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142 Seiten, 15 Abbildungen, 356 bibliographische Referenzen

In der vorliegenden Arbeit wurde die Beteiligung subkortikaler Strukturen
wie der Basalganglien bei syntaktischer, lexikalisch-semantischer und emotional
prosodischer Verarbeitung mit Hilfe ereigniskorrelierter Potentiale (EKP) und funk-
tioneller Magnetresonanztomographie (fMRT) untersucht. Die zentrale Frage, die
innerhalb der Untersuchungsreihe im Vordergrund stand, war, ob die Beteiligung
der Basalganglien bei der Wahrnehmung sprachlicher Subprozessen funktionsspezi-
fisch ist oder eher generelle kognitive Prozesse reflektiert (z. B. Aufmerksamkeit).

Patienten mit Hirnschidigung der Basalganglien, Parkinson Patienten sowie
Alterskontrollen stellten die primdre Untersuchungsstichprobe bei den EKP-
Untersuchungen dar. Probanden, die an funktionellen Kernspinuntersuchungen teil-
nahmen, waren Studenten der Universitit Leipzig. Experimente zur syntaktischen
Verarbeitung basierten auf syntaktischen Strukturen, die in ihrer Komplexitét
variierten. Neben Phrasenstrukturen wurden auch Morphosyntax und Verbargu-
mentstrukturen in einem Verletzungsparadigma getestet. Die Ergebnisse zeigen,
dass eine sprachspezifische Komponente, die P600, die mit Reanalyse syntaktischer
Strukturen zusammenhéngt, bei Patienten mit Hirnschiddigungen der Basalganglien
reduziert ist oder ausfillt.

In einem weiteren Schritt wurde nachgewiesen, dass dieses Defizit ein
sprachspezifisches Defizit sein kann, da im direkten Vergleich mit einem nicht-
sprachlichen = Aufmerksamkeitsparadigma Basalganglienpatienten eine ver-
gleichbare Hirnreaktion auf Erwartungsverletzungen zeigten wie Alterskontrollen.
Untersuchungen zur lexikalisch- semantischer Verarbeitung in den beiden Patien-
tengruppen deuten an, dass die zeitliche Verarbeitung dieser Information im Ver-
gleich zu Alterskontrollen betroffen ist, jedoch im Vergleich zu syntaktischen Pro-
zessen weniger stark betroffen zu sein scheint.

Die Tatsache, dass die Basalganglien auch in Aktivierungsstudien bei lexi-
kalisch-semantischer und emotional prosodischer Verarbeitung aktiviert werden,
legt die Schlussfolgerung nahe, dass diese Gehirnstruktur bei auditiver sprachlicher
Verarbeitung eine entscheidende Rolle spielt. Zu klédren bleibt, ob die bislang unter-



schiedlichen Beeintrichtigungen bei der Verarbeitung syntaktischer und lexikalisch-
semantischer Verarbeitung in den Patientenstichproben qualitativer oder quantita-
tiver Natur sind.
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Introduction






| Introduction

In a recent review, Saint-Cyr (2003) pointed out that a functional specification of
the basal ganglia in the motor and non-motor domains remains difficult. One of the
main reasons is that subcortical functions cannot really be understood isolated from
cortical functions. While the connectivity to frontal areas has been extensively in-
vestigated in primate studies (e.g., Wise, Murray & Gerfen, 1996) there has been
paucity to investigate the basal ganglia and their connectivity to other cortical areas
such as the temporal cortex (but see Yeterian & Pandya, 1998). Furthermore, the
investigations exploring possible connections between the basal ganglia and the
temporal cortex have been limited to the visual domain, in particular to the visual
circuitry connecting the basal ganglia to area TE in the inferior temporal cortex (see
Middleton & Strick, 2000). Thus, while the main focus of the current thesis will be
on the structural and functional differentiation of the basal ganglia, a framework for
further research will be proposed. This framework consists of a model on auditory
input and output connections between the basal ganglia and the superior and middle
temporal cortex. The model is based on non-human primate investigations as well
as a small set of functional imaging evidence, and specifically, it describes cortico-
subcortical input and subcortical-cortical output connections that provide the
groundwork for understanding the role of the basal ganglia in auditory language
processing. In addition, cortico-cortical connections between the left rostral superior
temporal gyrus (STG)/superior temporal sulcus (STS) and left inferior frontal brain
areas are considered as part of a network engaged in auditory language processing.
To this end, I will present in this thesis a more extended model for auditory lan-
guage processing based on non-human primate evidence, human imaging evidence,
and by my own event-related potential (ERP) and functional magnetic resonance
imaging (fMRI) investigations of different language processes (syntactic, lexical-
semantic, and emotional prosodic) in the auditory modality in both healthy and
brain-damaged populations.

In the following chapter (Chapter II), particular focus will be given to the
basal ganglia and associated structures. An extensive overview on the structure,
connectivity, neurochemistry, and diverse function of the basal ganglia system (BG)
will be presented. Chapter III provides a distinction between non-language and lan-
guage functions of the basal ganglia. Chapter IV introduces the methods (behav-
ioural lesion, ERPs, and fMRI) applied in the current investigations of the basal
ganglia. In order to understand the critical role of the basal ganglia and their con-
nections in auditory language processing, the use of lesion studies presents a first
attempt to understand the structure-function relationship underlying this cognitive
function. Thus, specific focus in Chapter IV will be given to the introduction of the
lesion technique and critical data supporting the basal ganglia function in auditory

11



12 Chapter 1. Introduction

language processing. With the help of ERPs, specific language processes (phonol-
ogy, lexical-semantics, syntax, and prosody) can be investigated online in a milli-
second time range allowing the separation of language sub-processes. In relation to
this, Chapter IV4 will also provide a brief methodological description as well as a
description of ERP components correlated with specific language processes. Last,
the fMRI method is introduced in Chapter IV as a tool to investigate the neural
functional underpinnings of the basal ganglia during auditory processing in healthy
participants.

Chapter V summarises my own work. A series of experiments that substanti-
ate the role of the basal ganglia in auditory language processing will be presented
and discussed. Chapter VI presents an attempt to correlate auditory language proc-
esses within a cortico-subcortical auditory network and provides an outlook on fur-
ther research to substantiate the proposed model.
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II Basal ganglia and associated structures

2.1 The BG system

Let me begin with a description of the basal ganglia and their associated structures
that form the basal ganglia system. With the application of modern anatomical trac-
ing techniques and fine-grained physiological analysis starting in the mid 1970s, a
better understanding of the cortical afferents of the basal ganglia has been pursued.
However, only recently investigations of projections via the thalamus back to the
cortex were successful in identifying subcortical efferents. Using markers via neuro-
trophic viri, Middleton & Strick (2000) reported a differentiation of efferents from
the dorsal pallidum to the dorsolateral prefrontal cortex and the ventral pallidum to
the motor cortex. Such differentiation not only allows the segregation of parallel
circuits, but also specifies the functional role of the basal ganglia supporting both
motor and non-motor functions. However, before discussing the current state of
functionally diverse circuitries, I will provide a structural description of the basal
ganglia and functionally associated areas.

The basal ganglia comprise a grey matter subcortical structure positioned
deep within the telencephalon region of the brain and consist of the corpus striatum
(striped body) and the pallidum. More specifically, Parent (1986) described the dor-
sal striatum (caudate nucleus, putamen), the ventral striatum (nucleus accumbens
and part of the olfactory tubercle), and pallidum as the core structures. The substan-
tia nigra consisting of the pars compacta (rich in dopamine) and the pars reticulata
(low in dopamine), the subthalamic nucleus (STN), the ventral anterior (VA) nu-
cleus, the ventrolateral nucleus (VL), and the centromedial nucleus of the thalamus
have a strong functional connection to the basal ganglia, were not always viewed as
part of the basal ganglia structure. They have been termed associated structures.
Together, the core and associated structures are now viewed as the basal ganglia
system (see Figure 2-1). More recently, Parent & Hazrati (1995a, 1995b) further
specified the intrinsic organisation of the basal ganglia into a “main axis” including
the striatum, pallidum, and substantia nigra. As “control structures”, the authors de-
scribed the subthalamic nucleus together with the pars compacta of the substantia
nigra, the centro median/parafascicular thalamic complex, dorsal raphe and the pe-
dunculopontine modulation (Parent & Hazrati, 1995b).

15



16 Chapter Il. Basal ganglia and associated structures
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Figure 2-1. The basal ganglia system (adapted from Parent, 1986).

The caudate nucleus is divided into head (caput), body (corpus) and tail
(cauda). The head forms a convexity into the anterior horn of the lateral ventricle.
The body forms the lateral wall of the body of the lateral ventricle, and the tail
curves and lies in the roof of the inferior temporal horn of the lateral ventricle. The
putamen is separated from the caudate nucleus by the anterior limb called the cap-
sula interna. Together, the caudate nucleus and putamen form the corpus striatum.
The corpus striatum contains two types of neurons: spiny neurons (projection) that
constitute almost all of the striatal neurones (90%) and consist of GABA, taurine
and neuropeptides; and aspiny neurones (interneurones; see Houk, 1995). Aspiny
neurones can be either large or small. The large neurones contain acetylcholine,
while the small neurones contain GABA. Due to the acetylcholinesterase of the neu-
rones, the striatum is divided into weakly reactive patches called striosomes and in-
terspersed with strongly reactive patches called matrix. The two patch types differ
in their input, output, neurotransmitters, and neuromodulators (e.g., immunohisto-
chemical distribution of several markers including acetyl cholinesterase, enkepha-
lin, substance P, dopamine, opiate receptors and calcium-binding protein (e.g. Ger-
fen, 1988, 1992; Graybiel, 1990). Furthermore the patches are viewed as the com-
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partmental rather than the functional organisational principle of the striatum (see
Graybiel, 1995).

