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Decision making is not a unitary entity but involves rather a series of

interdependent processes. Decisions entail a choice between two or

more alternatives. Within the complex series of decisional processes, at

least two levels can be differentiated: a first level of information

integration (process level) and a second level of information interpre-

tation (control level), leading to a subsequent motor response or

cognitive process. The aim of this study was to investigate the neural

network of these decisional processes. In a single trial fMRI study, we

implemented a simple decision-making task, where subjects had to

decide between two alternatives represented on five attributes. The

similarity between the two alternatives was varied systematically in

order to achieve a parametric variation of decisional effort. For easy

trials, the two alternatives differed significantly in several attributes,

whereas for difficult trials, the two alternatives differed only in small

details. The results show a distributed neural network related to

decisional effort. By means of time course analysis different subpro-

cesses within this network could be differentiated: regions subserving

the integration of the presented information (premotor areas and

superior parietal lobe) and regions subserving the interpretation of this

information (frontolateral and frontomedial cortex, anterior insula,

and caudate) as well as a region in the inferior frontal junction

updating task rules.
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Introduction

A decision arises when a person is consciously aware of two or

more possible alternative behaviors (be it thoughts or actions), only
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one of which can or should be performed. This person (the decision

maker) is thus forced to choose one option out of a set of

alternatives. The process of making a decision is a sequence of

subprocesses, e.g., evaluating specific aspects of each alternative,

constructing a mental representation of the decision situation, or

judging the involved uncertainty (Paulus et al., 2005). These

subprocesses are at least to some degree interdependent. Most

imaging studies investigating decision making have focused on

subprocesses, like uncertain decision processes (Blackwood et al.,

2004; Paulus et al., 2001; Volz et al., 2003), reward (Haruno et al.,

2004; Rogers et al., 2004; Bush et al., 2002; Bechara et al., 1996,

1997, 2000), risk taking (Paulus et al., 2003a,b), ethical decision

making (Heekeren et al., 2003), moral judgments (Heekeren et al.,

2005; Moll et al., 2005), economic decisions (Sanfey et al., 2003),

monetary gains (Gehring and Willoughby, 2002), or personal

choice (Turk et al., 2004). An overview article by Krawczyk

(2002) on the neural basis of human decision making shows that

most research is done on the specific aspect of reward/punishment,

emotion, and environmental adaptiveness. Very few functional

imaging studies have investigated decision making as the process

of relating several independent sources of variance, i.e., in the

context of relational integration.

Functional magnetic resonance imaging (fMRI) studies have

used mainly gambling situations as decision tasks. As recent

research indicates, gambles omit relevant aspects of real-life

decision making, such as active risk management (Huber, 2002).

In order to get a better understanding of the complex neural network

of human decisional processes, one should meet two goals: (i) the

experimental situation ought to resemble real-life decision tasks

(Ford et al., 1989); (ii) decision making should be stripped down to

its bare essentials (Shadlen and Newsome, 1996).

The present study is a first attempt with a basic multi-attribute

decision task, in which alternatives are evaluated according to

several attributes. Uncertainty and risk could be introduced into a

multi-attribute task, but in its basic version, these aspects are not

involved. A typical example of such a multi-attribute task is the

decision situation of a person who wants to rent an apartment. The
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decision maker may take into account the location, the quietness,

the number of rooms, how luxurious the apartment is, the distance

to the person’s working place, whether there are shops and

restaurants nearby, etc. Different attributes usually carry different

importance or weight. If our decision maker is light sleeper,

quietness of the apartment would get a high weight, if not,

quietness may get only a small weight.

A multi-attribute decision situation can be represented by an

Alternative by Attribute matrix, with alternatives as columns and

attributes as rows. Table 1 shows the general scheme of such a

multi-attribute task as used in our study. In making a decision, the

decision maker usually combines her or his evaluations of the

aspects and the weights of the attributes to an overall decision.

Several theories have been developed to describe multi-attribute

decisions, for example, the additive utility model (Slovic et al.,

1977), simple heuristics (Payne et al., 1993; Rieskamp and

Hoffrage, 1999; Svenson, 1979), or elementary information

processing operators (Huber, 1989; Payne et al., 1993). In the

present study, details of these theoretical approaches are not

relevant.

