j−) · ds =
∮

∂V

(−vMx + D∇Mx) · ds (3.3)

where the subscripted D,v on the left hand side mean that diffusion tensor and velocity are
assumed to be constant. Using the divergence theorem of Gauß we can rewrite this to

V

(

∂Mx

∂t

)

D,v

=

∫

V

div(−vMx + D∇Mx)dV. (3.4)

By partial differentiation with respect to V we obtain
(

∂Mx

∂t

)

D,v

= − div(vMx) + div(D(gradMx)). (3.5)

This term has to be added to the dMx/dt expression in the Bloch equations (2.36). After
analogous calculation for My and Mz one obtains the modified Bloch equations

∂Mx

∂t
= γ(M×B)x −

Mx

T2
− div(vMx) + div(D(gradMx))

∂My

∂t
= γ(M×B)y −

My

T2
− div(vMy) + div(D(gradMy)) (3.6)

∂Mz

∂t
= γ(M×B)z −

Mz −M0

T1
− div(vMz) + div(D(gradMz))
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where now a strong magnetic field in z direction has been assumed. The total time derivative
in the equations (2.36) has been replaced by a partial derivative since now the components of
M depend on both position and time.
Strictly speaking, a further term should have been included in equation (3.1). An inho-

mogeneous magnetic field exerts both a torque µ × B and a force −∇(µ · B) on a magnetic
moment. Torrey added a term to equation (3.1) accounting for the drift velocity that is in liq-
uids proportional to this force. It leads1 to a further term − div(D gradMi,0) in the expression
for ∂Mi/∂t [40]. Since the gradients of the equilibrium magnetization are much smaller than
gradients of Mi this term is very small [40, 43, 89, 91] and therefore neglected.

3.2 The Stejskal-Tanner experiment

Based on the Bloch equations including diffusion and flow, Stejskal [89] calculated the effect
of diffusion in the presence of a time dependent magnetic field gradient in a spin echo experi-
ment. He separated the effects of diffusion, flow, reversible dephasing due to external gradients,
relaxation, and precession in the main magnetic field,

m =Mx + iMy = A(t)eiΦ(v,t)e−ig(t)e−t/T2e−iω0t. (3.7)

with some real-valued functions A(t), Φ(t) and g(t). The effect of flow is a phase shift of the
transverse magnetization. Diffusion in the presence of a magnetic field gradient (that may be
time dependent), however, reduces the magnetization amplitude according to

ln
A(t)

A(0)
= −γ2

t
∫

0

(F(t′)− 2Θ(t′ − τ)f) · D (F(t′)− 2Θ(t′ − τ)f) dt′ (3.8)

where F(t) =

∫ t

0

G(t′)dt′, f = F(τ), and Θ(t) =

{

1 if t � 0
0 otherwise

(3.9)

if the refocusing RF pulse occurs at t = τ . If the diffusion tensor D is constant this can be
reformed to [89]

ln
A(t)

A(0)
= −γ2





t
∫

0

F(t′) · DF(t′) dt′ − 4Θ(t− τ)f · D
t
∫

τ

F(t′) dt′ + 4Θ(t− τ)(t− τ)f · Df





(3.10)

where we have used f · DF = F · Df which follows from the symmetry of the diffusion tensor.
If the gradient is constant with space and time, and D is time independent and isotropic, this
equation (at t = 2τ) reduces to Hahn’s result for the spin echo attenuation by diffusion in
equation (2.44),

ln
S(2τ)

S0

= −γ2DG21

3
(2τ)τ 2. (3.11)

For the further discussion of the principle of NMR diffusion measurements let us temporarily
focus on the situation where diffusion is isotropic. The reason for the signal attenuation can be

1By means of the Nernst-Einstein equation [90] the diffusion tensor and a term kT are introduced, the latter
is the reason for the appearance of equilibrium magnetization Mi,0.
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Figure 3.1: Stejskal-Tanner type spin echo preparation experiment for diffusion weighting.

understood in a qualitative manner by considering the phase shift of a spin due to a constant
gradient during the spin echo experiment: a stationary nucleus accumulates a phase shift
φ =

∫ τ

0
γω(t) dt during the first τ period until the refocusing pulse. The refocusing RF pulse

inverts the phase of all spins, i.e. it maps φ(τ) to −φ(τ). The time between the refocusing
pulse and the echo is also τ , such that the phase accumulated in the second τ period is again
φ(τ). Hence the phase of the spin at t = 2τ is −φ(τ) + φ(τ) = 0. If, however, the spin position
changes during the experiment, the net phase at t = 2τ is

φ(2τ) = −
∫ τ

0

ω(r(t′)) dt′ +

∫ 2τ

τ

ω(r(t′)) dt′ �= 0 (3.12)

provided that the trajectories r(t) before and after the refocusing pulse do not by accident

satisfy
∫ τ

0
r(t′) · G dt′ =

∫ 2τ

τ
r(t′) · G dt′. Since motion due to diffusion is of random nature,

after a short time the phase shifts that the nuclei have accumulated will be distributed over
a range about zero. Because the total magnetization is a vector average over the ensemble of
spins, this results in an attenuation of the spin echo signal.

The influence of diffusion on the spin echo amplitude can be exploited to measure the
diffusion tensor. The diffusion attenuation can be discriminated from relaxation effects by
measuring the dependence of the signal on the gradient strength, G. If slice-selective RF pulses
are used a diffusion-sensitizing gradient during the RF pulses interferes with the slice selection
gradients. This problem is circumvented by the application of pulsed magnetic field gradients.
If we apply two rectangular gradient pulses (i.e. with infinitesimally short switching time) of a
duration δ whose onset is separated by a time ∆ and which occur before and after the refocusing
RF pulse as shown in Fig. 3.1, the signal attenuation for isotropic diffusion is given by [91, 77]

ln
A(2τ)

A(0)
= −γ2D

{

2

3
τ 3G2

0 + δ2(∆− δ

3
)G2 − δ

[

(t21 + t22) + δ(t1 + t2) +
2δ2

3
− 2τ 2

]

G ·G0

}

(3.13)

where G0 is a constant field gradient that may account for an inhomogeneity of the main
magnetic field, and G = |G|, G0 = |G0|. The first term in the curly brackets is already known
from equation (3.11). In the limiting case G0 = 0 equation (3.13) reduces to the well known
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formula2

ln
A(2τ)

A(0)
= −D

{

γ2δ2(∆− δ/3)G2
}

. (3.14)

The fact that the right hand side of equation (3.14) is proportional to the mean square dis-
placement during the time td = ∆−δ/3 is the reason for td sometimes being called the effective
diffusion time [36, p. 342]. In the case of anisotropic diffusion, D in equation (3.14) has to
be replaced by D11 which is the first diagonal element of the diffusion tensor expressed in a
basis whose first basis vector is parallel to G (cf. equation (2.121)). In equation (3.14) the
expression in curly brackets, which describes the timing and amplitude of the gradient pulses,
is commonly denoted by b such that the spin echo attenuation caused by the diffusion gradient
pulses, neglecting field inhomogeneity, can be written as

S

S0

= e−bD (3.15)

where S and S0 denote the echo amplitude with and without the diffusion gradient pulses,
respectively. Equation (3.15) is fundamental to NMR diffusion measurements. It states that
lnS depends linearly on b. Since b solely depends on experimental parameters, we can apply
different b values and calculate D from a linear regression of lnS versus b. This measurement
principle can be combined with NMR imaging methods to obtain a spatially resolved mea-
surement of the diffusion coefficient [92]. An imaging experiment designed to make the signal
intensity of an image pixel dependent on the diffusion coefficient is called diffusion weighted
imaging (DWI). It can be realized by incorporating diffusion gradients in the imaging pulse
sequence, or by replacing the RF excitation pulse of the imaging sequence by the scheme shown
in Fig. 3.1 (preparation experiment). The preparation experiment need not be a spin echo
sequence. It can also be based on the stimulated echo scheme [93, 77, 94].

3.2.1 Restricted diffusion

In the case of restricted diffusion, D varies with the diffusion time. Hence it is not possible
to transform equation (3.8) where the integration has to be carried out over D(t′) to (3.10).
However, in the case of isotropic diffusion we can define an effective diffusivity Deff by the time
average of D(t) over the echo time to restore equation (3.14) with D replaced by Deff [74, section
7.2]. The term “apparent diffusion coefficient” (see p. 50) is sometimes used as a synonym for
Deff [95].
The pulsed field gradient technique has a further advantage over constant field gradient

measurements of diffusivity where systems with restricted diffusion are concerned. In the PFG
experiment any diffusional motion before the first gradient pulse or after the second pulse does
not contribute to d lnS/db. Hence the time over which the diffusion process is observed is more
clearly defined and more easily to be varied than in constant gradient measurements [91].

3.3 Diffusion tensor imaging (DTI)

We now turn to the measurement of anisotropic diffusion with NMR methods. In the case
of anisotropic diffusion we have to define an effective diffusion tensor Deff to be able to carry

2Stejskal and Tanner [91] point out that, stricly speaking, no spin echo occurs if G0 vanishes everywhere.
However, this does not affect the validity of equation (3.14).
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out the integral in equation (3.8) without knowing D(t). With the shorthand notation A =
F(t′)− 2Θ(t′ − τ)f where the symbols F, f , and Θ are defined in (3.9), and with τ = TE/2, we
obtain from equation (3.8)

ln
S

S0
= −γ2

2τ
∫

0

A · D(t′)A dt′ = −γ2
2τ
∫

0

3
∑

i,j=1

AiAjDij(t
′) dt′ = −γ2

3
∑

i,j=1

2τ
∫

0

AiAj dt
′ Deff

ij (3.16)

which can be taken as the definition of the effective diffusion tensor Deff [15]. In in vivo NMR
applications, the term “apparent diffusion tensor” is commonly used. We further define a
matrix b that depends on the gradient time course G(t) by [15, 96]

bij = γ2
∫ 2τ

0

AiAj dt
′ = γ2

∫ 2τ

0

[F(t′)− 2Θ(t′ − τ)f ]i [F(t
′)− 2Θ(t′ − τ)f ]j dt′, (3.17)

where F(t) =

∫ t

0

G(t′)dt′ and f = F(τ) (3.18)

are defined as in equation (3.8). If we now use a double dot product between matrices which
may be defined by

b : Deff ≡
∑

ij

bijD
eff
ij ∈ R (3.19)

we may write equation (3.16) in the simple form

S

S0

= e−b:Deff

(3.20)

in complete analogy with (3.15).3 b is called a matrix rather than a tensor since it does not
reflect properties of the sample as the diffusion tensor does. The b matrix is symmetric by
construction. In the case of the pulsed field gradient experiment the time courses Gi(t) differ
only by a multiplicative factor such that we can write G(t) = G0c(t) with some scalar real
function c(t). By integration it can be shown that for the pulsed field gradient spin-echo
experiment with symmetrical trapezoidal gradient pulses with rise time ε its elements are given
by [96]

bij = γ2G0
iG

0
j [δ

2(∆− δ/3) +
ε3

30
− ε2

6
δ] (3.21)

which reduces to (3.14) if G0 is parallel to one of the coordinate axes and ε = 0. In the context
of anisotropic diffusion the degree of diffusion weighting may be estimated by the b value that
would determine the signal attenuation in an isotropic sample which is equal to the trace of
the b matrix: The attenuation in an isotropic sample with diffusion coefficient D0 is given by

S

S0
= exp[−D0(b11 + b22 + b33)] = exp[−D0Tr b]. (3.22)

3The tensor notation of the integrand before the last equal sign in equation (3.16) is AiD
ijAj = AiAjD

ij .

Equation (3.20) has the form lnS/S0 = − exp(bijD
ij
eff).
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We henceforth call Tr b the b value which is consistent with equation (3.15). Since the trace is
invariant under rotation this definition is independent of the coordinate system.
For specifying the elements of b it is useful to adopt the coordinate system of the imaging

experiment in terms of read, phase, and slice gradient axis. The associated coordinates may
be x, y, and z, respectively. If the gradient G(t) is at all times parallel to the x direction the
only non-zero element of the b matrix is bxx. Equation (3.20) states that in this case the signal
solely depends on the element Dxx of the diffusion tensor as expressed in the (x, y, z) coordinate
system. Application of different bxx values, for example via different gradient amplitudes,
and linear regression of lnS versus bxx yields the element Dxx. The elements Dyy and Dzz

are accessible in an analogous manner. The diagonal elements of the diffusion tensor can
thus directly be measured by x, y, and z gradients [97]. If however the diffusion weighting
gradient has components in x and y direction, say, the signal intensity depends on Dxx,Dyy,
and Dxy = Dyx. For this reason the remaining elements of D are not directly accessible. It is
also not possible to calculate them from the diagonal elements. An arbitrary tensor element
can be calculated either from the eigenvalues and the relative orientation of the principal axes
with respect to the basis, according to D = SΛS

T (2.110). Or it can be determined if we happen
to know the diffusion tensor in any other basis whose orientation with respect to our basis is
known. The information contained in the diagonal elements Dxx, Dyy, Dzz in any basis however
does not allow the reconstruction of the complete tensor — unless we know that x, y, and z
are the principal axes.
In order to determine all tensor elements we have to vary the elements of the b matrix and

perform a multivariate linear regression [15, 16] according to

lnS = lnS0 − bxxDxx − byyDyy − bzzDzz − 2bxyDxy − 2byzDyz − 2bxzDxz (3.23)

which is equivalent to equation (3.20). The logarithmic transformation of equation (3.20) into
(3.23) has disadvantages at low SNR but allows the use of fast linear fit routines [98]. It can be
avoided by applying a nonlinear fit routine by minimizing the difference between the measured
signal and the signal value calculated from (3.20) [99].
Irrespective of the method chosen to determine the unknown parameters in (3.20), the

gradients G(t) have to be varied in such a way that the resulting b matrices span the 6-
dimensional vector space of symmetrical 3× 3 matrices. (This requirement on the b matrices
is not necessarily satisfied if the gradient amplitude vectors G0 are non-collinear in R

3.) If we
do not determine S0 by a separate measurement without diffusion gradients, equation (3.23)
contains 7 unknown variables. Hence we have to use at least seven different b matrices
Basser et al. [100, 15] have pointed out that the off-diagonal elements of the diffusion tensor

can in general not be neglected. In in vivo experiments the orientation of the principal axes of
the diffusion tensor is usually not known, and the orientation is not necessarily homogeneous
within the sample. Therefore it is necessary to measure all six independent tensor elements.

3.3.1 Spatial localization

For in vivo applications it is in general desirable to combine a measurement of the diffusion
tensor with some kind of spatial localization. A combination [92] of the pulsed-gradient spin-
echo experiment with two-dimensional 1H NMR imaging sequences for spatially localized tensor
measurements was proposed by Basser et al. [15]. The imaging method without diffusion gradi-
ent pulses provides a signal intensity for each of the volume elements in a slice. The dominant
factors that determine this intensity are proton density and relaxation times in the voxel. Due
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to the presence of imaging gradients and magnetic field inhomogeneities the signal intensity
is also influenced by diffusion. In the case of spin echo sequences the diffusion dependence
is described by equation (3.10). But this contribution is in most situations negligible. If we
however introduce strong additional gradient pulses into the sequence as described for the
Stejskal-Tanner experiment, the signal intensity of an image pixel will strongly depend on the
diffusion tensor in the corresponding voxel. The image is then said to be diffusion weighted.
We can incorporate diffusion weighting gradient pulses in an imaging sequence and perform

the tensor experiment with different gradient directions and amplitudes. Application of the
linear regression algorithm to each pixel intensity will then eliminate the influence of proton
density and relaxation rates. This procedure yields a diffusion tensor for each image pixel.
A variety of NMR imaging methods can be combined with PFG-NMR to provide spatial

localization. Many of them are based on the spin echo principle such that we can place the
diffusion weighting gradients next to the refocusing pulse as in the Stejskal-Tanner experiment.
It is also possible to use a preparation experiment where the equilibrium magnetization is
manipulated in a Stejskal-Tanner pulse sequence before the actual imaging sequence starts
[101, 102].

3.3.2 Measures of diffusion anisotropy

In order to specify the degree of anisotropy of self-diffusion, a number of different parameters
have been proposed. As a general requirement the parameter has to be invariant under rotation
of the coordinate system and under reordering of the basis vectors. In mathematical terms,
the parameter must not change if we transform D by application of an orthogonal4 matrix S to
D′ = STDS.

• A simple measure of anisotropy is the ratio of the largest and the smallest eigenvalue,

ae =
λmax

λmin

. (3.24)

To calculate this parameter, the eigenvalues have to be ordered according to size. Thereby
a bias towards anisotropy at low signal-to-noise ratios is introduced [103]: in the presence
of noise, the eigenvalues will in general be different such that ae < 1. The situation ae > 1
however will never occur.

• The volume ratio [103] is based on a geometrical argument. It measures the volume of
an ellipsoid with principal (half) axes λ1, λ2, λ3, divided by the volume of a sphere with
the radius TrD/3:

av = 27
detD

(TrD)3
. (3.25)

• If we separate the diffusion tensor into an isotropic and an anisotropic part,

A = D − TrD

3
I, (3.26)

4Orthogonal matrices S with det S = −1 represent a rotation combined with a reflection. Any orthonormal
basis can be converted into another orthonormal basis by application of the appropriate orthogonal matrix.
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we can define the fractional anisotropy index [17, 104] by

af =

√

3

2

√
A : A√
D : D

with B : C ≡
∑

i,j

BijCij. (3.27)

The invariance of af is due to the invariance of the “generalized tensor product” (B : C =
STBS : STCS) which can be shown using ST = S−1. af ranges between 0 (λ1 = λ2 = λ3)
and 1 (af → 1 as λ2 → 0 for λ1 > λ2 = λ3).

• The lattice index [103] measures the similarity of the diffusion tensors in neighbouring
volume elements. It is not a pure anisotropy measure in a strict sense. However, the
anisotropy indices described above can measure the degree of order in white matter (see
p. 52): randomly oriented fibres lead to an isotropic diffusion tensor, D = cI with some
c ∈ R. In a grid of volume elements that are each characterized by a diffusion tensor we
can also measure the degree of order on the macroscopic scale. If the fibres in a voxel have
the same orientation as in the surrounding voxels, the “lattice index” shall be large, and
it shall be small in a grid of randomly oriented diffusion ellipsoids. Using the anisotropic
part A from equation (3.26) and the abbreviation

LM,N =

√

3

8

√
AM : AN√
DM : DN

+
3

4

AM : AN√
DM : DM

√
DN : DN

(3.28)

in a two-dimensional grid, we can define the lattice index of voxel M by

al(M) =

(

8
∑

N=1

cNLM,N

)

/
8
∑

N=1

cN . (3.29)

The weighting factor cN is the ratio of the side length of the cubic voxels divided by the
distance between the centre of voxel N and the centre of the reference voxel, M , such
that cN = 1 or cN = 1/

√
2, depending on N . The lattice index depends on the degree

of anisotropy in the individual voxels. It vanishes in isotropic media. Since the double
dot product between different tensors may be negative equation (3.28) does not allow a
stringent definition of al. A similar measure of tissue organization based on the double
dot product between tensors has been proposed that does not suffer from this drawback
[104].

3.4 In vivo application

3.4.1 Determinants of water self-diffusion in vivo

Biological tissues consist mainly of water but are inhomogeneous on the scale of a few microns
due to the presence of cell membranes. Although cell membranes in animal tissues5 are highly
permeable for water molecules [105, p. 348] they impede water diffusion and create separate
compartments. Water is present inside the cells as well as in the intercellular space. Mam-
malian cell dimensions are typically about 100 µm which is considerably less than the spatial

5Cell membranes in plants are almost impermeable for water [105, p. 348].
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resolution achievable with medical MRI systems.6 Therefore results from NMR diffusion mea-
surements represent an average over many cells and the space between them. Due to different
concentrations of macromolecules the intra- and extracellular diffusion coefficients, Din andDex,
respectively, are in general different [106]. As the NMR measurement yields an average of the
diffusion coefficients in all compartments, the result of the measurement depends on the ratio
of compartment volumes. There is still controversal discussion about the values of Din and Dex

[107]. For long diffusion times (about 50 ms) water self-diffusion in tissue is restricted due to the
presence of cell membranes (see section 3.4.3). A measurement of the effective diffusion tensor
in this case can yield an anisotropic diffusion tensor. This can be used to obtain geometric
information about structures that are much smaller than the typical spatial resolution of an
MRI experiment. The following tissue properties determine the measured diffusion tensor of
water:

• concentration of macromolecules in intra- and extracellular space, concentration and
structure of intracellular organelles

• relative water content of intra- and extracellular space

• permeability of cell membranes

• geometric arrangement of membranes, i.e. cell shape and orientation. These influence the
tortuosity of the extracellular space, and eigenvalues and principal axes of the diffusion
tensor. The apparent diffusion tensor is anisotropic if in a given volume of tissue (that
can be considered as having a homogeneous structure) some of the membrane orientations
are privileged (the surface integral over all membranes7

∫

|p̌ ·ds| depends on the direction
of p̌) and the membrane distance is of the order of the diffusion length for free diffusion
during the time of the measurement (50 ms).

• pseudo diffusion (see below).

Pseudodiffusion

The presence of moving blood in living animal tissue can influence diffusion measurements [108].
A network of fine blood vessels within the tissue provides supply of nutrients and removal of toxic
metabolic end-products. Since the capillary network can be modelled to a good approximation
as a mesh of randomly oriented short vessel segments, a particle flowing in the network performs
a random walk. Although the same path is shared by many molecules, the water melecules
that are contained in a volume element of 1 mm3 (which is the size of a voxel that can be
resolved by MRI) follow very different paths within an observation time of about 50 ms. The
consequent dephasing of spins in the volume element in the presence of a field gradient causes
the detectable NMR signal to decrease. Le Bihan et al. [109, 110] coined the term intravoxel
incoherent motion (IVIM) to refer to this phenomenon. It causes an additional signal loss in
NMR measurements of diffusivity in perfused tissue which can be described using a “pseudo
diffusion coefficient” D∗ defined by [108]

D∗ = lv/6 (3.30)

6The spatial resolution of MRI is about 1 mm employing a gradient system that is designed to image objects
of the size of a human head. For fundamental reasons it is limited by the low sensitivity to a few micrometers
[36, p. 173].

7This integral does not discriminate between surface normal vectors pointing in opposite directions.
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with l being the average length of straight capillary segments, and v the mean velocity of spins.
The signal attenuation by diffusion weighting is then governed by [105]

S(b) = (1− f)S0,state
−bD + fS0,circe

−b(D+D∗) (3.31)

where the volume fraction of circulating spins is denoted by f . Anisotropy of diffusion, and
differences in diffusivity or relaxation times between tissue and blood have been neglected here.
The “pseudodiffusion” coefficient D∗ in perfused brain tissue is of the order 20 · 10−9m2 s−1

which is by a factor of 10 larger than D. Equation (3.31) leads to a deviation from the linear
relation between b and lnS for small b values (b � 100 mm2s−1). Diffusion weighting with low
b values can be used to selectively suppress the signal arising from water within the capillary
network [111]. Although diffusion measurements in brain grey matter have been reported to be
affected by IVIM, the perfusion contribution is completely negligible in the much less perfused
white matter.
The term “apparent” diffusion coefficient was originally used to express the influence of

pseudodiffusion on the measured diffusivity [105, p. 361]. However, it is nowadays mostly used
to refer to the measured diffusion coefficient as opposed to the definition of the microscopic
diffusion coefficient in the Fickian sense, e.g. taking into account restrictions to diffusion [95,
p. 32]. We will use the term in this latter, broader sense.

3.4.2 Applications of diffusion weighted imaging

The term diffusion weighted imaging (DWI) is applied to NMR imaging experiments that
are performed to produce an image contrast between tissues of different water self-diffusivity.
DWI is used if one is interested in the mobility of diffusing water molecules irrespective of the
direction. Diffusion weighting can for example be achieved in a PFG experiment combined with
an imaging sequence, using one single gradient direction. The signal intensity then depends on
the first diagonal diffusion element D11 of the tensor expressed in a basis whose first basis vector
is parallel to the gradient direction G (see equations (2.121) and (3.14)). D11 is the apparent
diffusion coefficient (ADC) along the chosen direction. From a number of DWI images with
different b values, D11 can be calculated. However, the diffusion weighted images themselves
are often used instead of maps of D11. DWI has been successfully applied in clinical imaging
of stroke, tumours [112], and multiple sclerosis [113].

Stroke

In 1990 Moseley et al. [9] observed in cats that within minutes after the occlusion of a supplying
artery the affected brain region appeared hyperintense in diffusion weighted MR images. This
was due to a decrease of the effective diffusion coefficient in the ischemic8 brain area. Conven-
tionally used T2 weighted images did not show the lesion until many hours after the insult. The
same observation has been made in human patients [114]. The reason for the reduction of the
ADC in ischemic tissue by about 40% is still being controversially discussed.9 The most widely
accepted hypothesis is based upon cell swelling due to the lack of energy supply [116, 117, 118].
The cell membrane of neurons is equipped with molecular ion pumps that maintain a constant
voltage of −60 mV between the cell plasma (more negative potential) and the extracellular

8derived from greek ’ίσχειν — hinder, detain; and α‘ι̃µα — blood.
9See, for example, [107, 115].
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space. Within minutes after the interruption of blood supply the energy reserves of the cells
are exhausted, and consequently the function of the transmembrane pumps ceases. Due to
the high transmembrane concentration gradient, Na+ ions will then diffuse into the cell. The
resulting osmotic pressure10 causes a massive influx of water into the cell, and consequently
leads to cell swelling. This state is called a cytotoxic edema. It is characterized by a reduced
extracellular space with increased tortuosity, in particular if adjacent cells touch each other.
Water molecules trapped between cells can only diffuse over large distances if they enter the
more viscous intracellular medium. For a certain range of observation times their displacement
will thus be determined by the low intracellular diffusion coefficient.11 The pure shift of water
molecules into the intracellular space which is characterized by a higher viscosity is unlikely to
produce the observed ADC change [116].16 More recent experiments have shown that the ADC
decreases both in the intracellular and in the interstitial space [107, 119].
The predictive value of diffusion weighted images for the clinical perspective of stroke pa-

tients is currently under investigation [120, 121, 122]. It is intended to optimize the medication
at an early stage according to lesion extent, position, and severeness obtained from combined
diffusion and blood perfusion measurements [120].

Isotropic diffusion weighting

A major difficulty for the clinical application of DWI on stroke patients is the fact that the
intensity of an image pixel depends on the relative orientation of the tissue and the diffusion
gradient if the ischemic lesion is situated in white matter (see below: Anisotropic diffusion in
brain white matter). This makes the delineation of the lesion difficult [123, 23] because an
ADC reduction due to an ischemic event is indistinguishable from a low ADC due to fibres
running perpendicularly to the gradient direction. There are several approaches to address
this problem. The simplest way is to record three diffusion weighted images with orthogonal
gradient directions. The sum of the three signal intensities for a pixel will then depend on
TrD rather than on a single tensor element. The trace of the diffusion tensor is invariant
under rotation of the coordinate axes. In order to circumvent the increased measurement time,
gradient time courses G(t) have been developed which produce a signal attenuation according
to ln(S/S0) ∼ TrD [124, 125, 126, 127]. For this isotropic diffusion weighting the b matrix
is optimized numerically to be as close as possible to a matrix that differs from the identity
matrix only by a factor, bij = b0δij with some b0 ∈ R. In the ideal case this leads to

S

S0
= e−

∑

i,j bijDij = e−b0 TrD. (3.32)

3.4.3 Applications of diffusion tensor imaging

Anisotropic diffusion in brain white matter

In this thesis we will mainly be concerned with anisotropic diffusion in human brain tissue.
Anisotropic diffusion has been reported in muscle tissue, e.g. in cardiac tissue, as well as in the
white matter (WM) of the central nervous system of vertebrates. The anisotropy is due to the

10due to the difference between intra- and extracellular space in the overall concentration of molecules and
ions for which the membrane is impermeable as compared to the membrane permeability for water

11The argument assumes free exchange of intra- and extracellular water on the scale of the observation time,
i.e. infinitely high membrane permeability for water.
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tissue structure on a microscopic scale. The main constituents of human brain white matter are
the axons of neurons, and glial cells. The somata of neurons are concentrated on the surface of
the human brain (cortex, or external grey matter) and in regions inside (nuclei, internal grey
matter) surrounded by white matter. Most of the neuronal axons in white matter are covered
by specialized glial cells. During ontogeny, oligodendrocytes wind specialized processes around
the axons thereby forming a dense sheath consisting of many layers of the oligodendrocyte cell
membrane and a small amount of cell plasma. This envelope is called the myelin12 sheath.
It provides the axon with electrical insulation from its environment. The thickness of the
myelin sheath varies within the central nervous system. It is positively correlated with the
axon diameter [128] and typically in the range of several microns. However, the axons are not
completely covered by oligodendrocytes. An oligodendrocyte covers a segment of ca. 1 mm of
an axon. Between the segments covered by different oligodendrocytes a small part (about 1 to
2 µm [129, p. 40]) of the axonal membrane is left blank. In these zones which are known as the
nodes of Ranvier the density of ion channels in the axonal membrane is very high. They make a
fast signal transduction along the axon possible: the depolarization of the membrane13 involved
in signal transmission can skip from node to node. This type of signal transduction is termed
saltatory conduction. It is a factor of up to 100 faster than the spreading of action potentials
along unmyelinated membranes [128]. Saltatory conduction is most efficient if the axon’s myelin
sheath is thick. It is in fact the main function of the sheath to enable saltatory conduction,
rather than simply to prevent electrical leakage [130]. The oligodendrocyte membranes that
form the myelin sheath differ from other cell membranes in their chemical composition. While
usual cell membranes consist of 60% proteins and 40% lipids in the dry fraction, myelin contains
30% proteins and 70% lipids [131, p. 62].14 This property ensures a good electrical insulation.