The pallidum is a structure between the putamen and posterior limb of the in-
ternal capsule. The pallidum includes the internal segment of the globus pallidus
(GP1i), the external segment of the globus pallidus (GPe), and the substantia nigra
pars reticulata (SNr) that project back to the cerebral cortex via specific thalamic
nuclei. While anatomically close, the globus pallidus and the putamen are function-
ally different (e.g., Wise et al., 1996; Haber, 2003). The caudate nucleus and the pu-
tamen are considered to be input nuclei, while the globus pallidus is thought to be
an output nucleus. All three nuclei lie below the insula. They are separated from the
grey matter of the insula by the extreme capsula, the claustrum, and the external
capsula. GPi and the SNr are morphologically and chemically similar. Most of their
neurones are multipolar projection neurones that contain GABA. Interneurons are
rare in these structures.

The substantia nigra (SN) is an elongated nucleus positioned medial to the
basis pedunculi throughout the rostrocaudal extent of the midbrain. As a component
of the brainstem, it is considered to be part of the basal ganglia system due to its re-
ciprocal connections with the basal ganglia. There are two functionally and neuro-
chemically distinct parts to the SN: the pars reticulata whose neurones use GABA
and project primarily to the thalamus (ventral anterior, ventral lateral, and dorsome-
dial nuclei) and the brain stem (superior colliculus, pedunculopontine nucleus). The
SNr also receives striatal input via GABA (and substance P) that is inhibitory. The
second part of the SN is the pars compacta (SN¢) whose neurones take up dopa-
mine and project primarily to the neostriatum.

The pedunculopontine tegmental nucleus (PPTg) is a mesopontine nucleus
that lies in close association to the ascending limb of the superior cerebella peduncle
bordering the substantia nigra interiorly, the parabrachial nucleus posteriorly, the
cuneiform and deep mesencephalic nuclei dorsally, and the pontine reticular nucleus
ventrally (see Canteras, Simerly & Swanson, 1992). The structure has been associ-
ated with a variety of functions that cannot be easily reconciled, though two func-
tions have been identified. First, the structure is confirmed as an outflow receptor of
the basal ganglia for motor output and as an outflow receptor of the ventral-striatal-
ventral pallidal axis for reinforcement and incentive-motivation (Inglis & Winn,
1995), thus potentially creating a neural interface between the limbic and the motor
system (Olmstead, Munn, Franklin & Wise, 1998). Second, the PPTg seems to
function as a “subsidiary”, returning information to sites of striatal input (substantia
nigra) and striatal output (thalamus; Ingles & Winn, 1995).

The nucleus accumbens (NAcc) together with the olfactory tubercle is de-
scribed as a medial extension of caudate-putamen. The nucleus accumbens is also
known as the ventral striatum and divided into a “core” and a “shell” part that is cy-
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toarchitectonically, physiologically, and pharmacologically distinct in the rat and
primate brain. The core resembles the caudate-putamen (see review of Joel &
Weiner, 1999). The NAcc is a recipient of limbic (hippocampus and amygdalar) in-
puts (MacLean, 1990) and through its projections to the ventral pallidum and sub-
stantia nigra, it is often regarded as the key motor-limbic interface (Morgenstern et
al., 1980). The NAcc is also related to the limbic parts of the forebrain (the median
forebrain bundle, anterior cingulated gyrus). While the amygdala is not classified as
part of the basal ganglia system, it is attached to the tail of the caudate nucleus and
is considered part of the limbic system. Caudate, putamen, and globus pallidus are
sometimes referred to as neostriatum, while nucleus accumbens, olfactory tubercle,
and ventral pallidum are called paleostriatum. The subthalamic nucleus is a subcor-
tical nucleus that comprises the extrapyramidal system. It is located between the
cerebral peduncle and the thalamus and looks like a biconvex lense.

2.2 Morphometry of the BG

Quantitative brain morphometry has been used as a descriptor of the organizational
principles of the brain and has been applied mainly to cortical structures. However,
its application to subcortical structures such as the basal ganglia has been sparse and
mainly realised by subtractions from cortical volume. Two representations of brain
structure exist to date: surface representation as a spatial mapping dimension for
functional processing in a structure; and volumetric representation, which may re-
flect global constraints on neural proliferation, cell density, and number of neurons
(see Caviness, Kennedy, Bates & Makris, 1996). Two studies by Allen and col-
leagues (Allen, Damasio & Grabowski, 2002, 2003) as well as others (see refer-
ences linked to particular morphometric aspects below) describe that: (1) the ana-
tomical landmarks of the basal ganglia can be easily identified on coronal slices of
the brain; (2) the total volume of the basal ganglia along with the thalamus is
equivalent to about 5% volume of the frontal and parietal lobes; (3) while not spe-
cifically discussed, basal ganglia volume may be larger in men than women; (4)
basal ganglia G/W ratio (grey/white matter ratio), in contrast, may be higher in
women than men (Allen et al., 2003); (5) subregions of the basal ganglia such as the
globus pallidus and lentiform nucleus show a consistent leftward asymmetry (Raz,
Torres & Acker, 1995) and the putamen a rightward asymmetry (Husain, McDon-
ald, Doraiswamy, Figiel, Na, Escalona, Boyko, Nemeroff & Krishnan, 1992); (6)
the subthalamic nucleus (STN) and the globus pallidus internus (GPi) reveal a high
degree of individual variability with men, showing a stronger lateral localization of
the STN and GPi than women (Zhu, Hamel, Schrader, Weinert, Hedderich, Herzog,
Volkmann, Deuschl, Miiller & Mehdorn, 2002); and (7) loss of neurons in the pu-
tamen and caudate nucleus and volume reduction of the caudate and lentiform nu-
clei are age-dependent.
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2.3 BG pathways and their neurochemical regulations

As described above, a diversity of neurotransmitters and neuropeptides can be
traced in the basal ganglia. Within the basal ganglia nuclei, GABA, a y-
aminobutyric acid, plays a central role as the neurotransmitter of most striatal neu-
rones. As an inhibitory transmitter, GABA regulates inhibitory connections between
the corpus striatum and the pallidum, between the pallidum and the subthalamic nu-
cleus, and between the pallidum and the nuclei of the thalamus. Glutamate, as an
excitatory neurotransmitter, regulates external projections from cortical areas and
the subthalamic nucleus. Consequently, glutamate initiates inhibitory GABA reac-
tions in the striatum via its release in cortical areas. A mixture of GABA and di-
verse neuropeptides determines the activation of the direct or indirect pathway. For
example, a mixture of GABA and substance P (high concentrations in the medial
segment of the globus pallidus and the caudate nucleus) and Dynorphine activates
the direct pathway from the GPi to the thalamic nuclei. In contrast, a combination of
GABA and Enkephaline projects via the indirect pathway (GPe, subthalamic nu-
cleus) to the thalamic nuclei.

Two major pathway — the direct and indirect — traverse through the basal
ganglia (see Figure 2-2). The direct pathway is inhibitory in nature and projects
monosynaptically from the putamen to functionally specific regions of the GPi and
the SNr. This is the release of the inkhibitory GABA in the striatum after excitatory
glutamate projections from the cortex causes inhibition. The indirect pathway is
both inhibitory and excitatory. Projections from the putamen to the GPe and from
the GPe to the subthalamic nucleus are inhibitory, while projections to the Gpe and
SNr are excitatory. Diverse indirect pathways are initiated via GPe inhibition as a
result of GABA release in the striatum. For example, the disinhibition of the subtha-
lamic nucleus results in the release of excitatory glutamate in GPi, which in turn re-
lease GABA from the GPi to the thalamic nuclei, causing thalamic inhibition.
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Figure 2-2. A schematic illustration of direct and indirect basal ganglia pathways (adapted
from Wichmann & DeLong, 1996).

Both the ventral and dorsal portions of the corpus striatum receive strong
glutaminergic (excitatory/+) input from the cortex and project gabaergic (inhibi-
tory/-) neurones to thalamic nuclei. Here, the two main pathways are also direct or
indirect. The direct pathway consists of gabaergic neurones that engage the GPi and
the SNr as relay stations. The indirect pathway modulates two gabaergic projec-
tions, one to the GPe and from the GPe to the subthalamic nucleus. From there the
neuronal chain is continued to the GPi by means of glutaminergic neurones and
from the GPi via gabaergic projection to the thalamus. These two types of neural
regulations render the direct pathway as an excitatory and the indirect pathway as an
inhibitory input to the thalamus from the striatum. Projections from the thalamus to
the cortex are glutaminergic.

In addition to the GABA, Dopamine (DA) is another prominent neurotrans-
mitter in the basal ganglia. Different subclasses of dopaminergic receptors, D1 and
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D2, are associated with the direct and indirect pathways that regulate motor behav-
iour. DA is found in the substantia nigra, from which it is projected to the dorsal
striatum (nigro-striatal pathway). DA is also found in the mesolimbic pathway that
projects from the ventral tegmental area to the nucleus accumbens, olfactory tuber-
cle, amygdala, septal areas, and the prefrontal cortex. Other dopaminergic neurones,
which are less numerous, are found in the hypothalamus (hypothalamus-hypophysis
circuitry), in the retina (amacrine cells), in local circuits of the olfactory tubercle,
and in the corpi quadrigemini projecting to the hypothalamus.

