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It has recently been suggested that mood disorders can be characterized by glial pathology as indicated by histopathological
postmortem findings. Here, we review studies investigating the glial marker S100B in serum of patients with mood disorders.
This protein might act as a growth and differentiation factor. It is located in, and may actively be released by, astro- and
oligodendrocytes. Studies consistently show that S100B is elevated in mood disorders; more strongly in major depressive than
bipolar disorder. Successful antidepressive treatment reduces S100B in major depression whereas there is no evidence of treatment
effects in mania. In contrast to the glial marker S100B, the neuronal marker protein neuron-specific enolase is unaltered. By
indicating glial alterations without neuronal changes, serum S100B studies confirm specific glial pathology in mood disorders in
vivo. S100B can be regarded as a potential diagnostic biomarker for mood disorders and as a biomarker for successful antidepressive
treatment.

1. The Glial Hypothesis of Mood Disorders

Mood disorders—once considered “good prognosis diseases”
—have, in fact, a less favorable outcome than previously
thought [1, 2]. They are often very severe or even life-
threatening illnesses. It has been suggested that impairment
of neuroplasticity and cellular resilience may underlie their
pathophysiology, and that optimum long-term treatment
may only be achieved by the early use of agents with
neurotrophic or neuroprotective effects. It has further been
proposed that mood disorders are characterized by specific
glial pathology [3]. Histopathological post mortem findings
[1, 4–6] consistently showed reductions in glial cell density
or glial cell numbers in prefrontal brain regions, such as
the (subgenual) anterior cingulate cortex, the orbitofrontal

cortex, and dorsolateral prefrontal cortex in association
with reduced prefrontal gray matter in patients with mood
disorders [3, 7–9]. Furthermore, alterations were described
histopathologically for astrocytes [10–13] and oligoden-
drocytes [14–16] in these disorders. Specific reductions in
oligodendrocytes have also been reported for the amygdala
in major depressive disorder (MDD) [14], and microglial
alterations in bipolar disorder (BD), also including manic
episodes [1].

Rajkowska’s hypothesis [3] of glial pathology in mood
disorders has been supported by a recent study that
specifically ablated astroglial cells in the prefrontal cortex
of adult rats pharmacologically with L-alpha-aminoadipic
acid (L-AAA) [17]. Indeed, rats treated with L-AAA
showed depressive-like behavior in behavioral tests similar
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to depression models based on chronic unpredictable stress.
Conversely, the neurotoxic ibotenate did not show any effect.
Remarkably, antidepressive treatment has been shown to
successfully reverse reduction in astroglial density in animal
models of depression [18]. Although density and size of
cortical neurons are reduced in the orbitofrontal and dorso-
lateral prefrontal cortices in mood disorders, these neuronal
reductions seem less pronounced than glial alterations and
are detected only when specific morphological size-types of
neurons are analyzed in individual cortical layers [1, 6].

2. The Glial Marker Protein S100B in
Mood Disorders

Previous studies have shown that S100B, which is found
in astro- and oligodendroglia, but not in microglia in
the human brain [19], is altered in both serum [20, 21]
and cerebrospinal fluid in mood disorders. Cerebrospinal
fluid changes have been shown for drug-free depressive
patients compared with euthymic patients [22] and in animal
models of mania [23]. Interestingly, the levels of the glial
marker protein S100B are specifically altered in the lateral
prefrontal and parietal cortices in BD [24]. Roche et al. [25]
demonstrated that S100B is a susceptibility gene for BD with
psychosis. Although Yang et al. [26, 27] did not find an
association between S100B gene polymorphisms and MDD
in a Chinese population, they revealed an influence on age of
onset and subgroups (first-episode versus recurrent episode
depression) of MDD.

S100 proteins are a family of acidic proteins that can bind
calcium and, thus, influence various cellular responses along
the calcium-signal-transduction pathway [31–34]. S100B
regulates cell shape, energy metabolism, contraction, cell-
to-cell communication, intracellular signal transduction,
cell growth [35], and can be actively released by astro-
and oligodendrocytes [19, 36]. Interestingly, the effects of
extracellular S100B depend on its concentration [33, 37]. In
a nanomolar concentration S100B can act as growth and/or
differentiation factor for neurons and astrocytes, whereas
in a micromolar concentration it may induce apoptosis.
Moreover, it has been suggested that S100 proteins, such
as S100B, may play a crucial role in the pathogenesis of
depression and its treatment [38–44].

