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The human brain forms a complex neural network with a connectional
architecture that is still far from being known in full detail, even at the
macroscopic level. The advent of diffusion MR imaging has enabled the
exploration of the structural properties of white matter in vivo. In this
article we propose a new forward model that maps the microscopic
geometry of nervous tissue onto the water diffusion process and further
onto the measured MR signals. Our spherical deconvolution approach
completely parameterizes the fiber orientation density by a finite
mixture of Bingham distributions. In addition, we define the term
anatomical connectivity, taking the underlying image modality into
account. This neurophysiological metric may represent the proportion
of the nerve fibers originating in the source area which intersect a given
target region. The specified inverse problem is solved by Bayesian
statistics. Posterior probability maps denote the probability that the
connectivity value exceeds a chosen threshold, conditional upon the
noisy observations. These maps allow us to draw inferences about the
structural organization of the cerebral cortex. Moreover, we will
demonstrate the proposed approach with diffusion-weighted data sets
featuring high angular resolution.
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Introduction

It is widely accepted that specialization is a fundamental
property of brain organization, involving the segregation and
integration of neural populations (Zeki and Shipp, 1988). These
discrete cortical areas are connected by long-range nerve fibers
which shorten the path of neural information processing, enabling
the rapid interaction of distributed brain modules. The low
processing depth necessitates highly parallel computing facilities
made up of a large number of connections that are neither well-
ordered nor completely random (Sporns et al., 2000), but are
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grouped into fiber bundles. However, detailed knowledge about the
connectional architecture of white matter is still rather limited even
at the macroscopic level, not least due to the anatomical variability
between subjects. With the advent of diffusion magnetic resonance
(MR) imaging, it has become possible to study the complex system
of long-range nerve fibers in a non-invasive way (Le Bihan, 2003).
This unique method measures the Brownian motion of water
molecules in different directions in the underlying material. The
microscopic tissue structures hinder the diffusing molecules, which
thereby exhibit anisotropic diffusion patterns when the observation
period is chosen to be sufficiently long. Although the nerve fibers
cannot be observed directly, the directional dependence of water
diffusion seems to be primarily caused by the coherent orientation
of the fibers within a microscopic environment, providing a basis
for the reconstruction of fiber pathways.

To obtain information on the course of fiber tracts and the
degree of the connectedness of distant brain areas, we need to
construct a forward model that maps the microgeometry of nervous
tissue onto the diffusion process and further onto the measured MR
signals. Since the architecture of neural cells is highly complex,
there is no doubt about the necessity to make assumptions and
simplifications. Also, the number of diffusion encoding gradients is
limited and we typically measure no more than one b-value in
addition to =0, which is required by the normalization of the 75,-
relaxation. Usually, fiber bundles are mapped onto diffusion-
weighted MR signals by the diffusion tensor model proposed by
Basser et al. (1994). This approach proved inadequate for
describing crossings and branchings of nerve fiber tracts, but it is
fairly straightforward to represent several fiber bundles by a sum of
multiple diffusion tensors weighted by their respective volume
fractions (Tuch et al., 2002; Parker and Alexander, 2003; Hosey et
al., 2005). However, a Taylor expansion at 5=0 suggests that the
observed data will not provide enough information to resolve the
water diffusivity and the volume fraction for small b-values
independently (Basser and Jones, 2002). For that reason, the
multiple tensor model is frequently constrained, using conditions
such as rotationally symmetric tensors, constant diffusivities or
fixed volume fractions. These constraints do not form any natural
invariant. For instance, the diffusion properties of a fiber bundle
also encode the spreading of the fibers within that bundle. This
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spreading is far from being constant throughout the white matter.
The uncertainty about the orientation of the fiber bundles in those
(multiple) tensor models might be described by Watson or
Bingham distributions (Basser and Pajevic, 2000; Cook et al.,
2004, 2005). There have been a great many alternative suggestions
dealing with complex fiber structures. As the focus of this article is
on explicit forward models, we ignore all methods which take only
the diffusion propagator or other derived functions (Tuch, 2004;
Wedeen et al., 2005; Ozarslan et al., 2006) into account. For those
models and other approaches, see the recent review by Le Bihan
(2003) and the references therein.

In this work we use the general idea of spherical deconvolution
(Behrens et al., 2003; Tournier et al., 2004; Anderson, 2005) to
model the primary structural properties of nervous tissue. Consider
a population of nerve fibers within a microscopic environment and
assume that the diffusion characteristics of a plain fiber as the
elementary component are invariant throughout the brain. The
spherical convolution of the fiber orientation density with the
specified diffusion response function of a fiber segment yields the
diffusion propagator and then the measured MR signals. Tournier
et al. (2004) and Anderson (2005) proposed the use of Fourier
analysis on the sphere. Representation by spherical harmonics,
which form a complete orthonormal basis over the square-
integrable functions on the sphere, reduces the deconvolution of
the fiber orientation density to multiplications (Healy and Kim,
1996). Since in general spherical harmonics do not ensure that the
density function is non-negative and normalized, Jansons and
Alexander (2003) and more recently Alexander (2005a) deter-
mined the fiber orientation density by a maximum entropy
approach. In contrast to the above authors, we propose an
explanatory parameterization of the fiber orientation density, which
allows us to determine the number of fiber bundles and their
orientation and volume fraction.

To describe the complex connectivity patterns in the human
brain, we need a measure quantifying the connectedness of two
cortical areas by means of nerve fibers that, on the one hand, limits
itself to the type of information that is provided by diffusion-
weighted MR data sets (e. g., it does not make any sense to dis-
tinguish afferent from efferent fiber pathways) and, on the other
hand, has a clear neurophysiological meaning. Obviously, different
experimental modalities might lead to different definitions of the
term anatomical connectivity. Preliminary work includes the con-
nectivity measure proposed by Koch et al. (2002), who determined
the transition probability from a voxel to its adjacent voxels. These
authors then estimated the structural connectivity by calculating
the proportion of the random walks originating in the source voxel
that intersect a given target region while moving throughout the
voxel lattice. To avoid the errors due to the discretization of the
transition probability, Parker et al. (2003) and, in the case of
multiple fiber bundles, Parker and Alexander (2003) continuously
solved the curve integral of a fiber streamline, whose starting point
is usually the center of a voxel, and obtained the Probabilistic
Index of Connectivity (PICo), which is closely related to the
aforementioned metric by Koch et al. (2002). Behrens et al. (2003)
defined the anatomical connectivity as the probability that there
exists a fiber pathway which links a specified point with the target
region. This raises the question of whether it is reasonable to ask
for the existence of such a particular fiber when normally
considering voxels, i.e. start regions that have a volume greater
than zero. Since the above approaches do not allow the choice of
initial regions different from isolated points, we propose to

generalize the definition of the term anatomical connectivity,
thereby dissociating between the neurobiological quantity and the
probability thereof.