Axons can be up to about 1 m long and between 0.2 and 20 µm in diameter [2, p. 23]. Distant
parts of the human central nervous system (CNS) are interconnected via “fibre bundles” of
many parallel axons, each covered by a myelin sheath. These bundles constitute the majority
of brain white matter. For example in the corpus callosum a cubic 1 mm3 volume element
contains about 3.7 · 105 parallel axons.15 The volume element is traversed by parallel extra-
and intracellular “channels” that extend over the full length of the volume element. The axon
diameter is typically about 1 µm [132], the extracellular “channels” in a densely packed fibre
bundle possibly have even smaller diameters. This may be compared to the mean displacement
of a water molecule that freely diffuses in bulk water, which is about 24 µm within 50 ms (at
room temperature). Hence, provided that the cell membranes are sufficiently impermeable to
water molecules, the diffusion process in a white matter fibre will on the time scale of 50 ms
appear restricted perpendicular to the fibre axis, while motion parallel to this axis will not be
affected. This is the basis for an explanation of the findings of anisotropic water self-diffusion
in brain white matter.

However, the precise mechanism that causes the observed diffusion anisotropy in brain
tissue is still under discussion. An alternative explanation is the presence of axonal transport

12The name is derived from greek µυελóς — marrow.
13Electrical signals spread in the CNS along the cell membranes of neurons. Ion channels in the membrane

switch to the “open” position if a signal is to be transmitted. This results in a Ca+ and Na+ influx into the cell
and consequently a dramatic change of the voltage between internal and external side of the axonal membrane.
The process is called depolarization of the membrane: the voltage over the membrane which is taken to be
negative during rest changes upon excitation suddenly to to a more positive value. The depolarization lasts for
approx. 1 ms. The resulting voltage peak migrates along the membrane. It is called an action potential.

14The water content of tightly wound myelin is about 40% [130].
15For this value axons with diameters below 0.4 µm are neglected [132].
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mechanisms in the cell plasma [105, p. 350]: Most of the neurotransmitters and nutrients
that are used at the end of an axon (at the synapse to another neuron) are synthesized in
the cell soma and then transported through the cell plasma [130, ch. 4]. However, axonal
transport is unlikely to play a role for the anisotropy of diffusion in WM since the transport
velocities are low, and there is no evidence for a sudden reduction in anisotropy upon cell
death. (However, observations of a slight reduction of anisotropy in ischemic brain tissue do
exist [24].) Moreover, transport cannot explain that the diffusion coefficient perpendicular
to the fibre direction depends on the observation time [133]. Experiments on excised nerves
[134] and measurements on single axons [135, 136] also appear to exclude a significant role of
microtubules and fast axonal transport for anisotropy.
Although measurements on excised garfish nerves [134, 137] showed that nonmyelinated

nerves also exhibit diffusion anisotropy, the observation that in human white matter the dif-
fusional anisotropy decreases with progressing pathological demyelination indicates that the
myelin sheath contributes to diffusion anisotropy in WM. However, the relatively low per-
meability of the myelin sheath is possibly not decisive: Szafer et al. [118] concluded from a
theoretical model of brain tissue that the ADC is largely insensitive to reductions in cellular
membrane permeability. However, even if the permeability of axonal walls for water molecules is
not substantially lowered by the myelin sheath, the presence of myelin sheaths has an influence
on the tortuosity of the extracellular space. The situation encountered in normal white matter
may be similar to the model that was presented above (p. 51) to explain the ADC reduction
in ischemic tissue. The extracellular space of white matter is comparable to the traps between
swollen cells in that model. Many authors therefore consider the tortuosity of the extracellular
space to be the most important reason for diffusion anisotropy in white matter [138, 116].
The geometry of white matter fibre tracts varies between different brain regions, and intra-

and extracellular diffusion coefficients as well as membrane permeabilities are only known to
an order of magnitude.16 In consequence the eigenvalues of the water self-diffusion tensor can
only very roughly be estimated from a priori knowledge. Numerical and analytical models have
been applied to the problem [139, 140]. In a homogeneous bundle of parallel fibres however the
diffusion ellipsoid will have cylindrical symmetry, and one of the principal axes will always be
aligned with the fibre axis.

Clinical application and application for functional neuroanatomy

The applications of DTI can be divided into three broad categories. DTI can yield information
on

• fibre anatomy,

• diffusion anisotropy which reflects the degree of axon myelination or tissue organization,
and

• the tensor of electrical conductivity in brain tissue.

The latter will be discussed in a separate section below. Diffusion tensor imaging has been
used to obtain anatomical information in white matter [141] which is of use for both functional
brain research and neurosurgical problems where the position of fibre tracts is of interest. The

16 In fact, the question of whether the intracellular and extracellular diffusivities differ at all is still open, see
for example [107].
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relevance of fibre imaging arises from the fact that it is not possible to derive such information
from necropsy since extent and morphology of most brain WM fibre tracts vary considerably
between subjects.17

DTI has also been applied to investigate and diagnose white matter disorders in human
patients. In this context DTI is used as a means to detect the degree of diffusion anisotropy.
Although T2 weighted MRI is widely used as a diagnostic tool, information on pathological
processes can more easily be deduced from the parameters measured by DTI than from the
T2 value. A number of white matter diseases involve a degeneration of axonal myelin shields
(demyelination) which can be detected as a reduction of anisotropy. DTI can therefore be used
for an investigation of multiple sclerosis [22, 142]. It can also be applied to detect processes
secondary to neuronal death: Upon injury of an axon the cell soma may survive while the
distal part of the axon disintegrates (Wallerian degeneration). A neuron upon which the axon
projects can then also disintegrate if it does not have a large number of other afferent neurons
(transneuronal degeneration) [131, p. 51]. Both processees can be detected with DTI through
the subsequent decay [128, p. 5] of the myelin shield [143, 144, 145]. Measurements of diffusion
anisotropy or full diffusion tensor imaging have also been applied to schizophrenia [27, 28], stroke
[23, 24], tumours [25, 26], traumatic brain injury [146], hemiparesis [147], and physiology and
pathology of heart muscle tissue [21, 148, 149].

One of the most important aims of functional neuroanatomy is to derive anatomical def-
initions of what can be regarded as a “functional unit” in the cerebral cortex. By means of
“functional” MRI experiments (see section 6.1.2) the cortical regions can be identified that are
envolved in a specific task, yielding regions whose extension is of the order of centimeters. To
date the anatomical characteristics that determine these regions are unknown. Subdidividing
the cerebral cortex on the basis of histological criteria leads to areas (Brodmann’s areas [2]) that
are considerably larger than those activated in a functional experiment. Since diffusion tensor
imaging can achieve a resolution of 1 to 3 mm it can possibly be used to define those cortical
regions that represent a functional unit on the basis of the afferent white matter fibre bundles.
Even if this should prove impossible the information regarding fibre tracts can be incorporated
in models of the brain function as additional knowledge regarding the main communication
pathways between parts of the brain.

Application in MEG source localization

Tissue structure not only determines the diffusion tensor of brain tissue but also its electrical
properties. Therefore the knowledge of tissue structure that is obtained from a DTI experi-
ment contains information on the tensor of electrical conductivity, σ. Conductivity data are
required in the localization of activated brain regions from a magnetoencephalogram. Magne-
toencephalography (MEG) measures the magnetic field at the head surface that is caused by
the electrical activity of neurons. A comprehensive overview of this method can be found in
[1]. Numerical source localization algorithms attempt to reconstruct the current sources of the
magnetic field under the assumption that the field arises mainly from the electrical current in
the apical dendritic tree of a certain type of activated cortical neurons (pyramidal cells), which
is predominantly oriented perpendicular to the cortical surface.18 It is clear that the electrical
field driving the current in a dendrite is not confined to the dendrite and, since the dendrite

17Interindividual differences are common in many regions of the human brain [18, p. 173].
18The measured magnetic fields are of the order of 10−13 T, comprising the contributions of about 50 000

synchronously activated neurons [1, p. 198].
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is embedded in conducting material, can give rise to “secondary currents” at distant locations.
A source reconstruction algorithm must also take the secondary currents into account. Spatial
distribution, orientation, and amplitude of the secondary currents depend on the conductivity
tensor in the tissue around the source. To date only very coarse assumptions on the conductivity
in the human head are used, partly because no reliable method is available to measure σ in situ.
Since in white matter the presence of myelin sheaths reduces the conductivity perpendicular
to the fibre direction [131, p. 62] it is generally accepted that the self-diffusion tensor of water
and the conductivity tensor share the eigenvector directions [16]. The fibre direction obtained
from DTI measurements can therefore be used to derive an estimate of the conductivity tensor
to be used in MEG source localization. From such an approach a considerable improvement of
current source reconstruction is expected. The required spatial resolution of the DTI data is
expected to be in the range of a few millimeters.
Moreover, it may even be possible to derive not only the eigenvector directions but also

the eigenvalues of the conductivity tensor from the diffusion tensor of water. Although at
first sight such an attempt seems unlikely to be successful since the transport of electrical
charge is not mediated by water molecules, it may be based on the knowledge of intra- and
extracellular self-diffusivities of water, Di and De, respectively. The apparent diffusion tensor
can be thought of as being derived from the diffusivities in the intra- and extracellular space,
the membrane permeability, and the geometric arrangement of membranes. The tensor of
electrical conductivity is in principle constructed by similar rules from intra- and extracellular
conductivity (σi and σe), membrane resistivity, and the same geometrical arrangement. The
construction rules that determine the macroscopic properties of inhomogeneous media are dealt
with in effective medium theory [150]. Hence it may be possible to derive the eigenvalues of
the conductivity tensor from di, de, and the diffusion tensor eigenvalues if σe is known and the
cell membrane resistivity is approximated as infinitely large (σi = 0) [151].
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Chapter 4

Implementation of diffusion tensor
imaging

In this chapter the experimental methods used for the diffusion tensor measurements are de-
scribed, and the procedure for tensor calculation and display is outlined.

4.1 Instrumentation and subjects

The experiments were performed using an NMR whole body tomograph (Medspec 30/100,
Bruker Medizintechnik, Ettlingen, Germany) equipped with a liquid helium cooled supercon-
ducting magnet operating at 3 Tesla. The horizontal bore of the cryostat had an internal
diameter of 92 cm. The system was equipped with a whole-body gradient set of 29.2 mTm−1

maximum gradient strength. Minimum switching time from zero to maximum amplitude was
450 µs. A removable head gradient insert was also available (Magnex Scientific, Oxon, U.K.)
which could switch gradients of 35 mTm−1 max. amplitude within 150 µs. Both gradient sets
incorporated three self-shielded coils that produce gradients in three orthogonal directions, one
of which is aligned with the subject’s body axis which was parallel with the direction of the
main magnetic field (z). The whole-body gradient set was used unless stated otherwise. Both
gradient sets were connected to power supplies capable of 600 A and 350 V output. Eddy cur-
rents induced by gradient switching were reduced by a digital preemphasis unit that modifies
the wave form of the current applied to the switched gradient coil in order to minimize devia-
tions from the desired magnetic field pulse shape. The preemphasis unit was unable to correct
for the components of eddy current induced field gradients in the directions orthogonal to the
applied gradient (“cross terms”). Main field homogeneity was adjusted for each subject by an
automatic shimming routine controlling the linear field components by applying appropriate
currents to the gradient coils. The currents in the 11 additional shim coils were only adjusted
during system setup. For RF transmission and signal reception a quadrature birdcage head res-
onator (28 cm internal diameter) was employed. Images were reconstructed off-line, including
baseline correction before the Fourier transform. For data evaluation the IDL (Interactive Data
Language, Research Systems Inc., Colorado, USA) software package was used on a computer
workstation (Silicon Graphics Inc., Mountain View, California, USA).

Healthy human subjects volunteered for the in vivo experiments. Written informed consent
was obtained in each case prior to examination. The total scan time did not exceed 2 hours.
The subjects were protected from acoustic noise by earplugs and by the earphones that were
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also used for communication with the personnel performing the experiment. The experiments
were generally approved by the ethics committee of the Universität Leipzig.

4.2 Imaging sequences

Although diffusion tensor imaging studies are almost exclusively based on echo planar imaging,
it is in principle possible to perform diffusion tensor imaging with any diffusion weighted imaging
sequence. But not all sequences that are common in conventional T1, T2 or even diffusion
weighted imaging are suited for in vivo DTI.
First of all, a DTI imaging sequence has to be sensitive, and fast since a large number of

images with different diffusion weighting must be acquired. Since in addition it is often necessary
to increase SNR by averaging, the application of conventional sequences would increase the scan
time beyond what is tolerable for a patient or even for a volunteer. A volunteer cannot stay in
the scanner for much more than about 1.5 hours without moving, for patients this time limit
is generally considerably lower.

A second condition for an imaging sequence to be used for DTI is that it must be compatible
with in vivo diffusion weighting. Diffusion weighted sequences are sensitive to motion on a
micrometer scale. As physiological motion induced by cardiac and respiratory cycle as well as
small subject movements are inevitable, the sequence must be insensitive to bulk motion. If we
assume that diffusion weighting is generated by two strong gradient pulses (see section 3.2) then
a coherent object displacement between the gradient pulses will for example induce a global
phase shift of all excited spins in the sample. In spin-warp imaging, diffusion weighting must
be applied to the newly created transverse magnetization after each excitation pulse. As the
displacement is unforeseeable the data of every phase-encoding step in a spin-warp sequence can
be subjected to a different phase shift such that the spatial information contained in the signal
phase is disturbed and severe image artefacts are generated. Although in single-shot sequences
diffusion weighting has to be applied only once they can also suffer from the motion-induced
phase shift since the fulfillment of the CPMG condition is no longer ensured (cf. section 2.1.1).
This precludes the application of standard RARE to in vivo diffusion imaging. The effects of
motion are discussed in greater detail in section 5.8.

Diffusion weighted FLASH [101, 102] can be used for DWI but suffers from low SNR and
from errors in the determination of diffusion coefficients introduced by longitudinal relaxation
during the imaging period [102]. There have been attempts to employ line scan techniques in
NMR diffusion imaging [152, 153]. Hybrid sequences (GRASE) that combine the principles of
gradient and RF refocusing have also been applied to DWI [154].

In the context of this work two types of DTI sequences were implemented, EPI as a gradient
echo based sequence, and the RARE variant U-FLARE as an RF refocusing sequence.

4.2.1 Diffusion weighting

In the DTI experiments diffusion weighting was provided by a Stejskal-Tanner spin-echo prepa-
ration with two unipolar trapezoidal gradient pulses flanking a 180◦ refocusing pulse. The
minimum b value was always larger than 20 smm−2 such that the diffusion gradients were large
enough to dephase any transverse magnetization created by the refocusing RF pulse, and no
additional spoiler gradients were necessary. The diffusion gradient pulses were placed as early
in the sequence as possible to minimize the effect of eddy currents (see section 5.6). In spin
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echo experiments the slice selection gradient for the excitation pulse is commonly refocused
after the refocusing RF pulse (with a gradient pulse of the same polarity) to dephase any trans-
verse magnetization created by the refocusing pulse [33, section 3.2.3]. Unlike this scheme, in
the imaging sequences used for the DTI experiments the excitation slice gradient is refocused
immediately after excitation in order to minimize the contributions to diffusion weighting [103].
The excitation pulse and the refocusing pulse in the diffusion preparation were Gaussian shaped
and of 1.5 to 3 ms duration. For the EPI sequence, a modified diffusion weighting [155] was
also implemented to reduce residual eddy currents caused by the diffusion gradient pulses. This
scheme (Fig. 5.5) will be discussed in section 5.6.
The loop structure in the acquisition program started with the acquisition of all slices for the

first (lowest) diffusion weighting (b matrix), then the diffusion gradient direction was changed.
This was repeated NR times for averaging before the b value was incremented. The number
of averages depended on the b value since the signal level is lower at high b values. The b
value was adjusted by variation of the gradient amplitude rather than the gradient duration.
The directions of the diffusion gradients were chosen to generate 7 b matrices that span the
6-dimensional vector space of symmetrical 3 × 3 matrices. The gradient vector directions in
read, phase, and slice direction coordinates were given by
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Directions parallel to one of the axes of the gradient system were avoided so that the necessary
current was divided between at least two gradient coils. The selection of the diffusion gradient
directions has an influence on the susceptibility to noise: It has been shown [156, 157] that
for a measurement including N gradient vectors it is optimal to align the vectors along N
straight lines through the origin that are spread out in three-dimensional space such that the
2N intersections of the lines with a sphere centred at the origin have maximum distance from
each other. The gradient vector arrangement used is a coarse approximation to this requirement
obeying the boundary condition that none of the vectors is parallel to a coordinate axis.
The axial slices deviated from the yx plane of the gradient system in that they were tilted

about the x axis. This was necessary to align the slices with the common Talairach coordinate
system that defines axial slices as parallel to a plane that contains the anterior and posterior
commissure1.

4.2.2 EPI

Echo planar imaging [63] supplies images with a high signal-to-noise ratio within only about
hundred milliseconds. It is largely insensitive to phase shifts that are induced by motion during
and between the diffusion weighting gradient pulses. However, the low T ∗

2 values in regions with
a high variability of magnetic susceptibility limit the resolution that is achievable in single-shot
imaging. Segmented acquisition of k space after several excitations can provide higher resolution
but is, like spin-warp imaging, vulnerable to motion. The resulting image artefacts can only
be avoided by some kind of motion correction, e.g. navigator echo methods (see section 5.8).
A detailed discussion of echo planar imaging can be found elsewhere [158].

1Anterior and posterior commissure are fibre tracts that connect the left and right hemisphere of the brain
(cerebrum).
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Figure 4.1: Diffusion weighted EPI sequence.

The DTI sequence implemented was based on a single-shot SE-EPI sequence with blipped
phase encoding. With a 19.2 cm field-of-view and a 64× 64 data matrix an in-plane resolution
of 3 mm was achieved. The receiver bandwidth was set to 100 kHz. Nyquist ghosts in the
images were removed by off-line phase correction [158, p. 96] based on a reference scan without
phase encoding acquired immediately before the DTI experiment. A 10 ms 90◦ Gaussian RF
pulse tuned to a frequency 420 Hz below the water proton frequency was applied before water
excitation to saturate the fat signal.
The x (subject’s left-right) axis was chosen as the readout direction. For the tilted axial

slices this avoided the necessity of using two gradient coils to produce the readout gradient
which can lead to artefacts due to slight differences in gradient timing.

4.2.3 U-FLARE

As single-shot EPI suffers from low resolution, and image distortions and signal extinctions
in low homogeneity regions (see p. 26) an alternative method based on RF refocusing was
implemented for comparison. Since standard RARE cannot be used for DTI (see p. 58) the
fast RARE variant U-FLARE [159] was employed instead which is based on refocusing pulses
with flip angles below 180◦. In the experiments presented here 70◦ to 80◦ pulses were typically
used. The small refocusing angle keeps power deposition low and thereby allows short repetition
times. This advantage is bought at the price of signal-to-noise ratio. In addition, a multipulse
sequence with flip angles other than 180◦ gives rise to many coherence pathways in addition to
the pure spin echo pathway (see section 2.1.1). This is due to the fact that every refocusing pulse
can also create longitudinal and dephasing transversal magnetization such that, for example,
M11 and M10 in equation (2.50) are no longer zero. The existence of these pathways is not
disadvantageous as long as the CPMG condition is fulfilled. In the case of motion in the
presence of diffusion weighting, however, this condition no longer holds in general. From a
geometrical argument it can be seen that a 180◦ pulse with a B1 vector that subtends an angle
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∆
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G (phase)

G (slice)

90◦ TEprep/2
180◦
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α
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Figure 4.2: Displaced U-FLARE sequence for diffusion tensor imaging with a spin-echo preparation
experiment (echo time TEprep). The shaded part of the sequence is first repeated m times without
acquiring data to equalize the contributions of odd and even echo pathways, followed by n repetitions
to acquire the data for n lines in k space. The dashed vertical line indicates the time of echo formation.
The displacing gradient (‘displ’) shifts the odd echoes out of the acquisition window. An additional
spoil gradient (‘sp’) on the slice axis suppresses eventually remaining odd pathway magnetization. The
effect of the phase encoding gradient (‘ph’) which is varied during the acquisition cycles is rewound
after each acquisition. The read dephase gradient lobe is indicated by ‘rd’.

φ with the initial vector of transverse magnetization, M, refocuses the magnetization along a
direction that is rotated by 2φ relative to M. In contrast, the echo elicited by a second 180◦φ
pulse will form with zero phase. This is why the the sign of the echoes in a Carr-Purcell pulse
train alternates. Likewise, the phase of refocused magnetization in a U-FLARE experiment
depends on the coherence pathway. The pathways (q0, . . . qn) can be subdivided into those with
an even number of sign changes in qi (even parity) and those with an odd number of sign changes
(odd parity), neglecting the zero entries [160]. The magnetization from odd and even pathways
will refocus along directions that are rotated against each other by 2φ. This means that the
two contributions can destructively interfere if the CPMG condition is contravened. Due to
equation (2.65) it is possible to separate the time of echo formation for odd and even pathways.
This is used in displaced U-FLARE [160, 161] where an additional gradient pulse preceding
each readout gradient shifts the odd echoes out of the acquisition window while the position
of the even echoes remains unaltered. Since half the magnetization does not contribute to the
acquired signal the SNR is reduced by a factor of 2. The image artefacts due to interference
between coherence pathways are, however, removed. Displaced U-FLARE has been successfully
applied for diffusion weighted in vivo imaging [162].

The relative contribution of odd and even coherence pathways to an individual echo depends
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on the number of refocusing pulses previously applied [161, 163]. Because odd and even pathway
contributions have approximated each other after about 6 refocusing pulses data acquisition
does not usually start until 7 refocusing pulses (“dummy cycles”) have been applied. Alterna-
tively, amplitude variations in the echo train can be avoided by applying different optimized
flip angles for the refocusing pulses [163, 164].
For the DTI experiments, two different U-FLARE protocols were employed. In the normal

version, which will be termed “standard U-FLARE”, we used centre-out phase encoding [165],
i.e. the centre line of k space was acquired first, followed by the lines from the centre outwards,
alternating between positive and negative kph. This phase-encoding scheme has a great SNR
advantage over linear phase encoding since the zeroth phase-encoding step is less affected by
relaxation. However, the point spread function (see below) in the phase encode direction is
broader compared to the linear phase encode scheme because the doubled time delay between
the acquisition of neighbouring k-space lines leads to a larger amplitude difference. As for
EPI, U-FLARE was used only in the single-shot mode since k-space segmentation would have
required navigation techniques to suppress motion artefacts. The second version of U-FLARE
is described in the next section.

U-FLARE with improved SNR and resolution

In particular for the investigation of white matter fibres in the human brain that exhibit only
slightly anisotropic diffusion a sequence with better resolution was required than was attainable
with EPI (with the given equipment and main field strength). Although U-FLARE offers higher
achievable spatial resolution it has also disadvantages in comparison with EPI, the most striking
of which are lower SNR and higher power deposition. We therefore developed a second U-
FLARE protocol with reduced power deposition and increased SNR. A high in-plane resolution
can be achieved with a large number of RF pulses (phase encode direction) and sampling points
during the readout periods (read direction). Increasing the data matrix (and, consequently, the
echo train length) has two consequences:
First, the true resolution (as opposed to the nominal resolution which is given by field-of-

view and data matrix) is only increased if the width of the point spread function (PSF) does not
exceed the voxel size. The point spread function of an imaging process represents the image of
an ideal point which can be described by a δ(r) “function”. The PSF width is a measure of the
maximum attainable spatial resolution. The image of an object is obtained by the convolution
of the object function with the PSF. Just as the T ∗

2 decay determines the line width in NMR
spectroscopy (cf. p. 15) the signal decay in a train of echoes determines the maximum achievable
spatial resolution. Due to the convolution theorem [67] the 1-dimensional PSF for the phase-
encode direction is the Fourier transform of the amplitude variation in k space, S(kph). If the
signal S(kph(t)) decays exponentially with a time constant T2 we can deduce from the equations
(2.76) that the decay constant in k space is ck = T2/(τFOV) = T2M/(taFOV) if M echoes are
acquired in total within the time ta (τ is the sampling rate). The PSF is a Lorentzian with
Γr = (πck)

−1 FWHM (for the real part). The resolution can only be increased as long as Γr is
less than the size of a voxel, FOV/M . In other words, the maximum resolution is reached at
M = πT2/τ or, equivalently,

ta = πT2. (4.2)

The second effect of an increased echo train length is that the signal-to-noise ratio will be
changed. In an experiment where the MR signal is subject to a decay during the acquisition
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the relative noise content in the detected signal increases with time. Hence, at very large times
t after the start of the echo train acquisition, the acquisition of further echoes decreases the
SNR. The signal-to-noise ratio is usually defined as the peak signal amplitude in the image
divided by the standard deviation of the background noise [166, section 4.3.1],

SNR = S/σN . (4.3)

If we assume that the signal decays exponentially with an envelope s(t) = s(0) exp[−t/T2] (in
fact the time constant will be slightly longer for U-FLARE since the echoes contain different
coherence pathways and hence different contributions of T1 relaxation) the peak signal in the
image will be determined by [166, section 4.3.1]

S = n
M

ta

∫ ta

0

s(t) dt = n
M

ta
T2(1− exp[−ta/T2])s(0) (4.4)

where ta is the time required for the acquisition of the M echoes, and n is the number of
averaged experiments. The standard deviation of the noise in the image domain is given by
[166, section 4.3.1]

σN =M
√

n/taρN (4.5)

where ρN is the square root of the (frequency-independent) power spectrum (density)2 of the
noise in the time domain. Hence the signal-to-noise ratio is

SNR = S/σN =
√
nT2 (1− exp[−ta/T2]) s(0)/(ρN

√
ta). (4.6)

This function attains a broad maximum at3

ta = 1.26T2. (4.7)

With T2 ≈ 80 ms in brain tissue at 3 T field strength the optimum echo train length is
approximately 100 ms. The echo time between successive refocusing pulses in U-FLARE is
about 5 ms such that the echo train length for a 64× 64 matrix (smaller matrices are seldom
used) is far beyond the SNR optimum. Incrementing the number of sampled k-space lines
would reduce the SNR. The loss in SNR is not very drastic though, since the SNR varies only
slowly with the echo train length.4

The maximum spatial resolution in phase encode direction is reached at M = 51 points,
according to equation (4.2) and for the given values of echo time and T2. Hence increasing the
number of phase encoding steps beyond 51 does not increase the resolution. On the contrary, it
increases power deposition such that the repetition time would have to be extended. Because
of the relatively low SNR, displaced U-FLARE is normally operated at the highest refocusing
pulse angle that does not contravene the SAR limit. A high number of refocusing pulses is thus
undesirable.
Hence, for an improvement of spatial resolution a different approach must be employed. To

this end the U-FLARE protocol was modified in the following four points.
2which can be calculated from the Fourier transform of the (normalized) autocorrelation function of the noise

[67, p. 115].
3The maximum can be found by differentiating with respect to ta, assuming that tmax

a is proportional to T2,
and expanding the exponential function to second order.