To better evaluate the relevance of S100B in mood
disorders, we recently conducted a systematic, quantita-
tive meta-analysis using MedLine and Current Contents
search engines (search strategy: [S100 OR S-100] AND
[depression OR mania]) [20, 21]. The following inclusion
criteria were applied: diagnosis according to internationally
recognized diagnostic criteria (International Classification
of Diseases, ICD-10; Diagnostic and Statistical Manual of
Mental Disorders, DSM-IV [45, 46]), original and peer-
reviewed studies, comparison with age-matched, healthy
control subjects and no overlap with cohorts of other studies.
Eight studies involving 193 patients suffering from mood
disorders and 132 healthy control subjects were entered into
the meta-analysis. Of the patients, 86 suffered from a major
depressive episode, 63 from a manic episode, and 44 were
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Figure 1: Effect sizes according to Cohen [28] of S100B serum
concentration in schizophrenia, and mood disorders as identified by
a systematic meta-analysis [21]. Median is shown for schizophrenia
(solid line), major depressive disorder (MDD, dashed line) and
bipolar disorder (BD, dashed & dotted line).

euthymic at the time of investigation. To adjust for systematic
measurement effects, the effect size of each study (d) was
calculated according to Cohen [28] as the difference of the
means of the patient (mp) and control group (mc) divided
by the standard deviation of the control group (SDc). This
measure represents normalized elevations of S100B in the
patient groups. Effect sizes of the studies are shown in
Figure 1. Cohen [28] defined values of ≥ 0.8 as large, > 0.5
as medium and > 0.2 as small. The mean effect size reached
high values for all episodes of mood disorders [20], namely
major depressive episode of MDD (2.57 ± 0.70), manic
episode of BD (1.53 ± 0.13) and currently euthymic mood
disorder (2.54± 2.48; mean± SD). For major depressive and
manic episodes, values were significantly higher than zero,
confirming high serum S100B in acute episodes of mood
disorder (T = 6.4,= 17,df = 2,= 1,P = .024,= .037;
2-tailed Student’s t-test against 0), which was not the case
for currently euthymic mood disorder (T = 1.4,df = 1,
P > .05).

We set out to compare serum S100B in BD and MDD,
because these types of mood disorder are classified as
separate nosological entities and because we did not find
significant differences between depressive/manic episodes
and remitted mood disorder per se (P > .05; 2-tailed
unpaired Student’s t-test) [21]. As illustrated in Figure 1,
serum S100B reached high effect sizes in both MDD (3.0 ±
1.03) and BD (1.4 ± 0.44; T = 5.82,= 6.4,df = 3,= 3, P =
.01,= .008; 2-tailed one-sample Student’s t-test against 0).
Effect size was larger in MDD than BD (T = 2.84,df = 6,
P = .029; 2-tailed unpaired Student’s t-test). For mania in
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BD and depression in MDD, only two studies with drug-free
patients were available, each reporting high effect sizes (1.62,
3.3). Since the meta-analysis was conducted, a third study has
been published with drug-free patients suffering from MDD
(effect size 0,96 [47]).

Protein S100B has been detected in numerous other
tissues in the human body besides glial cells, for example,
in adipocytes, melanocytes, chondrocytes, myocardium, and
Schwann cells [33, 35, 48]. Although changes elicited by
adipocytes are at least theoretically possible in mood disor-
ders [49, 50], no study has yet reported changes in S100B due
to the aforementioned extracranial cell types.

Additionally, we compared results of the meta-analysis
for mood disorders with another recent meta-analysis
investigating serum S100B with the same method in 420
patients with schizophrenia [21, 51]. Although effects sizes
also reached large values in schizophrenia (2.02± 1.78; T =
4.25,df = 13,P = .001; 2-tailed one-sample Student’s
t-test against 0), there were no significant differences in
comparison with MDD or BD (T = −1.03,= 0.68,df =
16,= 16,P = .317,= .509; 2-tailed unpaired Student’s
t-test). In sum, results support the hypothesis that S100B is
involved in the pathogenesis of mood disorders, particularly
MDD.