We make the general assumption that the decision process

consists of the application of one or more decision heuristics (e.g.,

Lexicographic heuristic, Weighted Pros, cf. e.g., Huber, 1989;

Rieskamp and Hofrage, 1999; Svenson, 1979). A decision heuristic

consists of a sequence of subprocedures that can be modeled as

elementary cognitive operators. For example, the Lexicographic

Heuristic consists of the following subprocedures (for a more

detailed description in terms of elementary cognitive operators, see

Huber, 1989): (i) weighting the attributes and selecting the most

important one; (ii) evaluating and comparing the alternatives on

this most important attribute; (iii) choosing the alternative that is

better; and (iv) if no alternative is better, eliminating the most

important attribute and restarting at item (i).

Cognitive process models of decision making, involving

heuristics or elementary information processing operators, postu-

late at least two levels (or components) of the process: a process

level and a control level. We regard the distinction of these two

levels as being essential for the way decision making is reflected in

the brain’s activation pattern.

Process level

At this level, the subprocedures of the heuristic are

performed, for example: evaluation of the alternatives features,
Table 1

Examples of two multi-dimensional decision task as used in the present

study

Attribute Renting a flat Easy task Difficult task

Alt A Alt B Alt AV Alt BV

1 Price square meter (Euro/m2) 8 6.1 8 8.1

2 Size (in m2) 59 90 72 69

3 Distance to City Center

(minutes to walk)

30 11 20 21

4 Distance to public

transport (m)

310 300 450 155

5 Distance to work (km) 5.1 1.0 2 1.9

In each task, two alternatives are described on five attributes. It is assumed

that a lower price, the larger size, and the shorter distances are preferred. In

the easy task, alternatives A and B are dissimilar, whereas in the difficult

task, alternatives AVand BVare similar.
the weighting of attributes, but also the concatenation of aspects

(e.g., the amount of rent and the extras can be concatenated as

Fcosts_) or the trade-off of aspects (e.g., the higher rent of

apartment A is compensated for by its better location). At this

level, information search is also performed (e.g., what is the

size of apartment A).

Let us consider the involvement of the process level, when the

decision maker gets information about both alternatives sequen-

tially, for one attribute after the other. Thus, the decision maker

would acquire first information concerning aspects A1 and B1 (see

Table 1), next about aspects A2 and B2, and so on. The

subprocedures on the process level have to be activated for every

presented attribute, starting with the first two aspects till the whole

information is displayed.

Control level

This level constitutes a meta-level for the decision process. It

governs the activities on the process level. It selects a decision

heuristic and coordinates the subprocedures on the process level

when performing a heuristic. The selected heuristic determines how

the evaluations on different attributes are integrated. In the

Weighted-Pros heuristic, for example, the weights of the attributes

are relevant in the integration. The integration of the weights of

different attributes is performed by a subprocess within the heuristic.

The control level decides whether the alternative favored at the

moment is distinctly better than the others (e.g., Svenson, 1993) and

thus whether the decision process can be terminated or has to be

continued. For example, in a situation with several alternatives, first

a heuristic is used that enables a fast reduction of the set of

alternatives by inspecting only one or two attributes (e.g.,

lexicographic heuristic). When the set of alternatives has been

reduced to a short list, these alternatives are inspected in more detail

with the help, for example, of the FWeighted-Pros_ heuristic. There
are different assumptions about the control level, which the present

study will not dwell upon any further (Huber, 1989; Payne et al.,

1993; Svenson, 1993).

With respect to the temporal dynamics, the processes on the

control level should behave differently than the process level: in the

first information acquisition step, the control process should only be

activated weakly if at all because the decision maker knows that

more information is coming and that a final decision would be

premature. Furthermore, after inspecting the alternatives on the first

dimension(s), it may not yet be clear what heuristic is best. For

example, use of the FWeighted Pros_ Heuristic (e.g., alternative A is

better on dimension 1 and 2, but B is better on dimension 3) cannot

be considered until a preference conflict occurs. Furthermore, a

trade-off between dimensions cannot occur if only one dimension

has been inspected. Over time, with the presentation of additional

information, activation of the control process should increase until a

decision is finally reached.

Because of this, different temporal dynamics of the BOLD

response are expected in relation to the underlying processes: areas

related to the process level should show an early onset of the

hemodynamic response, with the BOLD signal steadily increasing.