The specified inverse problem is, decomposed into simpler
subproblems, tackled using Bayesian statistics (Behrens et al.,
2003), which provides a parametric inferential framework for
statistical modeling and analysis. In the following, the Theory and
methods section introduces the novel forward model that exposes
the nerve fiber population voxel by voxel. With the addition of the
prior distribution of the model parameters, we obtain a complete
Bayesian problem for the estimation of the fiber orientation density
conditional upon the noisy MR measurements. The global model
component then reconstructs the nerve fiber pathways and
estimates the posterior distribution of the anatomical connectivity
between arbitrarily chosen cortical regions. In Appendix A we deal
with the computational issues of Bayesian inference. The Results
section includes simulations of the parametric spherical deconvo-
lution and exemplifies a connectivity analysis concerning the
crossing of the callosal fibers and the corona radiata using
diffusion-weighted data sets featuring high angular resolution. We
conclude with a discussion of the proposed models.

Theory and methods
Parametric spherical deconvolution

Brownian motion is the random, thermally driven self-move-
ment of molecules (Einstein, 1905). Consider a population of water
molecules providing a spin ensemble within a microscopic
environment of nervous tissue. The diffusion propagator w(R|A)
states the ensemble-averaged probability that a spin moves through
displacement R during the time interval A. The pulsed gradient
spin echo experiment (Stejskal and Tanner, 1965) enables the
measurement of this diffusion process. Let b=Alg]* be the
diffusion weighting factor and g=g¢/|q| the normalized diffusion
encoding gradient direction (with the scattering wave vector q).
Under the narrow-pulse approximation we obtain the Fourier
transform (Callaghan, 1993)

= / 7&@R|A)exp(iq ‘R)dR (1)

where E(q) is the spin echo signal in the presence of the diffusion
weighting ¢ and Ex(0) denotes the MR signal in the absence of
any diffusion weightings.

Forward model

The above diffusion propagator n(R|A) does not only depend
on the diffusion time A, but also on the microgeometrical
properties of the tissue under consideration. The axonal mem-
branes of the nerve fibers, which are densely packed in the white
matter of the brain and spinal cord, seem to form the structural
component that mainly determines the anisotropic water diffusion
(Beaulieu, 2002). Consider a population of nerve fibers within a
voxel. We distinguish three levels of description: a single fiber, a
fiber subpopulation (also called a fiber bundle), and the entire fiber
population. The main idea is to discretize the fiber population into
a finite number of subpopulations, which is a priori unknown,
using the criterion that the fibers within a subpopulation should be
coherently oriented. The associated missing data problem dealing
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with the assignment of a particular fiber to a fiber bundle (Marin et
al., 2005) will not be elaborated any further here.

The diffusion process in a single fiber segment (which should
also include its typical immediate surroundings outside the axonal
membranes) is assumed to be governed by a trivariate Gaussian
distribution N (0, 2AD) with a mean of 0 and the 3-by-3 symmetric
positive-definite covariance matrix 2AD. The geometric tissue
properties determine the eigenstructure of the apparent diffusion
tensor D. The eigenvector w €S> corresponding to the largest
eigenvalue 1, denotes the fiber orientation where S =
{xeR* ||x|| = 1} is the two-dimensional unit sphere. The under-
lying assumption is that the water diffusivity is highest parallel to
the nerve fibers. The (myelinated) cell membranes perpendicular to
the fiber direction provide the greatest barrier to diffusion. Since
small fiber sections have an approximately cylindrical geometry, it
is reasonable to assume that the transverse water diffusion is rota-
tionally symmetric and thus the two smaller eigenvalues 1, =13 are
equal. The inversion of the eigen-decomposition yields

D(w) = (/1 — A)oww' + Jal; (2)
with a fiber orientation w and apparent diffusion coefficients
A1=2,=0 where I5 is the three-dimensional unit matrix.

As the nerve fibers, which form the elementary components
of a fiber population, have similar dimensions, we suppose that
their diffusion characteristics {A;, 4,} are constant throughout
the white matter of the brain. Therefore, the diffusion propagator
fv(R;0,2AD(w)) for a fiber segment only depends on its
orientation €S2, If the fiber direction is described by a density
function p(w), the spherical continuous mixture model

(RI3) = | p()f(R:0.28D(0)do 6

with the constraints

0<p(w) and /Szp(w)dw =1 (4)

yields the propagator for the entire fiber population. Since we
focus on the structural properties of nervous tissue, the objective

fi(:B) = —
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is to estimate the function p. There are two different approaches
by which to proceed. The non-parametric strategy attempts to
find p in a specified function space (Tournier et al., 2004;
Anderson, 2005; Alexander, 2005a). The other approach, which
we adopt here, parameterizes the fiber orientation density.

First, we assume that the fiber population consists of one
fiber bundle. Since the diffusion propagator of a fiber segment is
antipodally symmetric, the fiber orientation density p is set to be
antipodally symmetric, i. e. p(w)=p(—w). We propose to model
p(w) through a Bingham distribution (Bingham, 1974), which is
defined as

o(B) exp(w'Bw)

where B is a 3-by-3 symmetric matrix and cp(B) denotes the
normalizing constant (see Appendix A.l). The Bingham density

JfB(w;B) can be regarded as a trivariate Gaussian distribution

conditional upon the two-dimensional unit sphere, which is
invariant with respect to the addition of an arbitrary constant to
the eigenvalues of B. The eigenstructure of B describes the
arrangement of the fibers. The eigenvector u corresponding to the
largest eigenvalue x; represents the fiber bundle orientation. Its
sign is ambiguous. Without a loss of generality, let be k| >k, > K3
where k, and k3 are the other two eigenvalues. The differences k;
—K, and K, — k3 quantify the (asymmetric) spreading of the nerve
fibers around the axis u (Fig. 1). In particular, the proposed
parameterization of p allows for the modeling of fiber bundles of
sheetlike appearance. However, a voxel does not necessarily
contain only one fiber bundle. There are voxels that are composed
of N approximately homogeneous fiber subpopulations which may
have different orientations. We therefore extend the above
parameterization of the fiber orientation density by considering
the finite mixture of Bingham distributions

N
plw) = Z P.f5(w; B;)
i=1

with the volume fractions 0 <P; and 3, P/=1 for the fiber
bundles i=1,..., N. The fiber population is thus discretized into N
subpopulations where the eigenvector corresponding to the largest
eigenvalue of B; denotes the mean orientation of the nerve fibers

/22— m/2— n2—
74— /4 w4
o L) v
E E E
£ 0 ] 0 £ 0
< < =]
_ = i |
-4 -1t/ 4 —m/ 4 -
-m/2— -1/ 2— -2
T T T T T T T | T T T T T T T 0
-2 -/ 4 0 4 2 -T2 -m/ 4 0 w4 2 -T2 -/ 4 0 4 2
Longitude Longitude Longitude

Fig. 1. The Bingham distribution models the orientation density function of the nerve fibers within a bundle. We can differentiate four cases as follows (from left
to right). If the eigenvalues k; =k, =k3 are equal, the direction of the fibers is uniformly distributed on the sphere, which is not shown. In case of k; >k, =k3, the
arrangement of the nerve fibers is rotationally symmetric and bipolar. If k;>k,>k3, we have a Bingham distribution which is not a Watson density, since the
fibers are not rotationally symmetrically oriented. Finally, in case of k; =k, > k3, the distribution of the fibers is rotationally symmetric and equatorial around the
eigenvector associated with k3. Abbreviations: inferior (I), superior (S), left (L), right (R), posterior (P). See text for further details.
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within the ith subpopulation. Note that the constraints formulated in
Eq. (4) are fulfilled.

