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Abstract

Pulsed field gradient(PFG) nuclear magnetic resonance(NMR) was used to investigate the self-diffusion behaviour
of polymers in cartilage. Polyethylene glycol and dextran with different molecular weights and in different
concentrations were used as model compounds to mimic the diffusion behaviour of metabolites of cartilage. The
polymer self-diffusion depends extremely on the observation time: The short-time self-diffusion coefficients(diffusion
timeD;15 ms) are subjected to a rather non-specific obstruction effect that depends mainly on the molecular weights
of the applied polymers as well as on the water content of the cartilage. The observed self-diffusion coefficients
decrease with increasing molecular weights of the polymers and with a decreasing water content of the cartilage. In
contrast, the long-time self-diffusion coefficients of the polymers in cartilage(diffusion timeD;600 ms) reflect the
structural properties of the tissue. Measurements at different water contents, different molecular weights of the
polymers and varying observation times suggest that primarily the collagenous network of cartilage but also the
entanglements of the polymer chains themselves are responsible for the observed restricted diffusion. Additionally,
anomalous restricted diffusion was shown to occur already in concentrated polymer solutions.� 2002 Elsevier
Science B.V. All rights reserved.

Keywords: Pulsed field gradient nuclear magnetic resonance; Polyethylenglycol; Dextran; Self-diffusion; Restricted diffusion;
Cartilage

*Corresponding author. Tel.:q49-341-15700; fax:q49-
341-15709.

E-mail address: arnold@medizin.uni-leipzig.de
(K. Arnold).

Present address: Max-Planck Institute of Cognitive Neu-1

rosciences, Stephanstr. 1a, D-04103 Leipzig, Germany.

1. Introduction

Inasmuch as cartilage contains only a small
number of cells, the extracellular matrix deter-
mines the physicochemical properties of cartilage.
This extracellular cartilage matrix consists of
water, collagen and proteoglycansw1x. The proteo-
glycans are composed of a central protein core to
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which glycosaminoglycan side chains, especially
chondroitin- and keratan sulfate are attached. Pro-
teoglycans are linked to hyaluronic acid, forming
the so-called aggrecans and these aggrecans are
bound to the collagen network. The negatively
charged glycosaminoglycans are responsible for
the high swelling capacity of cartilage, while the
collagen fibres determine the supermolecular car-
tilage structure but have only minor influence on
the osmotic activityw2–6x.

Since cartilage does not contain blood vessels
at all, the diffusion of water, nutrients, metabolic
waste products and molecules with regulatory
functions (e.g. cytokines) plays a key role in
cartilage functionw7–10x. The metabolism of this
tissue is extremely influenced by the diffusion
behaviour of water and macromoleculesw11,12x.

Different methods of diffusion measurements
are nowadays established. Pulsed field gradient
(PFG) nuclear magnetic resonance(NMR) allows
to determine the mean square displacement of
molecules in a given diffusion time that is typically
in the range of a few milliseconds up to seconds.
PFG NMR monitors distances in the micrometer
scale and has the considerable advantage—in con-
trast to tracer techniques—of being non-invasive
w13–18x.
A first comprehensive PFG NMR study of the

bulk diffusion coefficients of water and small
solutes as well as the spatially-resolved variation
of the diffusivity of explanted cartilage was pub-
lished by Burstein et al.w19x. Cartilage composi-
tion as well as the mechanical properties of
cartilage specimens were changed in this investi-
gation by the treatment with different enzymes and
mechanical compression, respectively. Comprehen-
sive data on the effect of different water contents
and the observation time on the self-diffusion
behaviour of water and cationic molecules in
cartilage have also been obtained by Knauss et al.
w20x and Ngwa et al.w21x. These authorsw20,21x
found that at short diffusion times(;13 ms) the
self-diffusion coefficient of water and cations is
primarily controlled by the water content of carti-
lage. The long-time diffusion(;500 ms), how-
ever, reflects structural properties of the cartilage
within a 10mm region. In these studiesw20,21x it
was demonstrated that PFG NMR is a suitable

method to determine a number of physiologically-
relevant parameters in cartilage, for example the
distance over which ‘free’(i.e. non-restricted)
diffusion occursw20,21x. The present studies were
performed to improve the understanding of the
principles of the self-diffusion behaviour of mac-
romolecules in cartilage.
Because of the importance of cartilage swelling,