3. Specificity of Elevations of
Serum S100B in Mood Disorders

To validate the histopathologically generated hypothesis that
mood disorders are characterized by specific glial pathology
[3] in vivo, we recently measured S100B simultaneously with
neuron-specific enolase (NSE) in the serum of patients with
MDD and healthy age- and gender-matched control subjects
[20]. NSE is located mainly in the cytoplasm of nerve cells
and is not actively secreted [52, 53]. Hence, it has been
regarded as a marker for neuronal injury or brain damage.
If mood disorders are ultimately glial disorders as suggested
by Rajkowska [3], one would expect elevated serum levels of
S100B paralleled by unaltered neuronal marker protein NSE.

Figure 2 illustrates serum concentration of S100B and
NSE in 10 control subjects, and in 10 patients with MDD
at admission and discharge. As hypothesized, S100B con-
centrations were higher in depressive patients at admission
and discharge compared to control subjects. NSE was not
statistically different between patients (at admission or
discharge) and control subjects. Moreover, antidepressive
treatment had no significant effect on NSE serum levels.
Three other studies have reported findings on serum NSE
in major depression, but the choice of the according study
samples was characterized by considerable limitations. Greffe
et al. [54] investigated serum NSE in 6 subjects with
refractory major depression in comparison to 274 psychiatric
control patients that were not characterized in more detail.
Similar to our study, they found no difference between
groups. Another study [55] investigated treatment effects
of clinically successful electroconvulsive therapy on serum
NSE in 7 patients suffering from MDD. They did not find
any significant changes during treatment and concluded that
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Figure 2: Serum concentrations of S100B and neuron-specific
enolase (NSE) in patients with major depression immediately
after admission and at discharge, compared with healthy age- and
gender-matched control subjects [20]. P-values are reported for 2-
tailed unpaired Student’s t-test. Mean± SEM.

values were in the normal range across all measurements
without showing control data. A comparable result was
reported by Agelink et al. [56] although they did not
distinguish between their patients with therapy-resistant
major depression and subjects with schizodepressive psy-
chosis. These data suggest that in MDD S100B is elevated
while NSE remains unaltered, providing substantial support
for Rajkowska’s glial hypothesis for mood disorders [3].
However, only one study [57] has investigated NSE in mania
so far, showing decreased values in 30 unmedicated and 15
patients undergoing lithium treatment in comparison with
30 healthy control subjects. These results make it difficult
to generalize specific glial pathology in MDD to all mood
disorders and have not yet been replicated.

Increased serum levels of S100B may indicate glial
alterations in mood disorders either due to brain damage
[58] or due to functional secretion of S100B by astrocytes
and/or oligodendrocytes [19, 36]. Mathematical models
suggest that levels of serum S100B exceeding approximately
350 ng/l indicate brain damage [59]. Mean serum levels
of S100B as reported in our and other studies of mood
disorders do not reach this threshold [20]. Likewise, our
data together with earlier studies exclude possible neuronal
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damage in MDD and mania as indicated by normal or
even decreased serum NSE values [54, 55, 57]. One might
therefore conclude that brain damage is not the primary
cause of elevated S100B in mood disorders. Some authors
regard serum S100B as a valid marker of blood-brain barrier
integrity [59–63] and astrocytes might influence blood-brain
barrier function [64–66]. Others argue that S100B might
penetrate the blood-brain barrier easily, but this has not
yet been proven experimentally [67, 68]. Accordingly, it
remains to be clarified whether elevated serum S100B could
indicate an impairment in the blood-brain barrier, as has
been described for depression [69, 70].

4. Treatment Effects on Serum S100B

It has recently been suggested that a loss of neuroplasticity
and cellular resilience may underlie the pathophysiology
of mood disorders and that optimum long-term treatment
can only be achieved by early neurotrophic and/or neu-
roprotective intervention [1, 2]. It is well-established that
extracellular S100B can act as growth and/or differentiation
factor for neurons and astrocytes via various intracellular
signal cascades [1, 33, 71–73]. Antidepressive drugs influence
the secretion of S100B by astrocytes via the serotonergic
system [11, 35, 43, 44, 74–76]. S100B may even induce
neurogenesis [77], which is required for the behavioral effects
of antidepressants [78]. It has also been suggested that S100
proteins may play an essential role in the pathogenesis of
depression and its treatment [40, 42], and that S100B-related
mechanisms could be explored as potential targets for novel
antidepressive therapeutics [38, 39]. Interestingly, levels of
serum S100B might predict the response to antidepressive
treatment in MDD [79].