Human brain white matter is composed of (myelinated) axons
and glial cells. Therefore, an additional variable is considered that
describes the volume fraction of the space between the nerve fibers
and thus their packing density. We assume that the glial cells and
the extra-cellular space only contribute to isotropic water diffusion,
which is governed by a trivariate Gaussian density N (0,2A413)
with a mean of 0 and an apparent diffusion coefficient of 4y. This
compartment is additively incorporated into the diffusion propa-
gator 7(R|A) weighted by its volume fraction 0 <Py <1. Now we
complete the forward model. The diffusion propagator

7(RIA) = Pofiy (R; 0,20 0011)

+ /SZ (Z P(fB(w;Bi)>fN(R; 0,2AD(w))dw ()

i=1

with P;=(1—Py)P} for i=1,..., N is defined in dependence of the
underlying tissue architecture {N, Py, (P;, B;);=1__n}. Inserting
this diffusion propagator into the Fourier transform (1) and
substituting D(w) according to Eq. (2), we obtain the parametric
spherical convolution model (for N>0)

Ex(q)
EA(0)

= Poexp(—AIqlzio) + exp(—A|q|27~z)

y i P, 1F1(1/2;3/2;B; — A(41 — 22)qq") )

P 1F1(1/2,3/2,B,)
which generates the observable MR signals. For the derivation of
this spherical convolution approach, see Appendix A.2, where
further special cases are considered. If the fiber population cannot
be discretized into distinct fiber bundles (N=0), the model becomes

Ex(q)
EA(0)

= Pocxp(—Algl*io ) + (1 = Po)exp(—Alg[ )
¥ 1 Fy (1/2;3/2; AP — /12)) (7)

where the fiber direction is uniformly distributed on the sphere. The
macroscopic diffusion process of the whole fiber population is
isotropic, though the water diffusion in the nerve fibers is strictly
anisotropic. The crucial point to note is that the parameterization (5)
of the fiber orientation density yields a closed form. The hyper-
geometric function F(1/2; 3/2; .) of a matrix argument (Herz,
1955) may be computed by a saddlepoint approximation (Kume and
Wood, 2005).

Bayesian inference

The inverse problem of estimating the structural tissue proper-
ties from the water diffusion process is solved by Bayesian
statistics, in a similar way to Behrens et al. (2003). This approach
enables us to analyze both the model parameters and the adequacy
of the models proposed to explain an observed phenomenon. The
prior knowledge about the parameters 6, which include the MR
signal E,(0) without any diffusion weightings and the estimation
error 6°, is encoded in the probability distribution 7(6|my). The
likelihood function f'(z; 0, my) that updates m(0|m,) by extracting
the information on the hidden parameters 0 from the observations

z is formed by the forward model my with N fiber bundles, which
is formulated in Egs. (6) and (7), under the assumption that the
measured magnitude of the complex spin echo signal follows a
Rician distribution (Sijbers and den Dekker, 2004). The fiber
bundles in neighboring voxels are implicitly supposed to be
independently oriented. According to Bayes’ theorem, we obtain
the posterior distribution 7(0|z, my) < f (z; 0, my) ©(0|my) which
reflects the uncertainty about 6 after we have seen the measured
data z. The posterior distribution is only known up to a normalizing
constant, which does not exist in analytic form. Therefore, we
simulate 7(0|z, my) using Markov chain Monte Carlo methods (see
Appendix A.3).

We choose weakly-informative prior distributions that make as
few assumptions about the hidden parameters 0 as possible. The
eigen-decomposition of the symmetric matrix B; representing the
fiber directions within the ith bundle yields B;=R; diag(k, ;, k2,
K3’,-)R,-”. The rotation matrix R; may be reformulated by the Euler
angles (¢;, 0;, ;). Since the orientation of the ith fiber sub-
population is supposed to be uniformly distributed on the two-
dimensional unit sphere, we set

(81,0 5) = 3 500 (0.

ljo,x)(0;) is the indicator function that is 1 if 6,&[0, m) and
otherwise 0. As the addition of an arbitrary constant to the
eigenvalues of B; does not change the Bingham distribution, we
assume that

K1, K2, K3~ N (0, 0c)

with the constraint k; ;> x; ;> K3, where o, is an appropriately
chosen hyperparameter. The volume fractions should follow the
Dirichlet distribution

(P(),P], ,PN) "‘D(l, 1, ceny 1)
For the true magnitude of the signal in the absence of any diffusion
weightings with the observation period A, we set

Ex(0)~ U, £y

where E,.. is a sufficiently high value covering the whole finite
range of T»-weighted MR signals.

Next, we address the issue of establishing the prior distribution
of the estimation error 6>. The MR measurements are corrupted by
thermal noise caused by random fluctuations in the receiving coil
electronics and the sample material under examination (Haacke et
al., 1999). The parameter 7> characterizing the noise variance of
the observed magnitude signal, which should follow a Rician
distribution as pointed out above, is supposed to be stationary
throughout the MR volume. Masking a background region Q with
an unknown but constant signal, the posterior distribution 7(7*|2)
is estimated from © in the raw data set via Bayesian inference. The
estimation error ¢ is composed of both the thermal noise inherent
in MR measurements and the inadequacies of the specified model.
However, the observed estimation error can be smaller than the
error one would expect considering the thermal noise 7>. This is
due to an overfitting of the model. Therefore, we set the prior
distribution of the estimation error to

P ~TG(, Pl ) Z~n(2|Q)



478 E. Kaden et al. / Neurolmage 37 (2007) 474—488

where ZG(o, )|y, ., is an inverse Gamma density with appro-
priately chosen hyperparameters o and f that is restricted to the
interval [7, o). It is worth mentioning that we use only proper prior
distributions.

The number of fiber bundles N in a given voxel is a priori
unknown. The Bayesian paradigm enables the selection of the
model my that best explains the observed phenomenon without
adding unnecessary complexity, thereby differentiating between
the fiber subpopulations and the noise present in MR measure-
ments. In the previous subsection we have specified a collection of
alternative forward models m; consisting of i=0, 1,..., Nyay fiber
bundles where N, denotes the maximum number we want to
consider. Without a loss of generality, let 7, and m; be two models
with i>;. The Bayes factor (e. g., Hosey et al., 2005) is defined by
& =n(zlm;)/n(zlm;) where n(zlmy)=] (20 my) mOdmy) do,
denotes the predictive probability that the model my for k=i, j
generates the measured data z (Kass and Raftery, 1995). Newton
and Raftery (1994) proposed the harmonic mean estimator to
approximate 7(z|my). Then ; states the evidence that the model m;
is preferred to the model m;. According to Occam’s Razor, we
choose the simpler model m;, i. e. the model with the smaller
number of fiber bundles, except if there is strong evidence in favor
of the model m;. Jeffreys (1961) assumed decisive evidence if the
Bayes factor £; exceeds 100.