2.4 BG connectivity

2.4.1 Cortical and subcortical input structures

In order to understand the connectivity between the basal ganglia system and the
cortex, one needs to differentiate between input and output sites and mechanisms.
Three major sites have been identified as input structures: almost all of the cerebral
cortex, the thalamus, and the mesencephalic dopamine sites. Identified output struc-
tures include GP, SNr, and the ventral pallidum. In the following, both input and
output structures will be defined individually.

Cortico-striatal projections originate from most cortical areas and reach the
neostriatum in two ways: (1) directly via the internal and external capsule and the
subcallosal fasciculus; or (2) indirectly through the thalamus or as collaterals of cor-
tical projections to the pons and medulla. Another input structure is comprised of
the centromedian and parafascicular nuclei of the thalamus. While the centro-
medial nucleus mainly projects to functionally specific territories in the putamen,
the parafasciculus projects to the caudate and the ventral striatum. Principal mesen-
cephalic (dopamine) projections to the striatum come from the SNc. Dopamine fa-
cilitates striatal projections to the GPi and inhibits projections to the GPe.

2.4.2 Output structures within the BG system

The following subcortical output structures receive input from other subcortical
structures: projections of the neostriatum; the subthalamic nucleus; the GPe and
GPi; and SNr and the ventral pallidum. GP also receives projections from the puta-
men, while the SNr receives fibres from the caudate nucleus.

The GPi and the SNr utilise two pathways to project to the VA, VL, and dor-
somedial nuclei of the thalamus, the ansa lenticularis and the lenticular fasciculus.
Between the subthalamic nucleus and the GPe, there is a reciprocal connection. The
subthalamic nucleus receives its main input from the cortex (BA 4 and BA 6), the
GPe, the thalamus, and from the reticular formation and outputs to both GP com-
partments and the SNr.
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The ventral striatum receives input from the hippocampus, amygdala, cingu-
late gyrus, temporal cortex, and orbitofrontal cortex. The output direction of this
structure is the ventral pallidum, which in turn sends axons to the dorsomedial tha-
lamic nucleus that has strong prefrontal interconnections.

2.4.3 Organisation of cortico-striato-thalamo-cortical loops

Several anatomical models describing the nature of the connections between the
basal ganglia and cortical areas have emerged in recent years. Through the devel-
opment and use of refined tracer techniques in animal models, it has been estab-
lished that the cortico-subcortical-thalamo-cortical connections are highly topog-
raphic. However, dispute persists as to whether the cortical input to the basal gan-
glia is convergent or open, i.e., more than one cortical area can project to a given
region within the corpus striatum (Graybiel & Kimura, 1995), or whether there is a
closed loop, i.e., one topographically mapping cortical area connects to one particu-
lar region in the corpus striatum (Alexander, DeLong & Strick, 1986; Strick, Dum
& Picard, 1995). In addition, the number of loops and their corresponding func-
tional specificity (e.g., cognitive, emotional) has vastly expanded, and other cortico-
subcortical loops besides the classical fronto-striatal motor loop have been de-
scribed (e.g., Middleton & Strick, 1996, 2000). Last, in an attempt to map clinically
complex symptoms that do not fit a simple closed loop model of the basal ganglia
circuitry, work by Joel and Weiner (1994, 1997, 2000) has introduced the combined
open and closed circuitry model called split circuitry. In the following these models
will be described and discussed.

In their seminal work, Alexander and colleagues (1986) described five basal
ganglia-thalamo-cortical connections with parallel organisation. These include mo-
tor, oculomotor, dorso-lateral prefrontal, lateral orbito-frontal, and limbic circuitry.
The motor circuit originates in the supplementary motor area and the oculomotor
circuit in the frontal eye fields, while the three prefrontal circuits project from the
dorso-lateral, orbito-frontal cortex and the anterior cingulate. Each circuit is de-
scribed as functionally segregated and has no interaction with the other circuits
(Alexander & Crutcher, 1990), thus creating five closed circuitries. The five circuit
model was refined and revised by Parent and Hazrati (1995a, 1995b) who postu-
lated that only three functional regions within the basal ganglia system project back
to cortical sites that functionally and topographically map the striatal output region.
They described a sensorimotor area in the putamen projecting back to motor corti-
ces (primary motor cortex, SMA, premotor cortex), an associative or cognitive area
in the dorsal caudate nucleus projecting to the prefrontal cortex, and a limbic or
emotional area in the ventral striatum projecting to the anterior cingulate cortex and
medial orbito-frontal cortices.
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Middelton and Strick (1996, 2000, 2001) following the concept of closed cir-
cuitry functionally specified a multiple closed loop model with cortical sites as af-
ferents and efferents from and to topographically mapping areas in the corpus stria-
tum. They extended the number of loops originally described by Alexander and col-
leagues by describing the following: a total of seven skeletomotor loops; up to three
oculomotor loops; a dorso-lateral prefrontal loop with specified cortical areas (dor-
sal 46, ventral 46, medial 9, lateral 9, dorsal 10) receiving output from four subcor-
tical channels; a lateral orbito-frontal loop (SN output only to lateral 12 and orbital
12); a medial orbito-frontal loop (projections from area 13 to ventro-medial caudate
and ventral striatum); anterior cingulate loops (input areas 24, 24a, and 24b on cin-
gulate gyrus and 24c on ventral bank, fundus of anterior portion of cingulate sul-
cus); and finally, infero-temporal/posterior parietal loops. The latter loops are inter-
esting for two reasons. First, they are considered to be part of the basal ganglia input
system, but not as cortical output targets of the basal ganglia. Second, they establish
that cortical areas besides the frontal lobe utilise basal ganglia circuitry. Initially, it
was assumed that these cortical areas use the basal ganglia system simply to influ-
ence executive functions in the frontal lobe. However, Middleton and Strick (1996)
were able to show with viral tracing that the inferio-temporal area TE is targeted by
projections from SNr via the VAmc of the thalamus.

Middelton and Strick (2000) concluded that the output of the basal ganglia
system could influence a vast range of behaviour via projections to multiple cortical
sites. This in turn could explain how widespread damage to the basal ganglia can
produce a broad array of motor, cognitive, limbic, and sensory dysfunction. How-
ever, one major drawback of the closed loop models as described above is that cor-
tical and subcortical dysfunction (under the assumption of topographic mapping be-
tween cortical and subcortical sites) does not always result in the same type of dys-
function. Furthermore, taking Parkinson’s disease (PD) as a model of dysfunction,
there are often reports of multiple deficits that cannot be explained under the as-
sumption of closed circuitry.

Recently, including an open loop concept has extended the concept of paral-
lel closed cortico-striato-thalamo-cortical circuitry. Open loops allow striatal projec-
tions to a cortical area that does not project to the corpus striatum itself, and open
loops also support communication between closed circuitry. In the work of Joel and
Weiner (1994, 1997, 2001; see Figure 2-3) a combination of open and closed cir-
cuitry is described as split circuitry. Such a split circuit contains one fronto-cortical-
striatal pathway and two striato-fronto-cortical pathways passing through the basal
ganglia output nuclei and the thalamus. One of the striato-fronto-cortical pathways
returns to the original fronto-cortical region (closed loop), while the second ends in
a different fronto-cortical region where it may connect to a different circuit (open
loop). The authors described the associative circuit consisting of a closed loop (as-
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sociative striatum, SNr, the VA and MD thalamic nuclei, and associative prefrontal
cortex) and an open associative loop (associative striatum, associative region of
GPi, VA thalamic nucleus, and premotor cortex to the motor cortex). Similarly, the
motor circuit contains a closed motor circuit (motor striatum, motor GPi, the VA
thalamic nucleus, premotor and primary motor cortex, and supplementary motor
cortex) and an open motor circuit (motor striatal projections to the SNr, motor pre-
frontal cortex). The limbic circuit contains a closed limbic circuit (limbic striatum
including ventral caudate and putamen, ventral or limbic pallidum, MD thalamic
nucleus, limbic orbitofrontal cortex, anterior cingulate, and limbic prefrontal cortex)
and the open limbic circuit (limbic striatal projections to the SNr, associative pre-
frontal cortex). The split circuitry adheres to the principle of direct and indirect
pathways. Two types of indirect pathways are described: a closed indirect pathway
ending in the same GPi/SNr subregion as the direct pathway and an open indirect
pathway that terminates in a different GPi/SNr subregion. Thus all three-split sys-
tems (motor, associative, and limbic) are interconnected via their open pathways or
routes. Split circuitry may explain why damage to one station in a closed loop may
result in selective motor, cognitive, and emotional behavioural symptoms, i.e., simi-
lar symptoms that may result from damage to either topographically mapping corti-
cal or subcortical sites. However, split circuitry also allows one to explain combina-
tions of motor, cognitive, and emotional symptoms as a result of damage to a station
in an open loop.
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Figure 2-3. Diagram summarising the structural organisation of the motor, associative,
and limbic split circuits. Abbreviations stand for: MD (medio-dorsal thalamic nucleus);
VA (ventral anterior thalamic nucleus, dc = dencicellular subdivision; pc = parvicellular
subdivision); GPe (globus pallidus external segment); STN (subthalamic nucleus); VP

(ventral pallidum); and SNr (substantia nigra pars reticularis; adapted from Joel &
Weiner, 1997).
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As has become apparent in the previous chapters, the basal ganglia play a most
prominent role in the motor domain. However, based on the multitude of circuitries
that have been described in the non-human primate literature and in the neuropsy-
chological literature on Parkinson’s and Huntington’s diseases, non-motor functions
have also entered the limelight.