On the other hand, areas related to the control level should show a

delayed signal increase. Further, response-related areas should

show signal changes only at the time the response is given.

We additionally hypothesize that the amount of neural

activation of the process level and control level should be related

to the difficulty of the decision task. Difficulty in the present study



Fig. 1. Mean reaction times for the four similarity levels (Easy, Medium1,

Medium2, Difficult) of the decisions averaged across all subjects and the

different settings. Reaction times increase with decreasing differences

between the two alternatives. **Indicates a P value of P � 0.001.
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is modulated via the similarity between alternatives: the more

similar the alternatives are, the more difficult it becomes to decide

between alternatives. It has been argued that similarity is the

primary determinant of the degree of difficulty associated with

decision making (Payne et al., 1993; Krawczyk, 2002). Consider

two decision situations, where the information in five attributes is

presented to the decision maker. In situation (a), alternative A is

distinctly better than alternative B in each of the attributes. In this

case, the control process can is taxed minimally, as the final choice

is obvious and remained unchallenged during the decision process.

Consider, in contrast, situation (b): here, in attribute D1, alternative

A is slightly better than B, in attribute D2, B is slightly better, in

attribute D3 both alternatives are equally good, in attribute D4

alternative B is slightly better than A, and in attribute D5, A is

slightly better than B. In this case, we expect a more elaborated

control process because none of the alternatives is unambiguously

better. The control process may have to meticulously compare the

attributes and their weights or come to the conclusion that more

information is needed. Thus, the more difficult a decision process

is, the greater the anticipated involvement of the process and

control levels will be. The measured BOLD response should

differentiate between the levels of similarity.

A comparable two-stage model for visual discrimination in the

rhesus monkey has been put forward by Shadlen and Newsome

(1996, 2001). (For an overview of an animal decision-making

model, see Reddi, 2001; Schall, 2002; Sakagami and Tsutsui,

1999; Kim and Shadlen, 1999). A recent fMRI study by Heekeren

et al. (2004) showed that this two-stage model also holds for

perceptual decision making in human subjects. The superior

parietal lobe, related to the integration of information (Prabhakaran

et al., 2000) and premotor structures (Heekeren et al., 2004) are

hypothesized to be involved to the process level of decision

making.

Several decision-making studies have described an involve-

ment of the dorsolateral prefrontal cortex (DLPFC) in process-

ing similarities and relational processing in decision making

(Prabhakaran et al., 1997). Inductive, open-ended processing

appears to be right lateralized, while explicit rule-based

processing tends to be left lateralized (Goel and Dolan, 2000;

Elliott and Dolan, 1998). As the present task is mainly based on

explicit contextual cues, a left lateralization in the DLPFC

activation is expected. Patient studies showed that lesions in the

prefrontal cortex result in planning deficits (Goel et al., 1997).

We hypothesize that regions in the prefrontal cortex are related

to the control level of decision making.

The present study aims at localizing those neural structures

involved in a more complex decision-making paradigm. We

implemented a simple multi-attribute decision-making task (see

Table 1), where subjects had to choose between two alternatives

described on five attributes. The similarity between the two

alternatives was varied systematically in order to achieve a

parametric variation of decisional effort. For easy trials, the two

alternatives differed significantly in several attributes whereas

for difficult trials, the two alternatives differed only in small

details. As mentioned above, for very different alternatives, the

choice is obvious, reliable, and fast. If the similarity of the

alternatives is high, the decision process becomes more difficult

and is suggested to take longer. Along with the changing onset

of the hemodynamic signal, this design allows to distinguish

between areas involved in the process level and the control

level of decision making.
Methods

Subjects

15 neurologically healthy subjects (7 female; mean age 26.6

years) were tested. Written consent from all subjects was obtained

prior to the scanning session. All subjects had normal or corrected-

to-normal vision and were native German speakers. None of the

subjects was taking medication at the time of the study. Subjects

were instructed prior to the actual experimental session. They were

given time to practice the task with its various conditions and the

key allocations. Once they felt comfortable with the task, subjects

were positioned supine in the scanner.