4For the purpose of this consideration it was assumed that the voxel size, FOV/M , remains constant. Since
the SNR is proportional to the voxel volume it rapidly decreases with an increasing number of phase encoding
steps unless the FOV is increased accordingly. In practice, however, the field of view is in general chosen as
small as possible in order to achieve maximum resolution.
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• The phase encode direction was chosen to allow a minimum FOV. Since the head di-
mension is smaller along the subject’s left-right axis than along the anterior-posterior
direction, the left-right axis was chosen as the phase direction. With 19.2 cm×14.4 cm
FOV and a 128× 96 data matrix a nominal in-plane resolution of 1.5 mm×1.5 mm was
achieved.

• Centric phase encoding was replaced by a linear scheme. The standard U-FLARE pro-
tocol employs a centre-out phase encoding scheme since the effective echo time must be
minimized to achieve a large SNR. The SNR advantage of centric phase encoding is, how-
ever, counterbalanced by a lower resolution due to the broad PSF. If, however, the data
are acquired starting at one end of k space and proceeding line by line to the other end
(linear phase encoding), the PSF is considerably sharper since the amplitude variation
as a function of kph in k space is transformed to a less rapid decrease. One could think
of raising the low SNR associated with linear phase encoding simply by starting in the
centre of k space and acquiring the first lines at the end. This scheme would induce
image artefacts due to the fact that the amplitude variation in k space then has a sharp
discontinuity between the first acquired line and the last one. In spite of this fact we
were able to use linear phase encoding since the symmetry of the data in k space offers a
solution to the problem:

• Data were acquired for only one half of the k-space lines and the rest was calculated based
on the symmetry of the echo raw data. As a side effect the reduced number of RF pulses
lowered the power deposition in the tissue. Since the proton density ρ(r) is a real function
the Fourier relationship (2.74) implies that the signal S̃(k) is subject to the symmetry

S̃(k) = S̃∗(−k) (4.8)

where the asterisk means complex conjugation (see also equation (2.43)). This redundancy
in the data can be utilized to reduce the scan time by sampling only one half of k space
[167]. Depending on whether the resulting echo train length is then closer to the optimum
echo train length ta in equation (4.7) the echo train length reduction can lead to a gain
or loss in SNR. Due to the long echo train in U-FLARE with a 128 × 128 data matrix
an improvement of the SNR is expected. The calculation of the missing data in k space
requires some data manipulation: Although the proton density is purely real, due to the
phase factor eiφ in equation (2.41) this need not be the case for the Fourier transform
(FT) of the acquired data. Before equation (4.8) can be applied to calculate the missing
lines in k space, the raw data S̃(k) must therefore be modified so that its FT is rendered
purely real. To calculate the required correction matrix the acquisition started 6 k-space
lines before the zero line such that 96/2 + 6 = 54 lines were acquired in total. From the
raw data a stripe of 12 lines symmetrical about the zero line was extracted. A full data
matrix containing only these 12 data lines was Fourier transformed to real space, and for
each z(r) in the resulting matrix a complex number ζ(r) = z∗(r)/|z(r)| was computed,
which obeys zζ = |z|. The matrix of acquired data was then zero filled and converted
to real space data by Fourier transformation. The resulting image data were multiplied
with ζ(r) and transformed back into k space. Since |ζ(r)| = 1 the multiplication did
not change the magnitude of S(r) which is generally displayed. The phase of S(r) does
not contain any information about the real object. The k-space data obtained by this
procedure were such that the imaginary part of their Fourier transform is approximately
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zero. This allows the missing matrix elements to be calculated according to equation
(4.8). The Fourier transform of the completed matrix finally provides an image with the
same spatial resolution as the Fourier transform of conventionally acquired full k-space
data. For details of the k-space completion algorithm see [167].

• In order to further reduce the effective echo time the delayed start of echo acquisition
due to dummy cycles was given up and replaced by a method to determine the phase
encoding order that leads to a monotonous amplitude variation for successive lines in k
space. This approach has been suggested under the name TIPE (template interactive
phase encoding) for GRASE (gradient and spin echo) imaging [168]. Since the variation
of echo amplitudes depends on the object it requires the acquisition of a reference scan
without phase encoding gradients. On the basis of the reference data the echo amplitudes
are determined, and the phase encoding gradients are ordered accordingly. Since no even
echo is present before the second refocusing pulse one dummy cycle is still necessary. It
would have been possible to use the odd echo instead of the even echo by placing the
displacing gradient after the readout gradient rather than before it. Although this would
abolish the need for one dummy cycle, the amplitude difference between the first and
second odd echo is very large (unless very low flip angles are used) such that it would not
be possible to achieve a smooth amplitude variation in k space.

With this modified U-FLARE protocol it was possible to acquire a tensor map of a 5 mm
slice with 1.5 mm in-plane resolution within about 35 min. The quality of the resulting fibre
orientation map was comparable to a DTI map based on EPI (acquired in about the same scan
time) with 3 mm in-plane resolution. An example is shown in Fig. A.6. The U-FLARE tensor
maps did not change significantly if k-space completion was replaced by zero filling. Hence for
the application described in chapter 6 the images were reconstructed with zero filling although
the real spatial resolution is in this case again somewhat reduced compared to proper k-space
completion.

4.3 Data processing for diffusion tensor imaging

4.3.1 Tensor calculation

Based on the diffusion weighted images for each image pixel a diffusion tensor was calculated.
The calculation program was written in IDL (Interactive Data Language, Research Systems
Inc., Bolder, Colorado, USA). All calculations were performed in the coordinate system given
by the orthogonal directions of readout, phase encode, and slice selection gradients. The b

matrix for each experiment was calculated neglecting the contribution of imaging gradients
according to equation (3.21) where ε was set to the maximum ramp time for switching a gra-
dient to 100% amplitude. Since for U-FLARE all gradients were switched in the minimum
possible time (“constant slope mode”) the gradient ramp time actually depended on the spec-
ified gradient amplitude. However, the error introduced in the b matrix calculation by the
incorrect ramp times of the diffusion gradient pulses of low amplitude is small (relative error
below 5 · 10−5). For all pixels above a noise threshold the diffusion tensor was calculated by
multivariate linear regression [15] to the equation (3.23) which uses the symmetry of the dif-
fusion tensor to restrict the number of fit parameters to seven, including the logarithm of the
amplitude in the absence of diffusion weighting, lnS0. Although S0 could also be measured,
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such a measurement would be inaccurate unless the diffusion weighting effect caused by imag-
ing gradients is taken into account for the calculation of the b matrix (see section 5.2. Before
starting the regression algorithm (and before taking the logarithm), the images obtained with
identical diffusion weighting were averaged in order to limit computing time. Averaging was
performed with the reconstructed magnitude images since otherwise phase differences between
the complex images due to different movements during diffusion weighting could cause signal
interference. Strictly speaking, the measured amplitude values must be weighted differently in
the fit since the transformation of equation (3.20) into (3.23) overemphasizes the uncertainties
for large values of S such that the fit will be better optimized for small S [169, section 9-3]. A
multilinear fit to equation (3.23) without weighting assumes that the uncertainties are equal on
the logarithmic scale. The weights can be determined by a log-transformation of assumed equal
uncertainties or of the measured amplitude variations over the repeated experiments. None of
the two possibilities had a noticeable effect on the tensor maps and hence the fit was performed
without weighting correction. The goodness of the fit can be assessed using the multiple cor-
relation coefficient. If we denote the elements of the b matrix that occur in equation (3.23)
by b1, . . . b6, the corresponding diffusion tensor elements (including the factor 2 in the case of
the diagonal elements) by d1 . . . d6, and the measured quantity lnS by y, then the multiple
correlation coefficient is given by [169, p. 131]

r =

√

√

√

√

6
∑

j=1

dj
s2(bj , y)

s2(y, y)
(4.9)

where the empirical covariance, s2(bj , y), of the two variables bj and y and the empirical variance
of y, s2(y, y), can be calculated from

s2(bj , y) =
1

N − 1

N
∑

i=1

(

b
(i)
j − bj

)

(

y(i) − y
)

, s2(y, y) =
1

N − 1

N
∑

i=1

(

y(i) − y
) (

y(i) − y
)

.

(4.10)

The superscript, i = 1 . . . N , specifies the number of the experiment. If the multiple correlation
coefficient was below 0.8, no tensor was stored for this particular pixel. This threshold was ap-
proximately the highest possible value that was still low enough to include all voxels containing
white matter.

4.3.2 Eigenvector calculation and display

The main objective of measuring the diffusion tensor in the human brain was to image fibre
directions in white matter. From the calculated diffusion tensors in each image pixel the
fibre direction was determined in the following way. The symmetric tensor is converted to
tridiagonal form5, and its eigenvectors and eigenvalues are calculated6 using built-in routines
of IDL. Nonpositive eigenvalues that can occur due to numerical or measurement errors are
set to zero. For each image pixel the eigenvector corresponding to the largest eigenvalue is
displayed unless all three calculated eigenvalues are negative. The projection of these vectors
onto the image plane is displayed. To allow an assignment of the tensor data to anatomical

5by Householder’s method [170, section 11.2]
6employing the “QL algorithm with implicit shifts” [170, section 11.3]
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structures each DTI measurement was preceded by anatomical T1 weighted imaging of the same
slice employing an MDEFT sequence [171, 172], and the eigenvector projections are overlaid
onto the anatomical image. An example of a resulting fibre orientation map based on the EPI
sequence for a slice in a volunteer’s brain is shown in Fig. A.1. The fibre orientations agree
well with anatomical expectations. Fig. 4.3 shows the distribution of the trace of the diffusion
tensor and the anisotropy index af (cf. 3.3.2) calculated from a DTI experiment based on TIPE
U-FLARE.

a b

Figure 4.3: Trace map (a) and af map (b) based on TIPE U-FLARE sequence.
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Chapter 5

Sources of systematic error and
possible solutions

Possible sources of errors in the measurement are discussed in this chapter, and for some of
them a solution to the problem is presented. The results of a (standard) U-FLARE tensor
measurement are summarized in Fig. 5.1 in terms of TrD and fractional anisotropy index
(cf. 3.3.2) in different regions of interest. The regions were positioned manually as follows: in
a water container attached to the subject’s head,1 in the background where only artefactual
signal occurs (“ghost”, see section 5.6.3), and in different anatomical regions of the brain. The
trace values for water given in Fig. 5.1 are consistent with the literature ADC values listed in
Table 5.1, provided the water has assumed body temperature by the direct contact with the
subject’s head.

Temperature 25 ◦C 37 ◦C 45 ◦C
D/10−9m2 s−1 2.30 (3.06) 3.56

Table 5.1: Literature values for the diffusion coefficient of liquid water at saturated vapour pressure
[173]. The value for 37 ◦C was determined by linear interpolation.

The highest anisotropy values are found in the splenium of the corpus callosum (WM2 in
Fig. 5.1) which is consistent with published results [141]. The regression routine delivers for
example for a pixel in WM2 the diffusion tensor





0.473 0.165 −0.038
0.165 1.651 −0.046

−0.038 −0.046 0.357



±





0.060 0.029 0.029
0.029 0.060 0.029
0.029 0.029 0.060



 (5.1)

in units of 10−9m2 s−1, in read, phase encode, and slice select coordinates with the phase
encode axis being parallel to the subject’s left-right direction. The eigenvalues of this tensor
are calculated to be 0.459, 0.346, and 1.675 · 10−9m2 s−1, the fractional anisotropy is af = 0.72.
Grey matter exhibits in general much lower anisotropy. However, nucleic grey matter can
be as anisotropc as some white matter regions. The relatively high anisotropy found in the
thalamus is consistent with the high degree of myelination in some grey matter regions that are

1An inanimate sample that is used for testing purposes is called a “phantom” in the context of biomedical
imaging.



70 Chapter 5. Sources of systematic error and possible solutions

Figure 5.1: Fractional anisotropy af and trace values for different tissue types. Tr D/3 (mean over
region of interest) is indicated by grey bars, af is indicated by lines that show minimum, average,
and maximum over the region of interest. The tissue types of the regions of interest listed in the
bottom line are as follows: cerebrospinal fluid (CSF1 to CSF3, CSF3 is in the lateral ventricles),
white matter (WM1 to WM5, WM1 genu and WM2 splenium of corpus callosum), grey matter in the
caudate nucleus (GMn2), grey matter in the thalamus (GMn2), cortical grey matter (GMc). Values
for a water phantom (W1, W2) that was fixed to the subject’s head and for a region in the “ghost”
(Gh) are given for comparison. A horizontal line at af = 0.1 indicates the minimum af threshold
that is applied to fibre orientation maps to suppress CSF and grey matter. Values are taken from a
(standard) U-FLARE measurement. The regions of interest contained about 10 to 20 voxels each.

surrounded by white matter (nuclei). The anisotropy indices for grey and white matter show
that it is not possible to suppress cortical grey matter completely without also suppressing
parts of white matter. An af > 0.1 threshold (as indicated by the horizontal line in Fig. 5.1)
was well-suited to suppress most artefactual anisotropy in the fibre orientation maps shown in
this thesis. Cerebrospinal fluid was expected to have low anisotropy and high trace values. For
CSF in the lateral ventricles (CSF3) this is not the case. Here water diffusion is characterized
by relatively high anisotropy and high trace values. This behaviour is probably due to flow (see
section 5.9). For a discussion of the anisotropy in the water phantom (regions W1 and W2)
refer to section 5.7.

Although the values given in Fig. 5.1 agree well with previously published data [142, 24]
the apparent anisotropy of diffusion in CSF and in water and the presence of anisotropic ghost
signal that might interfere with the object image clearly indicate errors in the diffusion tensor
measurement. Possible reasons for inaccuracies are noise, flow in the CSF compartments,
background gradients at tissue borders, eddy currents, and subject motion. A further source of
inaccuracy may be given by contributions of the imaging gradients to the diffusion weighting
that have not been accounted for in the b matrix calculation. Systematic and non-systematic
errors shall be discussed in the following sections.
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Figure 5.2: Noise dependence of fractional anisotropy, trace, and the organization index aangle defined
in equation (5.2), for the agarose phantom in Fig. A.2. NR denotes the number of averages. The mean
value over the phantom is given in all plots along with the standard deviation indicated by vertical
lines. (derived from the same data as Fig. A.2)

5.1 Influence of noise

DTI experiments on an agarose gel phantom were performed to assess the measurement accu-
racy and the influence of image noise. Although the diffusion coefficient of this gel was not
known it was preferred to water to exclude any errors due to convective motion. The exper-
iments revealed that water diffusion does not appear isotropic in the isotropic gel phantom.
Fig. A.2b indicates systematic errors that render the measured diffusion tensor anisotropic even
for isotropic substances. The map in Fig. A.2a was calculated from the same data but included
only one image for each diffusion weighting instead of averaging over 22 images as in Fig. A.2b.
Fig. 5.2a shows that the fractional anisotropy index decreases with increasing image SNR. As
the linear regression algorithm described in section 4.3.1 is performed on averaged raw images
the signal-to-noise ratio could be modified by reducing the number of averaged repetitions. At
high noise levels the fractional anisotropy index, af , will overestimate the diffusion anisotropy
[174, 175, 141, 103]. However, for 22 averaged repetitions most voxels are below the af > 0.1
threshold.
The existence of a position-dependent preferential “fibre” direction in the isotropic phantom

can be measured with the lattice anisotropy index, al, defined in equation (3.29). This index
measures the similarity of diffusion tensors in neighbouring voxels but also depends on the
degree of anisotropy (al = 0 for A = 0 in equation (3.29)). Because the anisotropy (af )
depends on the signal-to-noise ratio, al is not an appropriate measure of the similarity of the
eigenvector directions. To assess the degree of similarity between eigenvectors in neighbouring
voxels an index was therefore defined in the same manner as the lattice index but based on the
scalar product between the “fibre direction” vectors of neighbouring voxels, i.e. the eigenvectors
corresponding to the largest eigenvalue. In analogy with (3.29) we defined this “angle index”
by

aangle(M) =

(

8
∑

N=1

cNLM,N

)

/

8
∑

N=1

cN with LM,N = |eM · eN | (5.2)

where eN is the eigenvector corresponding to the largest eigenvalue in voxel N . This index
increases with SNR, as Fig. 5.2 shows. This is a manifestation of the increasing separation of
the red, green, and blue colours into different regions with increasing SNR in Fig. A.2.
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In in vivo experiments, extensive averaging was required to achieve fibre orientation maps
with an acceptable noise level. In a typical DTI experiment, 30 to 40 images with identical
diffusion weighting were acquired for b values of the order of 600 smm−2. Because of the lower
SNR of U-FLARE, with U-FLARE as the imaging sequence more averages are required than
with EPI. The number of required averages was adjusted by assessing the noise level in the
calculated fibre orientation maps.

Anisotropy of the measured diffusion tensor in isotropic substances is not uncommon [156,
15]. The deviation of the diffusion tensor from an isotropic tensor is usually even significant
[15] which means that the anisotropy is due to systematic errors. This also seems to be the case
in our experiments. Often the systematic error largely exceeds the standard deviation in the
tensor elements which is calculated in the multiple linear regression analysis. In the remaining
sections of this chapter we discuss the possible sources of these systematic errors.

5.2 Contribution of imaging gradients

It is clear from equations (3.20) and (3.17) that the signal amplitude in a diffusion weighted
imaging experiment also depends on the gradient pulses which are used in the imaging sequence.
A correct calculation of the b matrix must therefore account for the imaging gradients [15, 96,
176]. In EPI based DTI, the error in the b matrix elements (and hence in the tensor elements)
due to neglected imaging gradients can attain values of 2% [176]. Unfortunately, for the U-
FLARE experiment there is no straightforward way to include the imaging gradients in the b

matrix calculation. A correct calculation would have to treat the coherence pathways separately
since a gradient does not have a dephasing effect on longitudinal magnetization. Because the
relative amplitudes of the pathways depend on the relaxation times the exact diffusion weighting
b matrix can, strictly speaking, not exactly be determined from the experimental parameters.
Moreover, an exact calculation would require the knowledge of the slice profile for the refocusing
pulses: the pathway amplitudes depend on the refocusing pulse angle which varies along the
slice-selection axis. To obtain an estimate of the error in the b matrix that is introduced by
neglecting the imaging gradients in the (standard) U-FLARE sequence, the gradient sequence
was numerically integrated according to equation (3.17), treating the refocusing pulses in the
imaging sequence as perfect 180◦ pulses.2 This was achieved by inverting the sign of all gradient
pulses that are preceded by an odd number of refocusing pulses (excluding the 180◦ pulse during
the diffusion preparation). All gradient pulses were approximated by rectangular functions. The
error introduced by this simplifying approximation is only about 0.005% at b = 600 smm−2

(comparison of b value for diffusion gradients evaluated by means of (3.21) with ε = 450 µs
and ε = 0). The gradient sequence was evaluated until the centre of the first acquired echo.
In centre-out phase encoding this echo corresponds to kpe = 0 such that it was not necessary
to include the phase encoding gradient pulse. For numerical integration the gradient sequence
was specified by 2000 points which corresponds to a temporal resolution of 62 µs. The b matrix
calculated exclusively from the diffusion gradients according to (3.17) with 450 µs ramp time,
δ = 22 ms, ∆ = 40 ms, and G = 23.4 mTm−1 (which is 80% of the maximum gradient strength

2Analytical integration is tedious but also possible.
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for the whole-body gradient set) is given in units of smm−2 by





617.4 0 0
0 0 0
0 0 0



 ,





0 0 0
0 617.4 0
0 0 0



 ,





0 0 0
0 0 0
0 0 617.4





for the diffusion gradient along the readout, phase encode, and slice selection directions, re-
spectively, whereas the numerical calculation including the imaging gradients (TEprep = 80 ms,
FOV = 25 cm, 5 mm slice thickness, matrix 128× 128) yields




616.19 0.00 −0.51
0.00 0.00 0.00

−0.51 0.00 0.12



 ,





0.63 0.00 −0.19
0.00 615.56 −0.32

−0.19 −0.32 0.41



 ,





0.63 0.00 −0.19
0.00 0.00 0.00

−0.19 0.00 615.04



 .

In view of the low influence of imaging gradients and the inevitable errors in the b matrix for
U-FLARE it was decided to neglect the influence of imaging gradients. The error introduced
in the tensor maps is expected to be spatially constant in the imaging slice(s), in contrast to
the errors apparent in Fig. A.2.

5.3 Concomitant gradients

It is impossible to produce a magnetic field with spatially uniform direction and an amplitude
that is strictly proportional to only one cartesian coordinate [177]. This is due to Maxwell’s
equations which require that [66, p. 255]

divB = 0 and rotH = j+
∂D

∂t
. (5.3)

In a vacuum the electric displacement D has to be replaced by the electric field E. The magnetic
field quantities B and H only differ by a scalar factor in diamagnetic substances.3 If we assume
the absence of electric currents within the imaging volume (j = 0), and constant electric fields
(∂D/∂t = 0) the equations (5.3) reduce to

divB = 0 and rotB = 0. (5.4)

While for a pure x gradient with

B(r) = xGez (5.5)

the condition divB = 0 is satisfied, the second condition in (5.4) is violated since in this case

(rotB)k ≡ ∂iBjεijk (5.6)

does in general not vanish for k = y.4 Hence, if it is attempted to generate a magnetic field
whose z component follows (5.5) the actually produced field is of the form

B(r) = zGex + xGez. (5.7)

3See equation (2.78).
4∂i is an abbreviation for ∂/∂ri. εijk = 1 if (i, j, k) is a cyclic permutation of (1, 2, 3), εijk = −1 for cyclic

permutations of (i, j, k) = (3, 2, 1), and εijk = 0 if any two of the three indices are equal.
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For a y gradient we obtain the same equation with x replaced by y. For a pure z gradient,
rotB = 0 holds but divB = 0 can only be achieved if

B(r) = axGex + byGey + zGez (5.8)

with a + b = −1. The arising components of the magnetic field in x and y direction are
proportional to x and y. These gradients are called concomitant gradients [177] or Maxwell
terms. Their existence can cause image artefacts [177, 178]. To decide whether or not they
contribute significantly to diffusion weighting we assess the amplitude of an x gradient field as
in (5.5) superimposed on the main magnetic field B0ez,

|B(r)| =
√

z2G2 + (B0 + xG)2. (5.9)

By expansion to second order for |B0| ≫ |xG| ≈ |zG| we obtain

|B(r)| ≈ B0 + xG+
z2G2

2B0
and

∣

∣

∣
∇|B(r)|

∣

∣

∣
≈
√

G2 +
z2G4

B2
0

(5.10)

which gives a ratio between real and intended (G) gradient amplitude of 1+5·10−7 for B0 = 3 T,
z = 0.1 m, and G = 30 mTm−1. Thus the influence of the concomitant fields will only be
noticeable at low main field strength and in applications with strong magnetic field gradients.
According to equation (5.10) the concomitant field is to a good approximation invariant under
inversion of the applied field gradient. This means that the dephasing effects due to concomitant
gradients of two gradient pulses of opposite polarity do not cancel. In the Stejskal-Tanner
gradient sequence, however, no dephasing is induced for static spins. The effects on the signal
attenuation in Stejskal-Tanner diffusion experiments are expected to be negligible at 3 T.

5.4 Miscalibration and non-orthogonality of gradients

Since diffusion tensor imaging is sensitive to any deviation of the gradient fields from the ideal
behaviour it was proposed [15, 79, 179] that DTI may be used to probe the orthogonality of
the field gradients produced by the (usually three) gradient coils of an MR imaging system. In
particular, it was suggested that the apparent anisotropy found in isotropic substances might
be used as the basis for calibrating and aligning magnetic-field gradients [15]. The effect of
gradient misalignment on the diffusion tensor measured in an isotropic substance is based on
the fact that the amplitude of an arbitrary gradient is created by a linear superposition of the
field gradients produced by the three coils,

G = |aGx + bGy + cGz|, (5.11)

and depends on the angle between the vectors Gi, i = x, y, z. The influence of gradient
misalignment on the tensor measurement depends in a complicated way on the directions of
the diffusion gradients used. It is however possible to extract the misalignment between two
gradients from diffusion measurements on an isotropic phantom where the diffusion gradient is
rotated within a plane. Let us assume we are interested in determining the angle between the
x and the y gradient, and let us denote the deviation of this angle from π/2 by α. If a gradient
vector is generated by choosing the x and y gradient strengths to be A and B, respectively, as
depicted in Fig. 5.3, then the amplitude of the resulting gradient will be

G =
√
A2 +B2 + 2AB sinα. (5.12)
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G
B cosα

A

B

B sinα

α

Figure 5.3: Generation of a gradient vector by superposition of two misaligned gradients.

We further assume the gradient direction is selected in terms of an angle Θ such that the
amplitudes are calculated by

A = LA cosΘ (5.13)

B = LB sinΘ (5.14)

where the gradient strength values LA and LB may be unknown and not necessarily equal.
Substituting (5.13) and (5.14) into (5.12) and using the identities 2 cosx sin x = sin(2x) and
2 sin2 x = 1− cos(2x) we can express the gradient amplitude by

G2(Θ) =
L2
A + L2

B

2
+

L2
A − L2

B

2
cos(2Θ) + LALB sin(2Θ) sinα. (5.15)

We now would like to extract the values of LA, LB, and α from diffusion measurements on an
isotropic phantom. We first realize that G2(Θ) has the form of a sine function of Θ. Actually
this is true for any weighted sum of sine functions of the same variable but with an arbitrary
constant phase shift which can be proven in complex notation: If we seek to determine real
numbers r > 0 and φ such that

r1e
iφ1 + r2e

i(φ1+φd) = reiφ (5.16)

we can deduce arithmetically or from a geometric argument that φ = φ1 + const and that r is
independent of φ. The real part of equation (5.16) implies that G2(Θ) can be expressed in the
form G2(Θ) = c+ r sin(2Θ+ d) with c, r, d ∈ R being independent of Θ. According to equation
(3.15) the signal attenuation S/S0 in the Stejskal-Tanner experiment follows

lnS = lnS0 − bD = lnS0 +G2(Θ)c1 (5.17)

where c1 is independent of the gradient amplitude and can be calculated from the diffusion
coefficient and the gradient timing. We can determine S0 from a fit to measurements with
different b values. It does not depend on the true value of the gradient amplitude although the
slope of lnS as a function of b does depend on it. Combining equation (5.17) with (5.15) and
evaluation for selected values for Θ yields

1

c1

(

lnS(0)− lnS(π
2
)
)

= L2
A − L2

B (5.18)

〈lnS(Θ)〉Θ∈[0,2π] = lnS0 +
c1
2
(L2

A + L2
B) (5.19)

1

2c1

(

lnS(
π

4
)− lnS(3π

4
)

)

= LALB sinα (5.20)
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where S(Θ) is the signal amplitude measured for a gradient specified by (5.12) to (5.14). From
these equations the three unknown variables LA, LB, and α can be calculated. It turns out
that α is independent of c1 which makes the measurement of α insensitive to errors in the
determination of the diffusion coefficient.

Stejskal-Tanner experiments on a glass container filled with water at about 20◦C were per-
formed without spatial resolution. The spherical container was approx. 5 cm in diameter and
was centred at the system’s isocentre5. The amplitude of the spin echo profile as a function
of the diffusion gradient was evaluated. For each of the planes specified by x = 0, y = 0, and
z = 0 four diffusion gradients were applied in such a way that the angle between the applied
gradient direction and the direction of a “pure” gradient was Θ = nπ/4 with n = 0, 1, 2, 3.
At the beginning of the experiment automated shimming was performed to achieve main field
homogeneity. The gradient strength was varied from 3 to 23 mTm−1 corresponding to b values
of 12 to 777 smm−2 (∆ = 184 ms, δ = 10.5 ms, whole-body gradient set). The measurements
yielded α values below 1◦ for all possible combinations of gradient coils. However, due to the
high variance of results for different b values the accuracy is not better than approximately
±0.5◦. In addition, the angle between the x, y, and z gradients is most certainly a function of
position. The spatial variation could be measured by performing an ADC calculation for every
image pixel in a DWI image.

From equation (5.15) we can conclude that the effect of gradient misalignment assumes a
maximum at Θ = π/4. In this case A and B are equal provided that LA = LB. According
to equation (5.12) a misalignment of 1◦ then leads to a 2% change in G2 and thus also in
the calculated diffusion coefficient for that direction. This will lead only to a minor change
in diffusion anisotropy.6 Experiments on canine heart muscle in an MR microimaging system
[12] have shown that the fibre orientation derived from DTI measurements can achieve ±1%
accuracy in the agreement with the histologically measured fibre orientation.