One major assumption about the functionality of the basal ganglia is that due
to the parallel and circular organisation of circuitries, the basal ganglia are involved
in the reconfiguration of cortical activation patterns. That is, they collect cortical in-
formation, funnel it, and then converge it at cortical output areas through the ener-
vation of thalamic nuclei (e.g. Kemp & Powell, 1971). Why the basal ganglia are
involved in such reconfiguration and whether this procedure is domain-specific or -
general is still unclear.

Saint-Cyr (2003) addressed the status of domain specificity in the following
way: “Basal ganglia efferents provide the cortex with an attentional and domain
specific focus in preparation of action, and also instruct the evolving behavioural
pattern according to the outcome”. From this statement one can conclude that the
basal ganglia may establish, monitor, and readjust domain- specific behaviour ac-
cording to variable input and environments. Saint-Cyr bolsters this statement by re-
porting both primate and neuropsychological results that provide evidence that the
basal ganglia are engaged in attentional and preparatory function, implicit learning,
forming of response habits, procedural learning, skill learning, rule learning, asso-
ciative learning, and some forms of cognitive skill acquisition. The role of neuro-
transmitters in the regulation of these functions has yet to be defined. Only dopa-
mine and its key role in reinforcement seems to be well understood.

In the following, a brief summary of functional evidence in the language and
non-language (i.e., classically described as non-motor) domains will be summarised
in order to establish context for the proposed hypothesis that the basal ganglia may
play a computational role in auditory language processing.

3.1 Language functions of the BG

Language is a complex, yet highly automated system that can be subdivided into
linguistic sub-processes such as phonology, syntax, lexical-semantics, prosody, and
pragmatics. While the role of cortical structures in language processing has been
well investigated for decades in lesion studies and recently in neuroimaging studies
(ERPs, fMRI, and positron emission tomography (PET) studies), the role of subcor-
tical structures in language processing has been less explored and rather controver-
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sial. One of the reasons may be that subcortical aphasia is often not a persistent
phenomenon (see Vallar, Perani, Cappa, Messa, Lenzi & Fazio, 1988) and primarily
coincides with production deficits that could be motoric in nature. For example, the
phenomenon of pallalia, realised by arbitrary repetitions of syllables, words, and
word combinations, may be produced with increasing speed during production in
PD patients. However, such a phenomenon is usually seen as a motor planning defi-
cit rather than a speech production deficit per se. In addition, Wallesch and Blanken
(2000) suggest that comparable to recurring utterances in global aphasia, this type
of speech automatism can also occur in patients with basal ganglia lesions or their
connecting pathways. However, as in the case of pallalia, the authors conclude that
speech automatisms are linked to a pre-articulatory deficit based on the reduced ca-
pacity to inhibit appropriate target expressions. While production deficits (primarily
prosodic) have been reported in PD patients, it has been argued that linguistic proc-
esses such as phonology, lexical-semantics, and syntax in language perception are
not affected. Rather, these processes may appear deficient, but may be secondary to
attentional and/or working memory deficits. Often these deficits mimic frontal cor-
tical phenomena such as verbal working memory or verbal fluency deficits
(Wallesch, 2003). In an early information-processing model, Wallesch and col-
leagues (Wallesch, 1985; Wallesch & Papagno, 1988) proposed that a cortico-
striato-pallido-thalamo-cortical loop regulates response preparation and response se-
lection. According to this model, multiple lexical alternatives (i.e., response alterna-
tives) are produced and released in the posterior perisylvian cortex, then carried to
the anterior perisylvian cortex and the striatum in parallel modules. Thus, the stria-
tum may monitor various types of lexical alternatives (situational, emotional, moti-
vational, semantic) and play an immanent role in the selection of a contextually ap-
propriate lexical candidate. Structurally, the model can be criticised as basal ganglia
lesions often include white matter lesions thus are not exclusive lesions.

Next to the striatum, the thalamus has been discussed as the subcortical struc-
ture that may be engaged in language processing. Lesions of specific thalamic nu-
clei can produce word finding deficits and paraphasia. Wallesch (2003) described
three anatomical models that assign a potential role to the thalamus during language
processing (see also Nadeau & Crosson, 1997). First, the ventral thalamic nuclei
VA and VL are part of the cortico-striato-pallido-thalamico-cortical loop that regu-
lates speech production. Second, the pulvinar as the largest thalamic nucleus pro-
jects mainly to the posterior temporal language cortex. Third, lesions of unspecific
thalamic nuclei can disrupt the connection between the ascending reticular activa-
tion system (cerebellum) and the cortex, resulting in attentional, motivational, and
consciousness deficits that may supersede language deficits. According to these
proposed models, the striatum and the thalamus are plausible, but not necessary,
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structures regulating language processing. Language deficits may therefore be an
epiphenomenona of attentional and/or working memory deficits.

Last, besides the critical functional contribution of the basal ganglia in lan-
guage production and comprehension, the structural contribution has also been at
dispute. Aphasia resulting from a left-hemispheric basal ganglia lesion may result
from focal lesions, but also from pathway lesions that in turn cause cortical deficits
within the same hemisphere (see Nadeau & Crosson, 1997). Weiller, Willmes, Rei-
che, Thron, Isense, Buell and Ringelstein (1993) pointed out that large striatal le-
sions could also include cortical insula lesions that affect the blood supply system of
the arteria cerebri media, resulting in aphasia. In conclusion, it appears that the rela-
tive structural and functional contribution of the basal ganglia to language process-
ing is still a highly controversial topic and deserves further investigation.

3.1.1 Language production

Early evidence on subcortical language production deficits included reports of nam-
ing deficits and paraphasias after pallidectomies (Svennilson, Torvika, Lowe &
Leksell, 1960) and reports of reduced sentence production after electrical stimula-
tion of the caudate nucleus (Van Buren & Ojemann, 1966). Speech production after
putaminal lesions has often been described as hypophone or dysarthric and can re-
sult in a foreign accent. Cappa and Abutalebi (1999) have reviewed cases of aphasia
after striatal lesions and the surrounding white matte. They reported aphasic deficits
comprised mainly of non-fluent production and lexical-semantic deficits. However,
fluent aphasia, perseverations, and echolalia have also been described in conjunc-
tion with subcortical lesions. Word finding difficulties and written language deficits
frequently occur (Cappa, Cavalotti, Guidotti, Papagno & Vignolo, 1983). One case
of bilingual subcortical aphasia points to a switching mechanism effective during
language output in bilinguals (Abutalebi, Miozzo & Cappa, 2000). Taking up the
concept of declarative and procedural learning, Ullman and colleagues (Ullman,
Corkin, Coppola, Hickok, Growdon, Koroshetz & Pinker, 1997; Ullmann, 2001) re-
ported that PD patients show deficits in the production of regular morphological
forms during verb participle production, while patients with neurodegenerative
changes in the temporo-parietal cortex show deficits of regular verb forms. The au-
thor proposed that regular, or default, verb forms can be composed in real-time by
grammatical/procedural computations subserved by a basal ganglia-frontal lobe cir-
cuitry. However, a language production study with PD patients reported no confirm-
ing evidence for increased morphological errors but smaller amounts of grammati-
cal sentence production (Murray, 2000). The latter result has found further support
very recently in a study by Longworth and colleagues (Longworth, Keenan, Barker,
Marslen-Wilson & Tyler, 2005), who describe that neither Parkinson’s nor Hunting-
ton’s patients display a selective impairment for grammatical rule application in
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both verb tense production and comprehension. Last, striatal as well as thalamic
contribution to language processing has been reported in electrophysiological stud-
ies (Abdullaev & Menichuk, 1997) and in PET production studies (e.g., Demonet,
Price & Wise, 1994; Friston, Frith, Liddle & Frackowiak, 1993). From the com-
bined production data, it is apparent that the basal ganglia seem to play a role in the
production of both prosodic and grammatical form. What remains unclear, however,
is whether the underlying function deficit observed during the production of both
forms in patients with neurodegenerative change or lesions of the basal ganglia is in
fact functionally specific or not.

3.1.2 Language perception

The summarised evidence clearly supports a functional role, albeit yet to be defined,
of the striatum in language production as evidenced by lesion, neurodegenerative,
and imaging data. However, recent patient and imaging results have shown that
parts of the basal ganglia system may also be actively engaged during language re-
ception.