Task and paradigm

The subject’s task was to decide between two alternatives

described on five attributes (see Fig. 1). The alternatives were

presented in a 2 � 5 matrix. Four different topics (along with their

attributes) were used (see Table 2), all representing a familiar

decision setting for the subjects. The presentation order of the

attributes corresponded to their judged importance in order to

simulate the course of a natural decision situation (Aschenbrenner

et al., 1984). The attributes were always presented in the same

order beginning with the most important attribute.

At the beginning of each trial, a matrix was shown with the

generic terms of the relevant attributes, and the values of the first

attribute for the two alternatives were filled in. Every 3 s, the value

of one additional attribute was added consecutively. The informa-

tion remained on the screen until the end of each trial in order to

minimize working memory load. After 12 s, when all the values

had been shown, participants gave their choice for one of the two

alternatives. Subjects used their index and middle finger of the

right hand to indicate which of the two alternatives they preferred.

The independent variable was the similarity of the two

alternatives. In pilot studies, the importance of the attributes, as

well as each individual value for each attribute, were rated. Based

on the results of the pilot studies, pairs of alternatives were

generated on the basis of the criterion-dependent-choice model

(Aschenbrenner et al., 1984). In all trials, the two alternatives

differed only marginally on the first attribute. Thus, a choice after



Table 2

Four topics described on five attributes were used in the present study

Topic 5 Attributes

Renting a flat Price per square meter, size,

distance to city center, distance

to public transport, distance to work

Buying a

mobile phone

Price, max standby time,

rating by experts, size, weight

Buying a car Price, average petrol consumption,

annual car tax, technical test (TUV), mileage

Contract for a

mobile phone

Fee per month, call-charge per minute,

amount of free minutes, duration of

contract, price for contract

These topics were rated in pre-tests by potential subjects as highly familiar

situations. The attributes rated as the most important aspects for the specific

topic were chosen for the experimental setting.
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the presentation of the first attribute was not possible. In order to

achieve a parametric variation of difficulty, the trials were assigned

to four groups, based on the mean difficulty judgments of the pilot

studies (25, percentile-splitting). For the easy decisions (level 1),

the difference between alternatives was large, and a decision in

favor of one alternative could be made after the presentation of the

second or third attribute. For decisions with similarity level 2

(medium 1), the alternatives differed clearly, but only on attribute

four and five. For level 3 (medium 2), the differences on attribute

four and five were smaller. For difficult decisions (level 4), the

differences were small on all attributes. By this, four different

groups of trials with different similarity scores were generated. We

did not generate trials with conflicting alternatives, where for

example alternative A was clearly better on attribute 2 and

alternative B was clearly superior on attribute 3.

Each trial lasted 18 s. Four trials were presented for each

combination of the four level of similarity and four topics (16 trials

for each level of similarity, 16 trials of each topic), resulting in 64

trials were presented. 8 additional resting baselines of 18 s were

randomly introduced. A total number of 72 trials (21 min and 36 s)

were presented.

MRI scanning procedure

The experiment was carried out on a 3 T scanner (Siemens

TRIO, Erlangen, Germany). 22 axial slices (19.2 cm FOV, 64 by

64 matrix, 4 mm thickness, 1 mm spacing), parallel to the AC–PC

plane and covering the whole brain were acquired using a single

shot, gradient recalled EPI sequence (TR 2000 ms, TE 30 ms, 90-
flip angle). One functional run with 651 repetitions (648 time point

for the presentation of the task + 3 time point at the end) was run,

with each time point sampling over the 22 slices. Prior to the

functional runs, 22 anatomical T1-weighted MDEFT (Ugurbil et

al., 1993; Norris, 2000) images (data matrix 256 � 256, TR 1.3 s,

TE 10 ms) and 22 T1-weighted EPI images with the same spatial

orientation as the functional data were acquired.
fMRI data analysis

The fMRI data were processed with LIPSIA software (Loh-

mann et al., 2001). This software package contains tools for

preprocessing, registration, statistical evaluation, and presentation

of fMRI data. Functional data were motion-corrected offline with
the Siemens motion correction protocol (Siemens, Erlangen,

Germany). To correct for the temporal offset between the slices

acquired in one scan, a cubic-spline interpolation was applied. A

temporal highpass filter with a cutoff frequency of 1/144 Hz was

used for baseline correction of the signal, and a spatial Gaussian

filter with 5.65 mm FWHM was applied.