the relationships between compression of cartilage
and the resulting water content, the short-time as
well as the long-time self-diffusion of the polymers
polyethylene glycol(PEG) and dextran were stud-
ied. PEG and dextran were used as model polymers
because they are commercially available in a great
variety of different molecular weights and possess
physiological relevance. One additional reason was
the known structural differences between both
polymers: PEG is a more flexible molecule, where-
as dextran represents a more rigid onew22x. There-
fore, for the more complex and longer lasting
measurements of the long-time self-diffusion,
exclusively PEG was used, since its higher flexi-
bility also provides higher NMR sensitivityw24x.
Although the diffusion behaviour of both polymers
in cartilage has been already investigatedw22x, this
is the very first study that uses PFG NMR meth-
odology to measure the self-diffusion of polymers
in cartilage. This technique is superior to other
methods since actually the self-diffusion coeffi-
cients of molecules can be determined because no
concentration gradients have to be used.
For establishing a highly defined water content,

compression of cartilage was carried out by the
osmotic stress techniquew24x, i.e. cartilage slices
were incubated in polymer solutions of different
concentrations resulting in different osmotic pres-
sures. For means of comparison and to investigate
if the polymers themselves might exhibit time-
dependent diffusion properties, polymer diffusion
was also studied in pure polymer solutions, i.e. in
the absence of cartilage.
It will be shown that the molecular weight of

the polymer as well as the water content of
cartilage have the highest impact on the diffusion
properties of the polymers. This resembles closely
the previously reported diffusion behaviour of
waterw20x and cationsw21x in cartilage: The short-
time diffusion is mainly determined by the water
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Fig. 1. Stimulated-echo pulse sequence with lengths of gradient
pulsesd and the diffusion timeD. This sequence was used for
all measurements.

content of the cartilage, whereas the long-time
diffusion reflects internal cartilage structures much
better. However, both, the short-time and the long-
time self-diffusion, depend also considerably on
the molecular weight of the diffusing molecules.

2. Experimental

2.1. Materials

Bovine cartilage from the nasal septum was
used for all experiments. Polyethylene glycol
(PEG) with molecular weights of 600 and 20000
Da was obtained from Fluka(Neu-Ulm, Germa-
ny). PEG of 6000 and 40 000 Da was purchased
from Serva(Heidelberg, Germany) and PEG with
a molecular weight of 1500 Da was available from
Ferak(Berlin, Germany). Dextran with molecular
weights of 1500, 6000, 20 000, 40 000 and 70 000
Da were obtained from Fluka(Neu-Ulm, Ger-
many). D O with an isotopic purity of 99.6%2

(Chemotrade, Germany) was used as solvent in
all cases. All further chemicals were obtained in
the highest available purity from Fluka.

2.2. Sample preparation

Cartilage specimens were separated from the
surrounding soft tissue and nearly cubic or rectan-
gular pieces of a size of approximately 2–3 mm
were cut off. Cartilage samples were incubated in
PEGyD O or dextranyD O solutions ranging from2 2

0 (pure D O) to 50 weight percent(wt.%) of the2

corresponding polymer for 16 hw24x. Since the
observation of the water self-diffusion coefficients
was not of interest in this study, samples were
prepared in D O instead of H O to attenuate the2 2

contribution of the water protons to the NMR
signal. After incubation, the surface of the cartilage
samples was carefully cleaned to remove even
traces of the polymer solutions on the cartilage
surface.
For NMR measurements the cartilage samples

were filled in 8 mm(outer diameter) NMR sample
tubes and sealed with a vespel stopper. Vespel
(from DuPont) is a material that contains exclu-
sively highly rigid protons and, therefore, does not
provide any detectable NMR resonance. For the

NMR characterization of the pure polymers, 150–
200 ml of the corresponding polymer solutions
were filled in 8 mm(outer diameter) NMR sample
tubes.
Immediately after NMR measurements the water

content(as well as the PEG or dextran content)
of the cartilage samples was determined by weigh-
ing, drying in a rapid evaporation system(Jouan
RC-10-22, Germany) and re-weighing. For the
determination of the polymer content, the weight
of the cartilage samples filled with polymer was
compared(after drying) with the weight of the
samples that were just incubated in pure D O.2

2.3. PFG NMR measurements

The self-diffusion coefficientsD of polymers in
cartilage were measured by pulsed field gradient
(PFG) NMR. The measured quantity in PFG NMR
is the spin-echo amplitudeA(gd, D). The attenu-
ation of the amplitudeCsA(gd, D)yA in depend-0

ence on the applied pulsed field gradients is given
by the Stejskal–Tanner equation:

B Ew z12x |C FCsexp yq D Dy d (1)
y ~3D G

qsgdg is a generalised scattering vectorw15–18x
with g denoting the gyromagnetic ratio of the
proton, d the width andg the magnitude of the
applied field gradient pulses.D represents the
diffusion time andD is the apparent self-diffusion
coefficient. The stimulated echo sequence as
shown in Fig. 1 was exclusively usedw20x.