3.1.2.1 Syntax

Receptive language was investigated during syntactic processing in a PET (Moro,
Tettamanti, Perani, Donati, Cappa & Fazio, 2001) and an fMRI study (Friederici,
Rueschmeyer, Hahne, & Fiebach, 2003a). Both studies reported activation of the
left striatal complex during syntactic computation. Other evidence shows that the
basal ganglia may modulate working memory processes during the computation of
syntactically complex sentences (Grossman, Carvell & Gollomp, 1991; Grossman,
Carvell, Stern, Grollomp & Hurtig, 1992; Grossmann, Carvell, Gollomp, Stern,
Reivich, Morrison, Alavi & Hurtig, 1993a; Lieberman, Friedman & Feldman, 1990;
Lieberman, Kako, Friedman, Taichman, Feldman & Jiminez, 1992; Natsopoulos,
Grouios, Bostantzopoulou, Mentenopoulos, Katsarou Logothetis, 1993; Pickett,
Kuniholm, Protopapas, Friedman & Lieberman, 1998). Grossmann et al. (1993a) in
particular argued that grammatical processing deficits in PD might result from an
attentional deficit, not a grammatical deficit per se. More recently, Grossman, Zurif,
Lee, Prather, Kalmanson, Stern, and Hurtig (2002) attributed grammatical compre-
hension deficits in PD patients to slowed lexical access. In an attempt to study
whether the basal ganglia are essential for rule-governed language processing,
Longworth et al. (2005) tested inflectional morphology in a primed lexical decision
task in both PD and Huntington’s patients. Morphological priming was impaired,
but was independent of verb regularity in both patient groups compared to controls.
In conclusion, the authors propose that basal ganglia disorders are not specifically
associated with difficulties in comprehending regular past tense formation.
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Similar to the case in grammatical production, the perception of syntactic
processes also has a deficit in the amount of data pointing to a clear functional
specification of the basal ganglia in conjunction with these processes. In summary,
the grammatical system utilized during language production or perception seems to
rely on the basal ganglia. However, several questions remain as to whether the defi-
cits observed in BG patients are functionally specific, i.e., purely grammatical in na-
ture, or whether they are non-functionally specific as they result from attentional,
working memory-related, or temporal deficits.

3.1.2.2 Lexical-semantics

Taking a structural standpoint, lexical-semantic processes may not be regulated
primarily by the striatum, but by another subcortical structure, namely the thalamus.
Crosson (1985; proposed a model of subcortical language production in which the
basal ganglia, along with the thalamus, may be engaged in the selection of covertly
produced speech segments after semantic verification in a striato-thalamico-cortical
network. Nadeau and Crosson (1997) suggested that the thalamic part of this loop is
regulated by the frontal cortex and engaged during selection in semantic tasks.
Crosson (1999) argued that the posterior thalamus (including the pulvinar) is in-
volved in a “selective engagement system” that might, next to semantic selection,
be involved in working memory processes. He points out that the nature of the tha-
lamic language function hinges critically on the cortical connectivity of the thala-
mus. Moreover, he suggests that the thalamus is “involved in multiple processes
which directly or indirectly support cortical language function”. Kraut and col-
leagues (Kraut, Calhoun, Pitcock, Cusick & Hart, 2003; Kraut, Kremen, Moo,
Segal, Calhoun & Hart, 2002) extended this proposition by suggesting that the
pulvinar is the critical structure in semantic feature binding during object recogni-
tion. This model is supported by thalamic lesion data (e.g., Cappa & Vignolo, 1979;
Crosson, 1985; Crosson, Rao, Woodley, Rosen, Bobholz, Mayer, Cunningam,
Hammeke, Fuller, Binder, Cox & Stein, 1999; Raymer, Moberg, Crosson, Nadeau
& Rothi, 1997).

While such propositions on the role of the thalamus in the lexical-semantic
network need to be followed up with carefully controlled lesion and imaging stud-
ies, recent lesion data and neuroimaging studies have provided ample evidence for
decreased (in the case of PD and BG lesion patients) and increased basal ganglia ac-
tivation during lexical-semantic processing. Activation increase in the basal ganglia
has been correlated with semantic judgement and categorisation (Abdullaev,
Bechtereva & Melnichuk, 1998; Binder, Frost, Hammeke, Cox, Rao & Prieto, 1997;
Mummery, Patterson, Hodges & Price, 1998; Pilgrimm, Faili, Fletcher & Tyler,
2002; Price, Moore, Humphreys & Wise, 1997), semantic anomaly judgement (Ku-
perberg, McGuire, Bullmore, Brammer, Rabe-Hesketh, Wright, Lythgoe, Williams
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& David, 2000; Ni, Constable, Mencl, Pugh, Fulbright, Shaywith, Shaywith, Gore
& Shankweiler, 2000), semantic working memory (Crosson et al., 1999), lexical de-
cision (Abdullaev et al., 1998), lexical decision as a function of word frequency
(Fiebach, Friederici, Miiller & von Cramon, 2002), and of semantic priming (Kotz,
Cappa, von Cramon & Friederici, 2002; Rossell, Bullmore, Williams & David,
2001). Furthermore, Copland and colleagues (Coplan, Chenery & Murdoch, 2000a,
2000b, 2001) reported controlled lexical ambiguity priming deficits in patients with
basal ganglia lesions and PD while automatic facilitation was intact. In a recent pa-
per, Copland (2003) provides further evidence for such a semantic deficit in PD and
BG lesion patients and functionally links the basal ganglia to semantic inhibition
comparable to inhibition in motor function (Mink, 1996; see also Kotz, Frisch, von
Cramon, & Friederici, 2003a) for a similar analogy in terms of controlled syntactic
processing).

This conclusion has been supported by PD data. Gurd and Oliveira (1996)
reported that PD patients have difficulties in selecting a target word in the context
of semantic distracters in a word search task. Watters and Patel (2002) investigated
semantic ambiguity in a neural network simulation of PD and also report semantic
inhibition problems. Further evidence comes from semantic set-shifting in PD pa-
tients (McDonald, Brown & Gorrell, 1996; for similar results on selecting salient in-
formation see Brown, Corcos & Rothwell, 1997; Levin, High, Williams, Eisenberg,
Amparo, Quinto & Evert, 1989). As this brief review shows, a major aim of further
investigations will have to tackle the respective roles of the basal ganglia and the
thalamus (in particular the pulvinar) in lexical-semantic processes. It is clear,
though, that in comparison to grammatical function, the functional specification of
the basal ganglia and thalamus in lexical-semantic processing is more advanced. As
is the case for the basal ganglia’s role in grammatical function, the domain specific-
ity of lexical-semantic processing as well its nature (e.g. automatic vs. controlled) in
the basal ganglia has yet to be specified.

3.1.2.3 Prosody

To extend the potential multifunctional role of the basal ganglia in language proc-
essing, there has been a recent revival in investigating linguistic and non-linguistic
prosody. As described above, there have been early reports on prosodic production
deficits primarily after putaminal lesions. A note of caution needs to be raised as to
whether such prosodic deficits are motoric in nature or actually reflect a deficit in
realising basic acoustic properties of prosody such as fundamental frequency, dura-
tion, and intensity. This, of course, also applies to the perception of prosody. PD has
been proposed as a model to understand how the basal ganglia contribute to the
processing of linguistic or non-linguistic prosodic tone
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Recently, a number of laboratories published neuroimaging and lesion evi-
dence that describes a highly distributed network involving both cortical and sub-
cortical structures during the perception of emotional tone (Adolphs, Damasio &
Tranel, 2002; Baum & Pell, 1999; Buchanan, Lutz, Mirzazade, Specht, Shah, Zilles
& Jancke, 2000; George, Parekh, Rosinsky Ketter, Kimbell, Heilmann, Herscovitch
& Rost, 1996; Kotz, Meyer, Alter, Besson, von Carmon & Friederici, 2003b; Mor-
ris, Scott & Dolan, 1999; Wildgruber, Hertrich, Riecker, Erb, Anders, Grodd &
Ackermann, 2004; Wildgruber, Pihan, Ackermann, Erb & Grodd, 2002). However,
not all of the imaging studies reported activation of the basal ganglia (see Buchanan
et al., 2000; George et al., 1996), and the contribution of the basal ganglia in decod-
ing prosodic cues has often been reported as secondary to cortical deficits or to im-
pairments in decoding the finer temporal suprasegmental structure of auditory input
(Lieberman, 2001). Still, some neuropsychological studies have reported discrimi-
nation and recognition deficits of emotional prosody after focal basal ganglia le-
sions (Bradvik, Dravins, Holtas, Rosen, Ryding & Ingvar, 1991; Breitenstein, Daum
& Ackermann, 1998; Breitenstein, Van Lancker, Daum & Waters, 2001; Cancellier
& Kertesz, 1990; Pell & Leonard, 2003; Starkstein, Federoff, Price, Leiguarda &
Robinson, 1994; Wedell, 1994). In a series of studies, Pell and Leonard (2004) sys-
tematically investigated the perception of emotional prosody utilising discrimina-
tion, identification, and emotional feature rating tasks in PD patients and age-
matched controls. In comparison to the controls, PD patients showed an overall re-
duction in the perception of emotional prosodic cues. The authors took these results
as evidence that the basal ganglia play a regulatory role in “predicting the value of
cue sequences within a temporal sensory event” (see also Lieberman, 2001 for an
elaborative standpoint on this view).

In conclusion, non-linguistic and linguistic prosodic processing seems to be
modulated by the basal ganglia. However, in comparison to grammatical and lexi-
cal-semantic processing, the present evidence seems to point to a non-domain spe-
cific function of the basal ganglia in these processes, a role involving the temporal
encoding of linguistic or non-linguistic cues in an auditory sequence.