To align the functional data slices onto a 3D stereotactic

coordinate reference system, a rigid linear registration with six

degrees of freedom (3 rotational, 3 translational) was performed.

The rotational and translational parameters were acquired on the

basis of the MDEFT and EPI-T1 slices to achieve an optimal match

between these slices and the individual 3D reference data set. This

3D reference data set had been acquired for each subject during a

previous scanning session. The MDEFT volume data set with 160

slices and 1 mm slice thickness was standardized to the Talairach

stereotactic space (Talairach and Tournoux, 1988). The same

rotational and translational parameters were normalized, i.e.,

transformed by linear scaling to a standard size. The resulting

parameters were then used to transform the functional slices using

trilinear interpolation, so that the resulting functional slices were

aligned with the stereotactic coordinate system.

The statistical evaluation was based on a least squares estimation

using the general linear model for serially autocorrelated observa-

tions (see also Friston et al., 1995; Worsley and Friston, 1995;

Aguirre et al., 1997; Zarahn et al., 1997). The design matrix was

generated from a box-car function, convolved with a hemodynamic

response function (constructed by a gamma density function;

Glover, 1999), including the individual trials and the resting

baseline. An additional parameter for each trial was included,

representing the similarity level of each trial. For each level, the

mean reaction time (in seconds) of that level was used as parameter.

The model equation, including the observation data, the design

matrix and the error term, was convolved with a Gaussian kernel of

dispersion of 4 s FWHM to account for the temporal autocorrelation

(Worsley and Friston, 1995). In the following, beta-values were

estimated. As the individual functional datasets were all aligned to

the same stereotactic reference space, the single-participant contrast

images were then entered into a second-level random effects analysis

for each of the contrasts. The group analysis consisted of a one-

sample t test across the contrast images of all subjects that indicated

whether observed differences were significantly distinct from zero

(Holmes and Friston, 1998). Subsequently, t values were trans-

formed into Z scores.We correctedP values for multiple comparison

using the False Discovery Rate method (Genovese et al., 2002;

Benjamini and Hochberg, 1995; Benjamini and Yekutieli, 2001)

with at least P < 0.01.

Further, a time course analysis of the fMRI signal was

calculated. Trial-averaged time courses (stimulus onset locked)

for the resting baseline and the task conditions were extracted from

the preprocessed data on a voxel-by-voxel basis for each subject at

a sampling rate of 2 s. The resulting time course of the resting

baseline condition was subtracted from the time course of the task

condition in order to remove the decreasing signal from the

previous trial (Burock et al., 1998). From these time courses, three

parameters were extracted: (a) time-to-onset: marks the point along

the time course where the BOLD response starts rising steeply

from the baseline, (b) time-to-peak: marks the point where the

signal flattens out again, and (c) time-to-maximum: marks the

point where the signal reaches its maximum (for details, see

Neumann et al., 2003). Reliably determining onsets and peak

values in single subject data proofed to be difficult. By averaging



Table 3

Talairach coordinates, maximum Z value and volume (mm3) of the

significantly activated areas for the parametric contrast for similarity

between alternatives

Area Volume Z max Talairach

coordinates

L/R. presupplementary

motor area (BA 6)

1927 5.61 4, 11, 47

R. posterior medial

frontal cortex (BA 8)

308 4.68 7, 38, 38

R. anterior cingulate

cortex (BA24)

130 4.47 8, 17, 32
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single-subject time courses across subjects, only unique values for

onset, peak, and maximum can be extracted from the resulting

grand mean time course. Any information about the variability of

the extracted values within the group is lost. The jackknife

resampling procedure (Efron, 1981; Miller, 1974) provides an

elegant tool to create numerous averaged time courses for the

estimation of parameters (see Ruge et al., 2003). Each of the 15

subjects is excluded from the time course averaging once and the

parameters are extracted from the averaged time course. The

resulting 15 extracted parameters (each omitting a different

subject) can then be averaged and used for estimates of standard

errors.