One important advantage of PFG NMR is the
possibility to vary the observation timeD (i.e. the
time where diffusion is monitored) and, therefore,
to observe restricted diffusion. In this workD was
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varied between 3 and 645 ms. The lower limit is
caused by limitations of our device and the upper
limit is due to T relaxation effects of the cartilage1

molecules. In the case of free diffusion the mean
square displacementNz M of the diffusing species2

obeys the Einstein equation, i.e.Nz M increases2

with the observation time:
2

N Mz s2DD (2)

If the diffusion is restricted the mean square
displacementNz M increases with less than the first2

power of the diffusion timew25x. The self-diffusion
coefficient now depends on the observation time
DsD(D). In the case of complete restriction, the
stimulated-echo attenuation reflects the dimension
of the restricting geometry rather than dynamic
processesw15x.

The PFG NMR self-diffusion measurements
were performed on the home-built spectrometer
FEGRIS 400 at a proton resonance frequency of
400 MHz w26,27x. The magnitude of the field
gradientg was varied between 0 and 25 Tym. The
pulse width d was 0.5 ms in all cases. The
observation timeD was varied between 3 and 645
ms and all diffusion measurements were carried
out at room temperature(293 K).

One should note that our PFG NMR equipment
does not allow the spectroscopic differentiation
between the polymer protons and the residual
water protons within the cartilage samples by
differences in the chemical shifts. Therefore, only
species differing towards their self-diffusion coef-
ficients for more than one order of magnitude can
be unequivocally analysed. This is, however, a
fulfilled criterion of our system and the contribu-
tion of the residual water could also be minimised
by the use of D O instead of H O.2 2

Due to the high field gradient stability of our
PFG NMR equipment standard errors are estimated
to be lower than"2% if a certain sample is
investigated several times. Although all measure-
ments were at least performed in triplicate no error
bars are given since errors would be in the range
of the symbol size. Deviations related to biological
diversity of the cartilage are much more pro-
nounced and, therefore, cartilage from different
animals was mixed to minimise these deviations.

2.4. Data analysis

In PEG only the terminal protons of the hydrox-
yl group are exchanging with the solvent and,
therefore, only a negligible residual water signal
is observed. In the case of a single diffusing
species the attenuation of the stimulated-echo
amplitude was approximated by the Kohlrausch–
Williams–Watts functionw28x:

B E12bŽ . C FCsexpyDx with xsq Dy d (3)
3D G

D is the apparent self-diffusion coefficient and
b describes the extent of the non-exponential
decrease of the echo attenuation. In our experi-
ments b is very close to 1 and, therefore, this
parameter was not further considered. If there were
two different diffusing species the attenuation was
approximated by a biexponential function:

Ž . Ž . Ž .CsaexpD x q 1ya expyD x (4)1 2

D and D are the self-diffusion coefficients of1 2

species 1 and 2, respectively, anda is the contri-
bution of the species having the self-diffusion
coefficientD in relation to the total signal.1

3. Results

Fig. 2 shows the dependence of the self-diffu-
sion coefficients of PEG(a) and dextran(b) in
bovine nasal cartilage on the molecular weight of
the polymer. It is obvious that for both polymers
the self-diffusion coefficients decrease with
increasing molecular weights and decreasing D O2

contents, i.e. higher polymer concentrations. In
both cases, this dependence is exponential and can
be described by the following equation:

ymDfM (5)

whereM represents the molecular weight andm is
a constant exponent for different polymers. The
exponentm varies slightly in dependence on the
corresponding molecular weight but 0.8-m-1.0
is a suitable value for both polymers.
By the fact that the diffusion properties of both

polymers can be described by the same mathemat-
ical function, it is evident that the chemical struc-
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Fig. 2. Self-diffusion coefficients of polyethyleneglycol(PEG)
(a) and dextran(b) in cartilage as a function of the corre-
sponding molecular weights of the polymers. D O contents of2

the individual samples were adjusted by the osmotic stress
technique. A diffusion time ofDs15 ms was used in all cases.