Anatomical connectivity

In order to study the issue of connectional neuroanatomy in a
rigorous manner, we need a measure that quantifies the connectivity
between two given cortical areas. After the nerve fiber populations
have been estimated voxel by voxel, the global model component
reconstructs the fiber pathways and addresses the definition of the
term anatomical connectivity.

Fiber tractography

To begin with, we assume that the number of fiber bundles in
every voxel is N=1. Fiber tractography is performed on a sample
drawn from the posterior distribution of this simplified fiber
orientation field, which is inferred from the noisy data via Bayesian
statistics. Note that diffusion MR imaging allows us to observe the
orientation of fiber segments, but not their location within a voxel.
The only spatial encoding comes from the position and the size of a
voxel, which has a volume greater than zero. Due to this lack of
spatial information, the fiber pathways cannot be immediately
reconstructed, since the precise tangent vector w(x) of a nerve fiber
at the specified pointh]R3 is not known, as exemplified in Fig. 2.
We only know the relative frequency of an orientation in the voxel
containing x, which is implemented by the fiber orientation density.
In this work we adopt the simple approach that the orientation at the
center of a voxel is assumed to correspond to the fiber bundle
orientation, which is by definition the mean orientation of the fiber
sections within a bundle. Then w(x) at an arbitrarily chosen x is
estimated by trilinear interpolation, thereby considering the fiber
population in the neighboring voxels. Let xo be the starting point of a
nerve fiber. The fiber streamline c(xo) is determined by solving a
curve integral on the resulting vector field (Conturo et al., 1999;
Mori et al., 1999). This initial value problem is numerically
computed by the fourth-order Runge—Kutta algorithm. The sign of
the fiber direction is chosen such that the local curvature of the fiber
tract is not greater than 90°. The linear interpolation could be
replaced by a weighted interpolation scheme that makes use of the

Spatial and orientation encoding

7

Only orientation encoding

[

Fig. 2. The diffusion-weighted MR signals and consequently the fiber
orientation density do not include any information about the location of the
nerve fibers within a voxel (bottom). The spatial relationship of the fiber
segments is established by the tractography algorithm that considers the fiber
populations in the neighboring voxels (top). In particular, the topological
relationship of the nerve fibers within a bundle depending on the direction in
which the fiber bundle fans is preserved. The reconstruction of the fiber
pathway shown in gray color is based on the assumption that the nerve fiber
system meets certain continuity conditions.

fiber spreading, which is modeled by Bingham densities. Alter-
natively, a probabilistic tractography algorithm (e. g., Friman et al.,
2006) might be used that samples the Bingham distributions to
obtain the tangential direction of the nerve fibers.

Next, to deal with crossing nerve fibers, we generalize the
aforementioned vector field to the fiber orientation field which
assigns the number of fiber bundles N as well as the volume
fraction P; and orientation (0;, ¢;) of the ith fiber subpopulation
(for i=1,..., N) to every voxel within the white matter. Since the
fiber population is represented by a finite mixture of Bingham
densities and the components of this mixture are invariant with
respect to the permutation of indices, an identifiability problem,
which selects the corresponding fiber bundle at each voxel, has to
be overcome. A straightforward approach is to choose that fiber
subpopulation whose orientation is most similar to the current
tangential direction of the fiber pathway by maximizing the ab-
solute value of their scalar product, thereby applying a simple
curvature criterion. The fiber streamline c;(x,), which passes the
ith fiber bundle of the voxel containing x,, is then obtained by
solving a curve integral on the vector field that is derived from the
general fiber orientation field. This resembles fiber tractography
approaches with multiple tensor models (e. g., Parker and
Alexander, 2003). Further constraints are to avoid self-intersec-
tions and to minimize self-contacts of the fiber pathway, which are
detected by discretizing the fiber tract over the voxel lattice using
a 26-neighborhood. If appropriate, we impose the boundary
condition that all nerve fibers intersect the white—gray matter
interface twice. In addition, the fibers may be required to cross
further brain regions.

Connectivity measure

We wish to quantify the anatomical connectivity between dis-
tant brain regions, which may not be just plain voxels (Koch et al.,
2002) or single points (e. g., the center of voxels, Parker et al.,
2003; Behrens et al., 2003). Therefore, the notion of source and
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target regions is generalized to (measurable) areas or volumes. Let
A and B be two arbitrarily chosen source and target regions,
respectively, with an area or volume greater than or equal to zero.
Considering all the nerve fibers originating in the source region A4,
the structural connectivity may be defined in terms of the
proportion of those fibers that intersect the target region B while
running within the brain white matter, yielding a number in the
interval between zero (none of the fibers intercepts B) and one (all
fibers starting in A4 reach B). This quantity gives no information
about the absolute number of connections between two regions, but
reflects the degree of connectedness or the relative connection
density. The connectivity of 4 with B is direction-dependent, thus
generally not identical to that of B with 4 (not to be mixed up with
the direction of signal exchange, i. e. afferent and efferent fibers). If
the area or volume of 4 approaches a point, this measure reduces
to the existence formulation proposed by Behrens et al. (2003),
which only takes values on the discrete subset {0, 1}.

We draw a sample of N starting points X; ~ {4 using a simple
Monte Carlo approach where U/4 denotes a uniform distribution on
the source region 4. The anatomical connectivity of the cortical
area A with a region B is estimated by

Cu(B)= ]VZ Js(c(X;)) (8)

where c(X)) is the fiber pathway with the starting point X; and
J(c(X;)) denotes the indicator function which is 1 if ¢(X) passes
the target region B and otherwise 0. The points in 4 may be
provided with an initial orientation w. The purpose for this
constraint is to select a fiber bundle in those voxels that are
composed of more than one fiber subpopulation, hence confining the
subsequent connectivity analysis. The spatial density function p,,
encodes the volume fraction of the fiber bundle chosen by w. The
sample points X; are then drawn from the source region A weighted
by p., In the case without any information about the initial
orientation, all fiber bundles are taken into account. We obtain the
density function p for the volume fraction of the whole fiber
population on the source area 4. Moreover, 4 may be endowed with
a regional density function 7. This concept enables us to weight the
interior of an area at the expense of its boundary regions, resulting in
the weighted anatomical connectivity C, (B). This allows, for
example, the use of Gaussian distributions to define a region of
interest. In contrast, B does not have any intrinsic structure. Since
large populations of nerve fibers can be represented by continuous
models, we might reformulate Eq. (8) by an integral.

Posterior probability maps

Bayesian statistics infers the posterior distribution of the fiber
orientation field. The following algorithm summarizes the
computations in order to sample the posterior distribution of the
anatomical connectivity C4(B) of a source region 4 (which may
have an area or volume greater than zero) with a target region B:

for i:=1...., M do

draw a sample from the posterior distribution of the fiber

orientation field;

for j:=1,..., Ndo
draw a sample point X; from the source region A4;
compute the fiber streamline c(i)()(j) with respect to
the ith fiber orientation field sample;

endfor;

.. i 1 .
compute the connectivity sample CL’) (B):= ¥ j]il Js (c(’) (X j));
endfor.