L. inferior frontal junction area 597 4.43 �34, 2, 30

L. inferior frontal sulcus 127 4.32 �41, 20, 30

L. anterior inferior frontal sulcus 118 4.35 �37, 41, 6

R. inferior frontal sulcus 202 4.51 43, 26, 24

L. anterior insula 402 4.70 �26, 20, 0

L. intraparietal sulcus 790 4.65 �29, �55, 41

R. intraparietal sulcus 359 4.84 49, �52, 47

L. caudate 312 4.37 �10, 5, 6

We used corrected P values with the False Discovery Rate method of at

least P < 0.01 and reported activations had a minimal size of 81 mm3 (3

voxels).
Results

Behavioral results

Fig. 1 shows the averaged reaction times (RT) for the four

similarity levels of the decisions. A significant increase in RT was

elicited with increasing similarity of the two presented alternatives

(ANOVA with repeated measures; F(3/42) = 25.06; P < 0.001).

The RT of the Easy-Level is significantly different from the

Medium1-Level (paired t test; P = 0.001), and Medium2-Level

differed from the Difficult-Level (P < 0.001), but the Medium1-

Level did not significantly differ from the Medium2-Level (P =

0.498). These results indicate that the decisional effort becomes

greater with increasing similarity of the two alternatives and that

the manipulation of the similarity was successfully implemented.

Imaging results

Of primary interest were areas changing their activation

parametrically with the variation of the similarity of the two

alternatives. The parametric contrast showed a wide ranging

network reacting to increasing decisional effort. Fig. 2 and Table

3 report those areas whose level of activation was related

significantly to the similarity manipulation. Three regions along

the left inferior frontal sulcus (IFS) were significantly activated: the
Fig. 2. Activation maps of the parametric modulation of similarity between

the alternatives mapped onto an individual brain. Z values were thresholded

at z = 3.8, representing a False Discovery Rate of P < 0.01.
inferior frontal junction area (IFJ), the middle section of the IFS,

and the anterior part of the IFS (IFSa). In the right hemisphere, this

activation was less prominent and restricted to the middle IFS.

Another cluster of activations was found in the medial surface of

the prefrontal cortex, namely in the presupplementary motor area

(preSMA) bilaterally, in the posterior medial frontal cortex

(pMFC), and in the anterior cingulate cortex (ACC). The anterior

insula was activated in the left hemisphere only. Further, two

distinct regions in the left and right intraparietal sulcus and the left

caudate nucleus showed significant activations.

In order to classify the activated regions according to the

temporal dynamics, the underlying time courses were extracted and

analyzed (see Methods section). For the main activations reported

in Table 3, time-to-onset, time-to-peak, and time-to-max were

calculated and are reported in Table 4. All three parameters
Table 4

Time-to-onset, time-to-peak, and time-to-maximum values along with the

standard error of mean of the main activations reported in Table 3

Area Time-to-onset Time-to-peak Time-to-max

L. inferior frontal

junction area

2.6 (0.08) 6.7 (0.11) 9.8 (0.33)

L. intraparietal sulcus 2.9 (0.18) 10.0 (0.15) 12.0 (0.15)

L/R. presupplementary

motor area

4.9 (0.32) 13.9 (0.07) 16.0 (0.06)

L. inferior frontal sulcus 6.1 (0.17) 10.6 (0.16) 14.5 (0.13)

R. inferior frontal sulcus 6.3 (0.23) 12.4 (0.16) 12.6 (0.16)

R. intraparietal sulcus 7.6 (0.13) 12.7 (0.17) 16.0 (0.14)

R. posterior medial

frontal cortex (BA 8)

8.7 (0.46) 9.8 (0.43) 12.0 (0.55)

L. anterior inferior

frontal sulcus

8.9 (0.15) 11.9 (0.20) 14.1 (0.20)

L. anterior insula 9.5 (0.24) 12.3 (0.27) 14.3 (0.29)

L. caudate 11.3 (0.34) 14.2 (0.23) 16.4 (0.20)

R. anterior cingulate

cortex (BA24)

11.8 (0.27) 14.2 (0.22) 16.8 (0.15)

The regions are ordered by the time-to-onset value.
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estimated from the time courses varied significantly between

regions (ANOVA across regions; onset: P < 0.001; peak: P < 0.01;

max: P < 0.05). Some regions showed an early increase right from

the beginning of the trial (preSMA, IPS, and IFJ), whereas other

regions had a delayed signal increase (IFS, pMFC, ACC, anterior

insula, and caudate). Fig. 3 shows examples of the extracted time

courses for regions with early and late onsets. The left IPS,

preSMA, and the IFJ showed a signal increase right from the

beginning. The signal of the IPS and preSMA increased steadily,

reaching its maximum height after 12 s and 16 s, respectively It is

argued that regions showing a steady increase are related to the

integration of information, the process level of decision making.