To validate the impact of S100B as a marker for phar-
macological treatment effects, we subsequently conducted
a third systematic, quantitative meta-analysis (see above
for search strategy and inclusion criteria) [20]. This meta-
analysis identified three studies involving 46 patients with
major depression and one study including 11 patients
with mania. A fifth study examining changes in serum
S100B immediately (1 and 3 hours) after electroconvulsive
treatment did not include a control group [80] and because
injury mechanisms following electroconvulsive treatment
could represent a potential confounding factor, we did not
include this study in the meta-analysis. A sixth study [56] did
not differentiate between therapy-resistant major depression
and schizodepressive psychosis when reporting their findings
during electroconvulsive therapy, and was, accordingly, also
excluded. The treatment effect size (d) for S100B and the
severity of clinical symptoms was calculated for each study
according to Cohen [28] as the difference of the means of
the patient group at admission (mad) and discharge (mdis)
divided by the standard deviation at admission (SDad). Such
treatment effect size reveals a measure for relative changes
from baseline.

The mean treatment effect size derived from the three
available studies could be calculated for serum S100B in
major depression. As expected, it reached a large value for
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Figure 3: Effect sizes according to Cohen [28] for clinical (HAMD
scores) and serological (serum S100B) treatment effects in major
depression [20]. Effect sizes were calculated as changes between
admission and discharge relative to standard deviation at admission
for the three available studies [20, 29, 30]. Severity of depression was
measured with the Hamilton Depression Rating Scale (HAMD).

changes on the HAMD scale (3.47 ± 1.80), with a lower
impact on serum S100B (0.43 ± 0.44; T = 3.3,= 1.7,df =
2,P = .04,= .12; 1-tailed Student’s t-test against 0). As illus-
trated in Figure 3, effect sizes for clinical improvement dur-
ing treatment (Hamilton Depression Rating Scale, HAMD)
and respective changes of the serological marker S100B were
significantly correlated with each other if the relationship
for the three relevant studies involving major depression was
examined (r = 1.0,N = 3,P < .001; correlation according
to Spearman, 2-tailed p). This significant positive correlation
between clinical treatment effects (HAMD) and serological
treatment effects (S100B) indicates that serum S100B may be
a reliable marker for treatment effects in major depression if
clinical improvement is sufficient. For mania only one study
examined changes of S100B during treatment, but without
detecting any significant effects [29].

However, one has to keep in mind the limitations of the
meta-analysis for these treatment studies. All of the clinical
studies on serum S100B in mood disorders involved several
antidepressive/antimanic drugs or combinations with other
psychotropic agents such as neuroleptics when psychotic
symptoms were present [20]. Likewise, treatment studies to
date have experienced significant limitations of sample size.
Hence, future well-powered clinical studies are necessary
to overcome this limitation. Furthermore, in vitro (cell
culture) studies examining effects of different antidepressive
treatment strategies on S100B with regard to the specific
signaling pathways of the neurotransmitter system mainly
targeted by the antidepressant would be of high interest.

5. Evidence from Studies with Serum Markers
for the Glial Hypothesis of Mood Disorders

To summarize findings from the literature supporting the
hypothesis of glial pathology in mood disorders [3], we list
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the following key findings:

(i) Serum concentrations of the glial marker protein
S100B are elevated in patients with mood disorder,
major depression and mania, when compared with
healthy control subjects.

(ii) Serum S100B is higher in major depressive disorder
than bipolar disorder.

(iii) Successful antidepressive treatment reduces S100B in
major depression. While only one study investigated
treatment effects in mania, such an effect could not
be found.

(iv) The neuronal marker protein NSE is unaltered in
major depression and its treatment. NSE is not
increased in mania; the only study in the literature
reported mildly reduced serum levels.

(v) Data support the hypothesis that elevated serum
S100B is related to active secretion by astrocytes
and/or oligodendrocytes in acute episodes of mood
disorders, particularly major depressive disorder, and
that this secretion might decline with successful
antidepressive treatment.

In conclusion, these findings strongly support the con-
cept of serum S100B as a reliable and sensitive diagnostic
biomarker for mood disorders and the clinical response to
antidepressive treatment in unipolar major depressive disor-
der. Evidence of glial changes without neuronal alterations
from in vivo studies is consistent with the histopathologically
generated hypothesis that mood disorders are characterized
by specific glial pathology.
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