In a medical whole-body imaging system the error will certainly not be smaller. Although
the effect of gradient non-orthogonality on the measured fibre direction is not simply a rota-
tion, the error in the fibre direction is unlikely to be larger than the gradient misalignment,
α. In view of the large artefactual anisotropy measured in isotropic substances the influence
of gradient misalignment is probably negligible compared to other sources of error. Angular
accuracy could be assessed using a phantom of known, anisotropic diffusion tensor. However,
anisotropically diffusing substances are rare (e.g. liquid crystals) and phantoms with an appro-
priate microstructure are either not sufficiently well-ordered (plant fibres) or hard to construct.
Dialysis filters have an appropriate axisymmetrical microstructure but very large diffusion times
are required because of the large diameter (200 µm) of their hollow fibres [180, 181].

Misadjustment of the gradient amplitudes causes LA and LB to be unequal which can
introduce considerable anisotropy in the measured tensor. Gradient calibrations in clinical MR
imaging systems usually have an error of approx. 1% [98]. Conturo et al. estimate that the
errors in gradient amplitude, direction and linearity could altogether lead to a 10% inaccuracy
in the measurement of diffusion coefficients [98]. In fact the signal amplitudes for the diffusion
gradient directions parallel to x, y, and z deviated from each other by factors of up to 1.5 (water
phantom, b = 500 smm−2). The differences cannot be attributed to gradient nonorthogonality
since for the employed gradient directions the AB term in equation (5.12) vanishes. The ratio
of the diffusion weighted signal amplitudes for two diffusion gradient directions depends on

5The position where the magnetic fields produced by the gradient coils pass through zero is called the
isocentre.

6For an estimation of the effect on diffusion anisotropy cf. section 5.7.
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the diffusion coefficient and thus on the temperature such that readjustment of the gradient
amplitudes by means of the signal ratio requires a device that keeps the phantom temperature
constant over the duration of the experiment. Changes on the time scale of minutes were
observed in the ratio of signal amplitudes that must be attributed to temperature changes in
the phantom.
The difficulty to separate the effects of gradient nonorthogonality and inaccurate gradient

scaling in a diffusion tensor measurement rules out the possibility to test gradient orthogonality
in a simple way by means of DTI.7

5.5 Nonlinearity of gradient fields

The gradient coils of MR imaging systems are designed to produce constant field gradients
within the volume containing the sample. The fields generated may however deviate from
the desired linear spatial dependence, in particular at a large distance from the isocentre. This
would introduce a position dependent error in the calculated b matrix. The generated magnetic
field can be expressed in terms of associated Legendre functions: For a stationary magnetic
field in the absence of electric current it follows from Maxwell’s equations that

rot rotB = 0. (5.21)

Using ei · rot rotB = graddivB − div gradBi [182, p. 124] and divB = 0 (5.3) this equation
leads to the Laplace equation for Bz,

∇2Bz = 0, (5.22)

and the anologous equations for the Bx and By components [46, section 3.3]. In the volume
of interest the magnetic field must obey equation (5.22). The general solution of the Laplace
equation (5.22) is, written in spherical coordinates,

Bz(r, ϑ, ϕ) =

∞
∑

n=1

(

cnr
n +

dn
rn+1

) n
∑

m=0

Pnm(cosϑ)(anm cosmϕ+ bnm sinmϕ) (5.23)

where anm, bnm, cn, and dn are arbitrary real numbers and Pnm(s) are the associated Legendre
functions [38]. We can set dn = 0 since solutions with Bz ∼ rn+1, n > 1, are infinite at the
origin which is certainly not the case in our volume of interest [46]. Further we assume that the
x and y components of the magnetic field are negligible compared to Bz. Then the specification
of am, bm, and cn via equation (5.23) provides a complete description of the magnetic field in
the volume of interest. In practice, terms with n > 6 may usually be neglected [46, p. 91]. If
we set cn = (r0)

−n and measure Bz at r = r0 we can specify the function Bz(r, ϑ, ϕ) in terms
of the coefficients anm and bnm.
For the head gradient set, the manufacturer supplied the values of anm and bnm at r = 20 cm

distance from the origin which are listed in Table 5.2. In order to test the influence of gradient
nonlinearity on the DTI measurements, the field gradient was calculated by applying the ∇

7In fact in the presence of gradient misalignment the diffusion tensor is measured in a nonorthogonal coor-
dinate system. If the misalignment were known it should in principle be possible to transform the tensor to an
orthogonal basis according to equation (2.133). In this context we would have to distinguisgh between co- and
contravariant indices due to the nonorthogonality of the measurement basis.
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Coefficient Name Value Coefficient Name Value Coefficient Name Value
a11 x 100.00 b11 y 100.00 a10 z 100.00
a21 zx −2.53 b21 zy −2.53 a20 z2 0.00
a31 z2x 0.11 b31 z2y 0.11 a30 z3 −2.13
a41 z3x −0.14 b41 z3y −0.14 a40 z4 0.00
a51 z4x −1.36 b51 z4y −1.36 a50 z5 −4.30
a61 z5x 0.23 b61 z5y 0.23 a60 z6 0.00
a71 z6x 0.20 b71 z6y 0.20 a70 z7 0.52

Table 5.2: Values of anm and bnm at r = 10 cm as supplied by the manufacturer (Magnex Scientific,
Ltd., Oxon, U.K.) of the head gradient set, to be used in equation (5.23) to specify the field produced
by the gradient coils. The coefficient values were normalized to a11 = 100. The middle columns
contain the coefficient’s conventional name in terms of Cartesian coordinates [46].

operator to equation (5.23). From the geometrical parameters used in a DTI experiment, the
positions of all voxels in the imaged slice were calculated in terms of x,y, and z coordinates,
and the gradient amplitudes that are used to calculate the b matrix were corrected accordingly.
Field plots for the x and z gradients are shown in Fig. 5.4. The voxel position is calculated
in Cartesian coordinates and converted to spherical coordinates. Then the gradient at this
position is calculated in spherical coordinates and converted to the Cartesian system. This
value is scaled with the applied nominal gradient strength and is finally used to correct the b

matrix that was calculated from the nominal gradient values.
The DTI fibre orientation maps generated with this procedure did not differ noticeably

from the fibre maps without correction. Even with artificially increased correction values it
was hardly possible to force modifications within about 10 cm from the isocentre. The shape
of the modifications introduced in this case suggested that it would not be possible to correct
for the pattern of anisotropy found in the isotropic gel phantom as shown in Fig. A.2. The
artefactual anisotropy within a distance of about 10 cm from the isocentre cannot be sufficiently
explained by gradient field nonlinearity. Unfortunately, field values for the whole-body gradient
set (Bruker Medizintechnik, Ettlingen, Germany), which was used for the fibre orientation map
in Fig. A.2, were not available. Due to the larger dimensions of the whole-body gradient set
compared to the head-gradient set it is expected to have a larger volume of gradient field
linearity.

5.6 Eddy currents

A change in the magnetic field strength induces an electrical field (law of induction). The
switching periods of the gradients in an MR imaging experiment therefore induce eddy currents
in conducting material. These eddy currents in turn produce a magnetic field that opposes the
field change and thereby modify the time dependence of the field gradients. Such problems are
particularly acute in whole-body imaging systems in which space is restricted and the outer
windings of the gradient set are in close proximity to the cryostat. In particular eddy currents
in the cryostat can persist for a relatively long time (of the order of 100 ms) due the low
resistance of the cold metal. While the widespread availability of self-shielded gradients and
digital preemphasis units (see below) have largely eliminated the problem of eddy currents in
many imaging experiments, for those requiring strong diffusion weighting gradients they can
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Figure 5.4: Spatial dependence of magnetic field (top) and gradient (bottom) calculated according to
equation (5.23) with the coefficients given in Table 5.2. Field and gradient are given for the x gradient
coil (left) and the z gradient coil (right), along the respective gradient axis. The y gradient has the
same spatial dependence as the x gradient, apart from a π/2 rotation. The dotted line in the field
plots indicates the ideal linear behaviour. The field is given in terms of % of the strength expected at
r0 = 10 cm for ideal behaviour, the gradient is given in this percentage per mm.

still be significant. The calculation of the diffusion tensor and some methods of measuring its
trace rely on measurements in which the direction of the diffusion weighting gradient varies
between experiments. These are then vulnerable to the effects of eddy currents which may
be unremarkable in a simple DWI experiment, because the degree and nature of the artefacts
will typically vary both with the strength and orientation of the diffusion weighting gradients.
Systematic errors in the calculated diffusion tensor can arise from the following reasons.

• The gradient pulse shape G(t) differs from the intended (mostly trapezoidal) form. The
associated error in

∫ τ

0
G(t) dt affects the degree and possibly direction of diffusion weight-

ing.

• The eddy currents generated by the first diffusion gradient pulse in a Stejskal-Tanner
experiment have not decayed to zero at the time t = τ of the refocusing RF pulse such
that

∫ τ

0
G(t) dt �=

∫ 2τ

τ
G(t) dt. The inequality of the integrals causes the signal to dephase

[183]. The eddy currents can also disturb the direction and time dependence of the slice
selection gradient for the refocusing pulse [184].

• The eddy current related fields at the time of the actual imaging experiment disturb the
imaging process. For example, eddy current induced magnetic fields can shift, shear, or
scale echo planar images [185]: A global change in the main magnetic field and hence in
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the resonance frequency leads to a phase ramp over a train of successively acquired data
points. Since the time between phase encoding steps is much larger than that between
successive sampling points in one echo the effect in phase encode direction is much more
pronounced. The linear phase ramp in kph direction produces a shift of the image in
the corresponding direction, which can be deduced from the shift theorem of the Fourier
transform (cf. section 93), analogous to the effect of susceptibility gradients described by
equation (2.79). A linear field variation along the readout axis leads to an x-dependent
shift in y direction, i.e. the image is sheared. A constant eddy current induced field
gradient in phase encode direction adds a constant value to the phase encoding gradient
integrals between two echo acquisitions such that the increment of kph is effectively larger
than 1/FOV (cf. equation (2.76)). Consequently the object image dimensions in phase
encode direction are changed (scaling).

Fibre orientation maps based on diffusion tensor imaging suffer in particular from the depen-
dence of the eddy currents on the direction of the diffusion gradient. Differences in the eddy
current properties of the three gradient coils generate a high artefactual anisotropy in the
calculated diffusion tensor.8

Gradient coils in medical imaging systems are usually surrounded by coil windings whose
magnetic field counteracts the primary gradient field (active shielding), thereby minimizing the
magnetic field in the nearby parts of the cryostat [46, p. 110]. A further improvement is achieved
by changing the time dependence of the electrical current in the gradient coils in such a way
that the generated field time dependence approximates the intended pulse shape (preemphasis).
The preemphasis approach cannot completely suppress eddy currents. One reason for this is
that the spatial distribution of the eddy current induced field differs from the distribution of
the primary field generated by the gradient coil [183]. The gradient of the eddy current induced
field need thus not be parallel to the pulsed gradient that was switched before (cross terms).9

The preemphasis unit that calculates the required current modifications has to be adjusted
carefully. Adjustment involves specification of the time constant and amplitude of exponential
functions that are added to the desired pulse shape. For common imaging sequences, such as
EPI in particular, the adjustment of the short time constant exponentials is crucial. In diffusion
imaging however it is rather the slowly decaying eddy currents induced by the strong diffusion
gradients that induce errors in the tensor measurement. The preemphasis unit that had been
sufficiently well adjusted to enable echo planar imaging had to be carefully readjusted to also
suppress the slowly decaying eddy current components. Without readjustment high global
anisotropy was apparent in the measured tensor maps.

In pulse sequence design it is advisable to increase the temporal separation of the diffusion
gradient pulses such that a lower gradient amplitude for the same b value is required. A long
delay after the diffusion weighting gradients ensures that the eddy currents have sufficiently
decayed before the start of the imaging sequence but leads to an increased echo time.

The following sections are concerned with: an assessment of the eddy current sensitivity
of EPI and U-FLARE, the eddy current properties of a modified preparation experiment, and
an algorithm to measure and correct the influences of slowly decaying eddy currents on echo
planar images.

8Differences between the three gradient coils in the deviation from the ideal gradient pulse shape can also
lead to artifacts in the images themselves [186].

9See, for example, [184].
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5.6.1 Strategies for avoiding eddy current effects

A number of methods for reducing the effects of eddy currents in diffusion weighted imaging
have been proposed, and these may be divided into three broad categories.

• In the first the diffusion-weighting part of the experiment, generally the Stejskal-Tanner
pulsed gradient spin echo experiment [91], is left unmodified and some form of correction
is applied, which often involves the acquisition of additional data to obtain the correction
parameters [185, 187, 188]. The nature of this correction depends upon the specific
imaging sequence employed.

• In the second the diffusion weighting is modified in such a way that less eddy currents
are produced [155, 189, 184, 190].

• In the third the effect of eddy currents on the image is diminished by modification of the
imaging part of the sequence.

The most comprehensive method proposed to date in the first category is that of Jezzard
et al. [185] who proposed post-acquisition correction methods for use in combination with the
echo-planar imaging sequence [63]. This corrects for both shifting and scaling in the phase-
encoding direction and shearing, the latter being a shift that depends on the position in fre-
quency encoding direction. The correction factors required are generated from a pair of scans
acquired without phase-encoding, one with the frequency encode axis and the phase encode
axis as in the imaging scan, and one with these axes exchanged. Details concerning the imple-
mentation of this method are given below. As an alternative approach it has been suggested
by Haselgrove and Moore [187] to geometrically correct the images by shift, shear, and scale
operations until they coincide with an image acquired without diffusion weighting.

Only the methods in the second category are able to reduce all eddy current effects listed
in the preceding paragraph. In this category the use of bipolar gradient pulses as proposed
by Wider et al. [155, 183] is the most promising, and has been shown to give a reduction in
artefact level when combined with EPI [191]. This is because the reduction in the generation
of eddy currents is achieved without a significant change in the diffusion weighting for the
same (effective) echo time (TE). The gradient scheme is shown in Fig. 5.5. Although a simple
replacement of each gradient lobe in the Stejskal-Tanner experiment by a bipolar gradient pulse
(a pair of gradient pulses with opposite polarity) also reduces the generated eddy currents, in
such a scheme the achievable b value is considerably lower for the same echo time [184]. This
is due to the fact that the temporal separation between dephasing and rephasing gradient lobe
is shorter than in the Stejskal-Tanner scheme. The reason why the scheme proposed by Wider
et al. [155] is appropriate for suppressing eddy currents can be explained as follows: Eddy
currents that persist after a gradient pulse are mainly determined by the time delay between
the two switching events at the start and end of the pulse. The two switching events induce
electric fields of opposite sign, which will cancel if the time constant of the eddy current decay is
much larger than the delay between the events. Eddy currents that have significantly decayed
by the time of the second event will not cancel. Hence as the delay between switching events
increases, so does the value for the eddy current time constant above which the eddy current
effects cancel. These residual eddy currents can be reduced through the introduction of a second
gradient pulse of opposite polarity. Assuming that eddy currents decay exponentially, and by
using the timing definitions defined in Fig. 5.5 then the decay of a single eddy current gradient
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Figure 5.5: Diffusion weighting gradient scheme for the double-SE EPI sequence.

with time-constant τ is given by:

Ei(t) =

{

c exp[−(t− ti)/τ ] if t � ti
0 otherwise

(5.24)

where c > 0 is a real constant. If we consider the duration of the 180◦ pulse between the two
gradient pulses to be vanishingly small and the gradient rise times to be short then the pair of
opposing gradient pulses will be equivalent to a single pulse applied for the same total duration.
The net eddy current after the single pulse, at t > t4, is given by

AI = E1 − E4 � 0 (5.25)

whereas after the pair of pulses it is

AII = E1 − E2 −E3 + E4 � 0. (5.26)

The polarity of the eddy currents induced by the two schemes is opposite. The magnitude of
the induced eddy currents will be reduced provided that

|AII | < |AI | (5.27)

which is equivalent to

2E1 − E2 −E3 < 0. (5.28)

Inspection of equation (5.24) shows that the inequality (5.28) will always be satisfied, except
for when all terms on the left hand side are zero, which corresponds to the irrelevant condition
that the eddy currents are measured at an infinite length of time after cessation of the gradient
pulse.

5.6.2 Assessment of strategies for avoiding eddy current effects

The effects of eddy currents on the final image depend naturally on the specific imaging sequence
employed. Single-shot EPI is widely used because of its speed and insensitivity to motion,
however the very low bandwidth in the phase-encoding direction make it particularly sensitive
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to unwanted residual gradients. In this section the eddy current sensitivity of the double spin-
echo approach in conjunction with the echo planar imaging technique shall be compared with
the Stejskal-Tanner scheme. In addition, the performance of the correction method shall be
examined and compared to the double spin-echo results.
Single-shot imaging experiments that are based on the RARE experiment should be in-

sensitive to constant eddy currents during the echo train, because the spin phase evolution is
rewound by each refocusing pulse, thereby abolishing the influence of eddy current induced
fields on the signal phase. This hypothesis is experimentally tested and the potential use of
RARE-based sequences discussed. It should be noted that RARE-based sequences can only be
expected to be insensitive to eddy current effects on the imaging process itself, not to dephasing
by unbalanced diffusion gradients or to additional damping due to eddy currents. Both of these
effects are independent of the imaging sequence employed.

Experimental

All experiments were performed with the agarose gel phantom used for the experiment in
Fig. A.2 placed close to the magnet isocentre. Six different diffusion preparation experiments
were applied by varying both the b value (50 and 800 smm−2), and orientation of the diffusion-
weighting gradient pulses (parallel to the read, phase, and slice directions). In all experiments
single-shot images were acquired on a 64 × 64 matrix with a 19.2 cm FOV and 5 mm slice
thickness. In order to assess how the images are affected by the presence of strong diffusion
gradients, the images for b = 50 and b = 800 smm−2 were subtracted from each other. Before
subtraction, differences in signal intensity caused by different diffusion weighting were compen-
sated by averaging the b = 800 smm−2 images until approximately the same SNR was achieved
as for a b = 50 smm−2 image.
In the EPI experiments a repetition time of 3 s was applied and the acquisition bandwidth

was set to 100 kHz which implies a total echo-train length of 41 ms. Blipped phase-encoding
was used with the phase-encoding zero at the middle of the echo train which was timed to
coincide with the centre of the spin echo. Images were obtained in transaxial section with the
readout gradient applied along the x axis. To remove Nyquist ghosts the images were recon-
structed using a phase correction based on a separate reference scan obtained without phase
encoding. All the diffusion weighted images were reconstructed using the same reference scan
(with b = 50 smm−2 diffusion weighting parallel to read). Readout gradient switching during
data acquisition was also corrected for during reconstruction. Diffusion weighting for conven-
tional SE EPI consisted of two gradient pulses flanking the 180◦ refocusing pulse. Employing
the standard notation the gradient timings were δ = 22 ms and ∆ = 40 ms. The echo time
was 120 ms which was the minimum echo time for the double-SE EPI sequence for a b value
of b = 800 smm−2. The presence of the diffusion gradient pulses made additional spoiler gra-
dients unnecessary. In the double spin-echo EPI sequence the scheme from excitation to the
0th phase-encoding step was 90◦–TE1/2–180

◦–(TE1 + TE2)/2–180
◦–TE2/2. The echo time was

TE = TE1 + TE2 = 120 ms. Each of the Stejskal diffusion gradients was split into two parts of
opposite polarity, separated by a 180◦ pulse as shown in Fig. 5.5. The b value for the gradient
scheme (assuming rectangular gradient pulse shape) in Fig. 5.5 is given by10

b = γ2G2(2δ)2
(

∆− a

2
− 2δ

3

)

(5.29)

10Reference [155] contains an error in the formula for b.
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where δ and G are duration and amplitude of the gradient pulses, ∆ is in this context the time
delay between the onset of two gradient pulses of the same polarity, and a is the duration of
the interval between the end of the first and the start of the second gradient. In the double-SE
EPI experiments, δ = 9 ms and ∆ = 60 ms were used. Spoiler gradients before the positive and
after the negative gradient lobes were incorporated to dephase any transverse magnetization
created by the 180◦ pulses.
The U-FLARE imaging sequence was used in the displaced version [159, 160, 161], starting

with a spin echo diffusion preparation experiment. Diffusion weighting was achieved with the
Stejskal-Tanner gradient scheme, just as in the conventional SE EPI sequence. The field of view,
slice orientation, slice thickness and timing of the diffusion weighting gradients were the same
as in the EPI experiments. The echo time in the preparation experiment was in this instance
70 ms. The repetition time was 3 s. The 70◦ refocusing pulses (sinc shape, 2 ms duration)
in the imaging sequence had a spacing of TE = 4.4 ms, 7 refocusing cycles (dummy cycles)
were applied prior to data acquisition to ensure that the signal had reached a steady state.
Centre-out phase encoding was applied as this offers high sensitivity, resulting in an effective
echo time of 121 ms. The total echo train length including dummy cycles (excluding the
preparation period) was 317 ms. All RF pulses in the sequence were slice-selective. Excitation
and refocusing pulses in the preparation experiment were 3 ms long and Gaussian shaped.

Eddy current correction for EPI

For all EPI images the eddy current correction of Jezzard et al. [185] was applied, and the
results with and without correction compared. The reader may refer to [185] for details of
the algorithm employed. The only significant deviations from this algorithm concerned the
correction for eddy current gradients in the phase encode direction and the way the values for
eddy gradients in read direction are used for the calculation of the corresponding correction. It
should also be noted that eddy gradients in the slice selection direction are not corrected for in
this approach. In order to measure the eddy current related gradients and the B0 shift during
the EPI readout period, a separate diffusion weighted reference scan without phase encoding was
acquired for each diffusion gradient strength and direction. Each of these reference scans was
repeated with read and phase encode direction exchanged while leaving the diffusion gradient
direction unaltered. For simplicity, in the following discussion the directions of readout and
phase encode gradient will be considered to be aligned with the x and y axes, respectively. From
the read direction reference scans the eddy current related field gradients in read direction, εx,
can be calculated. After time reversal of odd echoes and 1D-Fourier transformation along read,
for each acquired sampling point the phase difference to the corresponding data point in the
following echo transform was calculated. (To avoid errors arising from differences between odd
and even echoes the phase difference to the next echo of same readout gradient polarity was
used.) The phase difference plot was phase unwrapped, and the additional B field caused by
eddy currents was calculated from

B(x, t) =
1

γτpe
(φ(x, t+ 2τpe)− φ(x, t)), (5.30)

with τpe being the time delay between two successive phase encoding blips. A linear fit of B as
a function of the readout coordinate, x, was performed. The slope yields the x gradient, εx, for
each echo, and the value of B at x = 0 is the B0 field shift, ε0. In common with the original
paper [185] we assume that all eddy current effects are constant during the EPI readout train.



5.6. Eddy currents 85

It is expected that time varying effects during the echo train would only introduce a further
blurring in the images [185]. This algorithm can in principle yield an εx value for each phase
encoding step. If εx(ky) is not constant then this indicates a time-dependence of the x-gradient.
In the correction the average of the εx values for 7 echoes about ky = 0 was used. The eddy
current related y gradient, εy, was calculated in the same way as the y gradient but using the
reference scan which had the readout gradient parallel to the image phase encode direction.
The correction started with the B0 shift correction which was performed by applying a

1-dimensional phase ramp in phase encode direction to the image raw data:

S(kx, ky) �→ S(kx, ky) exp[−iγτpeε0ky] (5.31)

where the median value of ε0 over all phase encoding steps was used. The ε0 values were calcu-
lated from the read direction templates but could equally well have been calculated from those
for the phase direction. After time reversal of the odd echoes and 1D-Fourier transformation
in the read direction, the x-gradient was corrected for by application of a phase ramp in ky
proportional to εxx, i.e. the complex raw data were multiplied by a phase factor according to

S(x, ky) �→ S(x, ky) exp[−iγτpeεxxky]. (5.32)

For correction of eddy current induced y-gradients Jezzard [185] suggested a k-space regrid-
ding algorithm. We chose an approach instead that simply rescaled the reconstructed images
according to the calculated eddy y-gradient amplitude. The images reconstructed from the ε0
and εx corrected raw data were expanded to a 64× fy2048 matrix with a linear interpolation
routine, using a factor

fy = 1 +
εyτpe

Gyτramp
(5.33)

where Gy is the maximum amplitude, and τramp is half the total duration of the triangular
phase-encoding gradient blips. An appropriate number of lines were then removed (for fy > 1)
or added symmetrically (for fy > 1) to bring the matrix to exactly 64× 2048 size. In the latter
instance this was achieved simply by zero-filling. The resulting matrix was then reshrunk to
the original matrix size. This procedure rescales the image in the phase encode direction by
the factor fy.

Results

Figs. 5.6 to 5.8 show the resulting difference images for 3 different directions of the applied
diffusion gradient (read, phase, and slice direction). The phase encode direction is the vertical
direction in Figs. 5.6 to 5.8. Figs. 5.6 and 5.7 show the results for the conventional SE EPI
sequence, and for the double-SE EPI method, respectively. Uncorrected data are shown in the
upper row, and data after the eddy current correction are shown in the bottom row. Medium
greyscale values indicate zero difference.

Conventional SE EPI In the difference images for conventional SE EPI shown in Fig. 5.6
the typical EPI image artefacts as described previously [187] lead to visible signal differences at
the edges of the phantom. In the images with diffusion weighting in the phase-encoding or slice
directions, an image shift is the most striking artefact. The difference images show a clearly
visible one pixel wide dark and light edge at the border between phantom and background.
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Figure 5.6: Difference between the single-SE EPI images for different degrees of diffusion weighting
(at high b value minus at low b value). Images with strong diffusion weighting were averaged to achieve
the same SNR as with weak diffusion weighting. Medium greyscale values indicate zero difference.
Images are shown from left to right obtained with the diffusion gradient oriented parallel to the read
(horizontal), phase encode (vertical), and slice axis (through-plane). Uncorrected data are shown in
the upper row, and the corresponding corrected difference images are shown below.

Although somewhat diminished by eddy current correction it is still apparent in the corrected
images. With the diffusion gradient in the read direction a shear occurs as predicted for eddy
currents that cause a magnetic field gradient in the read direction. This is successfully removed
by the correction algorithm. However, a new artefact is introduced, i.e. a ringing similar to
the artefacts found if read gradient switching during acquisition is not corrected for. An image
scaling due to eddy gradients in phase encode direction is not visible to the naked eye. Table
5.3 however shows that the correction algorithm nevertheless detects a gradient in phase encode
direction and corrects for it.

With the diffusion gradient in slice direction, and to a lesser extent in the phase direction,
high spatial-frequency ghosting is clearly visible in the difference images. This indicates that
the ghost artefacts in EPI images are affected by eddy currents. An alternative explanation
would be that the performance of the automatic phase correction depends on the presence of
eddy currents. In order to investigate the latter possibility we performed a further experiment
(results not shown) where in image reconstruction 6 separate, diffusion weighted reference
scans were used for (Nyquist) phase correction. Each image was corrected by means of the
corresponding reference scan, i.e. the reference scan with the same diffusion weighting. No
improvement was observed in the images reconstructed in this manner compared to the images
reconstructed by means of just one single reference scan (weighted with b = 50 smm−2). These
artefacts are believed to arise from short time-constant eddy currents induced in the birdcage
resonator, and are as such system specific.

Close examination of Fig. 5.6 reveals that the noise in the corrected images is smoother
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Figure 5.7: Difference images as in Fig. 5.6, obtained for the double-SE EPI sequence.

than before correction. This is because the interpolation used in the correction procedure has
a smoothing effect on image noise.
The algorithm yields an εx value for each phase encoding step. The fact that εx(ky) is indeed

not constant indicates a time-dependence of the x gradient. Although in the experiments
reported here the mean of the εx values for the 7 echoes about ky = 0 was used for phase
correction, it would also be possible to either apply a different correction to each individual
phase encode step (which can lead to artefacts since the variance of εx is large), or to fit a
function εx(ky) to the data. In in vivo experiments (results not shown) none of these methods
worked in all cases, in terms of reliably reducing the shear artefact without introducing new
artefacts.
The algorithm clearly does not entirely eliminate all artefacts. There are at least two

possible reasons for this: First, although eddy currents which vary during the echo train should
only cause a blurring effect [185], the variation in signal through the echo train can introduce
errors in the correction parameters. A second possibility is that the algorithm assumes that
the eddy current induced magnetic fields are linear over the whole object, which may not be
the case.