Interestingly, the left IFJ showed an early signal increase but the

time-to-peak was reached after 7 s, and the signal remained

constant after that. The middle section of the IFS (bilaterally)

showed a delayed signal increase after 6 s. The pMFC, the IFSa,

and anterior insula displayed signal increases not before 8–10 s.

We consider those regions with a delayed onset to be related to the

control level of decision making. The ACC and the caudate

showed a signal increases only after 11 s, at the moment when the

last frame was presented. This indicates that these regions are

response related.
Fig. 3. Group-averaged time courses for 6 specific regions of interest.

The gray box indicates the duration of the task. The signal was

averaged for each of the 4 levels of similarity, and the resting baseline

was subtracted. The preSMA shows an example of an early onset and

steady increase, the IFJ left of an early onset and early saturation. The

anterior IFS (left and right) is an example for a delayed hemodynamic

response, and the anterior IFS and the ACC show a clearly delayed

hemodynamic response.
Discussion

The present findings demonstrate that our experimental task

required a distributed neural network in order to decide between

competing alternatives (see Fig. 2 and Table 3). The network is

predominantly located in the left hemisphere and incorporates

inferior frontolateral, parietal, and posterior medial frontal areas as

well as the anterior insula and the caudate nucleus. The dominance

of the left hemisphere is in accordance with findings of Goldberg

and Podell (1999, 2000) and Podell et al. (1995) who suggest a

hemispheric difference in the frontolateral cortex in relation to

similarity processing. Further, Goel and Dolan (2000) showed that

the left hemisphere is dominant in processing problems with

explicit contextual cues. But one also has to consider that the task

was described in a verbal domain, so that this lateralization my

result from the predominance of the left hemisphere in verbal

processing. Language processing is known to be lateralized to the

left hemisphere in most individuals (Binder and Price, 2001;

Bookheimer, 2002; Friederici, 2002). Because the nature of our

decision making paradigm was highly dependent on linguistic

reasoning, it may not be surprising that the results are also strongly

lateralized. However, effects of language processing do not differ

between the critical conditions in our experiment.

Within this network, areas can be differentiated according to the

temporal dynamics of the hemodynamic response: (i) regions with

early onset and steady increase, (ii) regions with early onset and

early saturation, and (iii) regions with late onset. Regions with

early onset and steady increase in signal intensity are the preSMA

and regions along the left IPS (see Fig. 2). One could assume that

the IPS and preSMA are constantly working on integrating the

attribute information and processing additional aspects of the two

alternatives and thus show a steadily increasing BOLD response.

We argue that these regions subserve the process level of decision

making. It has been shown previously (Goel and Grafman, 2000;

Smith et al., 1998) that the superior parietal lobe is involved in

decision making, related to the integration of unbound information

(Prabhakaran et al., 2000). A study by Heekeren et al. (2004)

showed that regions along the IPS, and additionally in the frontal

eye fields (SEF and FEF) showed greater activations with

increasing attentional demand. It appears that the preSMA

activation in the present study includes the area of the SEF.

A second group of regions exhibits a delayed onset of the

BOLD response. These regions include the left and right IFS, the

pMFC, the left insula, as well as the anterior IFS. We suggest that

these regions are related to the control level of decision making,

i.e., a level which is conceived of as subserving the control of

subprocesses. Since this process depends on the process level, it

starts when the two alternatives begin to differ. This process is

minimal at the beginning of each trial, as no differences occur. But

with ongoing trial duration, differences occur and have to be

evaluated for significance. This results in delayed signal increases.

This interpretation of inferior prefrontal activations is consistent

with findings by Paulus et al. (2004) who propose this region to be

related to the acquisition of advantageous actions or a moment-to-

moment model as proposed by Huettel et al. (2002). The activation

in the pMFC corresponds well with findings from Volz et al. (2003,

2004) who showed that this region reflects the degree of

uncertainty and is related to decision conflicts, which in the

present study increase with increasing similarity.