This program yields a sample {C{(B): i=1,..., M} taken from
the posterior distribution 7(C4(B)) of the relative connection
density of 4 with B. In the special case where the source and/
or target regions are formed by plain voxels, the probability
distributions may be illustrated by image maps. For example,
mean connectivity maps show the voxelwise expectation

1 i . .
E.[C4(B)]= MZZI Cﬁ,)(B). In the Bayesian analysis of func-

tional MR data, Friston et al. (2002a,b) used posterior probability
maps (PPMs) which denote the probability that the neural activation
exceeds a specified threshold. We employ PPMs to depict the

1
posterior probability n(ﬁsCA(B))=ME ﬁl HWC(I)(B) that the
- 4

anatomical connectivity of a source region with a target voxel (or
the connectivity of a source voxel with a target region) is above
some llower bound 9. I 9= () is the indicator function which is 1 if
19SC£,') (B) and otherwise' 0. This enables the inference of the
connectional architecture of the cerebral cortex, conditional upon
the noisy MR measurements.

Data acquisition and preprocessing

The diffusion-weighted MR images are acquired by a whole-
body 3 Tesla Magnetom Trio scanner (Siemens, Erlangen) equip-
ped with an 8-channel head array coil. The spin-echo EPI
sequence (TE=100 ms, TR=12 s, 128x128 image matrix,
FOV =220 x 220 mm?) consists of 60 diffusion encoding gradients
(Jones et al., 1999) with a b-value of 1000 s/mm? and 7 images
without any diffusion weightings, which are evenly distributed.
Additionally, we employ parallel GRAPPA imaging with a
reduction factor of 2. The measurement of 72 slices with 1.7 mm
thickness, which cover the whole brain, is repeated three times,
resulting in an acquisition time of about 45 min. A female volunteer
(aged 25 years) without any known neurological disorders
participated in this study. Written informed consent was obtained
from the subject in accordance with the ethical approval from the
University of Leipzig.

The diffusion-weighted data set is corrected for subject motion
with respect to the images having a b-value of 0 s/mm? and is co-
registered with the 7}-anatomy via a 7>-weighted MR image using
rigid-body transformations (Jenkinson et al., 2002), implemented
in FSL (2006). The brain is peeled from the 7;-anatomy, which
was aligned with the stereotactical coordinate system proposed by
Talairach and Tournoux (1988), omitting spatial normalization
(Lohmann et al., 2001). After averaging, the processed diffusion-
weighted images are composed of three MR measurements,
interpolated to the isotropic voxel resolution of 1.72 mm.

Results

In the following, we demonstrate the reliability of the proposed
forward model that links the fiber orientation distribution with the
diffusion process of water molecules. We focus our attention on
two nerve fiber systems, the radiation of the corpus callosum and
the corticospinal tract, exemplified in a normal human brain. The
callosal nerve fibers are commissural fibers which interconnect the
two hemispheres, whereas the pyramidal tract is a projection fiber
bundle which primarily links the motor cortex with the spinal cord.
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We are particularly interested in the region where these two nerve
fiber systems cross. The water diffusion properties {19, A1, 4>} of
nervous tissue, which thus far has been assumed to be known, are
empirically estimated. The diffusivity parameter of the isotropic
compartment is set to Ao=0.0012 mm?s, and the apparent
diffusion coefficients of a single nerve fiber are estimated at
2.1=0.0018 and /,=0.0002 mm?/s. Note that we only consider up
to two fiber bundles. After a period of 5000, 10,000, and 15,000
burn-in jumps for the forward model consisting of 0, 1, and 2 fiber
subpopulations, respectively, the Metropolis—Hastings algorithm
(see Appendix A.3) draws 5000 samples from which every fifth is
subsampled. We assume decisive evidence for the model with the
larger number of fiber bundles when the Bayes factor exceeds the
threshold £=100 (equal to In £=4.6). 100 randomly chosen points
are used to sample each voxel of a source region. The step size of
the fourth-order Runge—Kutta algorithm is the half of the isotropic
voxel size, here 0.86 mm.

Simulations

The hierarchical Bayesian model can be decomposed into
subproblems. To begin with, we run simulations with 100 trials each
to study the local part of the model which relates the diffusion-
weighted MR measurements to the underlying fiber orientation
density on a voxel-by-voxel basis. The simulated MR signals are
disturbed by Rician noise with the variance estimated from the
image background. In the following, the spin echo signal £4(0) is
fixed and the volume fraction of the isotropic compartment is set to
Py=0.1. The first fiber bundle is oriented in the direction 6, =—7n/4
(latitude), ¢;=mn/4 (longitude), and ¢y =n/4. The two parameters
k1 ,;=5 and k3,=—5 which describe the spreading of the fibers
within the ith bundle are fixed. The index i is omitted in obvious
cases.

First, we consider the parametric spherical deconvolution with
one and two fiber bundles independently. In both cases, the free
parameter k, of the first fiber bundle takes different values in the
interval from k; to k; (cf. Fig. 1). The other fiber subpopulation is
rotationally symmetric and bipolar, has a volume fraction of
P,=0.4 and is oriented by 0,=—n/4 and ¢, =—371/8 (corresponding
to an angular separation of 72.0°). The root mean square error of the
posterior mean with respect to the true parameter x; —k, for the first
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fiber bundle is shown in the left section of Fig. 3. The posterior
expectation corresponds to a Bayesian estimator with the quadratic
loss function. Recall that adding any constant to {k;, k,, x3} does
not change the Bingham density. We note that the estimation error
increases when k, approaches k3. This can be explained by the
observation that the Bingham distributions have a similar shape for
a broad range of k; near k3 (in the specific example with x;=5 and
k3=—15). The right panel of Fig. 3 exemplifies a sample from the
posterior distribution of the mean fiber direction in the case of one
fiber bundle with the particular spreading x;=k,>k3. The
orientation of the fiber subpopulation is shown in polar coordinates.
Since the fiber direction is antipodally symmetric, it suffices to
depict the orientational distribution in one hemisphere. The
equatorial distribution of the samples is a benefit of the proposed
reparameterization of the given problem and the adaptive Markov
chain Monte Carlo method, which are addressed in more detail in
Appendix A.3.

Next, we study the discrimination of multiple fiber subpopula-
tions (Fig. 4). In the first case, the fiber orientation density is
described by a Bingham distribution with the free parameter %, in
the range from k3 to k; (cf. Fig. 1). In the second case, consider two
fiber bundles whose fiber orientation density is governed by a
mixture of two bipolar Watson distributions (k, ;=x3,) with equal
volume fractions (P, =P,). Their angular separation 0, varies in
the range from 0 to 7/2. Fitting different models consisting of finite
mixtures of N=0, 1, 2 bipolar Watson densities and N=0, 1, 2
Bingham distributions, respectively, the Bayes factor framework
decides how many fiber bundles are contained in the fiber
population. Fig. 4 illustrates the relative frequency of selecting
the model m, with two fiber bundles. While the representation of
the fiber orientation density by bipolar Watson distributions
overestimates the number of fiber bundles, Bingham densities
allow for the description of rotationally asymmetric spreading of the
fibers within a bundle, but decrease the angular power to separate
different fiber subpopulations.