Double-SE EPI The form of the artefacts found in double-SE EPI images (cf. Fig. 5.7) did
not differ qualitatively from that for the single-SE EPI sequence. Again shearing is observed
for diffusion weighting in the read direction, and an image shift occurs with diffusion gradients
along the phase-encoding or slice directions. However, compared to the conventional SE EPI
method the differences between high and low diffusion weighting are small. Even in the double-
SE EPI sequence eddy currents are strong enough to affect the imaging part of the sequence.
The eddy currents however are greatly reduced. Application of the eddy current correction
method to the double-SE EPI data brings the difference values down to the order of the noise
level. The largest improvement compared to the conventional SE EPI sequence is the reduction
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Figure 5.8: Difference images as in Fig. 5.6, obtained for the U-FLARE sequence.

in the B0 field shifts. The amount of shearing does not seem to be significantly reduced for our
system. The values for ε0 in Table 5.3 are reduced considerably in the phase and slice direction
case, compared to conventional SE EPI. The amplitude of the measured read direction eddy
gradients is the same for both sequences.

The correction parameters obtained for both EPI experiments are summarized in Table 5.3
and 5.4. The relatively large value of εy even in the absence of diffusion gradients is almost
certainly caused by the presense of inhomogeneity gradients in this direction. In comparing the
correction factors for the two experiments it should be borne in mind that the double spin-echo
experiment will generate eddy currents of the opposite polarity to the single spin-echo.

U-FLARE Fig. 5.8 shows the differences between high and low diffusion weighting for the
U-FLARE sequence. The artefacts manifest themselves as a signal loss near the phantom
boundaries in the phase encode direction. The artefacts are less localized than in the uncor-
rected SE EPI images. Shear, scale, or shift artefacts do not occur although eddy current
induced shifts of the echoes in the acquisition window were present. Possible causes of the
present artefacts will be described below.

Discussion

The correction scheme proposed by Jezzard et al. [185] considers eddy current effects to be
constant during the EPI acquisition period. As this period is generally of about 50 ms duration
the assumption is not unreasonable. In this situation the effects of eddy currents are identical
with those of constant gradients produced for example by static field inhomogeneity combined
with off-resonance effects (cf. p. 27), both of which have been reported in the EPI literature
[65]. Naturally the strength of these effects is dependent on the diffusion-weighting gradients
employed, and experiments such as DTI which often require a variation both in the orientation
and strength of the diffusion-weighting gradient, will require a correspondingly large number
of correction experiments. If eddy currents are produced in the slice-selection direction then
these may lead to signal losses which are not corrected for in this scheme. The double spin-
echo scheme significantly reduces the artefact level at very little cost in experimental duration
although it is not clear why the magnitude of the shear gradient remains largely unaltered.
If sufficient time is available then combination of the two experiments will lead to a further
improvement. It is however questionable whether the small expected improvement is worth
the effort of postprocessing all images. The difficulty in determining the appropriate correction
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b = 50 smm−2 b = 800 smm−2

Re Ph Sl Re Ph Sl

ε0/10
−7 T −2.338 −2.990 −3.229 −1.873 −4.292 −4.155

εx/10
−7 T 5.938 2.115 −0.150 22.680 7.699 0.389

SE-EPI εy/10
−7 T 45.826 45.773 46.619 55.035 45.289 47.287

fy 1.02325 1.02322 1.02365 1.02792 1.02297 1.02399

ε0/10
−7 T −1.967 −1.670 −1.610 −1.892 −0.766 0.087

εx/10
−7 T −7.170 −0.063 −0.461 −21.748 −0.959 −3.796

DSE-EPI εy/10
−7 T 44.065 39.665 42.979 45.615 28.223 41.893

fy 1.02235 1.02012 1.02180 1.02314 1.01432 1.02125

Table 5.3: Eddy current related gradients and field offsets for low and high b value, and for three
directions of the diffusion gradient (read, phase, and slice direction). For the correction of eddy
gradients in phase encode direction also the correction factor fy from equation (5.33) is listed.

Re Ph Sl

∆ε0/10
−7 T 0.465 −1.302 −0.926

SE-EPI ∆εx/10
−7 T 16.742 5.584 0.539

∆εy/10
−7 T 9.209 −0.484 0.668

∆ε0/10
−7 T 0.075 0.904 1.697

DSE-EPI ∆εx/10
−7 T −14.578 −0.896 −3.335

∆εy/10
−7 T 1.550 −11.442 −1.086

Table 5.4: Differences of eddy current related gradients and field offsets between low and high b value,
for three diffusion gradient directions. ∆εi = εi(800 s mm−2) − εi(50 s mm−2) for i = 0, x, y.

parameter from the set of εx values obtained for the individual echoes is considered to be an
important limitation of the correction technique for practical applications. If series of images
are to be obtained in which only the b value is varied by means of varying the strength of
the diffusion weighting gradients, and if one set of images is obtained with a b value close
to zero, then the correction scheme of Haselgrove and Moore [187] may be applied without
an experimental time penalty. If the double spin-echo experiment is to be used without a
significant increase in TE then only a short delay can be permitted between switching off the
first gradient pulse in the pair and the 180◦ pulse. It is hence necessary to have good correction
of short time-constant eddy currents to utilise this scheme.

The U-FLARE experiment offers images with less geometrical distortion than EPI but the
lower sensitivity and higher power deposition of this experiment make EPI preferable in most
situations. As argued above, if the eddy currents are constant during the echo train then
their effect is identical to that of linear inhomogeneity gradients and as such will be corrected
by a RARE-type sequence. The echo train length in U-FLARE can however be an order of
magnitude longer than for EPI, and the assumption of constant eddy current effects is then
unlikely to be valid. In the centre-out phase-encoding scheme employed here the highest k-
space coordinates are collected at the end of the echo train. Any temporal variation in the
eddy current gradient will mean that each coherence pathway that contributes to the signal
will have experienced a different total gradient, and the net signal will hence be reduced. The
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resulting diminution of the intensity will affect the higher spatial frequencies and will hence be
primarily visible at the edges perpendicular to the phase-encoding direction of the phantom
used. Despite this secondary effect the sensitivity of displaced U-FLARE to eddy current effects
is less than that of EPI and its use may well be considered in situations where strong eddy
currents or poor main field homogeneity are present.

5.6.3 Consequences of eddy currents for DTI

The effects of eddy current induced image artefacts on diffusion tensor images can be catas-
trophic. The described shift, shear, and scale artefacts in EPI can severely degrade the tensor
measurement at tissue borders, in particular the borders between brain tissue and CSF-filled
compartments which have considerably different relaxation properties and hence signal levels.
In our DTI experiments, the modification introduced by the eddy current correction algorithm
in the fibre orientation maps based on EPI-DTI was only noticeable along this border. While
the effect of shift, shear, and scale artefacts is largely restricted to relatively few image pixels
the artefacts occurring in U-FLARE affect broader regions of the image. An example of a
U-FLARE fibre orientation map that illustrates the consequences of blurring and broad image
signal variation is shown in Fig. A.3a.11

It is possible to reduce the erroneous anisotropy to some extent by modifying the b matrices
such that the tensor in a selected pixel in CSF is isotropic. To evaluate the use of such a
normalization the b matrix was modified by applying a constant factor to each gradient vector
component. The gradient amplitudes used to calculate the b matrix in (3.21) were modified
according to

Gi �→ Gi

√

TrD

3Dii

(5.34)

such that in the ideal case (multiple correlation coefficient r = 1) the diffusion tensor in the
reference voxel would be rendered isotropic without changing the tensor trace. The approach
can improve the coincidence between measured and actual fibre direction in the proximity of
the selected reference pixel as can be seen in Fig. A.3b. For more distant pixels, however, it
introduces an erroneous anisotropy in the diffusion tensor. Hence it can only be a last remedy
to extract fibre orientations in restricted regions from acquired data that are heavily corrupted
by eddy currents, and it is only applicable if the area of interest contains a voxel where the
diffusion is known to be isotropic.
The anisotropy map in Fig. 5.9 was calculated from the same data as in Fig. A.2b but

the threshold for the multiple correlation coefficient was set to 0.8, as usual for the in vivo
experiments, and no image signal intensity threshold was applied. The high anisotropy values
in the background of Fig. 5.9 are due to the presence of a “ghost” in the diffusion weighted
images. Many fast imaging sequences are characterized by a relatively poor point spread
function (see p. 62). Side peaks in the PSF can give rise to a displaced faint copy of the object
(“ghost”). The signal in the background (as in region Gh in Fig. 5.1) can be high enough
to pass the signal threshold for tensor calculation. Since the ghost is derived from the main
object image it is also subjected to the same diffusion attenuation as the image itself. Hence
it may also pass the threshold set for the multiple correlation coefficient, as can be seen in

11In this example, image reconstruction involved sin2 x filtering of the raw data to remove ripple artefacts
[166, section 4.1.3.1].
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Figure 5.9: Map of af for an isotropic agarose gel phantom, with 22 repetitions. A linear greyscale
between af = 0.1 and af = 0.5 was used, pixels with af < 0.1 appear in black. No image signal
threshold was applied. The readout direction is horizontal. (For experimental details see Fig. A.2).

Fig. 5.9. A ghost image may be visible in the fibre orientation map even if the raw images
are free of ghost artefacts. Because ghosts in the phase encode direction can arise from phase
errors, eddy currents can modify the signal intensity of the ghost. The presence of b value
dependent ghosting has been reported to affect ADC measurements [192]. The sensitivity of an
imaging sequence to eddy currents is most likely dependent on the direction of the eddy current
induced gradients such that the ghost intensity varies with the diffusion gradient direction. In
the presence of highly anisotropic ghost signal the tensor measurement can be disturbed in
brain regions where image and ghost overlap. While the Nyquist ghost in EPI always overlaps
with the object unless it occupies less than half the field of view in phase encode direction, the
position of the ghost in U-FLARE images depends on the refocusing pulse angle: pulse-angle
dependent amplitude variations among the first echoes cause signal variations in k space that
degrade the point spread function, in particular with centric phase encoding. However, in in
vivo applications of U-FLARE the ghost is much less significant than in phantom images.
In summary, DTI can yield fibre anatomy information in white matter if eddy current

effects are sufficiently reduced by preemphasis adjustment, sequence modification, or/and image
postprocessing. The sensitivity of both EPI and U-FLARE to eddy current effects will however
make reliable measurements of the diffusion tensor in cortical grey matter difficult. Whether
EPI or U-FLARE should be preferred as imaging sequence for DTI depends on the magnetic
field strength, the available gradient hardware, and the requested spatial resolution.

5.7 Background gradients

We have mentioned that the diffusion tensor measured in isotropic substances is often anisotropic.
Fig. A.4 shows that in a macroscopic phantom containing isotropic water the anisotropy is
higher close to the vessel wall. Region W2 in Fig. 5.1 contains only the centre area of the water
phantom while W1 represents the whole phantom, including the more anisotropic boundary
area. Moreover, the principal directions of the diffusion tensor in a voxel seem to depend on
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the orientation of the nearest vessel wall. The restriction to diffusion by the mere existence of
an impermeable boundary cannot be the reason for the observed anisotropy as the following
argument shows. Since the mean displacement of water molecules within a diffusion time of
40 ms is about 20 µm (D = 2 · 10−9 m2 s−1) only the molecules within 40 µm distance from the
wall, say, can experience the restriction of the random walk by the vessel wall. Assuming cubic
voxels of (1.5 mm)3 volume, this corresponds to a fraction of about 3% of the total number of
molecules in the voxel. For the remaining molecules diffusion will be unrestricted. The signal
attenuation could then be described by the equation

S/S0 = f1 exp(bD1) + f2 exp(bD2) (5.35)

where f1 = 0.97 and f2 = 0.03, and D1 and D2 are the diffusion coefficients for the restricted
and the unrestricted proton pool, respectively. To estimate the influence on the measurement
of the diffusion coefficient, we assume a two-point measurement with b = 20 smm−2 and
b = 500 smm−2, and D1 = 2 · 10−9 m2 s−1, and we set D2 = 0 to obtain an upper limit for the
influence on the diffusivity measurement. From a linear fit to the two data points we would
obtain D = 1.90 · 10−9 m2 s−1 which deviates from the real diffusion coefficient, D1, by 5 %.
The fractional anisotropy index that would be induced by a 5 % deviation of one principal
diffusivity from the isotropic case can be calculated from equation (3.27),

af =
|c− 1|√
2 + c2

for D =





cd 0 0
0 d 0
0 0 d



 . (5.36)

With c = 0.95 we obtain af = 0.03. As this is the result of a worst case approximation the
actual anisotropy induced by partial restriction at the phantom wall will in general be much
smaller. The anisotropy, however, that is found in the DTI experiment is of the order of af = 0.1
to 0.3 (see Fig. 5.1) which rules out the restriction explanation.
A more likely explanation is that the tensor measurement is influenced by background

gradients that are induced by the large susceptibility change at the vessel wall (cf. p. 26).
Equation (3.13) describes the influence of background gradients on the signal attenuation in a
Stejskal-Tanner experiment. Given that G0 ≪ G the G2

0 term can be neglected. This implies
that the geometric mean over the signal from two acquisitions with inverted gradient directions
is largely independent of the background gradient, G0, since:

√

S(G)S(−G)

S0

≈ exp(−cG2) (5.37)

with some real positive constant c.12 It has to be pointed out that susceptibility gradients
can lead to image distortions without having a noticeable effect on the diffusion measurement.
Distortions and extinctions are not corrected for by geometric averaging. The direction scheme
(4.1) was modified by inclusion of the inverted gradient direction. In experiments with a
glass container filled with ethanol which has about half the diffusion coefficient of water13 an
anisotropy at the transition between ethanol and glass was also found. However, geometric
averaging over opposite gradient directions did not at all affect this anisotropy at the border.

12The background gradients arising from susceptibility differences in the sample may to a small extent depend
on strength and direction of an applied magnetic field gradient. This has not been accounted for in equation
(3.13).

13for ethanol D ≈ 1.08 · 10−9m2 s−1 at 25◦C.
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This was also the case for the water phantom in Fig. A.4. In tensor maps of a perspex container
filled with vegetable oil which has an extremely low diffusion coefficient14 high artefactual
anisotropy also occurs. However, this does not seem to be related to the phantom wall. The
preferred diffusion direction in the rather broad regions of anisotropy in the oil phantom changes
upon application of geometric averaging, in contrast to the ethanol and water cases. Anisotropic
regions localized at the phantom borders were observed only at the surfaces of ethanol and
water, and only to a low degree at the surface of agarose gel or vegetable oil. All experiments
in this context were performed employing U-FLARE in the imaging part of the sequence. The
remaining possible mechanisms that could lead to the observed anisotropy at the phantom wall
are convective flow (see section 5.9) and eddy current effects that affect high spatial frequencies.
In the experiment in Fig. A.4 convection is likely to play a role since the direct contact with
the subject’s skin almost certainly produces a temperature gradient in the phantom.

If in in vivo experiments positive and negative gradients are included, the situation can
occur that a relatively large number of pixels does not pass the multiple correlation coefficient
threshold. This must be attributed to the differences between the images for opposite diffu-
sion gradient direction which can arise from residual eddy currents that influence the imaging
sequence. Ghosting in particular can differ between the gradient directions such that the re-
gression has to cope with different signals for the same b matrix. This leads to a reduction in
the multiple correlation coefficient.

On the grounds of these results it is anticipated that the artefactual anisotropy due to tissue
borders is probably lower than at the border of a water phantom. For this reason and since
geometric averaging does not reduce the erroneous anisotropy, the geometric mean approach
was usually not applied to in vivo experiments.

5.8 Subject motion

Diffusion weighted sequences are designed to be sensitive to displacements on a micrometer
scale and are hence also susceptible to motion other than diffusion. If incoherent motion
occurs, as for example in a flowing fluid with a broad velocity profile (see section 5.9), the
signal is attenuated by intravoxel dephasing which disturbs the measurement of the diffusion
coefficient. For coherent motion such as head movement the motion induced phase errors are
of a rather systematic nature and can in some circumstances be corrected for. The sensitivity
of diffusion weighted imaging sequences to bulk motion has been mentioned in section 4.2.
In 1992 Ordidge et al. [193, 194] proposed a “navigator echo” method to correct for the phase
errors induced by subject motion in DWI. Because in single-shot imaging motion-induced phase
errors are much less harmful than in sequences with multiple excitation, the algorithm shall
only briefly discussed here. For a more detailed explanation the reader may refer to [195]. In
the context of isotropic diffusion weighting attempts have been made to ensure that the first
temporal moment of G(t) vanishes,

∫ t

0

t′G(t′) dt′ = 0 (5.38)

where G(t) is identical with ∇Bz(t) apart from a sign change at every refocusing pulse. If this
condition is satisfied, the susceptibility to uniform bulk motion is minimized [50]. Equation

14below 0.1 · 10−9m2 s−1
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Figure 5.10: Rigid-body object rotation during a diffusion experiment: (a) Choice of basis for equation
(5.41); (b) illustration of v · G ∼ x (axis of rotation perpendicular to the diffusion gradient, for
simplicity).

(5.38) does not hold for the Stejskal-Tanner gradient sequence.15 A translational displacement
of the whole object between the diffusion gradient pulses in a Stejskal-Tanner experiment causes
a global phase shift for all excited spins in the object. In the case of rotational motion, however,
the phase error depends on the spin position: Suppose that the object’s position in space differs
between the two gradient pulses by a rotation. We approximate the pulses as rectangular. To a
good approximation we can assume that the angular velocity is small enough that the velocity
change of an individual spin during the short time ∆ is negligible,

v(r(t)) ≈ v(r0) (5.39)

with r0 = r(0). If we describe the rotation by the vector of angular velocity, Ω, the velocity is
given by v(r) = Ω× r such that the phase error accumulated by a spin initially at r0 is

φ(r0) = γ

∆+δ
∫

0

∫ t

0

v(r(t′)) dt′ ·G(t) dt ≈ γ

∆+δ
∫

0

tv(r0) ·G(t) dt = γv(r0) ·G∆δ = γδ∆[Ω× r0] ·G

(5.40)

where G(t) = G(−1)Θ(TE/2−t) with Θ(t) defined as in (3.8) and G = ∇Bz(t). By choosing
an orthonormal basis whose y axis is aligned with the gradient direction and whose x axis is
perpendicular to G and Ω (see Fig. 5.10a) we can write equation (5.40) as

φ(r) = γδ∆[(cey + dez)× (xex + yey + zez)] · eyG = xγδ∆Gd (5.41)

with c, d ∈ R and r = (x, y, z). This means that the phase of the signal contribution of a
spin is proportional to its x coordinate and independent of y and z. In other words, ∇φ is
perpendicular to both G and Ω. The situation is illustrated in Fig. 5.10b for the case that
diffusion gradient and axis of rotation are orthogonal. Hence, if the image slice happens to be
parallel to the xy plane, the reconstructed image is modified according to

S(x, y) �→ S(x, y) exp(ixγδ∆Gd). (5.42)

15We will neglect the imaging gradients in the context of this section as they are of low amplitude compared
to the diffusion-sensitizing gradient pulses. Note that (5.38) is also not valid for the double spin-echo scheme
in Fig. 5.5.
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G
→ ↑ ⊙

→ 0 ⊗ ↑
Ω ↑ ⊙ 0 ←

⊙ ↓ → 0

Table 5.5: Components of ∇φ arising from the components of G and Ω in readout (→), phase encode
(↑), and slice select (⊙) direction. Slice-select components (⊙,⊗) of ∇φ cause only a constant phase
shift.

To account for arbitrary slice orientations, we can express Ω and G in equation (5.40) in
components parallel to the readout, phase encode, and slice selection gradient, and calculate
the corresponding components of ∇φ in this coordinate system. An overview of the resulting
components of the phase error gradient is shown in Table 5.5. The component of ∇φ which
is parallel to the slice selection gradient produces only a uniform phase shift, and an echo
attenuation due to intravoxel dephasing which is negligible if the slice thickness, as usual, is
sufficiently small. We therefore only have to deal with the in-plane components of ∇φ. It is
due to a property of the Fourier transform [67, p. 104] that a phase ramp in image space as in
equation (5.42) effectively causes a shift in the raw data in the corresponding direction (and
vice versa, cf. p. 27). The shift is proportional to the slope of the phase ramp.

Images from diffusion weighted sequences that sample k space with multiple excitations
are prone to severe motion artefacts due to spatially constant (translation) or linear (rotation)
phase errors since the subject motion usually is not identical for different excitations such that
the phase errors interfere with the applied phase encoding.

In single-shot imaging rotation causes all data in k space to be shifted by the same amount
such that after the Fourier transform of the raw data we obtain an image that is modified
by a phase ramp as in (5.42). In the case of translation it is multiplied by a constant phase
factor exp(iφ). The commonly displayed magnitude images are insensitive to these phase
variations. However, the phase encode component of the k-space shift caused by rotational
motion can nevertheless affect the image quality. To understand the mechanism we realize
that the Fourier transform of the proton density distribution typically is highly localized at
k = 0. This means that the echo with

∫

G(t)ph dt = 0 will produce the largest signal. If the
signal distribution in k space is shifted, the acquired echoes pertain to other kph values than
intended. As the gradient sequence has not changed, this is, according to (2.73), equivalent to
a temporal shift. In centre-out phase encoding for example the echo with k = 0 is therefore
not necessarily the first echo any more, but it might be the second echo (or possibly for none
of the echoes kph is exactly zero). However, the signal amplitude modulation due to relaxation
is unchanged if expressed as a function of time. Hence the weighting of positions in k space
is modified by rotational motion in the presence of diffusion weighting. The change depends
on the selected phase encoding scheme, with centre-out phase encoding being more sensitive
to this effect than the linear scheme where the slope of signal decay has largely decreased by
the time of the 0th phase encoding step. It has two consequences. The first is a modification
of the point spread function which can be considerable for linear phase encoding if the first
acquired k-space line is near kph = 0 and the lines are cyclically reordered [165]: in this case
a negative kph shift can move the echo with kph = 0 to the very end of the echo train. This
would introduce a sharp edge in the signal distribution S(kph) and hence degrade the PSF.
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The second consequence is a mere loss in signal intensity which will influence the ADC (or
tensor) measurement. Provided that subject motion is more or less random16, both problems
can be reduced by averaging, which is performed anyway for DTI. Averaging must be carried
out on the reconstructed magnitude images to avoid destructive interference between images.
The effectiveness, however, of such averaging will also depend on the phase encoding scheme:
for linear phase encoding the phase errors induced by random rotations will be centred about
zero whereas for centre-out phase encoding the signal is always decreased by rotation. However,
the error is small: The rotation angles in an in vivo diffusion experiment have been reported
[195] to be of the order of α = 0.5 · 10−4 (∆ = 50 ms, δ = 40 ms). With |Ω| = d = α/∆ and
G = 30 mTm−1 we calculate from (5.41) that ∂φ/∂y = 16 m−1. We compare this value to the
deliberately applied phase difference between successive phase encoding steps which we know
from (2.76) to be

φinc(y) = γGy,incτy =
2π

FOV
y, (5.43)

where τ is the phase encoding gradient duration, which implies dφinc/dy ≈ 25.1 m−1 for FOV =
25 cm. Since the k-space shift will hence be of the order of one k-space line the consequences of
rotational motion in single-shot sequences are very small. Compared to phase errors induced
by eddy currents (see section 5.6) (which cannot be reduced by averaging) they are negligible.

As proposed by Ordidge et al. [194] motion artefacts in diffusion-weighted multiple-excitation
imaging can be suppressed by a phase correction algorithm that uses the phase information
contained in an additional “navigator echo” that is acquired without phase encoding. After
a one-dimensional Fourier transformation with respect to the readout coordinate, kre, of the
navigator echo and the raw data acquired after the same excitation the navigator phases are
subtracted17 from the raw data phase values [194, 195]. If the diffusion gradient is parallel to
the phase encode direction each data point in the echo profiles contains the signal contributions
of a single object column the spins in which share the phase error φ. In this case the phase
error introduced by rotation is successfully removed. The phase correction cannot remove the
artefacts induced by rotation (about an arbitrary axis) if the diffusion gradient has components
in readout or slice-select direction since in this case the phase error gradient can have compo-
nents in phase encode direction (see Table 5.5) [195]. This restriction to the direction of the
diffusion gradient is bound to be violated in diffusion tensor imaging where diffusion gradients
in different directions need to be applied. To address this complication, attempts have been
made to measure both read and phase encode component of the k space shift by means of two
navigator echoes with orthogonal readout direction [196, 185], or with a navigator echo with
spiral [197, 126] or circular [198] k-space trajectory.

It shall finally be noted that there are other approaches to motion correction for diffusion
weighted images than navigation [199]. An overview of motion correction techniques can be
found in [200].

16This is certainly not the case for physiological brain motion induced by the cardiac cycle. However, the role
of this type of motion can be neglected because cardiac triggering did not have a noticeable effect on the fibre
orientation maps. Pulsatile motion in CSF represents an exception (see section 5.9).

17or added to (if navigator and image echo are separated by a refocusing RF pulse)
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5.9 Flow

In fibre orientation maps of axial brain slices the diffusion in the lateral ventricles often appears
anisotropic with the direction of the largest diffusion coefficient being the subject’s anterior-
posterior direction (see Figs. A.1 and A.6). In some pixels of the lateral ventricles the fractional
anisotropy is comparable to that in the splenium of the corpus callosum. Such behaviour can
be caused by CSF flow. A distribution of flow velocity components parallel to the diffusion
gradient within a voxel leads to intravoxel dephasing and thereby to signal attenuation that
depends on the strength of the diffusion gradient. A preferential flow direction would thus
appear as anisotropic diffusion.

Anisotropic-appearing diffusion in CSF has been reported in the literature [184], and in fact
CSF is known to be subjected to pulsatile motion. In addition, there is a slow net flow of CSF
through the system of CSF-filled spaces since CSF is produced mainly in the plexus choroidei,
a part of which covers the inner walls of the C-shaped lateral ventricles. The only outlet of
the lateral ventricles is the foramen interventriculare Monroi18 which is situated inferior and
anterior to the ventricles’ top parts that are visible in Figs. A.1 and A.6. A preference of CSF
flow in anterior-posterior direction therefore appears to be plausible. The presence of flow in the
lateral ventricles is also noticeable from signal extinctions in the raw images. The extinctions
are in part caused by the high flow sensitivity of the U-FLARE sequence [161]. If we assume
1 cm diameter of the lateral ventricle cross section, and given that 500 ml CSF per day are
produced [128, p. 225] we calculate as an estimate of the net flow velocity v = 37 µms−1 which
corresponds to a displacement of about 1.5 µm in 40 ms. Although this is much less than the
typical diffusion displacement (at D = 2 · 10−9m2s−1) in the same time which is about 20 µm,
an influence on the measurement of the diffusion tensor may indeed be possible: Since CSF
motion is pulsatile and the velocity dispersion is unknown this is only a very rough estimate.
Flow velocities between 4 and 6 cm s−1 are given in the literature for the narrowest point in
the ventricular system19 [201].

Unfortunately the erroneous diffusion tensor measured in CSF can also influence the mea-
surement in white matter voxels in close proximity to the lateral ventricles. Because the lateral
ventricle walls are in general not perpendicular to the slice plane a number of the cubic voxels
in the image slice contains both CSF and white matter (partial volume effect). The problem is
more pronounced for large voxel sizes. It is aggravated by the large diffusivity (and flow rates)
in CSF compared to WM. Due to the partial volume effect the anterior-posterior anisotropy
of CSF can completely blot out the prominent left-right fibre direction in the corpus callosum.
Partial volume contributions of CSF to the voxel volume are hardly visible in T1 weighted
images since CSF does almost not contribute to the signal in these images. At the brain sur-
face, partial volume contributions to cortical GM voxels are also inevitable. This complication
makes the investigation of diffusion anisotropy in cortical tissue difficult. Although the flow
problem is less severe in the outer CSF spaces, contributions of WM or flowing CSF can intro-
duce anisotropy that cannot be distinguished from genuine GM anisotropy. CSF suppression
is possible [202] but leads to a reduced signal-to-noise ratio.

18connection between lateral ventricles and the third ventricle
19which is the aquaeduct of Sylvius, i.e. the connection between third and fourth ventricle
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5.10 Different fibre directions in a volume element

The measured diffusion tensor describes the average behaviour of the water molecules in a voxel.
Since a voxel does not necessarily have a homogeneous microstructure the diffusion anisotropy
measured in DTI experiments can depend on the voxel size [103]: voxels that are crossed by
many fibres of random direction exhibit isotropic diffusion on a macroscopic scale. The smaller
the voxel size the less the diffusion anisotropy is reduced by averaging. Since in an imaging
experiment the slice thickness is usually larger than the in-plane resolution averaging over fibres
is more significant in the slice direction. This only has an effect if different fibre directions are
present in the voxel. However, this mechanism does not favour any direction. Consider a
volume of randomly oriented axon segments and assume high in-plane resolution and a very
large slice thickness. A variation of the axon direction along the slice selection gradient will
not be resolved and diffusion will appear isotropic although different directions are present in
the voxel. If on the other hand the axonal direction varies along an in-plane direction, it will
be resolved and anisotropic tensors with different principal directions will be measured at the
different in-plane locations. However, in-plane and through-plane components will be treated
exactly the same way such that no bias in the principal directions occurs. In a volume with
randomly oriented axon directions the diffusion tensor will still be isotropic.