Fig. 3. Self-diffusion coefficients of PEG(a) and dextran(b)
in solution(D O) as a function of the molecular weight of the2

polymers. D O contents are indicated in the figure. A diffusion2

time of Ds15 ms was used in all cases.

ture of the polymer does not have a major impact
on their diffusion properties. One should, however,
notice that at the same polymer concentration and
the same molecular weight of both polymers, the
dextran possesses slightly higher self-diffusion
coefficients than the PEG. This is surprising since
the viscosity of the dextran solution as well as the
rigidity of the dextran molecule is considerably
higher compared with PEGw23x.

To investigate whether the obstacles(e.g. the
collagen fibrils or the cartilage cells) present in
cartilage influence the self-diffusion behaviour to
a major extentw20x, both polymers were also
investigated in pure, aqueous solutions to exclude

influences of the environment on the mobility of
the polymers. Surprisingly, the determined self-
diffusion coefficients of PEG and dextran in car-
tilage resemble very closely the data obtained in
the pure solution(Fig. 3). There is also an expo-
nential dependence of the self-diffusion coefficient
on the molecular weight as it is requested by Eq.
(5) with similar values ofm (0.8-m-1.0). Cal-
laghan et al.w29x have also found such an expo-
nential dependence for the diffusion of dextran in
water but with a slightly different parameter(ms
0.57).
The similarity of the short-time diffusion behav-

iour of polymers in cartilage and in pure solution
indicates that—at least at short diffusion times(s
15 ms)—the supermolecular structure of cartilage
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Fig. 4. Self-diffusion coefficients of(a) PEG 6000 at varying
polymer concentrations and(b) PEG samples with different
molecular weights(at a fixed polymer concentration of 40%)
in cartilage as a function of the diffusion time.

has only negligible influence on the self-diffusion
of the polymers. The influence of internal cartilage
structures becomes, however, much stronger at
longer diffusion times(Fig. 4).
Fig. 4a shows the dependence of the self-

diffusion coefficients of PEG 6000 in cartilage at
different D O contents on the diffusion time. At2

each of the four different D O contents restricted2

diffusion occurs but this effect is most pronounced
at lower D O contents, i.e. at the highest polymer2

concentrations.
We assume that the collagens of cartilage form

marked intracartilaginous barriers and are, there-
fore, the main reasons of restricted diffusionw20x.
The application of higher osmotic pressures on

cartilage-in the same manner like mechanical pres-
sures—lead to decreased distances of the diffusion
barriersw30,31x, i.e. of the collagen fibres. There-
fore, differences in the diffusion behaviour of the
polymers can be well explained by changes of the
cartilage structures.
Additionally, there is also a marked influence of

the molecular weight of the polymer on the self-
diffusion properties. Fig. 4b shows the dependence
of the self-diffusion coefficients of PEG 600, 6000
and 40 000 in cartilage on the observation time.
The D O content of the cartilage was adjusted to2

60% in all these cases. This was achieved by the
incubation of all cartilage samples in differently
concentrated PEG solutionsw20x. Even if these
effects seem to be very small if one considers PEG
600 and PEG 6000, one should also take into
consideration that the data are represented in log-
arithmic scaling of they-axis which weakens
effects considerably.
Restricted diffusion occurs in the case of all

applied PEGs but with an increasing molecular
weight the onset, i.e. the time point where restrict-
ed diffusion can be observed is shifted to smaller
diffusion times. This indicates that larger diffusing
species experience geometrical obstacles earlier
than smaller molecules. As expected, this effect is
most pronounced when the polymer with the high-
est molecular weight is used(in this study PEG
40000(x)).
However, it is so far not clear whether restricted

diffusion does exclusively depend on the geometry
of the barriers in the cartilage or it may also
depend on entanglements of the polymer chains
themselves. This is the reason why the potential
occurrence of restricted diffusion was also inves-
tigated on the hand of the pure polymer solutions.
Fig. 5a shows the dependence of the self-diffusion
coefficients of pure, differently concentrated PEG
6000 solutions on the diffusion time. Accordingly,
Fig. 5b shows this dependence on the hand of
pure aqueous solutions of PEG 600, 6000 and
40000 at a fixed polymer concentration of 30
wt.%. One should note that this time-dependence
of diffusion is not caused by barriers as the
‘classical’ restricted diffusion. Therefore, the term
‘anomalous restricted diffusion’ instead of restrict-
ed diffusion has been recently introducedw28,32x.
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Fig. 5. Dependence of the self-diffusion coefficients of PEG
6000 in aqueous solution(D O) on the diffusion time(a). The2

different PEG concentrations are indicated in the figure. In(b)
PEG samples with different molecular weights were used(30%
polymer) in each case.