Measured data
Fig. 5 exemplifies the posterior distribution of the mean fiber

orientation in four voxels taken from the corpus callosum, the
internal capsule, the crossing of the radiation of the corpus callosum

/2 - S
@ oo
4 \
04 1 ;‘ R
_m/4 -
Bty
w2 :
I I [ | T
-m/2 -m/4 0 /4 2
Longitude

Fig. 3. The left panel shows the root mean square error of the posterior mean with respect to the true parameter k; —k, which estimate the degree of the fiber
spreading within the first bundle. The estimation error is displayed for simulated models with one and two fiber subpopulations. The right section depicts a
sample taken from the posterior distribution of the fiber bundle direction in the case of one fiber subpopulation with k; =k,>k3. The original fiber orientation

density is illustrated in Fig. 1 (right). See text for further details.
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Fig. 4. Relative frequency of choosing the model m, with two fiber bundles assuming bipolar Watson- and Bingham-shaped fiber orientation densities,
respectively. In the left section we simulate a fiber population following a Bingham distribution. The model of the right panel consists of a fiber orientation

density governed by a mixture of two bipolar Watson distributions.

and the corona radiata, and the white matter region beneath the
motor cortex, comparing the parametric spherical deconvolution to
the well-known diffusion tensor approach (Basser et al., 1994). The
Bayes factor suggests that the fiber population located in the former
two brain regions consists of a single fiber bundle due to the
predictive probabilities In 7(z|mg)=—295.5, In n(z|m;)=—209.4, In
7(z|m,)=—207.4 (corpus callosum) and In 7n(z|mg)=—316.2, In
n(zlm,)=—226.6, In m(z|m,)=—225.7 (internal capsule). Note that
for the internal capsule the resulting distributions of the mean fiber
direction are not rotationally symmetric, which is presumably due to
the radiating pattern of this fiber bundle. Owing to the model pro-
babilities In 7n(z|mo)=—271.7, In n(z|m,)=-228.7, and In 7n(z|m,)=
—218.5, there is strong evidence that the fiber population in the
crossing between the radiation of the corpus callosum and the
corona radiata is composed of two subpopulations. In this specific
example the diffusion tensor approach yields an oblate tensor whose
principal direction is equatorially distributed. (Parametric spherical
deconvolution with a single fiber bundle produces similar results,
which are not shown.) In the case of the region beneath the motor
cortex, the chosen voxel consists of one fiber bundle due to the
predictive probabilities In 7(zjmg)=—241.9, In n(z|m,)=-215.0,
and In 7n(zlm,)=—213.7. The spreading of the fibers within this
bundle is broader, as illustrated by the maximum a posteriori
estimate of the fiber orientation density.

Now we demonstrate the reconstruction of the mean fiber
bundle orientation in the whole diffusion-weighted data set. Fig. 6
depicts a part of the MR volume in the coronal, sagittal, and axial
planes. The Bayes factor framework decides how many fiber
bundles are located in each voxel. The mean direction of each
fiber bundle' is estimated through the eigenvector associated with
the largest eigenvalue of the symmetric matrix 2, o@(w®)
where 0 is a sample (in Cartesian coordinates) drawn from the
posterior distribution of the fiber bundle orientation and N denotes

! Since the mixture model formulated in the Theory and methods section
is invariant with respect to the permutation of indices, the marginal
distribution of the mean fiber orientation should be equal for all N fiber
bundles. However, this symmetry property is implicitly broken as the
sampler normally fails to explore all N! modes (Jasra et al., 2005).

the number of samples. (If the mean fiber direction follows a
Bingham distribution, this mean corresponds to its expected value.)
The underlying map shows the expected fractional anisotropy
provided by the Bayesian analysis of the common diffusion tensor
model. Due to the adequately chosen prior distribution of the
eigenvalues, the fractional anisotropy is ensured to be in the range
of O to 1.

Fig. 6 illustrates the brain region where the callosal fibers
cross the corona radiata. The sagittal slice reveals the mean fiber
bundle orientation of the corona radiata, whereas the axial plane
exposes the radiation of the corpus callosum. In both cases the
direction of the other fiber bundle points out of the image plane.
The crossing of these two nerve fiber systems is apparent in the
coronal slice. Additionally, we can find association fibers, for
instance, the cingulum, the superior longitudinal fasciculus, and
U-shaped fibers connecting adjacent gyri. A narrow band marked
with (%) causes difficulties in discretizing the fiber population
into distinct subpopulations. The diffusion-weighted MR signal
appears to be almost isotropic in these voxels which therefore
have small fractional anisotropy values, although this region is
located within the white matter reasonably far away from gray
matter. We hypothesize that these voxels are composed of three
fiber bundles, namely the corona radiata, the callosal fibers, and
the superior longitudinal fasciculus. This is supported by simu-
lations which show that for a b-value of 1000 s/mm?* the macros-
copic diffusion process in three orthogonal fiber subpopulations
produces an MR signal that differs little from a signal of isotropic
water diffusion with respect to the signal-to-noise ratio (e. g.,
Alexander, 2005b).

Finally, we study the connectional architecture of the pyra-
midal tract and the callosal fibers in Figs. 7-9. In the former case
the source region is located in the internal capsule and, where
necessary due to multiple fiber subpopulations at the starting
point, we select the fiber bundle that is most aligned with the
superior—inferior direction. The other source area is placed in the
body of the corpus callosum with the initial orientation being
left—right. Bayesian connectivity analysis is applied to the stand-
ard diffusion tensor approach as well as the parametric spherical
deconvolution model. Figs. 7 and 8 illustrate the mean connec-
tivity and posterior probability maps. The latter quantifies the
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Fig. 5. Posterior distribution of the mean fiber orientation in voxels taken from four human brain regions, comparing the diffusion tensor model to the parametric
spherical deconvolution. The right panel shows the maximum a posteriori estimate of the fiber orientation density. From top to bottom, the sections are the corpus
callosum, the internal capsule, the crossing of the radiation of the corpus callosum and the corona radiata, and the white matter region beneath the motor cortex.
The most suitable model with N fiber bundles is depicted. For clarity, only 200 samples are shown. See text for further details.
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Fig. 6. Mean fiber bundle orientation of the radiation of the corpus callosum (cc), the corona radiata (cr) and their crossing. The underlying map depicts the
fractional anisotropy, the crosshair position (located at the center of the coronal, sagittal and axial plot) is set at the voxel shown in the third row of Fig. 5.
Abbreviations: cingulum (cg), superior longitudinal fasciculus (slf), U-shaped association fibers (uf), approximately isotropic diffusion within the white matter ().
The number in the upper right corner indicates the slice in the stereotactical coordinate system proposed by Talairach and Tournoux (1988).

probability that at least, for instance, 10% of the fiber pathways
which start in the source region pass the shown target voxel. The
figures depict the maximum projection of the 10 preceding and
following coronal slices of 1.72 mm thickness onto a reference
slice, which is displayed as 7}-anatomy in the background. Fig. 9
exemplifies a sample and its cumulative density from the posterior
distribution that reflects the uncertainty about the relative connec-
tion density of a source region located in the internal capsule with a
target region beneath the left motor cortex.