3.2 Non-language functions of the BG

3.2.1 Sequencing

Graybiel (1995) established the view that “the basal ganglia are critically involved
in building up sequences of behaviour into meaningful, goal-directed repertoires.”
As a consequence, Graybiel (1997) termed the basal ganglia “cognitive pattern gen-
erators” and suggested that by analogy with the central pattern generators of the mo-
tor system, these pattern generators operate to organise neural activity underlying
aspects of action-oriented cognition. Brown (1999) elaborated on this idea and ar-
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gued that the basal ganglia regulate sequential processing. This view has been neu-
rologically and functionally supported via the direct and indirect pathways that con-
trol initiation, switching, modulation, and termination of serial processes. Behav-
ioural evidence for this model comes from PD studies that investigated sequencing
as a function of motor behaviour (Martin, Phillips, lansek & Bradshaw, 1994),
learning (e.g., Harrington, Haaland & Hermanowicz, 1998), temporal coupling
(Malapani, Dubois, Rancurel & Gibbon, 1998), temporal ordering (Sagar, Sullivan,
Gabrieli, Corkin & Growdon, 1988; Harrington et al., 1998), or temporal discrimi-
nation that is Dopamine (DA)-dependent (Rammsayer & Classen, 1997). In addi-
tion, Graybiel (1998) has shown that the basal ganglia are involved in the chunking
of action sequences. Last, the learning of sequences (Dominey, Arbib & Joseph,
1995a; Dominey, Ventre-Dominey, Brousolle & Jeannerod, 1995b; Dominey &
Jeannerod, 1997) as well as sequential information processing (e.g., Beiser & Houk,
1998; Berns & Sejnowski, 1996; Hikosaka, 1999) has been reported as a basal gan-
glia function.

Which circuitries actually do support sequencing? Miyachi, Hikosaka, Miya-
shita, Karadi and Rand (1997) described that carbachol injections into the anterior
caudate and putamen in monkeys prevented the learning of new movement se-
quences, while injections into the middle-posterior putamen disrupted well-learned
sequences. Matsumoto, Kasri and Kooken (1999) reported that the monkey striatum
and niagral afferents are involved in the encoding of new motor information and in
subsequent retrieval. However, as shown in PD-induced monkey models, relearning
is possible. Thus, the authors concluded that encoding of sequential processes must
be regulated by a cortico-striatal circuitry.

3.2.2 Neural timing

Within the neural circuitry involved in timing, two systems have been differentiated
and supported by the following number of dissociating factors: duration range (mil-
lisecond and multisecond intervals; Gibbo, Malapani, Dale & Gallistel, 1997);
modulation by pharmacological agents (e.g., Rammsayer, 1993; 1999); differential
impairment by task demands (Rammsayer & Lima, 1992); and specific brain lesions
(Clarke, Bellmann, Ribaupierre & Assal, 1996). In particular, it has been suggested
that intervals in the millisecond range engage an automatic circuitry independent of
overt attention, while intervals in the multisecond range are modulate by controlled,
attended processes and are perceived as discrete entities (see Lewis & Miall, 2002
for a meta-analysis). The automatic timing system, with intervals less than a second,
mainly engages SMA bilaterally, sensorimotor cortex as well as the frontal opercu-
lum, STG, thalamus and right cerebellum. In contrast, the left basal ganglia is only
involved when short intervals were presented continuously or defined by movement
(Larsson, Gulyas & Roland, 1996; Parsons, 2001; Schubotz & von Cramon, 2001).
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Lewis and Miall (2002) concluded that while many of these regions belong to the
motor system, activation must be genuinely linked to timing, as the task engaged
was covert decision not relying on the motor system per se. The neural network
supporting controlled timing has often been elicited by controlled tasks, thus engag-
ing working memory and attention (e.g., Petrides, 1994; Smith & Jonides, 1999).
The structures involved include the dorso-lateral prefrontal cortex, ventro-lateral
prefrontal cortex, bilateral intra-parietal sulcus, and inferior partietal region. The
right basal ganglia only came into play for long time intervals when the presentation
was non-continuous and not related to movement (Meck & Benson, 2002).

In a review article on timing in speech, Schirmer (2004) briefly described the
role of the basal ganglia in speech perception and production. In an adaptation of a
described interval timing dysfunction in PD patients (Mangels, Ivry & Shimizu,
1998; Meck, 1983; 1996), Schirmer lists evidence that PD patients have problems
detecting temporal cues in speech (Breitenstein et al., 2001), problems in production
with speech acceleration being too fast (Canter, 1963) or too slow (Gréiber , Her-
trich, Daum, Spieker & Ackermann, 2002), and problems using pauses in the
speech stream (Canter & Van Lancker, 1985; Fraile & Cohen, 1999). Thus, the gen-
eral role of the basal ganglia in timing in speech appears to deserve specific empha-
sis.

3.2.3 Implicit and procedural learning

Double dissociations between declarative (medial temporal-diencephalic memory
system) and procedural learning and memory (basal ganglia system) systems have
been reported early on (e.g., Cohen & Squire, 1980; Mishkin, Malamut & Bacheva-
lier, 1984; Saint-Cyr, Taylor & Lang, 1988). However, the specification of the pro-
cedural learning system regulated by the basal ganglia (cf. Gabrieli, 1998; Squire,
Knowlton & Musen, 1993) has been heavily debated (e.g., Wise et al., 1996) as le-
sions in the monkey striatum have not resulted in complete elimination of proce-
dural learning but only in a reduction of learning efficiency. Still, ample evidence
from PD studies on procedural learning deficits have supported the role of the basal
ganglia in procedural learning (e.g., Haaland, Harrington, O’Brien & Hermanowicz,
1996; Harrington & Haaland, 1999; Vakil & Herishanu-Naaman, 1998; Westwater,
McDowall, Siegert, Mossman & Abernethy, 1998). More specifically, some evi-
dence points to the fact that maintenance of not yet automated routines (Patriot,
Verin, Pillon, Teixeira-Ferreira, Agid & Dubous, 1996) as well as automatic proc-
essing (Faglioni, Botti, Scarpa, Ferrari & Saetti, 1997) are deficient in PD patients.
An interesting concept proposed by Pascual-Leone and colleagues (Pascual-Leone,
Grafman & Hallett, 1994) could help in the understanding of why artificial grammar
and category learning is not clearly affected in PD patients (Reber & Squire, 1999).
The authors claim that the basal ganglia regulate the timely access and transfer of
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information from a working memory buffer to the prefrontal cortex, while the cere-
bellum may order events in time. The involvement of the cerebellum during skill
and implicit learning has been recently supported by imaging evidence (e.g., Gab-
rieli, Singh & Stebbins, 1996; Juetpner & Weiller, 1998; Pascual-Leone et al.,
1994).

3.2.4 Reinforcement learning

The most seminal model on reinforcement learning was proposed by Wise and col-
leagues (1996). In this model, the basal ganglia are described as a DA-based system
that regulates rule potentiation and learning of context. This proposition implies that
potentiation of rules as a result of reinforcement happens in the direct pathways (see
e.g., Contreras-Vidal & Schultz, 1999), while the indirect pathways facilitate future
rule potentiation based on previously established patterns (Wise et al., 1996). Fur-
thermore, it has been argued that a combination of DA-dependent reinforcement
and competition learning rules reduces the amount of information transferred from
the cortex to the basal ganglia (Bar-Gad & Bergmann, 2001). This reduces the ca-
pacity to select and respond from/to ambiguous information (Saint-Cyr, 2003). Next
to the amygdala, one particular structure within the ventral striatum, the nucleus ac-
cumbens, has been ascribed to reward or anticipation of reward (e.g., Rolls,
Critchley & Treves, 1996; Tremblay & Schultz, 1999; Bowman, Aigner & Rich-
mond, 1996), especially in relation to the orbitofrontal cortex (Rolls, 2000).

3.2.5 Attention

Cognitive textbooks describe attentional control as an ability to focus on a target, to
maintain attention in a distracter context, and to release attention due to internal or
external cues. The basal ganglia model by Brown and Marsden (1998) describes the
basal ganglia as a system that regulates the synchronisation of brain potentials in
order to focus attention. The model is supported by attentional control deficits in PD
patients who are incapable of carrying out dual tasks, or self-monitoring (e.g.,
Brown & Marsden, 1991; Brown, Soliveri & Jahanshahi, 1998) and of carrying out
simultaneous actions (Taylor, Saint-Cyr & Lang, 1986). In addition, PD patients
also have problems with covert (Downes, Roberts, Sahakian, Evenden, Morris &
Robbins, 1989) and overt attentional priming (Bennett & Castiello, 1996) and with
set-shifting (Hayes, Davidson, Keele & Rafal, 1998; Hsieh, Hwang, Tsai & Tsali,
1996; Owen, James, Leight, Summers, Marsden, Quinn, Lange & Robbins, 1992).
For example, Hayes and colleagues (1998) reported that treatment of motor-
symptoms with I-dopa medication results not only in improvement of motor-
behaviour, but also in attentional set-shifting. This implies that dopamine plays a
regulatory role in both motor and attentional control. Loss of striatal dopamine also
prevents sufficient encoding and appropriate selection of ambiguous information
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and impairs predictive control, i.e., the ability to use current information to adapt fu-
ture behaviour (Graybiel, 2000; Graybiel Aosaki, Flaherty & Kimura, 1994). Saint-
Cyr (2003) speculates that the deficit in attentional control may result from two dis-
rupted pathways: the thalamo-cortical pathway and the thalamic nuclei under the
control of the pallido-nigral projections. Also, according to Steriade and Llinas
(1988), direct projections from the GPe to thalamic reticular shell nuclei may be es-
sential as this mechanism modulates the signal-to-noise ratio of information proc-
essing. A clear separation of attentional mechanisms and working memory will not
be attempted here, but it is apparent from the PD literature that working memory is
under the scrutiny of some attentional mechanisms. According to Baddeley (1986),
working memory involves several capacities such as self-monitoring, short-term-
memory, delayed response, and problem solving. Several authors have reported that
PD patients show deficits related to these capacities. To name a few, deficits in
conditional associative learning (e.g. Taylor et al., 1990; Vriezen & Moscovitch,
1990), some forms of procedural cognitive learning (Saint-Cyr et al., 1988; Saint-
Cyr, Taylor, Trépanier & Lang, 1992), spatial/non-spatial working memory (Owen,
1997), and cognitive planning (Owen, 1997) have been reported.
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4.1 Lesion technique and lesion behavioural studies