Table 1
Diffusion time D (the value ofD until restricted diffusion occurs) and the corresponding mean square displacementNz M at2 1y2

0

different water contents of cartilage and different molecular weights of the applied PEG

PEG 6000 PEG 6000 PEG 6000 PEG 6000 PEG 600 PEG 40000
(70% H O)2 (61% H O)2 (54% H O)2 (43% H O)2 (60% H O)2 (60% H O)2

D (ms)0 55 25 15 5 55 10
Nz M (mm)2 1y2 0.7 0.4 0.3 0.1 2 0.1

In the case of PEG 6000(Fig. 5a) restricted
polymer diffusion cannot be observed at concen-
trations of 20% and 30% but for concentrations
higher than 40%. At 50% concentration, the point
where restriction can be observed, is shifted to

smaller diffusion times. This indicates that the
motion of polymers gets more and more limited
when the concentration increases. In the case of
PEG 40000 (Fig. 5b) restricted diffusion can
already be observed at a concentration of 30%
PEG whereas for PEG 600 restricted diffusion
cannot be observed, equally what concentration is
used.
If the Einstein equationwEq. (2)x is applied to

the measured data, the mean square displacement
Nz M indicates the pathway of the free diffusion2 1y2

of the polymer chains(Table 1). Since the restrict-
ed diffusion depends also on the chain lengths of
the polymers themselves(Fig. 5) the diffusion
values of PEG 6000 and 40 000 are not high
enough to reflect the space between the barriers
within the cartilage. Only the calculated value for
the diffusion of PEG 600(2 mm at a D O content2

of 60%) is in agreement with the distance between
the collagen chains within the cartilagew20x,
because in the case of PEG 600 with that molecular
weight restricted diffusion in pure solution could
not be observed(Fig. 5b). Therefore, polymers
with lower molecular weights seem to be more
suitable for studying the internal structures of the
cartilage.

4. Discussion

It is well known that rheumatic diseases are
accompanied by the degradation of the native
cartilage polymers under the formation of smaller
productsw33x. To simulate the motion properties
of these smaller molecules, the diffusion of defined
polymers with different molecular weights in car-
tilage was investigated. Bovine nasal cartilage was
used for that investigation since this kind of
cartilage is available in higher amounts and devi-
ations from sample to sample are less pronounced
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than in the case of the physiologically more rele-
vant articular cartilagew34x.
PFG NMR was used to measure the correspond-

ing self-diffusion coefficients since this technique
offers besides the lack of the necessity to use
radioactively labelled compounds also the advan-
tage that diffusion processes can be observed over
different time scalesw35x. This is very useful for
the investigation of the influence of internal carti-
lage structures on the mobility of different poly-
mers. Additionally, PFG NMR does not require
concentration gradients and, therefore, actually
self-diffusion coefficients are determined.
Although different investigations on the diffusion
of PEG w36–38x and dextranw39x in polymer gels
or artificial membranes were published, this is the
first study of the diffusion behaviour of dextran
and PEG in cartilage by PFG NMR. Using this
approach we were not able to confirm the results
of previous diffusion studies of the diffusivity of
dextran and PEG in cartilagew22x. These authors
found that the diffusion of dextran in cartilage is
retarded in the cartilage matrix in comparison with
the pure aqueous polymer solution, whereas the
opposite holds for PEGw22x. In our study, how-
ever, the same tendencies were found for both
polymers.
The first important observation of our study was

that the short-time(Ds15 ms) self-diffusion coef-
ficients of PEG and dextran are strongly dependent
on the molecular weight of the polymer as well as
the water content of cartilage. A dependence of
the diffusion coefficients on the molecular weights
was expected and reflects the decreased mobility
of polymers if their molecular weight increases.
However, it is assumed that the dependence of the
diffusion coefficients on the water content is a
consequence of a rather unspecific obstruction
effect caused by the impenetrable collagen chains
within the cartilage. An analogous behaviour was
already reported by other authorsw19–21x. It has
also been shown that the water as well as the
cation diffusion(at short diffusion times) is exclu-
sively determined by the water content of the
sample, equally if one considers the diffusion in
cartilage or in pure polymer solutions.
The dependence of the self-diffusion coefficients