The anterior insula has been proposed on several occasion to be

related to decision making, i.e., in interactional games (Sanfey et
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al., 2003), reward contingencies (O’Doherty et al., 2003), or risk-

taking aspects and harm avoidance (Paulus et al., 2003b).

Activation in the anterior insula has also been associated with

several other functions like speech motor control (Ackermann and

Riecker, 2004), feeling disgust (Wicker et al., 2003), autonomic

arousal (Decety et al., 2004), uncertainty (Volz et al., 2003),

cognitive paradigms like the Stroop task (Zysset et al., 2001), or

task switching (Derrfuss et al., 2004). The anterior insula appears

to be related to risk taking not only in decision making but

subserves general processes which are also essential in decision

making. In general, the anterior insula may provide a Fgut_ feeling
aid in the control level of decision making (Paulus et al., 2005)

which may be mediated by autonomic states.

A third characteristic time course of the signal could be

observed in the left IFJ. Here, the BOLD signal had an early onset

but saturated after 6 s. It could be argued that the IFJ is activated

from trial onset; however, this initial change in signal is seen only

for a short period of time after each presentation of an additional

attribute. Hence, the IFJ is not continuously integrating the

presented information as the IPS. If the IFJ region had been

constantly activated, the signal would have steadily increased, and

the signal change would have saturated 15–20 s after onset

(Boynton et al., 1996). In the present case, the signal saturates at a

much earlier point in time and remains constant afterwards. This

result is in accordance with previous studies showing that the IFJ is

essential for the activation of task representations, and the

presentation of every new attribute makes it necessary to re-initiate

the task sets (Brass et al., 2005; Derrfuss et al., 2004; Brass and

von Cramon, 2002, 2004).

This dissociation between two levels in decision making

(process and control level) corresponds to the model put forward

by Shadlen and Newsome (1996, 2001). Their studies with

monkeys revealed a first level of information integration and a

second stage of information interpretation. These stages were also

found for perceptual decision making in human subjects (Heekeren

et al., 2004). In the present study, the employed task is based on

more complex cognitive processes compared to the perceptual

categorization task. We were able to show that corresponding areas

in the supplementary motor area and the IPS appear to play an

essential role in integrating the perceived information.

Further, the information interpretation appears to be centered in

the inferior lateral and medial frontal cortex, and prominent

activations were found in the anterior cingulate cortex (the rostral

cingulate zone; RCZ) and the left caudate. The RCZ has been

reported to be relevant in sorting among conflicting options

(Krawczyk, 2002; Ullsperger and von Cramon, 2004). As the time

courses revealed, these regions were activated very late, at the time

of the actual response. This supports the view that the RCZ is

response related and involved in post-decisional processes.

The task used in the present study will allow a wide range of

variations to differentiate the involved subprocesses more precise-

ly. For example, if the subject is able to terminate each trial as soon

as a decision is reached, the timing of the control level can be

further differentiated. The introduction of conflicting alternatives

or knock-out attributes allows to differentiate between the

implementation of different heuristics. The variation of the

presentation rate of the attributes, as well as using more than two

alternatives, will help to resolve further the interaction of the

process and control level and other subprocesses related to decision

making. The task allows the introduction of uncertainty, ambiguity,

missing information as well as reward, and by this the investigation
of additional processes not tabbed in the presently used version.

We see the present study as a first step in establishing this

behavioral paradigm in the neuroimaging setup. The complexity of

the task might be a limitation for the interpretation of the

underlying processes but a necessary one when modeling more

realistic decision-making situations. Further studies with the multi-

attribute decision task will allow to distinguish more subtle

processes related to decision making.
Conclusion

In summary, the current investigation showed that a distributed

neural network is involved in solving a rather simple decision-

making task. This network includes the left and right frontolateral

cortex, the superior parietal lobe, the posterior medial frontal

cortex, the anterior insula, as well as the caudate nucleus. Whereas

the parietal lobe and preSMA are suggested to be related to the

integration of information (process level), the lateral prefrontal

cortex and the posterior medial frontal cortex are related to the

interpretation of this integrated information (control level). This

study is a first step in investigating decision making at a more

complex level using a more complex but also more realistic task. It

proposes a model, as well as a method, to investigate decision

making at a more realistic level.
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