Functional studies of the basal ganglia in humans have used different methods over
the past hundred years. In this section, I briefly describe these. More than a hundred
years ago first descriptions of functional cognitive deficits due to brain lesions were
reported (Broca, 1961; Lichtheim, 1884; Wernicke, 1874). The French neurologist
Paul Broca (1861) described that lesions of a left frontal brain region (Broca’s area)
affect language production, but not language perception. Several years later, the
German neurologist Carl Wernicke (1874) noted that lesions of the left posterior
temporal region result in language comprehension deficits with intact language pro-
duction (e.g., Goodglass & Kaplan, 1972). Wernicke argued that a separation of an-
terior (frontal) and posterior (temporal) language areas substantiates a functional
separation of production and perception, but not of linguistic sub-processes per se.
At the beginning of the 1970s, systematic and theoretically motivated behavioural
experiments started to investigate specific language deficits as linguistic phenom-
ena. A similar development can be reported for the investigation of other cognitive
functions. However, a couple of critical aspects remain to be explained as they carry
particular weight for the current investigations on patients with focal lesions of the
basal ganglia. (1) What are the implications of such focal lesions for functional
deficits, and (2) What are the functional correlates of subcortical structures such as
the basal ganglia, considering the clinical evidence over the last thirty years?

Addressing the question how focal lesions correlate with functional deficits,
Damasio and Damasio (1997) pointed out that localisation of damage should not be
equated with localisation of function. More likely, specific cognitive functions en-
gage a neural network and neurophysiology that do not allow for a simple linear in-
terpretation of cognitive function as residual performance and compensation during
recovery are often found. Therefore, the authors postulate that the lesion technique
allows to formulate hypotheses about the relative involvement of an anatomical re-
gion as a “processing unit” (see Damasio & Damasio, 1997) within a network sup-
porting cognitive function. This, of course, can go hand in hand with fMRI investi-
gations that aim to confirm the relative contribution of particular structures within
an anatomical network supporting cognitive function.

Based on this hypothesis, I have taken a triangle approach to investigate cog-
nitive function in the basal ganglia. First, by utilizing both fMRI and ERPs in
healthy populations, the basic neuroanatomical network as well as the temporal
resolution of language function was delineated by previous research in our labora-
tory and my own investigations (see Exp. 5 & 6, Chapter 5). Second, by investigat-
ing both patients with focal basal ganglia (BG) lesions and patients with Parkin-
son’s disease (PD), the contribution of one particular structure within the functional
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neuroanatomical network of language function was investigated. Using ERPs with
these populations, one can look at the effect of structural and neurodegenerative
deficits on the temporal dynamics of language function. To this end, a brief sum-
mary as to why the basal ganglia are an interesting player in language processing
should be sketched out. In a brief excerpt, Damasio (1985) listed three factors that
are in close agreement with the current series of investigations on the basal ganglia
in the auditory language domain. First, Broca’s patient Monsieur LeBorgue
(“TAN”) did not have a localised lesion in Broca’s area but an extended lesion in-
cluding the frontal operculum and most of the putamen and caudate (see Figure 4-
1). Therefore, the functional role of subcortical structures such as the basal ganglia
deserve further investigation.

Figure 4-1. CT-scan of original brain of Broca’s
patient Monsieur LeBorgue (adapted from Cas-
taigne, Lhermitte, Signoret & Abelanet, 1980).

Secondly, it has been reported that haemorrhages (Alexander & Lo Verme,
1980; Hier, Davis, Richardson & Mohr, 1977), but also vascular lesions in the basal
ganglia result in language deficits (Brunner, Kornhuber, Seemiiller, Suger &
Wallesch, 1982; Damasio, Damasio, Rizzo, Varney & Gersh, 1982; Naeser, Alex-
ander, Helm-Estabrooks, Levine, Laughlin & Geschwind, 1982). In particular, the
dorsal half of the caudate head, the anterior limb of the internal capsule, and the an-
terior and dorsal part of the putamen seem to be responsible for language dysfunc-
tion (Damasio, 1983). While articulatory deficits in speech production have been
described as Broca-like, there are also reports of fluent aphasia and in particular, se-
verely impaired auditory comprehension. This suggests that the picture of deficits
resulting from basal ganglia lesions is far from being conclusive. Damasio (1983)
raises the intriguing question how lesions within the neostriatum cause auditory
verbal processing deficits and points to sparse primate evidence implying that spe-
cific sensory projections to the caudate may shed some light onto this question. For
example, a rhesus monkey model describes massive projections from the auditory
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association cortex, next to projections from the frontal cortex, to the head of the
caudate (via anterior limb of capsule and anterior putamen; Damasio, Damasio &
Van Hoesen,1982; Van Hoesen, Yeterian & Lavizzo-Mourey, 1981). Damasio
(1985) speculates that lesions to these areas could cumulatively result in an acoustic
analysis deficit. Last, anatomical and physiological animal studies (see also outlook
Chapter 6) extend the primary motor function of the basal ganglia to other functions
by describing differentiated cellular components in the primate neostriatum (Yete-
rian & Van Hoesen, 1978; Goldman-Rakic, 1982). For example, Rolls and col-
leagues (Rolls, Baylis& Hasselmo, 1984) have proposed that response preparation,
and attending and orienting towards pattern changes of a stimulus may be guided by
the striatum. The extent to which these speculations and functional specifications
from primate research translate into functional specification and deficits related to
the basal ganglia in the human brain will be elaborated on in Chapter 5.

4.2  Event-related brain potentials (ERPs)

Studies of brain-damaged patients as well as fMRI and PET studies have provided
helpful evidence in understanding the neuroanatomical organisation of both lan-
guage and other cognitive functions. However, these methods are limited by their
low temporal resolution as compared to electrophysiological measures such as
event-related brain potentials (ERPs). Thus, ERPs offer a meaningful extension to
methods with high spatial resolution. ERPs are measured as voltage fluctuations
time-locked to sensory, motor, or cognitive events in the ongoing electroencephalo-
gram (EEG, Hillyard & Picton, 1987). These stimulus-dependent voltage fluctua-
tions are manifested in a continuous temporal course of positive and negative peaks
(or components) that are too small to be isolated from the ongoing EEG. Signal-
averaging of similar stimulus types extract the stimulus-triggered ERP from the
EEG or background noise.

The modulation of scalp recorded brain potentials results from depolarisation
of neuronal- and gliacellmembran (Hillyard & Picton, 1987). Changes in the ionic
conductance cause a balance between positive and negative current or vice versa
(Nunez, 1995). These patterns of electrical fields are called dipoles. Transmembran
potentials or dipole sources produce field potentials in extracellular fluid that can be
registered at the scalp. However, field potentials with local current cannot be regis-
tered at the scalp. These closed fields are normally generated by one dipole. Overlap
of dipoles as a result of synchronised activation and spatial ordering of cell groups
allows the electrical activity to pass cell borders. The resulting open fields are the
source of ERPs that can be measured at the scalp surface.

The topographic distribution of scalp ERPs can provide some information
about the source of neural generators of a potential, though inferences about the lo-
cation of such generators are limited (Hillyard & Picton, 1987; Nunez, 1981; 1995).
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First, each spatio-temporal potential at the scalp can be the sum of more than one
source configuration. Furthermore, smearing or low-pass filtering of potentials can
result from the electrical current running from the brain to the scalp. Last, the direc-
tion of the dipole source defines the pattern of scalp ERPs. Therefore, it is possible
that an ERP with a lateralised right hemispheric distribution is generated in the left
hemisphere.

Given the restrictions of spatial localisation, ERPs still provide a number of
beneficial aspects. The method is non-invasive and can be measured passively,
which makes it an excellent measure for both healthy and brain-damaged popula-
tions. For example, patients with motoric restrictions can be measured without be-
ing required to make a task-dependent response via a button press. However, a
combination of ERPs and behavioural measures is preferable, as the modulation of
components should clearly show a component change based on an aphasic or non-
aphasic symptom rather than merely an average of correctly and incorrectly de-
tected information. Two main advantages of ERPs should be mentioned: high tem-
poral resolution (ms range) and continuous measurement. These are particularly
relevant for the measurement of auditory language processes, as language compre-
hension occurs in real time. In comparison, reading and reaction times as well as
eye movement measures are fixed in time and cannot provide information about se-
quential, online processes. In addition, ERPs are three-dimensional as characterised
by latency (onset of activation), amplitude (extent of activation), and topography
(pattern of brain activity; see McCarthy & Wood, 1985). These dimensions are both
physiologically and functionally defined aspects of an ERP component (Donchin,
Ritter & McCallum, 1978; but see also Coles & Rugg, 1995). In particular, changes
in these dimensions in patient populations reveal the modulating character of a par-
ticular brain structure that is engaged in a cognitive process.