of polymers in cartilage on the water content at

short diffusion times may be used for the estima-
tion of the water content of an arbitrary sample by
PFG NMR independently of its structure and
function. Of course, this is also possible by meas-
uring the self-diffusion of waterw20x. However,
by the method presented in this paper, this esti-
mation can be additionally combined with the
investigation of the diffusion behaviour of poly-
mers in cartilage to gain further insights into the
diffusion behaviour of macromolecules in
cartilage.
In this study it was also found that under

identical experimental conditions(same molecular
weight and water content) the diffusion of dextran
is faster than the diffusion of PEG. Although
differences in diffusivities of both polymers were
already discussedw39x, this is surprising since
dextran is known to be a more rigid molecule and
to yield higher viscosity in solutionsw23x. We
assume that the higher flexibility of the PEG leads
to a higher degree of entanglements of the polymer
chains resulting in lower self-diffusion coefficients
in the gel-like structure of cartilage.
In contrast to short-time, the long-time diffusion

of polymers in cartilage was found to be restricted,
i.e. to be dependent on the corresponding diffusion
time. The extent of diffusion restriction is the more
pronounced the lower the water content of the
cartilage. The observed restriction is caused by the
inner structures of the cartilagew20x but in the
case of PEG 6000 and PEG 40 000 also by the
diffusing polymer chains themselves. Restricted
diffusion in pure polymer solutions was already
described by Fleischer et al.w28x using styrene–
methylmethacrylate copolymers in semidilute ace-
tone solutions. Since the restriction of diffusion
cannot be explained by the presence of barriers in
that case, the term ‘anomalous restricted diffusion’
is normally used here. This phenomenon was also
found for aqueous solutions of poly(ethylene
oxide)–poly(propylene oxide)–poly(ethylene
oxide) block copolymersw32x and was explained
by sol–gel transitions that may easily occur in that
system since it contains hydrophilicwpoly(ethylene
oxide)x as well as hydrophobicwpoly(propylene
oxide)x moieties. The reason why even in pure
PEG solutions restricted diffusion occurs cannot
be explained so far.
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Since the effect of restriction is more and more
pronounced when the molecular weight of the
polymer rises, the long-time diffusion of PEG 6000
and 40 000 cannot be used for the calculation of
the structural properties of cartilage. However, the
long-time diffusion of PEG 600 does not show
any restriction in solution and, therefore, the long-
time diffusion of this polymer reflects structural
properties of cartilage. Our data revealed barrier
distances of approximately 2mm, which agree
with the distance of the collagen chains in cartilage
at a water content of 60%. Similar data based on
the measurement of the diffusion of water and
cations were already reported by Knauss et al.w20x
and Ngwa et al.w21x. This means that our meas-
urements of the diffusion of polymers in cartilage
provide useful and complementary information.
Even if there are clear differences between the

diffusion of the PEG in pure aqueous solution and
in cartilage that can be used for the characteriza-
tion of cartilage, further studies on the basic
mechanisms of the anomalous restricted diffusion
in PEG are obviously necessary. Polymer segment
displacement as well as center of mass displace-
ment may both contribute to the observed restricted
diffusion w28x. At the present stage, we do, how-
ever, not want to speculate about these individual
contributions. Further experiments to clarify these
problems in more details are currently being per-
formed in our laboratory.

5. Conclusions

It was found that at short diffusion times the
self-diffusion coefficients of PEG and dextran in
cartilage are controlled by:(a) their molecular
weights; and(b) by the water content of the
cartilage. The polymers behave quite similar in
solution. Therefore, the inner structure of the
cartilage does not influence the short-time diffu-
sion of polymers to a high extent.
The dependence of the self-diffusion coefficients

of polymers in cartilage on the water content at
short diffusion times may be used for the estima-
tion of the water content of an arbitrary sample
with PFG NMR independently of its structure and
composition. Evidence of restricted diffusion with-
in the cartilage but also in polymer solution was

obtained in experiments where the diffusion coef-
ficient was measured as a function of the applied
diffusion time.
The long-time diffusion of PEG 600 shows no

restriction in solution and reflects structural prop-
erties of the cartilage within approximately 2mm,
which can be identified with the distance between
the collagen chains. In contrast, for PEG 6000 and
40000 the influence of the restriction caused by
the polymer chains themselves(anomalous restric-
ted diffusion) makes the calculation of structural
properties of cartilage impossible.
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