The averaging property of DTI can significantly reduce diffusion anisotropy in voxels at the
crossing of two fibres. An example is shown in Fig. A.5. If the fibres are perpendicular to each
other, if they contain an equal number of axons and intersperse each other homogeneously in the
voxel at the crossing, then the measured diffusion tensor in this voxel should be represented by
an oblate spheroid (see section 2.2.8). However, the situation may occur where the self-diffusion
process in such a voxel cannot be described by the propagator in equation (2.94). This is for
example the case if the water molecules in the voxel reside in two different compartments,
each characterized by a propagator of the form in equation (2.94) but with different principal
directions of D. The diffusion coefficient along a direction p̌, defined by 〈(s(t) · p̌)2〉/(2t) as in
equation (2.121), can then not be described by means of a symmetric tensor. The surface of
constant relative concentration (of labelled molecules) that was introduced in section 2.2.8 is
not an ellipsoid. This was shown by Tuch et al. [203, 204] measuring the dependence of the
diffusion coefficient on the diffusion gradient direction with high angular resolution.

In the presence of fast exchange between the compartments in the voxel, diffusion can
still be described with an average tensor. In this case a fibre crossing may be detected by
assessment of the eigenvector direction corresponding to the minimum eigenvalue which is
also shown in Fig. A.5b. The arrow indicates the region where the fibre originating from the
precentral gyrus diverges. Here the anisotropy is reduced and the minimum-eigenvalue direction
is almost perpendicular to the imaging plane. To decide whether or not the tensor description is
appropriate in this voxel would require measurements with a high number of diffusion gradient
directions, as performed by Tuch et al. [204].

Another interesting observation can be made in Fig. A.5b: In the precentral gyrus in the
top left corner of Fig. A.5b both the eigenvector directions corresponding with the largest and
those for the smallest eigenvalue lie in the imaging plane. The latter directions point to the
sulcal walls. Assuming that the gyrus is perpendicular to the image plane this means that
the fibres in the gyrus spread out less in the directions towards the sulcal walls than in the
perpendicular direction.
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5.11 Conclusion

In the current chapter possible sources of error in the NMR measurement of the diffusion tensor
have been discussed. Experiments on an isotropic sample have been performed to assess the
eddy current sensitivity of diffusion weighted U-FLARE and EPI. For EPI the performance of
a modified diffusion weighting sequence and of an eddy current correction algorithm have been
investigated. The results can be summarized as follows:

• With extensive averaging (or high image SNR) high-quality tensor maps can be achieved
that reliably measure the fibre anatomy in human brain white matter.

• The influence of concomitant field gradients and the effects of nonorthogonal or not con-
stant applied field gradients are negligible. Background gradients are also not significant
for applications to head imaging. Gradient miscalibration is potentially harmful but the
required degree of calibration accuracy is not significantly higher than for conventional
imaging purposes.

• DTI is probably not an appropriate tool for measuring the orthogonality of the applied
gradients.

• Subject motion is not a fundamental problem as long as single-shot imaging sequences
are applied.

• Pulsatile flow of cerebrospinal fluid can introduce anisotropy in the measured apparent
diffusion tensor. It occurs in particular in the lateral ventricles but was not observable in
exterior CSF in vicinity to the cortex. Measurement distortions through partial volume
contribution occur only at about one volume element distance to the lateral ventricles.

• The most important source of systematic error is the presence of eddy currents caused
by switching strong pulsed field gradients to achieve diffusion weighting. As eddy current
amplitude and distribution differ significantly between the applied gradient directions, this
often leads to artefactual anisotropy in the measured diffusion tensor. Therefore, a well-
adjusted preemphasis unit is a prerequisite for accurate diffusion tensor measurements.
This can, however, not completely eliminate the eddy current related inaccuracies. The
most important effects are disturbances of the phase-encoding mechanism, i.e. ghosting
and spatial signal variations in the image. They often depend on the direction of the
applied diffusion gradient. The shift, shear, and scale artefacts caused by eddy currents
in diffusion weighted EPI images are predominantly relevant at tissue borders, and can
be corrected for by image postprocessing.

• For an assessment of tissue structure in white matter on the basis of DTI it has to be borne
in mind that the measured tensor is an average over a finite volume element. Tensors
with low anisotropy can occur at crossings of white matter fibre tracts despite a high
degree of tissue organization.

Since EPI is characterized by high SNR and short acquisition times as compared to U-FLARE
it is usually preferred in DTI experiments. However, despite its lower SNR and the edddy
current induced signal intensity variations in the imaging slice that occur with U-FLARE, it
can in some circumstances be advantageous to use U-FLARE instead of EPI for diffusion tensor
imaging. This is the case if EPI can (due to insufficient gradient performance or high main field
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strength) only provide low spatial resolution. While diffusion anisotropy can often be assessed
with sufficient accuracy using a coarse resolution this is not true for WM fibre imaging where
the highest possible spatial resolution should always be applied. With the given equipment, the
best assessment of fibre directions was obtained with the TIPE U-FLARE protocol described
in chapter 4. It allows a reliable measurement not only of large commissural fibre trajectories
but also of less coherent fibre tracts in subcortical white matter.
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Chapter 6

Investigating the connectivity
hypothesis

It has often been maintained that DTI can serve as a tool to investigate the functional connectiv-
ity of cortical areas [13, 205, 206]. DTI has been employed to identify the human sensory motor
cortex through detection of the afferent fibres [207]. However, it has never been demonstrated
that a strong fibre connection between cortical areas implies a close functional connection. This
chapter describes experiments that are designed to image fibre orientation in human brain white
matter with water diffusion tensor measurements, and to explore the use of such experiments
for the investigation of functional connectivity in the human brain.

6.1 Introduction

6.1.1 Definition of functional connectivity

Functional connectivity has been defined as

“the observed temporal correlation between two electro/neurophysiological mea-
surements from different parts of the brain” (Friston et al. [208]).

Functional connectivity is often considered as a measure of how closely two parts of the brain
are functionally related.

6.1.2 Functional magnetic resonance imaging

Methods to observe the physiological function of organs by means of MRI are subsumed under
the term functional magnetic resonance imaging (fMRI). Since MRI has become an important
tool to investigate human brain function, fMRI is often used as a synonym for functional MRI
of the brain. A more detailed discussion of the techniques can be found in the literature [5].
We confine ourselves to the description of the basic principle.
Although an activation-dependent shrinkage of the extracellular space has been observed

by means of ADC measurements [209, 210], using diffusion measurements to detect neuronal
activation appear difficult and have not been published yet. However, the signal intensity in T ∗

2

weighted in vivo MR images of human brain grey matter has been shown to increase upon acti-
vation of the brain region by an external stimulus. The phenomenon is based on haemodynamic
effects. It has been known since 1936 that oxyhaemoglobin (oxyHb) and deoxyhaemoglobin
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(deoxyHb) have different magnetic properties [211]. The iron atom in a deoxyhaemoglobin
molecule represents a paramagnetic centre due to unpaired electrons. It is the binding site for
oxygen molecules. By establishing the bond to an oxygen molecule the iron atom achieves noble
gas configuration: since the iron in oxyHb has no unpaired electrons it is diamagnetic. The
magnetic field around erythrocytes that contain a high concentration of paramagnetic deoxyHb
is distorted such that T ∗

2 is shortened in the environment.

If in a localized population of neurons in the brain the frequency of generated action poten-
tials is increased, local increases in blood flow1 and fractional blood volume are induced in the
brain tissue. The neuronal oxygen consumption in the activated state differs only little from
the consumption at rest: the increase in blood flow overcompensates the increase in oxygen
consumption (“luxury perfusion”). Consequently the deoxyHb concentration in venous blood
is decreased. The decrease in deoxyHb concentration reduces the magnetic field inhomogeneity
and thereby leads to an increase in the detectable MR signal. This influence on the intensity in
T ∗
2 weighted images has been termed BOLD (blood oxygenation level dependent) contrast.

2 It
provides a means to detect the activity of a localized population of neurons in the brain [3, 5].
In a standard fMRI experiment, T ∗

2 weighted images are acquired during alternating periods
of stimulus and rest condition (blocked task paradigm). The brain regions that are activated
by the stimulus can be identified as those regions whose signal time course correlates with a
square wave describing the stimulus on and off periods. The reader may refer to [4, 5] for an
introduction to BOLD based fMRI.

6.1.3 Biswal’s experiment

Biswal et al. [212] found in BOLD contrast images of “resting” human brain that the low-
frequency signal fluctuations from the right and left human motor cortex were correlated. The
experiment consisted of two parts. In the first part several time series of 512 T ∗

2 weighted echo
planar images were acquired. The repetition time was varied between 250 and 1000 ms. The
volunteers had been instructed to “refrain from any cognitive, language, or motor tasks as much
as possible”. In the second part the subjects had to perform a bilateral motor task. They were
instructed to sequentially tap each of their fingers to the thumb at an arbitrary rate. Finger
tapping and rest condition alternated every 20 s. By means of echo planar images acquired
during this period the motor cortex could be identified using correlation of the MR signal with a
square wave of 20 s cycle duration. The signal time courses for all pixels in the images from the
first, resting-state experiment were frequency filtered (low-pass with 0.08 Hz cut-off frequency)
to remove the frequency components that are due to the respiratory and cardiac cycle. The
filtered time courses for all possible pairs of pixels were correlated. If we divide the set of pixels
into three sets R, L, and O that refer to the right motor cortex, the left motor cortex, and the
rest of the brain, respectively, we can summarize Biswal’s results as

nLL

nL
>

nRR

nR
>

nLR

nL
≫ (nOL + nOR)

nO
(6.1)

1Regional cerebral blood flow (rCBF) is defined as the volume of blood that passes through a given volume
of tissue (specified in terms of mass) per unit time. It is commonly measured in the units ml g−1 min−1. The
mechanism that couples the haemodynamic changes and neuronal activity is unknown.

2Due to diffusion of water in the presence of magnetic field inhomogeneities there is also an effect on T2.
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where nLR is the average number of pixels in L that correlate with a pixel in R,

nLR =
1

nR

∑

y∈R

∣

∣ {x ∈ L | c(x, y) > 0.35}
∣

∣, (6.2)

with nR being the number of pixels in R, and c(x, y) the correlation coefficient between the
time courses in the pixels x and y. The remaining symbols are defined in analogous manner.
In words, the normalized number of correlations between left (L) and right (R) motor cortex
was higher than the normalized number of correlations between L (or R) and the rest of the
brain. Thus the signal fluctuations in the left and right motor cortex are not independent. The
differences between the first three terms in the relations (6.1) were not significant for a given
subject. The overall result did not depend on the repetition time in the range between 250 and
1000 ms.

A more recent study [213] confirmed the interhemispheric correlation in the motor cortex and
reported similar phenomena for the left and right primary visual cortices and the amygdalae.

6.1.4 Interpretation of Biswal’s results

The trivial arguments aside (bulk motion, imperfect removal of cardiac and respiratory influ-
ences) there are two possible explanations for correlated signal fluctuations in left and right
primary motor cortex:

1. The brain performs unknown tasks that change over time. Many tasks that require the
left primary motor cortex also activate the right primary motor cortex.

2. Fluctuating action potentials spread along anatomical connections. They represent spon-
taneous activity that is not task-induced.

An example of the first possibility would be that a subject imagines finger tapping at some
time during the scan. Biswal et al. interpreted the synchronous low-frequency fluctuations as
a phenomenon that was not due to imagined motion (“motor imagery”). To rule out possible
influences of motor task imagination the subjects had not been informed before the experiment
that they would be asked to perform a motor task. Some volunteers were deliberately misled by
the information that the experiment would measure the response to an auditory stimulus. In
addition to these precautions the authors argue that, according to previous studies, imagined
motor tasks elicit a haemodynamic response in the supplementary motor area (SMA) but not
in the primary motor area.3

Biswal et al. consider the haemodynamic fluctuations that underly the correlation of the T ∗
2

weighted signals to be the same phenomenon as fluctuations of local cerebral blood flow observed
by Golanov et al. in anaesthetized rats [215]. Golanov et al. observed spontaneous bursts of
electrocortical activity that were followed by an increase in cerebral blood flow. Spontaneous
electrical activity of neurons is common in the human vestibular and auditory systems and in
the higher cognitive centres associated with them [129, p. 281]. However, to date is has not
been shown that the correlated haemodynamic fluctuations observed by Biswal et al. are indeed
due to this type of electrical activity.

3However, some imagery induced activation has also been found in primary motor cortex, see [214].
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It is known that, apart from hand and foot area, all parts of the primary motor cortex send
commissural fibres to the homotopic4 area in the contralateral hemisphere [18, p. 374]. The
observed correlation is a manifestation of an increased conditional probability that a neuron in
a region ‘A’ fires provided that a neuron in some other region ‘B’ has fired immediately before.
This coincidence can be due to a direct influence mediated by an anatomical link between the
regions. (The fact that the hand areas give rise to relatively few commissural fibres may be
used as an objection against this interpretation of Biswal’s experiment.)
If we adopt the second of the two explanations above we can hypothesize that any random

activity in the left motor area gives rise to activity in the right motor area since they are
directly connected by axons in the corpus callosum. It might therefore be possible to infer
from a correlation in BOLD signal fluctuations to a direct anatomical connection. If, however,
the first explanation were true this inference would not be possible. It is well known that
in a network of interconnected cortical areas the activation of one network element does not
necessarily imply that the rest of the network is also activated.5 Whether a network element is
activated strongly depends on the task. Cortical activation does not spread over all available
physical connections but the physical connections are selectively used. This is the reason why a
measurement of task-induced activation will not supply information about the fibre connections
between two cortical regions. As diffusion tensor imaging reveals information on the fibre tracts
that connect cortical areas it has been postulated that it is possible to use DTI as a tool to
investigate functional connectivity. However, it remains to be shown whether predictions on
the outcome of a functional connectivity experiment can be made on the basis of anatomical
data obtained from a DTI experiment. If the correlations are a result of a strong neuronal
connection then two regions that appear in DTI fibre maps to be strongly connected in an
anatomical sense should also exhibit a high correlation of signal fluctuations.

6.1.5 The connectivity hypothesis

If the correlation in Biswal’s experiment is a consequence of the large number of axons that
directly connect left and right motor cortex and if DTI is able to detect such fibre tracts then
the following hypothesis should be true:

If a DTI fibre orientation map shows a thick and highly ordered fibre connecting
two cortical areas ‘A’ and ‘B’ then the T ∗

2 weighted signal time courses for ‘A’ and
‘B’ under resting conditions will be highly correlated.

This hypothesis was investigated by simultaneous assessment of anatomical connections in
diffusion tensor maps and the correlation of BOLD signal fluctuations between brain regions.

6.2 Measurement of functional connectivity

In order to investigate whether the connectivity hypothesis is true we measured for 7 normal
healthy subjects the anatomical and functional connectivity of areas on adjacent cortical gyri.
For fluctuation imaging we used a stimulus-free setup similar to that of Biswal’s experiment.

4Two cortical regions in different hemispheres are called homotopic if they service the same part (strict sense)
or symmetric parts (broader sense) of the body [18]. This definition is not applicable to cortical regions that
mediate higher functions.

5See, for example, [2, p. 17].
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In contrast to Biswal et al. [212] we examined the correlation between cortical gyri rather than
between symmetric areas in the hemispheres. We did not perform a stimulus-induced activation
experiment to identify the function of cortical regions.

6.2.1 Experimental

A time series of 1024 gradient-recalled blipped EPI images was acquired for a single 5-mm axial
slice (64 × 64 matrix, 3 mm in-plane resolution, TR = 250 ms, TE = 30 ms). To maximize
SNR, the excitation pulse angle was set to the Ernst angle6 which was 36◦. The read direction
was the subject’s left-right axis. The subjects were instructed to refrain from any voluntary
movement during the 4 min scan time. Instructions like “think nothing” are not well defined,
nor can they be controlled in any way, so we decided not to further specify the rest condition by
any additional instruction. The lights were switched off so that apart from the noise produced
by the scanner, acoustic and optical stimuli were absent.

6.2.2 Data Processing

A realignment algorithm was applied to the reconstructed images to remove bulk subject mo-
tion. Ripple artefacts in the images were reduced by Gaussian filtering with a standard deviation
of 0.5 pixels [166, section 4.1.3.1]. The signal time courses of all image pixels above a noise
threshold were digitally low-pass (< 0.08 Hz) frequency filtered to remove signal fluctuations
due to the respiratory and cardiac cycle. The first 10 images were not in steady-state and
therefore discarded. Linear Pearson correlation coefficients [216] between time courses were
calculated for all possible pairs of pixels. In order to emphasize ubiquitious fluctuations that
arise from spontaneous neuronal activity as opposed to those of limited duration due to brain
function each time course was split in four equal parts of about 1 min duration. For each
part the correlation coefficient between pixels was determined separately, and among the four
coefficients the smallest one was selected for further processing. We expect to suppress any
“real task activation” to a certain degree by this procedure. The Pearson (or product moment)
correlation coefficient, cf , of the time courses (xi) and (yi), i = 1, . . . n, of n data points is
defined by [216]

cf =

∑

(xi − x)(yi − y)
√
∑

(xi − x)2(yi − y)2
=

∑

xiyi − (
∑

xiyi)/n
√

(
∑

x2i − (
∑

xi)
2 /n

) (
∑

y2i − (
∑

yi)
2 /n

)

(6.3)

where the bar denotes the mean over the time course. All sums run over i = 1, . . . n. To keep
the calculation time low, pixels with a signal below approx. 10% of the maximum in the image
were excluded from further processing.

6.3 Measurement of anatomical connectivity

Subsequent to the EPI scans, diffusion tensor imaging was performed for the same slice as in
the functional experiment in order to determine the anatomical connections between cortical
areas. The study focussed on the detection of fibres between regions of the cerebral cortex that

6The optimum excitation angle can be found by maximizing the transverse magnetization immediately after
excitation which is obtained by multiplying equation (2.77) by sin θ [36, p. 66]. T1was estimated to be 1.2 s.
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were not more than a few centimeters apart from each other. This restriction was necessary
since long fibre tracts are more difficult to follow and are usually not confined to a single plane.
A long fibre will often merge with other fibres on its way and will split into diverging subfibres
at other locations. Non-planar fibres can in principle be detected using a three-dimensional
DTI protocol. However, due to the sensitivity of multiple-shot diffusion measurements to bulk
motion (see section 5.8) the application of the available imaging methods to 3D imaging would
have required the implementation of a complex navigation correction so that two-dimensional
FT imaging was preferred. Fibre bundles that interconnect cortical areas are called association
fibres. Short association fibres lie within the cortex, or in the superficial white matter whereas
long association fibres lie in the deeper layers of white matter. Many adjacent cortical gyri are
connected by short association fibres in the superficial white matter. Due to their shape these
fibres are often called “U fibres” [217, 218]. Although in the DTI literature the term “U fibre”
is often applied to fibre bundles visible on DTI fibre orientation maps, U fibres in a strict sense
are far too thin to be visible at a typical DTI resolution. However, the U-shaped fibres that
are encountered in DTI maps may nevertheless connect two adjacent gyri. But it has to be
kept in mind that even if the mean fibre direction in subcortical white matter is tangential to
the sulcal cortex between two gyral crowns the axons that enter grey matter in the two crowns
may be not identical. The axons originating from a crown may leave the “fibre” on its way to
the other crown, being replaced by other axons entering the bundle. If this axon exchange is
distributed over the length of the bundle it is invisible in the DTI map and the pattern still
appears as a continuous U-shaped fibre on the macroscopic scale.
Short association fibres connect the precentral with the postcentral gyrus, the precentral

gyrus with the premotor area, and the postcentral gyrus with parts of the parietal lobe [18].

6.3.1 Experimental

A DTI sequence was required that is sensitive enough to image not only highly aligned com-
missural fibres but also less coherent association fibres with high spatial resolution. With the
diffusion weighted EPI sequence it was not possible to improve the in-plane resolution beyond
3 × 3 mm2. In order to achieve a resolution that allows reliable detection of U-shaped fibres
we used the displaced U-FLARE tensor imaging sequence with Stejskal-Tanner type spin-echo
magnetization preparation and half k-space TIPE phase encoding (see p. 63. refocusing angle
α ≈ 120◦, TE ≈ 7.5 ms, TEeff ≈ 140 ms, echo train length ≈ 410 ms, TR = 3 s). High
resolution increases the anisotropy in a voxel (see section 5.10). In addition, it is essential for
the distinction between a U-shaped fibre and a pattern of three fibres, two of which run from
the crowns into deep white matter and are crossed by a third straight long-distance fibre that
passes the sulcus between the gyri. Half k-space phase encoding was applied to increase the
resolution without impairment of the SNR. To save the time required for dummy refocusing
cycles, TIPE [168] phase encoding was employed. Diffusion weighting was varied using 4 dif-
ferent gradient amplitudes (b value between 20 and 800 smm−2, ∆ = 40 ms, δ = 22 ms) and 7
directions of the diffusion gradient. The readout direction was the subject’s anterior-posterior
axis. The acquisition of the tensor map involved 15 to 50 averages (depending on the b value)
and took approx. 35 min, yielding an in-plane resolution of 1.5 mm (full data matrix 128× 96,
FOV 19.2 cm × 14.4 cm, slice thickness 5 mm).7 Since proper k-space completion did not
significantly change the resulting fibre orientation maps compared to simple zero filling the

7The 128 × 96 matrix for the FOV 19.2 cm × 14.4 cm provides the same resolution as a 128 × 128 matrix
for a FOV 19.2 cm × 19.2 cm which was the FOV used in the functional experiment.
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acquired data were zero filled to the 128× 96 matrix before Fourier reconstruction. This some-
what reduced the true resolution in phase-encode direction. Due to the high power deposition
in the U-FLARE sequence the acquisition of more than a single slice would have required a
considerably longer scan time, or less repetitions per b value. A high quality tensor map of a
single slice was preferred to multiple slice imaging with lower effect-to-noise ratio. The images
were transformed to the 128 × 128 format covering 19.2 cm × 19.2 cm FOV by symmetric
addition of zero lines. An example of a fibre orientation map calculated from the acquired data
is shown in Fig. A.6. If the image slice is not parallel to the plane in which a single U-shaped
fibre is contained (this plane will in general be perpendicular to the sulcus axis) the crowns
that appear in the image at both sides of the sulcus may in fact be not connected by a fibre
although the fibre orientation map may indicate that. The only indication for such a situation
would be that the through-plane component of the eigenvector direction corresponding to the
largest tensor eigenvalue is not zero. In this case a U-shaped fibre originating from a neuron
within the slice can end on the other side of the sulcus in a region that is not contained in the
slice. The slice thickness of 5 mm however should ensure that this situation occurs only for a
small number of neurons contained in the superficial layer of the imaging slice, and if the angle
between the sulcus axis and the normal vector to the slice plane is large.

6.3.2 Quantification of fibre connections in DTI maps

A comparison of functional and anatomical connectivity requires a quantitative measure of
anatomical connectivity. It is possible to extract the trajectories of individual fibre tracts from
a DTI tensor map employing a fibre tracking algorithm [14, 219, 220]. However, these algorithms
usually generate a trajectory by following the direction corresponding to the largest eigenvalue of
the diffusion tensors. This approach does not use the full information contained in the tensor.
It is independent of the ratio of eigenvalues that reflects the average over many axons with
different directions in a voxel. For the assessment of anatomical connectivity between arbitrary
regions an algorithm is needed that differentiates between trajectories in highly aligned bundles
and paths through almost isotropic matter. In order to find a numerical measure meeting this
requirement, a Monte-Carlo type algorithm was implemented. Imagine a particle in one of
the voxels of a cortical region ‘A’ that jumps in a random manner from voxel to voxel. It
will perform a random walk through the set of voxels. Let us further make the probability of
a jump to a neighbouring voxel dependent on the diffusion tensor in the current (and in the
neighbouring) voxel, such that the probability is higher the larger the diffusion coefficient in the
jump direction. Then our particle will move with a higher probability along a fibre direction
than perpendicular to it. If we perform this “experiment” many times and count how often
our particle starting in a region ‘A’ has reached region ‘B’, we obtain a (relative) measure of
the anatomical connectivity between regions ‘A’ and ‘B’. We repeated a 60-step “experiment”
4000 times. For each elementary jump the probabilities for the eight possible jump directions
to a neighbouring voxel (the particle motion was confined to the imaging slice) were calculated
from the diffusion tensors in the start voxel (m) and the target voxel (n) according to

p(m → n) =
[d(rmn, m) + d(rmn, n)]

a

∑

n[d(rmn, m) + d(rmn, n)]a
(6.4)

where p(m → n) is the probability for a jump from voxel m to voxel n, d(rmn, m) is the
“diffusion coefficient” defined in (2.122) in voxel m for the direction from the centre of voxel m
to the centre of voxel n, and a = 7. The sum of the probabilities over the eight possible n is 1.
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The exponent a was introduced to make the probability distribution sufficiently localized at the
directions corresponding to the fibre orientation. With a = 1 the particle path was not confined
to the fibre direction. The objective of the simulation was to obtain a numerical measure of
the subjective impression of thickness and coherence of a fibre tract. Thus the exponent a was
adjusted to keep the majority of the particle paths in the voxels that constituted a fibre on
the DTI fibre orientation map. For the same purpose only jumps in the “fibre direction” in
the previous voxel and the two directions that deviated from it by ±45◦ were allowed. The
fibre direction in a voxel was defined as that among the 8 directions with the largest in-plane
diffusion coefficient. Among these two opposite directions that direction was chosen that did
not include an acute angle with the direction of the jump to the current voxel. If the angle was
90◦ then the choice was arbitrary.

The tensor map used in this procedure was thresholded by setting all tensor elements to zero
if af < 0.2. To suppress the U-FLARE ghost artefact a signal intensity threshold was applied for
tensor calculation. Only those image pixels were included in the tensor calculation for which
the signal intensity in the first of the functional echo planar images was above a threshold.
This removed the ghost signal since phase encode and readout directions were interchanged
compared to the U-FLARE images.

A pseudo-random integer number between 0 and 7 with the calculated probability distribu-
tion was generated by the transformation method [170], and used to select the jump direction.
The particle path was terminated if a voxel with a zero tensor was reached or 60 jumps had
been performed. A tensor was considered to be a zero tensor if the sum of the in-plane diagonal
elements was less than 1 · 10−9 m2 s−1. Although all tensors with af < 0.2 were set to zero this
was necessary to treat also those voxels as isotropic where the fibre direction was perpendicular
to the slice. The path was also terminated if zero tensors were encountered in all neighbour-
ing voxels that could be reached by a permitted jump. The maximum number of elementary
jumps was chosen to be sufficiently large to allow the particle to reach the neighbouring gyri
when starting on a gyral crown. The frequency with which each voxel was hit (as a result
of any particle jump during a path or at its terminating point) was recorded. This number
was normalized to the maximum over all considered pixels in the slice. Increasing the number
of experiments beyond 4000 did not alter the normalized simulation results significantly. The
simulation was written in the programming language C. Figure A.7 shows that the particle
paths in the simulation are consistent with the visual assessment of a fibre on the basis of the
fibre orientation map.

6.4 Relations between anatomical and functional con-

nectivity

A comparison of our measures of anatomical and functional connectivity has to account for
several circumstances, some of which are inevitable:

• Anatomical connectivities are naturally only available for white matter voxels whereas
correlated fluctuations are expected to occur only between grey matter voxels.

• Fibres in DTI maps can only be followed up to where the diffusion anisotropy in the
diverging tract has fallen below the threshold that is set to exclude erroneous anisotropy.
Treating only fibre direction measurements in voxels with af > 0.2 as reliable, this border
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is typically at 1 to 2 voxels distance from the cortex. If the distance is larger than 1 voxel
the fibre target cannot be specified with 1-voxel accuracy.

• The assignment of voxels in the 128× 128 matrix of the U-FLARE (DTI) images to an
element of the 64 × 64 matrix of the EPI (fMRI) images may be inaccurate due to EPI
distortions [65].

• Due to the large voxel size in the functional experiment a high number of voxels will
contain both cortex and CSF or white matter.