In the case of the corticospinal tract, the connectivity maps are
similar, irrespective of the underlying forward model (Fig. 7). Note
that there is a presumably false positive connection of the right
hemisphere via the corpus callosum in the parametric spherical
deconvolution. Most remarkably, we observe different connectivity
patterns for the radiation of the corpus callosum (Fig. 8). The
diffusion tensor approach encounters difficulties in laterally
tracking the callosal fibers, which radiate towards wide areas in
both cerebral hemispheres (Pandya and Seltzer, 1986). Actually,
this model suggests that the commissural fibers passing the central
part of the corpus callosum mainly interconnect the left and right
superior brain regions. The reason is that these nerve fibers cross the
corona radiata, but the underlying model cannot represent such
complex fiber populations. In contrast, the parametric spherical
deconvolution enables the differentiation between fiber bundles. As
shown in Fig. 8, the radiating callosal fibers also project into the
lateral areas of the cerebral cortex.

Discussion

The Bayesian estimator occasionally infers connectivity values
that seem, from a neuroanatomical point of view, to underestimate
the degree of the connectedness of distant brain regions. While the
proposed forward model allows the disentanglement of the crossing
of the radiation of the corpus callosum and the corona radiata,
thereby better replicating the well-known connectional neuroanat-
omy, it remains challenging to uncover the full radiating pattern of
the interhemispheric connections via the corpus callosum. In the
following, we discuss the simplifications and assumptions made to
model highly complex biological systems such as the human brain
white matter using diffusion MR imaging. Afterwards some
perspectives for future work are highlighted.

Assumptions and simplifications

As the mapping of the microscopic tissue structure onto the
diffusion process of water molecules is a projection, the inverse
problem does generally not have a unique solution, thus requiring
simplifying assumptions about this functional relationship. For the
short diffusion times commonly used in neuroscience research and
clinical domains, the second-order approximation of the water
diffusion in a fiber segment by a Gaussian distribution is a sensible
choice. Note that there are alternative models which may more
adequately describe the diffusion process, taking the cylindrical
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Fig. 7. Mean connectivity and posterior probability map (that the anatomical connectivity exceeds the threshold 0.1) of the pyramidal tract depicted in the coronal
plane, comparing the diffusion tensor model with the parametric spherical deconvolution. The source region is located in the internal capsule at the position of the
crosshair equivalent to the voxel illustrated in the second row of Fig. 5. In this figure and Fig. 8, connectivity or probability values below 0.002 are not shown.

Mean connectivity values greater than 0.125 are white.

microgeometry of the nerve fibers into account (e. g., S6derman
and Jonsson, 1995). Furthermore, it does not seem unreasonable to
assume that the water exchange between the various cell
components is slow with respect to the diffusion time and the
permeability of the axonal membranes. Hence the water diffusion
in the nerve fibers can be modeled independently.

We assumed that the unknown diffusivity parameters A; and
A, are constant throughout the white matter, which is obviously a
simplification. The axonal diameter and the degree of myelination,
which both modulate the water anisotropy, vary throughout the
nervous tissue. In particular, this assumption may be violated
under pathological conditions where the estimation of the dif-
fusion propagator or other derived functions (Tuch, 2004; Wedeen
et al., 2005; Ozarslan et al., 2006) is still reasonable. On the other
hand, since the nerve fibers have similar dimensions, the proposed
invariant appears to be a natural choice. Here, we empirically
estimated the characteristic diffusion coefficients {Ag, A1, 4>} of
nervous tissue. A more rigorous approach would be to expe-
rimentally determine these water diffusion properties. Alterna-
tively, we could adopt a blind deconvolution approach comprising
a Bayesian model choice about {1y, 41, A,}. A simple Monte
Carlo method tests various diffusivity values in different regions
{Q;} of human brain white matter. These areas may be
representatively selected by a neuroanatomical expert, taking
advantage of prior knowledge. Then the parameter set is se-
lected that maximizes the predictive distribution 7(z|4g, A1, A2, M)
in {Q;}.

We proposed to parameterize the fiber orientation density by a
finite mixture of Bingham distributions. The components of this
mixture representation describe the fiber subpopulations crossing
within a voxel. Note that the modes of the fiber orientation density
do, in general, not correspond to the respective directions of the
fiber bundles. For example, consider a mixture of two Gaussian
distributions on the real line. Depending on the difference of their
means and of their variances, there may be either only one
maximum or two, which, however, generally do not agree with the
respective means of the two Gaussian densities. Obviously, this
argument generalizes to finite mixtures of Bingham distributions.
Fiber tracking along the modes of the fiber orientation density may
thus introduce a systematic error.

The assumption that the arrangement of the nerve fibers within
a subpopulation follows a bipolar Watson density, a particular case
of the Bingham distribution (see Appendix A.1), seems to be too
restrictive. The Bayes factor framework shows the strong tendency
towards complex models with a large number of fiber bundles,
which do not agree with the known white matter architecture. This
suggests that the fibers are typically not rotationally symmetrically
oriented. On the other hand, the description of the fiber orientation
density by a finite mixture of Bingham distributions reduces the
angular resolution for the separation of different fiber bundles.
Note that the short observation period of the diffusion process, the
small number of diffusion encoding gradients, the low signal-to-
noise ratio, and inadequacies of the proposed model decrease the
power to reveal the structural properties of the underlying material
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Fig. 8. Mean connectivity and posterior probability map (that the anatomical connectivity exceeds the threshold 0.1) of the radiation of the corpus callosum
depicted in the coronal plane, comparing the diffusion tensor model with the parametric spherical deconvolution. The source region is located in the central part
of the corpus callosum at the position of the crosshair equivalent to the voxel illustrated in the top row of Fig. 5.

chosen cortical areas or volumes. This quantity bears a clear
neurophysiological meaning, but, taking the image modality into
account, does not distinguish between afferent and efferent fibers.
Nevertheless, the metric can be regarded as a simplification of a
more general connectivity measure that also considers the direction
of signal exchange. Note that the estimation of the measure is an
approximation, since a particular fiber pathway, which does not

further. The number of fiber bundles may thus be underestimated.
Moreover, it would not be unreasonable to exclude the particular
case where the Bingham matrix is oblate, i. e., its eigenvalues are
K| =K,>Kj3 representing an equatorial Watson density.

The anatomical connectivity was defined as the proportion of the
nerve fibers originating in a specified source region that intersect
the target region, extending the idea of connectivity to arbitrarily
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Fig. 9. Posterior probability of the anatomical connectivity of a circular area located in the internal capsule (at the position of the crosshair in Fig. 7 with a radius
of 3 mm in the axial plane) with a target region beneath the left motor cortex, comparing the diffusion tensor model with the parametric spherical deconvolution.
The left panel shows a sample drawn from the posterior distribution (only for the latter case), the middle section depicts the cumulative density functions. The
parametric spherical deconvolution yields E,[C4(B)] = 0.512 and 71(C4(B)>0.435|z)=0.95 which means that with probability 0.95 at least 43.5% of the fibers

passing the source region connect the target region.
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pass the source region only once, may be considered multiple times.
The posterior distribution of the structural connectivity enables us,
conditional upon the observed MR measurements, to rigorously
infer the connectivity patterns of the cerebral cortex in the
individual living normal human brain.