Owing to these circumstances, the white matter voxels at the end of a fibre tract have to be
assigned to a set of grey matter voxels that define the target region of the fibre. It is not
expected that a relationship between functional and anatomical connectivity on a voxel-to-
voxel basis will exist. To make the requirements for a possible relationship less stringent, the
functional and anatomical connectivity values need to be summarized for regions the size of
which is of the order of a gyrus cross section.

6.4.1 The classes approach

In contrast to Biswal’s approach our experiment does not focus on functional units that are
defined by a functional experiment. As extent and location of sensible fibre target regions is
not known we first attempted to define regions on the basis of the fluctuation measurement.
Contiguous classes of pixels that correlate highly (correlation coefficient above an arbitrary
threshold) with each other were formed. Two classes were considered to be functionally con-
nected if the average of the four largest correlation coefficients between pixels in the two classes
exceeded an arbitrary threshold. The set of pixel classes was subdivided into “superclasses” of
classes that were connected in this sense.

Results

The 7 subjects in the study showed high correlations between various cortical areas. Most of
the pixels in white matter did not correlate with any other pixel which was above the threshold.
The correlation maps are highly affected by motion and by temporal variations of image ghosts
(The ghost image visible in Fig. 5.6 was also apparent in this experiment.) Some sulcal fundi
are correlated with a considerably large part of the whole cortical surface. The signal variations
for the involved pixels are unusually high. This could indicate that this fundus is a part of a
network that is active during some period of the experiment. However, it is more probable that
it is due to motion or temporal variations of image artefacts. The effect is not reduced by the
four-part correlation.

• In many cases the correlation between topologically equivalent areas in contralateral hemi-
spheres is large which is in accordance with Biswal’s results.

• If a cortical region ‘A’ is correlated with an ipsilateral region ‘B’ it is in many cases also
correlated with the corresponding contralateral area of ‘B’. This is in accordance with
the anatomical observation that a region ‘A’ that has an association connection with an
ipsilateral region ‘B’ often also has a commissural connection with a contralateral region
‘C’ which is homotopic with ‘B’ [18, p. 370].
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• Gyral crowns and sulcal fundi behave differently: The correlation between crowns or
between fundi is often higher than the correlation between a crown and a fundus.

• The separate correlation of 4 parts of the time courses revealed that the correlation coef-
ficients vary substantially between the four segments. This can probably be attributed to
“real task activation” rather than to fluctuations. The minimum of the correlation coeffi-
cient for the 4 time course parts is in many cases considerably lower than the correlation
coefficient for the full time courses.

• The classes approach is very sensitive to the choice of the threshold to the correlation
coefficient. A slight variation in this threshold can change the superclass a class belongs
to.

• Classes often consist of a whole fundus. Contiguous classes on the crowns are rare. This
may be attributed to the fact that afferent fibres from subcortical white matter reach
the cortex at the crowns rather than at the fundi [217, p. 268]. Crowns are connected
to distant brain regions whereas fundi are connected to the rest of the brain predomi-
nantly via an adjacent crown. (The connection to the crown can be intracortical.) In
task activation the fundi may be triggered by a crown region without causing a measur-
able haemodynamic response in the crown. If we speculate that fluctuations spread to a
significant degree only over direct connections we should expect to observe a correlated
haemodynamic response of fluctuations rather between gyri than between sulci. A spon-
taneous action potential that arises in a fundus would have to be transferred in a crown
to another neuron to reach a distant cortical region.

Cell bodies are most densely packed in the fundus [218, p. 26]. This may also contribute
to the fact that the correlation between neighbouring pixels tends to be higher at the
fundus than on the crown.

• The classes in the fundi of precentral, central, postcentral gyrus often belong to the same
superclass. At low thresholds for the correlation coefficient this superclass also includes
the crowns in between.

• The typical signal variation is of the the order of 3% which is compatible with the variation
of 0.5 to 1% observed by Biswal et al. at 1.5 T main field strength when the difference in
B0 is taken into account.

6.4.2 The region-of-interest approach

The class/superclass algorithm proved to be inappropriate for the investigation of connectivity
between crowns due to the high sensitivity to variations of the threshold for the correlation
coefficient in terms of the enormous differences in the number of (super)class elements. To
assess how strongly gyral crowns were interconnected we selected gyri on the convex surface of
the brain and manually defined regions of interest in the 64×64 matrix situated on the crowns
which were defined as the cortical regions at the origin of a fibre tract. Every region also
contained subcortical white matter pixels that could serve as starting pixels in the simulation.
A typical region of interest consisted of about ten pixels. Three of the seven volunteers in
the study did not clearly exhibit U-shaped fibres between adjacent gyri in the DTI maps and
were excluded from data evaluation. The starting pixels in the Monte-Carlo simulation were



6.4. Relations between anatomical and functional connectivity 111

A B A B A B

(a) (c)(b)

Figure 6.1: Schematic view of different fibre patterns between two regions ‘A’ and ‘B’.

restricted to those 128 × 128 matrix elements that belonged to one of the regions of interest.
Owing to the large voxel size in the 64 × 64 matrix some regions of interest were directly
adjacent to another region. In the simulation, to prevent the virtual particle to jump across
the border between regions without having entered white matter, direct jumps between regions
were explicitly excluded. The particle paths were terminated if a region of interest other than
the starting region was reached. The simulation results were then processed in three steps:

1. The number that was output from the simulation was divided by the value in the start
pixel which is usually the number of experiments.8 This ratio may be denoted by cd.

2. The anatomical 128× 128 connectivity map obtained from the simulation was converted
into the coarser 64×64 matrix format of the functional experiment by taking the maximum
over 4 adjacent pixels in the 128× 128 matrix.

3. Every ordered pair of regions was assigned an anatomical connectivity value by taking the
maximum of cd over all pixels belonging to a region of interest. The maximum was taken
over the start region as well as over the target region. By this procedure a connectivity
matrix between regions was created that contains a value between 0 and 1 for each ordered
pair of regions.

Similarly, the maximum in the matrix of correlation coefficients between pixels in two regions
was used as a correlation measure cf between the two regions. It has to be pointed out that
the generated matrix of anatomical connectivity is not necessarily symmetric, in contrast to
the matrix of functional connectivity values. For a comparison of functional and anatomical
connectivity between regions it would be desirable to have a symmetric anatomical measure.
From the anatomical connectivity matrix C a symmetric matrix C′ can be calculated for example
by

C ′
ij = max(Cij, Cji) or by C ′

ij = (Cij + Cji)/2. (6.5)

For two regions ‘A’ and ‘B’ this effectively means taking the maximum or the average, respec-
tively, of the cd value for paths from ‘A’ to ‘B’ and the cd value for paths from ‘B’ to ‘A’. This
point merits some discussion.
The two options in (6.5) have different consequences. In the simulation the pathways with

fewer bifurcations are privileged since the simulation result for paths from a region ‘A’ to a
region ‘B’ depends on the number of possibilities encountered on the way between ‘A’ and ‘B’

8A difference between the count in the start pixel and the number of experiments can arise from the very
rare case where a particle path returns to its origin.
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Figure 6.2: Particle path probabilities in the fibre pattern of Fig. 6.1 (b) for different starting regions
(marked by a dot).

to divert from the track leading to ‘B’. The calculation for ‘A → B’ yields a higher value for
the fibre pattern (a) in Fig. 6.1 than for pattern (b) where a part of the fibres emerging from
‘A’ do not reach ‘B’. If we take the maximum over the calculations for ‘A → B’ and ‘B → A’
we obtain the same anatomical connectivity between ‘A’ and ‘B’ in the situations depicted in
Fig. 6.1 (a) and (b), and a lower value in situation (c). By taking instead the average over the
two directions we obtain three different connectivity values in the situations (a), (b), and (c).
Another difference of maximum and average approach is revealed when comparing two

region pairs in a fibre network. In the situation depicted schematically in Fig. 6.2 (which is
equivalent to (b) in Fig. 6.1) where the numbers represent the probability for the jumping
particle to move along a path, we obtain with the maximum approach the same value for the
pair ‘AC’ as for the pair ‘AB’. This does not account for ‘B’ being hardly reachable from region
‘A’. The direction average however is different for ‘AB’ and ‘AC’.
Which approach makes more sense if we intend to investigate the connectivity hypothesis?

In the situation in Fig. 6.1 (b) we would näıvely attempt to obtain a measure of the strength of
the connection between ‘A’ and ‘B’ that is independent of the existence of the fibre originating
from ‘A’ but not leading to ‘B’. Such a quantity would be generated by taking the maximum
in equation (6.5).
One can object against taking the maximum value that it is not reasonable that the con-

nectivity values for (a) and (b) are the same while the values for (b) and (c) differ. In fact, the
dependence of the connectivity measure on the number of bifurcations between two points is
an inherent property of the simulation. Taking the maximum over directions would artificially
remove this dependence in selected cases.
Assume that k axons leave or enter region ‘A’, l axons leave or enter region ‘B’, and n axons

connect ‘A’ and ‘B’. We can interpret cd(A → B) as an estimate of n/k, and cd(B → A) as
an estimate of n/l. In a mechanistic model of competing influences cd(A → B) represents the
relative importance of ‘B’ for the state of ‘A’ provided that all fibres contain an equal number
of afferent and efferent axons. This interpretation suggests another way of averaging the two
values,

C ′
ij =

n

(k + l)/2
= 2

[

(n

k

)−1

+
(n

l

)−1
]−1

= 2
[

(Cij)
−1 + (Cji)

−1]−1
. (6.6)

With this “average” we obtain C ′
ij → 0 for Cij → 0, irrespective of the (constant) value of Cji.

It is unclear which choice conveys a better model for the anatomical substrates that might
determine the correlation between fluctuations. For these reasons we search for a relationship
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Figure 6.3: Correlation coefficient cf between regions on adjacent gyri versus the corresponding
anatomical connectivity measure cd for all subjects. Since in the simulation the start pixel can be set
in either of the two regions two cd values per region pair are shown (connected by a horizontal line).

between functional and anatomical connectivity on the basis of the full asymmetric matrix of
anatomical connectivities.

Results

Fig. 6.3 shows a plot of the correlation coefficients between regions on adjacent gyri versus the
corresponding anatomical connectivity for all subjects. In Table 6.1 the anatomical names of
the selected gyri are listed for the data shown in the figure. The following conclusions can be
drawn from the plot:

• The value of anatomical connectivity between adjacent gyri in Fig. 6.3 varies by a con-
siderable amount. This is not solely due to interindividual differences since the variation
is not less within a single subject (see Table 6.1).

• The difference between the simulation results with start and target region interchanged
is large for many region pairs.

• Knowledge of the cd value(s) is not sufficient to predict the value of cf .

The data do not clearly contradict the hypothesis that a high anatomical connectivity implies
a high functional connectivity. At least high cd values do not occur in combination with low
cf values. Unfortunately the study does not yield enough data points to test the hypothesis
statistically. Fig. 6.4 shows histograms of cd and cf values. In Fig. 6.4 (a) all points from
Fig. 6.3 are treated as independent data whereas in Fig. 6.4 (b) the cd values belonging to the
same pair of gyri but with start and target region interchanged were combined according to
equation (6.6). The impression from Fig. 6.3 that the data points seem to segregate into two
groups can be described quantitatively by the dip in the cd distributions shown in Fig. 6.4.
This dip is reduced to a shoulder in a histogram derived from the same data but taking the
arithmetic mean over the directions (not shown). It might be an advantage of definition (6.6)
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(a) (b)

Figure 6.4: Same data as in Fig. 6.3 with histograms of cf (solid line, occurrence on horizontal axis,
bin size 0.15) and cd values (dashed line, occurrence on vertical axis, bin size 0.03). In (a) the cd
values for opposite path direction were treated as independent data for accidentally the same cf value
whereas in (b) the two values were “averaged” according to the definition in equation (6.6). In all
histograms the occurrence axis ranges from 0 to 27 (in (a) the cf for a pair of cd values was treated
as a single value).

that it preserves the distribution of cd values. Whether the segregation of data points in Fig. 6.3
is merely incidental or if the situation can be used to classify the connections between adjacent
gyri is unclear and remains to be investigated in further experiments including more data.
There are different possible reasons why the experiment failed to show a relationship between

functional and anatomical connectivity:

• The connectivity hypothesis is possibly false. Biswal’s results were obtained in the hand
area which has relatively few interhemispheric connections. The high interhemispherical
correlation may be completely independent of the commissural fibre connection. Friston
et al. [208] point out that, although (direct or indirect) anatomical connectivity is a
prerequisite of functional connectivity, there is no one-to-one mapping between anatomical
and functional connectivity. The primary visual cortex (V1, Brodmann’s area 17) exhibits
correlation in the signal fluctuations although the commissural fibres between the left
and right V1 area are restricted to the border zone to the secondary visual cortex (V2,
Brodmann’s area 18) [18, p. 374].

• The measured functional connectivities may not rely on fluctuations analogous to those
measured by Golanov et al. [215], possibly because they contain too much contamination
by uncontrollable task activation.

• The measured anatomical connectivities may be false because they do not account for
fibres that are not contained in the image slice.

• The measured anatomical connectivities are possibly false because DTI averages over voxel
volumes. The trajectories of single axons cannot be determined. U-shaped fibre tracts
seen in DTI fibre orientation maps therefore do not necessarily represent a continuous
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anatomical Subject 1 Subject 2 Subject 3 Subject 4
position R L R R L R L

med front g
0.661 0.461

0.004 0.000 0.105 0.033
inf front g

0.737

0.000 0.000
inf front g

0.049 0.481 0.678 0.474 0.344 0.568

0.020 0.002 0.000 0.000 0.142 0.009 0.005 0.000 0.059 0.005 0.032 0.031
precent g

0.380 0.507 0.513 0.468 0.251 0.586

0.013 0.008 0.063 0.028 0.028 0.006 0.063 0.034 0.004 0.002 0.160 0.069
postcent g

0.315 0.521 0.254 0.421 0.573

0.147 0.093 0.127 0.057 0.153 0.021 0.002 0.020 0.019 0.001
supram g

0.580 0.420 0.146

0.121 0.015 0.040 0.011 0.035 0.016
supram g

0.412

0.133 0.085
inf par lob

Table 6.1: Assignment of the data for functional and anatomical connectivity in Fig. 6.3 to anatomical
structures. The cf values are given in bold face, cd values are listed for both directions (maximum
first). The numbers in a double line (bold and normal face) are calculated for the U-shaped fibre
connecting the gyri named in the lines above and below in the first column. The abbreviations in the
first column mean, from top to bottom: medial frontal, inferior frontal (2×), precentral, postcentral,
supramarginal (2×) gyrus, and inferior parietal lobulus, in the right (R) and left (L) hemisphere. A
gyrus can appear twice if it has meanderings that make it cross the slice at two points.

fibre connecting the two neighbouring gyri. In the WM within a gyrus radial fibres
dominate whereas below the sulcal fundus tangential fibre directions dominate. Radial
fibres emerging from the cortex at the sulcus base are scarce and bend at the border
to white matter to merge with the tangential fibres [217]. The spatial variation in the
relative content of fibre directions in a voxel could lead to a U-shaped fibre pattern while
not any of the fibres connects the gyral crowns (false positive result). On the other hand
genuine U fibres are constrained to a thin superficial layer of white matter and might be
undetectable at the resolution of the DTI experiment (false negative result).

We conclude that it is not possible to directly infer a high correlation in the non-stimulus
fMRI experiment from a strong anatomical connection between two cortical regions that is
observed in the DTI fibre orientation map. This result is consistent with the observation that
a high interhemispheric correlation occurs in brain areas that have no or only few commissural
connections. It may however be generated by the limitations of the used DTI measurements. It
is questionable whether DTI can be used as a tool to directly investigate functional connectivity.
However, it does supply additional information. The results raise the question if the correlation
found by Biswal et al. [212] and Lowe et al. [213] can actually be attributed to the statistical
fluctuations found by Golanov et al. [215].
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Chapter 7

Conclusion

The results of this thesis cover three different fields: a method for spatially resolved in vivo
measurements of the diffusion tensor, a method to quantify the fibre information contained in
a diffusion tensor measurement in brain white matter, and an application to the question as to
which knowledge is gained from this fibre information.

The diffusion tensor imaging experiment was set up in two variants based on the imaging
sequences EPI, and U-FLARE which has not previously been used for DTI. Both methods can
yield an anisotropic diffusion tensor in isotropic substances which is highly undesirable if fibre
orientation maps shall be measured in vivo. A number of possible causes for inaccuracies in
spatially resolved measurements of the diffusion tensor were discussed. Experimental results
and calculated estimates led to the conclusion that for in vivo applications the image artefacts
induced by eddy currents arising from diffusion weighting gradients are the most important
cause of errors while the (diffusion) effects of background gradients and non-ideality of the
applied gradient fields may be neglected in most cases. In any case carefully adjusted preem-
phasis eddy current suppression must be applied. A further source of error is the presence of
flow in CSF-filled compartments, which can influence the tensor measurement in brain tissue
by partial volume contribution. With EPI, the reduction of eddy current effects by the double
spin-echo approach proposed by Wider et al. [155] is about as efficient as the removal of these
effects by postprocessing as proposed by Jezzard et al. [185]. Further improvement can be
achieved by a combination of these two approaches. If in the imaging part of a DTI sequence
EPI is replaced by U-FLARE the temporal variation of eddy currents during the echo train is
the most important influence. It can lead to spatial signal variation in the image that depends
on the diffusion gradient. In this case artificial anisotropy is introduced in the affected image
regions. However, U-FLARE based DTI has advantages over EPI whenever limited resolution
or image distortions due to a high main field strength are to be avoided. To counteract the
SNR disadvantage of U-FLARE as compared with EPI, a U-FLARE based DTI protocol was
developed that employs half k-space sampling and TIPE phase encoding. With this sequence
diffusion tensor maps of a 5-mm brain slice were obtained in 30 min scan time with about
1.5 mm in-plane resolution.

In order to quantify the strength of a fibre connection between two brain grey matter
locations in a fibre orientation map derived from a DTI experiment, a Monte-Carlo based
algorithm was developed.

Motivated by the findings of Biswal et al. [212] that the T ∗
2 weighted (BOLD) signal fluctu-

ations in left and right motor cortex are correlated, in an experiment applying both DTI and
BOLD imaging the Monte-Carlo algorithm was used for a comparison between the strength
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of a fibre connection between two cortical regions and the correlation of T ∗
2 weighted signal

fluctuations in these regions. This comparison was performed for selected regions on adjacent
cortical gyri. The anatomical connectivity values calculated by the Monte-Carlo algorithm dif-
fered substantially in such a train of gyri, and large interindividual differences were observed.
No direct relationship between the two parameters was found. However, a coincidence of high
anatomical and low functional connectivity seems to occur rarely.
Future work should include the application of multi-slice DTI measurements to the question

of the relationship between functional and anatomical connectivity. This should allow an in-
vestigation of the connections between more distant cortical regions. A three-dimensional DTI
sequence where spatial resolution in two spatial directions is provided by phase encoding would
have a signal-to-noise advantage over multi-slice measurements. Since it must be a multi-shot
sequence it is bound to be affected by subject motion, and motion correction methods will be
inevitable.
The fibre quantification algorithm should be modified by replacing the path termination in

isotropic voxels by a random jump direction in those volume elements.
It is further proposed to compare the correlation results with a BOLD experiment under

hypercapnia conditions, where the correlated fluctuations are suppressed [221], in order to
investigate the nature of the correlated signal fluctuations. Another promising approach would
be to bind the subject’s attention during BOLD imaging to a well-defined task that induces
activation in well-known sites of the brain. Signal fluctuations in the remaining cortical areas
should then be less affected by “real task activation” which may enhance the relationship
between BOLD signal correlations and spontaneous neuronal activity.
Work on the integration of DTI results into MEG source localization is in progress. This

application would also benefit from the possibility to acquire three-dimensional diffusion tensor
data within reasonable scan time.
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Appendix A

Colour figures

Figure A.1: Fibre orientation map based on EPI sequence. Eigenvector orientations corresponding
to the largest eigenvalue are projected onto the imaging plane, and overlaid on a T1 weighted image.
Eigenvector directions were suppressed in voxels with af < 0.2. (Axial slice, top is anterior, left is
subject’s left. Double spin-echo EPI (see section 5.6.1), matrix 64 × 64, full FOV was 19.2 cm, slice
thickness 5 mm, TE = 140 ms, b = 0 to 600 s mm−2, δ = 11 ms, ∆ = 70 ms (symbols defined in
Fig. 5.5), whole-body gradient set. Gradient directions as given in (4.1).)
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a b

Figure A.2: Noise dependence of the fibre orientation map for an agarose gel phantom. Fibre orien-
tation map with one (a) and 22 (b) repetitions. The pixel colour indicates the “fibre” direction: the
magnitude of the horizontal, vertical (phase-encode direction), and through-plane component is indi-
cated by red, green, and blue, respectively. The pure colours for the three axes are shown in the lower
left corner. An af threshold was not applied. The threshold for the multiple correlation coefficient
was set to 0.95 and a high signal intensity threshold was used to suppress signal in the background
(see Fig. 5.9). (Phantom diameter approx. 20 cm. Head gradient insert, b = 20 to 650 s mm−2, 4 b
values, U-FLARE, matrix 128 × 128, 5 mm slice thickness, TEprep = 70 ms).

a b

Figure A.3: Fibre orientation map before (a) and after (b) normalization to the tensor in the marked
voxel (arrowhead indicates centre of voxel. Fibre orientation lines do not exceed the borders of a voxel.)
(Axial slice, top is anterior. Read direction is left-right. Anisotropy threshold af = 0.1. Whole-body
gradients, U-FLARE, matrix 128 × 128, full FOV was 25 cm, slice thickness 5 mm, TEprep = 80 ms,
TE = 6 ms, b = 50 to 800 s mm−2, ∆ = 40 ms, δ = 22 ms.)
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a b

Figure A.4: Anisotropic diffusion in an isotropic water phantom attached to the subject’s head. (a)
Eigenvector directions (red) corresponding to the largest eigenvalue are projected onto the imaging
plane, and overlaid on a T1 weighted image. Eigenvector directions were suppressed in voxels with
af < 0.1. In the anatomical image a signal threshold was applied such that the phantom disappears
due to the large T1 in water. (b) Corresponding map of Tr D (highest values in white). (Axial slice, top
is anterior, left is subject’s left. The image vertical is the direction of gravitation. U-FLARE, matrix
128 × 128, full FOV 25 cm, slice thickness 3 mm, TEprep = 70 ms, b = 20 to 600 s mm−2, whole-body
gradient set. Gradient directions as given in (4.1) supplemented by the inverted directions, but no
geometric averaging was performed.)

a b

Figure A.5: Reduced anisotropy at fibre crossings. (a) T1 weighted image with eigenvector directions
for the maximum eigenvalue (red), in voxels with af � 0.2 only. The arrow marks a region of ≈ 3 mm
diameter where due to fibre averaging the anisotropy is less than the threshold. (b) corresponding
map of af with eigenvector directions for the largest (red) and smallest (blue) eigenvalue, in voxels
with af � 0.1 only. All directions are displayed as projections onto the imaging plane. (Axial slice, top
is anterior, left is subject’s left. The dark diagonal line in (a) is the central sulcus. Read direction is
anterior-posterior. Whole-body gradients, TIPE U-FLARE, experimental parameters as in Fig. A.6.)



122 Appendix A. Colour figures

Figure A.6: Fibre orientation map from the DTI experiment overlaid on an anatomical T1 weighted
image (axial slice, top is anterior, right is subject’s right). The straight lines indicate the in-plane
components of the calculated fibre direction. Fibre directions in voxels with low anisotropy (af < 0.2)
are suppressed. The raw images were also masked to remove the background ghost signal in the phase
encode direction. The mask was derived from the EPI data acquired for the fluctuation measurement.
Only a 6.75 cm × 6.75 cm part of the field-of-view is shown. The sulcus at the bottom is the postcentral
sulcus. (TIPE U-FLARE, whole-body gradient set, experimental parameters are given in the text.)

10.40.20.10.05

Figure A.7: Example for the result of the particle-jump algorithm. The start pixel is shown in blue
and marked with an arrow. cd values are indicated by red and yellow colours. The colours for five
selected cd values are shown on the right. Uncoloured pixels were never reached by the particle.
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Appendix B

Abbreviations

ADC Apparent Diffusion Coefficient
BOLD Blood Oxygenation Level Depen-

dent (contrast)
CNS Central Nervous System
CPMG Carr-Purcell-Meiboom-Gill
CSF Cerebrospinal Fluid
CT Computed Tomography
DC Direct Current
deoxyHb deoxygenated haemoglobin
DSE Double Spin-Echo
DTI Diffusion Tensor Imaging
DWI Diffusion Weighted Imaging
EPI Echo Planar Imaging
FID Free Induction Decay
FLASH Fast Low-Angle Shot
fMRI functional Magnetic Resonance

Imaging
FOV Field of View
FT Fourier Transform
FWHM Full Width at Half Maximum
GM Grey Matter
GRASE Gradient And Spin-Echo
IDL Interactive Data Language
ISMRM International Society for Mag-

netic Resonance in Medicine
IVIM Intra-Voxel Incoherent Motion
MDEFT Modified Driven Equilibrium

Fourier Transform
MEG Magnetoencephalography,

Magnetoencephalogram
MR Magnetic Resonance
MRI Magnetic Resonance Imaging
NMR Nuclear Magnetic Resonance

oxyHb oxygenated Haemoglobin
PFG Pulsed Field Gradient
PSF Point Spread Function
RARE Rapid Acquisition with Relax-

ation Enhancement
rCBF regional Cerebral Blood Flow
RF Radio Frequency
SAR Specific Absorption Rate (per-

missible level of absorbed RF
power per unit of body weight)

SE Spin Echo
SMA Supplementary Motor Area
SNR Signal-to-Noise Ratio
TE Echo Time
TEprep Echo Time of Preparation Exper-

iment
TIPE Template Interactive Phase-En-

coding
TR Repetition Time
U-FLARE Ultra-Fast Low Angle RARE
V1 primary visual cortex
V2 secondary visual cortex
WM White Matter
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Appendix C

Zusammenfassung der
wissenschaftlichen Ergebnisse

C.1 Motivation und Einordnung

Seit den achtziger Jahren wird die magnetische Kernresonanz (NMR) bei Wasserstoffkernen
für die Bildgebung in der Medizin ausgenutzt. Die Bildgebungsmethoden beruhen in der Re-
gel darauf, dass verschiedene Gewebearten unterschiedliche Relaxationszeiten haben. Für die
Untersuchung des Gehirns hat sich die NMR-Bildgebung als besonders leistungsfähig erwiesen.
Die Nervenzellen im Gehirn kommunizieren miteinander über lange Fortsätze (Axone), die in
der sogenannten weißen Substanz im Innern des Gehirns sehr dicht gepackt sind. Diese Berei-
che sind in Bezug auf Relaxationszeiten verhältnismäßig homogen. Obwohl sich in der weißen
Substanz in anatomischen Schnitten Bündel von Fasern mit unterschiedlichem Verlauf abgren-
zen lassen, ist es deshalb mit herkömmlichen Methoden der NMR-Bildgebung nicht möglich,
solche Abgrenzungen am lebenden Menschen vorzunehmen.
Eine Kombination des NMR-Bildgebungsprinzips und der PFG-NMR (Pulsed Field Gra-

dient NMR) ermöglicht die ortsaufgelöste nichtinvasive Messung von Diffusionskoeffizienten,
die ebenfalls in der biomedizinischen Bildgebung genutzt wird. Seit 1989 [7] ist bekannt, dass
die Selbstdiffusion von Wasser in weißer Substanz anisotrop verläuft und deshalb mit einem
Tensor beschrieben werden muss. Diese Tatsache beruht auf der geordneten Struktur der wei-
ßen Substanz: in vielen Bereichen verlaufen die Axone parallel zueinander und sind von vielen
Lagen besonders fetthaltiger Zellmembranen des Stützgewebes (Myelinhüllen) umgeben, die
die thermische Bewegung von Wasser quer zur Faser behindern. Basser u. a. [15] stellten 1994
ein Verfahren zur Messung des vollständigen Selbstdiffusionstensors von Wasser vor, das kein
A-priori-Wissen über die Lage der Tensorhauptachsen voraussetzt, und bezeichnete es als

”
Dif-

fusion Tensor Imaging“ (DTI).
Die gewonnene Information kann genutzt werden zur Gewebecharakterisierung in patho-

logischen Prozessen (z. B. bei Multipler Sklerose oder bei Hirninfarkt), zur Abbildung von
Faserbündeln in weißer Substanz vor neurochirurgischen Eingriffen und in der experimentel-
len Hirnforschung zur Aufklärung der Zusammenhänge zwischen Anatomie und Funktion: Die
Zellkörper der Neuronen befinden sich v. a. in der grauen Substanz, die in Gebieten innerhalb
der weißen Substanz (Kerngebiete) und auf ihrer Oberfläche (Großhirnrinde, Kortex) konzen-
triert ist. Es werden große Hoffnungen in die Möglichkeit gesetzt, mit Hilfe von DTI Faserver-
bindungen zwischen Gebieten grauer Substanz bei Versuchspersonen in neuropsychologischen
Experimenten individuell abzubilden. Bei solchen Experimenten kann die Hirnfunktion z. B. mit
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Hilfe
”
funktioneller“ NMR-Bildgebung (fMRI) gemessen werden, welche im Wesentlichen auf

dem Nachweis der bei Inanspruchnahme lokal erhöhten Hirndurchblutung beruht. Da Hirn-
gebiete durch viele Axone verknüpft sind, wenn ein hoher Bedarf an Informationsaustausch
zwischen ihnen besteht, sollte eine Vermessung der Faserverbindungen (in Verbindung mit
fMRI-Experimenten) zur Überprüfung von Modellen der Aufgabenverteilung und der Kommu-
nikation zwischen verschiedenen Hirngebieten beitragen. Ein wichtiges Ziel neuroanatomischer
Forschung ist es, anatomische Kriterien zur Definition von funktionellen Einheiten im Gehirn
zu finden. Die in einem fMRI-Experiment beobachteten aktivierten Kortexareale haben ty-
pischerweise eine Ausdehnung von ca. 1,5 cm. Histologisch definierte Bereiche sind deutlich
größer. Damit liegt die Größenordnung von funktionell bedeutsamen Einheiten zwischen der
Größe von als

”
macrocolumns“ bezeichneten Neuronengruppen (unterhalb von 1 mm) und der

Größe von histologisch abgegrenzten Bereichen. Bisher steht kein anatomisches Kriterium zur
Definition von Einheiten auf dieser

”
mesoskopischen“ Ebene zur Verfügung. Die Diffusions-

tensorbildgebung, deren Ortsauflösung bei 1 bis 3 mm liegt, könnte diese Lücke schließen. Sie
könnte eine Möglichkeit darstellen, die histologischen Einheiten anhand der zuführenden Fasern
in Untereinheiten von funktioneller Bedeutung zu unterteilen.

Für DTI müssen wegen der Bewegungsempfindlichkeit und der hohen Anzahl an erforder-
lichen Messungen schnelle Bildgebungsmethoden eingesetzt werden. Bislang wurde DTI fast
ausschließlich mit der Bildgebungssequenz

”
Echo Planar Imaging“ (EPI) [63] realisiert. Diese

Methode gehört zwar zu den schnellsten Sequenzen in der NMR-Bildgebung, sie hat aber auch
gravierende Nachteile: Sie bringt Bildverzerrungen und -auslöschungen mit sich, und eine hohe
räumliche Auflösung kann nur mit sehr starken und schnell schaltbaren Gradientenspulen er-
reicht werden. Beide Probleme machen sich besonders bei hohen Hauptfeldstärken bemerkbar.
In dieser Arbeit wird deshalb neben EPI die Bildgebungsmethode U-FLARE (Ultra-Fast Low
Angle Rapid Acquisition with Relaxation Enhancement) [159] für die Diffusionstensorbildge-
bung verwendet. DTI auf der Grundlage von U-FLARE als Bildgebungssequenz wurde bislang
nicht beschrieben.

Bei der Realisierung des DTI-Experiments wurde offenbar, dass manche in der Literatur
beschriebene Fehlerquellen in der Praxis irrelevant sind, dafür aber andere wichtige Schwierig-
keiten bisher wenig behandelt wurden [222]. Die Dissertation befasst sich deshalb zunächst mit
einer Analyse der Fehlerquellen bei der Bestimmung des Diffusionstensors und mit der Cha-
rakterisierung der verwendeten Methoden hinsichtlich des Einflusses der verschiedenen Fehler-
quellen.

Die auf der modifizierten U-FLARE-Sequenz beruhende Messmethode wurde auf eine Fra-
gestellung aus der Neuroanatomie angewandt. Das in Kapitel 6 der Dissertation beschriebene
Experiment wurde motiviert durch die Beobachtung von Biswal u. a. [212], dass die Signalfluk-
tuationen im rechten und linken motorischen Kortex bei einer fMRI-Messung der Hirnfunktion
zueinander zeitlich korreliert sind, auch wenn keine willkürliche Bewegung ausgeführt wird.
Die Autoren führen dies zurück auf spontane Aktivität von Neuronen im motorischen Kortex.
Solche Aktivität könnte sich über die ausgeprägten interhemisphärischen Fasern auf die Gegen-
seite übertragen. Analoge Beobachtungen wurden auch in anderen Hirngebieten beschrieben.
Das Experiment in der Dissertation dient der Untersuchung der Hypothese, dass korrelierte
Fluktuationen des fMRI-Signals immer zwischen solchen kortikalen Gebieten auftreten, die in
der auf DTI beruhenden Faserkarte erkennbar miteinander verbunden sind.
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C.2 Methoden

Die Experimente wurden an gesunden Freiwilligen an einem Ganzkörper-Kernspintomographen
mit einer Magnetfeldstärke von 3 Tesla durchgeführt.

Pulssequenzen und Tensorberechnung

Das am weitesten verbreitete NMR-Bildgebungsprinzip [58] beruht darauf, eine durch die
gewünschte Auflösung bestimmte Anzahl von Echos zu erzeugen, deren Phase durch einen
vorangehenden gepulsten Magnetfeldgradienten variabler Stärke systematisch beeinflusst wird
(Phasenkodierung). Während der Aufnahme der Echos ist ein weiterer Feldgradient (Ausle-
segradient) angelegt. Die Phase eines zum Signal beitragenden Spins zu einem bestimmten
Zeitpunkt hängt dann von den Koordinaten seiner Position entlang des Auslese- und des Pha-
senkodiergradienten ab. Mit Hilfe einer zweidimensionalen Fourier-Transformation kann man
die Signalbeiträge der verschiedenen Herkunftsorte trennen. Hat man die Anregung der Probe
auf eine dünne Schicht beschränkt, erhält man auf diese Weise ein zweidimensionales Bild dieser
Objektschicht. Die Echos können mit Hilfe von schaltbaren Feldgradienten oder magnetischen
Wechselfeldern (Hochfrequenzimpulsen) erzeugt werden.
Bei EPI [63] wird zur Echoerzeugung das Vorzeichen des Auslesegradienten mehrfach umge-

kehrt. Die Bildgebungsmethode U-FLARE [159] verwendet stattdessen Hochfrequenzimpulse
zur Rephasierung der Spins. Der Präzessionswinkel der Pulse liegt dabei unter 180◦, um eine ra-
sche Abfolge von Impulsen zu ermöglichen, ohne zuviel Energie ins Gewebe einzustrahlen. Dies
bringt aber Komplikationen mit sich: Die Magnetisierung nach einem Refokussierungsimpuls
kann man zerlegen in einen transversalen Anteil, der um die Hauptfeldrichtung B0 präzediert,
und einen longitudinalen Anteil entlang der Richtung von B0. Die Wirkung des folgenden Im-
pulses kann durch eine erneute Aufteilung der Magnetisierungsvektoren beschrieben werden.
Eine solche Betrachtung ermöglicht Aussagen über Zeitpunkt, Amplitude und Phase der bei
einer Mehrimpulssequenz entstehenden Echos. Die verschiedenen zu einem Echo beitragenden
Anteile sind nur gleichphasig, wenn die Präzessionsachse der Refokussierungsimpulse parallel
zum ursprünglichen Magnetisierungsvektor direkt nach der Anregung ist. Andernfalls können
die Anteile destruktiv miteinander interferieren. Das hat Auswirkungen auf die Messung von
Diffusionskoeffizienten: Eine Translation der Probe zwischen den diffusionswichtenden Gradi-
entenimpulsen führt zu einer globalen Phasenverschiebung, so dass die o. g. Bedingung nicht
mehr erfüllt sein muss: Da sich Bewegungen im Mikrometerbereich in der Bildgebung am leben-
den Objekt nicht vermeiden lassen, muss man von einer unbekannten Phase der Magnetisierung
nach dem diffusionswichtenden Abschnitt des Experiments ausgehen. Der Einfluss von Magnet-
feldgradienten ist für die Anteile der Magnetisierung unterschiedlich. In

”
displaced“ U-FLARE

[160] wird dies ausgenutzt, um einen der Beiträge aus dem detektierten Signal auszuschließen
und so destruktive Interferenz zu vermeiden. Durch diese Maßnahme wird U-FLARE für diffusi-
onsgewichtete in-vivo-Bildgebung einsetzbar. Erkauft wird diese Möglichkeit durch den Verlust
des ausgeschlossenen Signalanteils. Dieser Nachteil muss ausgeglichen werden, um gegenüber
EPI eine höhere Auflösung bei gleicher Messzeit zu erreichen. Da eine Signalsteigerung durch
Erhöhung des Refokussierungswinkels zu unzulässiger Gewebeerwärmung geführt hätte, wurde
die displaced-U-FLARE-Sequenz verändert, um die Anzahl der erforderlichen Refokussierungs-
impulse zu minimieren [223]. Die verwendeten Maßnahmen wurden schon zuvor bei anderen
Bildgebungsmethoden, nicht jedoch bei U-FLARE verwendet:

• Die Symmetrie der Messdaten wurde ausgenutzt, um die Anzahl der aufgenommenen
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Echos (und damit der notwendigen HF-Impulse) ohne Verlust an Auflösung zu verrin-
gern. Die für die geforderte Auflösung fehlenden Daten wurden anhand der Symmetrie-
beziehung berechnet [167].

• Die Phasenkodierschritte (s. o.) wurden auf der Grundlage einer Referenzmessung so um-
geordnet, dass die Amplitudenvariation unter den ersten Echos ausgeglichen wird. Damit
müssen diese, anders als in [160], nicht von der Datenaufnahme ausgeschlossen werden,
und die Anzahl der erforderlichen HF-Impulse verringert sich entsprechend. Dieses Ver-
fahren wurde bereits für andere Bildgebungsmethoden verwendet [168].

Die Bildgebungssequenzen wurden mit Gradientenpulsen zur Diffusionswichtung nach Stej-
skal und Tanner [91] versehen.

Das An- und Abschalten der zur Diffusionstensormessung erforderlichen verhältnismäßig
starken Gradienten verursacht Wirbelströme in leitenden Systemkomponenten, deren Magnet-
feld die Messung stören kann. Deshalb wurde die Anfälligkeit von EPI und U-FLARE für durch
Wirbelströme verursachte Bildfehler untersucht. Für EPI wurden dabei zwei Maßnahmen zur
Vermeidung von Wirbelstromeffekten verglichen: (1) Der diffusionswichtende Teil der Sequenz
wurde durch ein Schema ersetzt, das durch die Verwendung von Gradienten unterschiedlicher
Orientierung weniger Wirbelströme erzeugt [155]. (2) Eine Messung der Auswirkungen von
Wirbelströmen auf die Signalphase wurde zur Korrektur der Bilddaten verwendet [185]. Die
Auswirkungen der beiden Maßnahmen für EPI wurden anhand der Korrekturparameter und
der Bilddifferenzen zwischen starker und schwacher Diffusionswichtung beurteilt und mit der
Wirbelstromanfälligkeit von displaced U-FLARE verglichen.

Mit Hilfe multivariater linearer Regression wurde aus den für verschiedene Gradienten-
richtungen und -amplituden gewonnenen Bilddaten für jeden Bildpunkt ein Diffusionstensor
errechnet [15]. Eigenwerte und -vektoren des Tensors wurden numerisch berechnet, und der Ei-
genvektor zum größten Eigenwert, welcher in weißer Hirnsubstanz der Faserrichtung entspricht,
als Projektion auf die Bildebene dargestellt (

”
Faserkarte“).

Quantifizierung der Stärke von Faserverbindungen in Tensorkarten

Zur Quantifizierung der in der Faserkarte enthaltenen Information über die Verbindung zwi-
schen zwei Kortexarealen wurde ein Monte-Carlo-Algorithmus entworfen, der ein relatives Maß
für die

”
Stärke“ einer Faserverbindung liefert. Dazu wurden Folgen von Bildelementen erzeugt,

die man sich als den zufälligen Weg eines virtuellen, von Element zu Element springenden Teil-
chens durch die Menge der Bildelemente veranschaulichen kann. Die Wahrscheinlichkeit für den
Sprung in ein benachbartes Bildelement war dabei abhängig vom Diffusionstensor und der Rich-
tung des vorhergehenden Sprunges. Die Sprungwahrscheinlichkeit zwischen zwei Volumenele-
menten (Voxeln) stieg dabei monoton mit der Summe der mittleren quadratischen Verschiebung
eines diffundierenden Wassermoleküls in beiden Voxeln, gemessen entlang der Verbindungslinie
der Voxelmittelpunkte. Die Elementfolge (der Weg des Teilchens) wurde abgebrochen, sobald
ein Voxel erreicht war, in dem die Diffusionsanisotropie unter einem Schwellwert lag. Wie oft
ein Bildelement in einer großen Anzahl von Folgen mit demselben Startelement auftaucht, ist
ein Maß für die Stärke der Faserverbindung zwischen ihm und dem Startelement. Diese Maß
ist nicht invariant unter Vertauschung von Start- und Zielelement. Im Unterschied zu bereits
veröffentlichten sogenannten Fibre-Tracking-Verfahren wird bei diesem Algorithmus nicht nur
die Richtung der größten Diffusionskonstante, sondern der gesamte Diffusionstensor benutzt.
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Das Ziel ist dabei außerdem nicht die Rekonstruktion einer Faser, sondern die Ermittlung der
Stärke der Faserverbindung zwischen zwei gegebenen Punkten.

Zusammenhang zwischen Faserstärke und Korrelation hämodynami-

scher Fluktuationen in den verbundenen Gebieten

Mit Hilfe des modifizierten U-FLARE-Messverfahrens wurde ein Experiment zur Deutung
der Ergebnisse von Biswal u. a. (s. o.) durchgeführt. Dabei wurde auf das fMRI-Messprinzip
zurückgegriffen, das die Abhängigkeit der Signalintensität in einem T ∗

2 -gewichteten Bild von der
Magnetfeldhomogenität am entsprechenden Ort ausnutzt. Da eine Aktivierung von Kortexa-
realen mit einer lokalen Erhöhung des Blutflusses verbunden ist und da Oxy- und Desoxy-
Hämoglobin unterschiedliche magnetische Suszeptibilitäten besitzen, macht sich eine Akti-
vitätsänderung in einer Änderung der Signalamplitude in EPI-Bildern bemerkbar. Gemessen
wurden die Signalfluktuationen in einer Zeitreihe von 1024 im Abstand von 250 ms aufgenom-
menen EPI-Bildern an sieben gesunden Versuchspersonen, denen kein äußerer Reiz präsentiert
und keine Aufgabe gestellt wurde. Für alle möglichen Paare von Bildelementen wurde der linea-
re Pearson-Korrelationskoeffizient der Signalverläufe berechnet. Aus einer mit der modifizierten
U-FLARE-Sequenz durchgeführten DTI-Messung der Faserstruktur wurde mit Hilfe des in C.2
beschriebenen Algorithmus die Stärke der Faserverbindung zwischen ausgewählten Regionen
auf der Krone von benachbarten kortikalen Gyri bestimmt. An solchen Stellen endet der größte
Teil der Faserbündel aus der weißen Substanz. Eine Auftragung des Korrelationskoeffizienten
zwischen diesen Regionen aus der funktionellen Messung als Funktion der Faserstärke kann
darüber Aufschluss geben, ob ein Zusammenhang zwischen diesen Parametern besteht.

C.3 Ergebnisse

Pulssequenzen und Tensorberechnung

• Räumliche Variation und Nichtorthogonalität der Feldgradienten sowie Gradienten ande-
rer Feldkomponenten als der in Hauptfeldrichtung sind vernachlässigbare Fehlerquellen.

• Flussbewegungen im Liquor innerhalb der Seitenventrikel verursachen eine starke künst-
liche Anisotropie im gemessenen Diffusionstensor, die sich auch auf Volumenelemente
auswirken kann, die nur teilweise Liquor enthalten.

• Durch das Schalten der Diffusionsgradienten erzeugte Wirbelströme sind die Hauptursa-
che für Messfehler. Da die Gradientenspulen unterschiedliche Wirbelstromeigenschaften
haben, wird in der Regel eine künstliche Anisotropie im Diffusionstensor erzeugt. Ein
wichtiger Wirkungsmechanismus ist dabei die Wirbelstromabhängigkeit von Bildartefak-
ten.

• Störungen durch Wirbelströme werden erheblich reduziert durch die Verwendung von zwei
refokussierenden Hochfrequenzimpulsen und bipolaren Gradienten zur Diffusionswichtung
[155]. Die Verbesserungen durch nachträgliche Bildkorrektur [185] sind etwas geringer
[224].

Mit der optimierten U-FLARE-Sequenz [223] konnte innerhalb von 30 min die Tensorkarte einer
5 mm dicken Hirnschicht mit einer Auflösung von ca. 1,5 mm in der Schichtebene aufgenommen
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werden. Mit EPI war diese Auflösung (mit der gegebenen Gerätausstattung und ohne Bewe-
gungskorrekturmechanismen) nicht erreichbar. Der Einsatz von U-FLARE kann insbesondere
an Tomographen vorteilhaft sein, deren Hauptmagnetfeldstärke oberhalb der klinisch üblichen
1,5 Tesla liegt. Höhere Feldstärken haben zwar Vorteile für die Beobachtung der Hirnfunktion,
erschweren aber die Abbildung von Faserstrukturen mit EPI-basiertem DTI.

Quantifizierung der Stärke von Faserverbindungen in Tensorkarten

Der Algorithmus ist leicht so zu modifizieren, dass Gebiete geringer Anisotropie an Faserkreu-
zungen in weißer Substanz durchquert werden können. Eine Anwendung auf dreidimensionale
Tensordaten ist ohne Weiteres möglich. Er trägt besser als veröffentlichte Fibre-Tracking-
Verfahren dem Mittelungscharakter von DTI Rechnung, und er benutzt die volle Tensorinfor-
mation.

Zusammenhang zwischen Faserstärke und Korrelation hämodynami-
scher Fluktuationen in den verbundenen Gebieten

• Es konnte kein eindeutiger Zusammenhang zwischen dem Korrelationskoeffizienten der
funktionellen Messung ohne Stimulation und der Faserstärke nachgewiesen werden. Der
Fall einer starken Faserverbindung zwischen schwach korrelierten Gebieten trat jedoch
verhältnismäßig selten auf.

• Setzt man voraus, dass dieses Ergebnis nicht darauf beruht, dass außerhalb der Schicht
verlaufende Fasern nicht erfasst werden und nimmt außerdem an, dass die in einer Tensor-
karte identifizierten Fasern tatsächlich den Verlauf von Axonen abbilden, muss man den
Schluss ziehen, dass entweder (1) die beobachteten Signalkorrelationen nicht auf spon-
taner neuronaler Aktivität beruhen oder (2) kein kausaler Zusammenhang zwischen der
Existenz einer axonalen Verbindung und der Korrelation besteht, d. h. die Korrelation
nicht durch axonale Verbindungen vermittelt wird.

C.4 Ausblick

Das Experiment zur Korrelation hämodynamischer Fluktuationen sollte auf Messungen mit
dreidimensionaler räumlicher Auflösung ausgedehnt werden, um auch Fasern zu erfassen, die
nicht vollständig in einer Schicht verlaufen. Eine dreidimensionale Messmethode, bei der
die Ortsauflösung in zwei Raumrichtungen durch Phasenkodierung erfolgt, hätte dabei einen
Signal-Rausch-Vorteil gegenüber einer Mehrschichtmessung. Da eine solche Messung nicht mit
einer einzigen Anregung durchgeführt werden kann, müssen Bewegungsartefakte durch eine
Korrektur der gemessenen Daten verhindert werden. Mit Hilfe der Bewegungskorrektur könnten
auch höhere Auflösungen in Einzelschichtmessungen erreicht werden.
Das Korrelationsexperiment sollte außerdem erweitert werden, indem die Aufmerksamkeit

der Versuchsperson durch eine gezielte Aufgabe, die bekannte Hirnareale aktiviert, gebunden
wird. Das Ergebnis würde weitere Hinweise auf die Herkunft der korrelierten Signalfluktuatio-
nen geben.



References 131

References
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[35] E. Fick, Einführung in die Grundlagen der Quantentheorie. Aula-Verlag, Wiesbaden, 6th
edition, 1988.

[36] P. T. Callaghan, Principles of Nuclear Magnetic Resonance Microscopy. Oxford Univer-
sity Press, Oxford, 1993.

[37] X. R. Li, Probability, random signals and statistics. CRC Press, Boca Raton, 1999.

[38] I. N. Bronstein and K. A. Semendjajew, Taschenbuch der Mathematik. BSB B. G. Teub-
ner, Leipzig, 22nd edition, 1985.

[39] F. Bloch, Nuclear Induction. Phys. Rev. 70, 460–474 (1946).

[40] H. C. Torrey, Bloch Equations with Diffusion Terms. Phys. Rev. 104, 563–565 (1956).

[41] T. C. Farrar and E. D. Becker, Pulse and Fourier Transform NMR. Introduction to Theory
and Methods. Academic Press, Orlando, 1971.

[42] G. D. Fullerton, Physiologic Basis of Magnetic Relaxation. In D. D. Stark and W. G.
Bradley, editors, Magnetic Resonance Imaging, chapter 4, pages 88–108. Mosby-Year
Book, St. Louis, 2nd edition, 1992.

[43] A. Abragam, Principles of Nuclear Magnetism. Oxford University Press, New York, 1983.

[44] R. E. Hendrick and U. Raff, Image Contrast and Noise. In D. D. Stark and W. G. Bradley,
editors, Magnetic Resonance Imaging, chapter 5, pages 109–144. Mosby-Year Book, St.
Louis, 2nd edition, 1992.

[45] J. P. Wansapura, S. K. Holland, R. S. Dunn, and W. S. Ball, Jr., NMR Relaxation Times
in the Human Brain at 3.0 Tesla. J. Magn. Reson. Imag. 9, 531–538 (1999).

[46] C.-N. Chen and D. I. Hoult, Biomedical Magnetic Resonance Technology. Adam Hilger,
Bristol, 1989.

[47] D. G. Gadian, NMR and its applications to living systems. Oxford University Press, New
York, 1995.

[48] D. Canet, Nuclear Magnetic Resonance. John Wiley & Sons, Chichester, 1996.



134 References

[49] E. L. Hahn, Spin Echoes. Phys. Rev. 80, 580–594 (1950).

[50] H. Y. Carr and E. M. Purcell, Effects of Diffusion on Free Precession in Nuclear Magnetic
Resonance Experiments. Phys. Rev. 94, 630–638 (1954).

[51] S. Meiboom and D. Gill, Modified Spin-Echo Method for Measuring Nuclear Relaxation
Times. Rev. Sci. Instrum. 29, 688–691 (1958).

[52] D. E. Woessner, Effects of Diffusion in Nuclear Magnetic Resonance Spin-Echo Experi-
ments. J. Chem. Phys. 34, 2057–2061 (1961).

[53] R. Kaiser, E. Bartholdi, and R. R. Ernst, Diffusion and field-gradient effects in NMR
Fourier spectroscopy. J. Chem. Phys. 60, 2966–2979 (1974).

[54] J. Hennig, Multiecho Imaging Sequences with Low Refocusing Flip Angles. J. Magn.
Reson. 78, 397–407 (1988).

[55] G. J. Barker and T. H. Mareci, Suppression of Artifacts in Multiple-Echo Magnetic Res-
onance. J. Magn. Reson. 83, 11–28 (1989).

[56] I. I. Rabi, Space Quantization in a Gyrating Magnetic Field. Phys. Rev. 51, 652–654
(1937).

[57] P. C. Lauterbur, Image Formation by Induced Local Interactions: Examples Employing
Nuclear Magnetic Resonance. Nature 242, 190–191 (1973).

[58] W. A. Edelstein, J. M. S. Hutchison, G. Johnson, and T. Redpath, Spin Warp NMR
Imaging and Applications to Human Whole-Body Imaging. Phys. Med. Biol. 25, 751–
756 (1980).

[59] D. B. Twieg, The k-trajectory formulation of the NMR imaging process with applications
in analysis and synthesis of imaging methods. Med. Phys. 10, 610–621 (1983).

[60] A. Haase, J. Frahm, D. Matthaei, W. Hänicke, and K.-D. Merboldt, FLASH Imaging.
Rapid NMR Imaging Using Low Flip-Angle Pulses. J. Magn. Reson. 67, 258–266 (1986).

[61] A. Haase, Snapshot FLASH MRI. Applications to T1, T2, and Chemical-Shift Imaging.
Magn. Reson. Med. 13, 77–89 (1990).

[62] J. Hennig, A. Nauerth, and H. Friedburg, RARE Imaging: A Fast Imaging Method for
Clinical MR. Magn. Reson. Med. 3, 823–833 (1986).

[63] P. Mansfield, Multi-planar image formation using NMR spin echoes. J. Phys. C 10,
L55–L58 (1977).

[64] A. M. Howseman, M. K. Stehling, B. Chapman, R. Coxon, R. Turner, R. J. Ordidge,
M. G. Cawley, P. Glover, P. Mansfield, and R. E. Coupland, Improvements in snap-shot
nuclear magnetic resonance imaging. Br. J. Radiol. 61, 822–828 (1988).

[65] G. Johnson and J. M. S. Hutchison, The Limitations of NMR Recalled-Echo Imaging
Techniques. J. Magn. Reson. 63, 14–30 (1985).

[66] J. D. Jackson, Klassische Elektrodynamik. de Gruyter, Berlin, 1983.

[67] R. N. Bracewell, The Fourier Transform and Its Applications. McGraw-Hill Series in
Electrical Engineering. McGraw-Hill, New York, 2nd edition, 1986.

[68] P. Jezzard and R. S. Balaban, Correction for Geometric Distortion in Echo Planar Images
from B0 Field Variations. Magn. Reson. Med. 34, 65–73 (1995).



References 135

[69] A. A. Feinberg, R. Turner, P. D. Jakab, and M. von Kienlin, Echo-Planar Imaging with
Asymmetric Gradient Modulation and Inner-Volume Excitation. Magn. Reson. Med. 13,
162–169 (1990).

[70] R. J. Ordidge, A. Howseman, R. Coxon, R. Turner, B. Chapman, P. Glover, M. Stehling,
and P. Mansfield, Snapshot Imaging at 0.5 T Using Echo-Planar Techniques. Magn.
Reson. Med. 10, 227–240 (1989).

[71] J. Crank, The Mathematics of Diffusion. Clarendon Press, Oxford, 2nd edition, 1975.

[72] A. Fick, Ueber Diffusion. Annln. Physik Chemie 170, 59–86 (1855). 4. Reihe, Band
4 = 94 = 170.

[73] F. Reif, Fundamentals of Statistical and Thermal Physics. McGraw-Hill, Singapore, 1985.

[74] J. Kärger and D. M. Ruthven, Diffusion in Zeolites and Other Microporous Solids. John
Wiley & Sons, New York, 1992.

[75] C. E. Mortimer, Chemie. Das Basiswissen der Chemie. Thieme, Stuttgart, 5th edition,
1987.

[76] A. Einstein, Über die von der molekularkinetischen theorie der wärme geforderte bewe-
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1. M. Koch, R. Fröchtenicht, M. Kaloudis, A. Kulcke, F. Huisken, Infrared spectroscopy
of (H2O)n and (CH3OH)n clusters, free and bound to rare gas clusters. In Europhysics
Conference Abstracts, vol. 19A, 5th EPS Conference on Atomic and Molecular Physics,
Edinburgh, April 3–7, 1995, p. 589
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der funktionellen Magnetresonanztomographie

7 Ulrich Hartmann

Ein mechanisches Finite-Elemente-Modell des menschlichen Kopfes

8 Bertram Opitz

Funktionelle Neuroanatomie der Verarbeitung einfacher und komplexer akustischer Reize:
Integration haemodynamischer und elektrophysiologischer Maße

9 Gisela Müller-Plath

Formale Modellierung visueller Suchstrategien mit Anwendungen bei der Lokalisation von
Hirnfunktionen und in der Diagnostik von Aufmerksamkeitsstörungen
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