Perspectives

The neural populations seem to be organized into discrete
patches with respect to their connections to other brain areas via
nerve fiber pathways. These homogeneous regions, uncovered by
parcellating methods (Johansen-Berg et al., 2004; Anwander et al.,
2007), may define the nodes of a graphical model that describes the
structure of the neural network on a particular scale. Since we
consider cortical (sub-) areas typically composed of several voxels,
the complexity of such a graphical representation of the connec-
tional neuroarchitecture would be greatly reduced. The interconnec-
tions of these distributed regions are denoted by directed edges
endowed with the posterior probabilities on the degree of structural
connectedness. This graph deals with both facets of brain
organization, i. e., it enables us to infer the anatomical segregation
of the cerebral cortex into structurally distinct regions and the
anatomical integration of these distant areas by nerve fiber tracts.
The investigation of which cortical fields are directly connected
provides deep insights into functional anatomy. Possible conclu-
sions include whether a particular brain area has a specific
functional role (like primary sensory or motor cortices) or is a
relay station with a great number of connections binding different
cortical processing units (thereby facilitating higher brain func-
tions). We contributed some necessary prerequisites to study these
questions, which are themselves beyond the scope of this work.
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Appendix A
A.1. Spherical distributions

The Bingham distribution (Bingham, 1974) is defined as

f5(w; B) = exp(w'Bw)

1
cp(B)
with the 3-by-3 symmetric matrix B on the two-dimensional
unit sphere @ € S§°. The normalizing constant is cz(B) =
47, F(1/2;3/2; B) where F| denotes the hypergeometric function
of a matrix argument. A special case of the Bingham distribution is
the Watson distribution (Watson, 1965)

fw(ws i) = CWI(K) exp (K(w, u)z)

which corresponds to B=ruu'. uES* denotes the mean orienta-
tion. If the parameter x is greater than 0, the distribution is bipolar.
In the case of x;<0, fjy denotes an equatorial distribution around
the axis u. If k=0, we obtain a uniform distribution on S*. The
normalization constant is cyy(x) = 4m F;(1/2;3/2; k).

A.2. Derivation of the parametric spherical deconvolution model

Firstly, we consider the simplified diffusion propagator

(RIA) = [ ol BIfy (R:0.28D())do

Inserting this diffusion propagator into the Fourier relationship
formulated in Eq. (1) yields

Ex(q)
Ex(0)

— [t [ (R0, 28000 expli R)0R ) o

based on arguments in conjunction with Fubini’s theorem (Rudin,
1987). Evaluating the inner integral, we obtain

Ex(q)
EA(0)

— SZfB(a);B)exp(—Aq’D(w)q)dw

which is an integral equation of convolution type, since the kernel
exp(—A¢'D(w)q) is formed by a distance function between the
orientation of a fiber w and the normalized diffusion encoding
gradient direction g=g¢/|g| on the unit sphere. Substituting D(w)
according to Eq. (2), we carry out the parametric spherical
convolution

1F1(1/2;3/2;B — A(A — A2)qq")
1Fy (1/2;3/2;3)

Ex(q)
E(0)

= exp<fA|q|2),2)

as in Herz (1955). Finally, the full diffusion propagator (5) directly
yields Eq. (6) because of the linearity of the integral operator. Let
us consider two special cases. If the fibers are uniformly distributed
on 8%, we get Ex(q)/Ea(0)=exp(~Algl*2o)iFi(1/2; 3/2; —Algf
(21— A2)). If all fibers within a chosen population have the same
orientation w, we obtain the diffusion tensor model E(q)/EA(0)=
exp(— Aq'D(w)q) where the diffusivity parameters 1; and A, are
fixed.

A.3. Computational issues of Bayesian statistics

The Metropolis—Hastings algorithm (Metropolis et al., 1953;
Hastings, 1970) explores the high-dimensional space of the
posterior distribution 7(6|z, my) by local random walk moves with
the step size 2. For efficiency reasons we fix the non-diagonal
entries of the matrix X to zero. As a result, the convergence
properties of the sampler worsen. In particular, the estimation of
the parameters representing the fiber bundle orientations degen-
erates, since these random variables are generally far from being
independent. Therefore, we reparameterize the directional para-
meters by applying the rotation R; ' on the ith fiber subpopulation.
The rotation matrix arises from the eigen-decomposition of the
Bingham matrix B;=R; diag(k,;, k2, K3’,*)R;]. This coordinate
transformation reduces the interdependencies of the orientational
parameters. If there is only one fiber bundle, we can obtain a
reasonable approximation of the rotation matrix from the
estimation of the diffusion tensor model by linear regression.

The covariance matrix 2 of the random walk determines the
speed at which the simulated Markov chain reaches its stationary
regime. If the moves are small, the acceptance probability is high
and the random walk explores the distribution only slowly. If the
step size is large, the acceptance rate is low and it takes a long time
for the sampler to converge to the posterior distribution. The
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objective is to find the optimal scaling X for each individual voxel
(Roberts et al., 1997) because X is not known due to our limited
knowledge about the posterior distribution before sampling.
Therefore, the step size 2 of the random walk is adapted during
the period of burn-in (Haario et al., 2001; Andrieu and Robert,
2001). Note that we limit the entries of the matrix X which
represent the orientations of the nerve fiber bundles by setting the
maximum variance to 7/2. This stochastic optimization by the
Robbins—Monro algorithm (Robbins and Monro, 1951) does not
only calculate the asymptotic variance, but also the asymptotic
mean of the Euler angles ¢;, 0, and y; of the ith fiber
subpopulation. The inverse of the rotation matrix R; which is
determined from these mean angular values reparameterizes the
directional parameters as described above.

The random-walk Metropolis—Hastings algorithm converges to
the target distribution irrespective of the starting point. For
example, the initial volume fraction P, of the extra-axonal
compartment minimizes (Sa 4/S 2.0~ [Poexp(— Algl*A0)+(1 —Py)
exp(— Algl, A2)1F1(1/2; 3/2; = Algl* (A= A,))])* in the range from
0 to 1 where Sa and Sy, denote the mean of the measured MR
signals (A fixed) in the absence of any diffusion weightings and
with 0<|g|=const, respectively. However, the high dimensionality
of the multiple fiber bundle problem and the heterogeneous scaling
of the various model parameters slow down the convergence rate
of the sampler. To accelerate the initial transient phase, the Watson
density is temporarily used to constrain the arrangement of the
nerve fibers within a bundle to be rotationally symmetric. In
addition, we employ a coarse-to-fine approach and smooth the
noisy MR measurements by a spherical spline model (Wahba,
1981), thus reducing the number of modes in the posterior
distribution. After the Markov chain has approached the region of
high probability using the smoothed signals, the sampler continues
with the original MR data set.
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