Components are subdivided into exogenous and endogenous components
based on the type of manipulation. Exogenous components seem to reflect physical
features of a stimulus, while endogenous components are influenced by the cogni-
tive state of a participant as well as by specific testing conditions and procedures.
Endogenous components thus give insight into the neural basis of cognitive proc-
esses. On a critical note, Heinze and colleagues (Heinze, Luck, Mangun & Hillyard,
1990) reported that spatial attention modulates the P1, while the P2, which is
thought to be an endogenous component, is sensitive to sensory aspects of a stimu-
lus (Ritter, Simson & Vaughan, 1983). Therefore, it appears that a clear separation
of exogenous and endogenous components is not clear-cut.

In the following, a brief description of ERP components should prime the
reader to all components that can be elicited during language processing. While the
current thesis will not elaborate on early ERP components, these will be briefly in-
troduced as some of these components have been found to be sensitive to brain
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damage. However, relevant to the thesis, specific focus will be given to the late lan-
guage-related components such as the N400 and the P600 as well as to the non-
linguistic, attention-related P300.

Early components (P1, N1)

As described above, early components are thought to specifically reflect physical
stimulus features (Luck, Hillyard, Mouloua, Woldorff, Clarke & Hawkins, 1994;
Mangun & Hillyard, 1990). However, both the P1 (90-120 ms post-stimulus onset)
and the N1 (200 ms post-stimulus onset) have been reported to reflect modality-
specific processing sensitive to attentional direction (e.g., Mangun & Hillyard,
1990). The two components are functionally correlated with different attentional as-
pects. While enhanced P1 amplitude seems to reflect sensory “gating”, the N1 am-
plitude seems to correlate with enhanced perceptual processing at an attended loca-
tion (e.g., Luck et al., 1994). There are multiple speculations about the neural gen-
erator of the N1, while the plausible generator of the P1 is the secondary visual cor-
tex (Gomez Gonzalez, Clark, Fan, Luck & Hillyard, 1998).

P2

A functional classification of the P200 component is complicated due to sparse and
controversial evidence. Some investigations have proposed that the P200 is an ex-
ogenous component as the P200 is elicited by stimulus complexity (Ritter et al.,
1983). However, Luck and Hillyard (1994) have shown that the P200 results from
detection of task relevant deviants. This renders a functional interpretation of the
P200 impossible, partially explaining the lack of investigations locating a neural
generator of this component.

N2 —N2b and N2c

This component is endogenous with a peak latency of 270 to 310 ms and reflects se-
lective attentional processing. The N2 has been differentiated into the N2b and the
N2c. In the auditory domain, the N2b is labelled MMN with an onset as early as
100 ms post-stimulus presentation (Nédtdnen, 1992). The MMN can be evoked pre-
attentively. In the visual modality, the N2b occurs at around 270 ms and clearly
guides selective attention (Nadtdnen & Picton, 1987). In addition, the N2b has been
linked to stimulus selection and response in multidimensional selection tasks (Smid,
Jakob & Heinze, 1999). It has been speculated that the prefrontal cortex is a prime
generator candidate of the N2 (Lange, Wijers, Mulder & Mulder, 1998).

E(L)AN — LAN
Within the domain of language, there have been reports on early negativities corre-
lated with syntactic aspects of language processing in both the auditory and visual
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modality. The early anterior negativity (E(L)AN) is a response to phrase structure
violations that cause a biphasic pattern of an early negativity followed by a late
positivity (Friederici, Hahne & Mecklinger, 1996; Friederici, Pfeifer & Hahne,
1993; Hahne & Friederici, 1999; Maess, Friederici, Damian, Meyer & Levelt, 2002;
Neville, Nicol, Barss, Forster & Garrett, 1991). Another early negativity (LAN)
with a longer latency has been reported in response to agreement violations
(Deutsch & Bentin, 2001; Gunter, Friederici & Schriefers, 2000; Stowe & Mulder,
1997; Penke, Weyerts, Gross, Zander, Miinte & Clahsen, 1997). The latency of the
early negativity does not only vary as a function of violation, but also where the
violation occurs in the critical word (onset or offset of word; see Friederici, Gunter,
Hahne & Mauth, 2004). It has been argued that the early negativity is automatic in
nature as proportion manipulations did not affect the amplitude of this negativity
(Maess et al., 2002). Neural source candidates of the early negativity have been in-
vestigated with current source density mapping (Knosche, Maees & Friederici,
1999), dipole modelling (Friederici, Hahne & Saddy, 2002), fMRI (Friederici et al.,
2003a) and ERP lesion studies (Friederici, Hahne & von Cramon, 1998; Friederici,
von Cramon & Kotz, 1999; Kotz, Frisch, von Cramon & Friederici, 2003a). There
is converging evidence that early syntactic structure-building is supported by the
deep frontal operculum and the anterior superior temporal gyrus (see for further dis-
cussion Friederici & Kotz, 2003).

P300 — P3a and P3b

The P300, or more precisely the P3a and P3b, have been correlated with discrimina-
tion and detection processes. While the P3a seems to be a specific response in
automatic novelty detection, the P3b has been correlated with voluntary attention to
target stimuli. The P3b is elicited in a classical detection paradigm, the so-called
“odd-ball” paradigm. Participants passively (silent counting) or actively (button
press) respond to a deviant target that elicits a parietal positivity between 300-500
ms post-stimulus onset and is multimodal in nature. P3b amplitude and latency vary
as a function of probability, stimulus meaning, and task relevance. Functionally, the
P3b has been correlated with inhibition processes involved in the processing of ex-
pected targets (Heit, Smith & Halgren, 1990; Schupp, Lutzenberger, Birbaumer,
Miltner & Braun, 1994) and context updating in working memory and attention
(Donchin, Ritter & McCallum, 1988; Ruchkin, Johnson, Canoune, Ritter & Ham-
mer, 1990).

The P3a is elicited in the so-called “novelty oddball” paradigm and consists
of standard and deviant stimuli as well as low probability novelty stimuli. Involun-
tary response to a novel stimulus elicits a P3a, which is maximal at fronto-central
electrode-sites, has an earlier onset than the P3b (60-80 ms) and habituates with
stimulus repetition (Solanti & Knight, 2000). This component has been interpreted
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as reflecting an orienting response towards novel events (Yamaguchi & Knight,
1991).

Evidence from intracranial recordings shows that the P3a engages the infe-
rior parietal, cingulate, dorso-lateral prefrontal, and postero-medial temporo-frontal
cortices, while the P3b has been elicited from the superior parietal lobe and the me-
dial temporal lobe (Halgren, Baudena, Clarke, Heit, Liegeois, Chauvel & Musolino,
1995a; Halgren, Baudena, Clarke, Heit, Marinkovic, Devaux, Vignal & Biraben,
1995b). In addition, lesion data show a reduction of the P3b as a result of temporo-
parietal lesions (including the temporo-parietal junction and the posterior STS)
mainly in the auditory and somatosensory domains and to a lesser degree in the vis-
ual domain. Furthermore, P3b reductions after prefrontal lesions correlate with task
complexity, while P3a reductions in the same patient group are independent of task
complexity during novelty detection in all modalities. P3a amplitude reduction also
results from posterior lesions, leading to the conclusion that this brain area is in-
volved in phasic attention independent of stimulus novelty. It appears, then, that
prefrontal and posterior association brain areas interact during voluntary and invol-
untary attention and working memory processes.

P600

The P600 has been elicited in a variety of syntactic contexts: in syntactic violations
requiring repair (see Friederici, 2002 for a comprehensive review) or in temporarily
ambiguous sentences that require syntactic reanalysis (Osterhout & Holcomb, 1992;
1993; Osterhout, Holcomb & Swinney, 1994; Mecklinger, Schriefers, Steinhauer &
Friederici, 1995). The P600 has been viewed to reflect controlled processing (see
Coulson, King & Kutas, 1998b; Gunter et al., 1997) as the P600 is sensitive to
probability, but the functional interpretation includes the following: indexing syn-
tactic processing in general (Hagoort, 1993); secondary processing of repair or re-
analysis (Osterhout & Holcomb, 1992; Osterhout et al., 1994; Friederici & Meck-
linger, 1996); and syntactic integration cost (Kaan, Harris, Gibson & Holcomb,
2000; Kaan & Swaab, 2002). In addition to the classical P600 with a peak latency of
600 milliseconds post-stimulus onset, a second positivity with a shorter latency and
a more frontal distribution has been reported for diagnosis before reanalysis (Meck-
linger et al., 1995; Friederici, 1998) in more complex syntactic structures and to re-
visions of hierarchically structured linguistic information (Bornkessel, Schlesewsky
& Friederici., 2002).

Due to its centro-parietal distribution and susceptibility to target expectancy,
the P600 component has been viewed as part of the P300 family (see Coulson et al.,
1998b; Gunter et al., 1997). However, latency differences and the fact that the two
components behave in additive fashion when syntactic and physical violations are
combined (Osterhout et al., 1994) have raised arguments about the functional simi-
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larity of the two components. Differences in latency between the two components
have been explained by target complexity of linguistic stimuli. This, however, can-
not account for a functional differentiation between the P300 and P600 as the P300
latency varies as a function of target category (Kutas, McCarthy & Donchin, 1977).
However, it is agreed that a dissociation of the two components with regard to a
neural generator could help to settle the dispute. This aspect will be discussed fur-
ther in Chapter 5.

N400

Investigations to substantiate the functional underpinnings of the N400 were real-
ised in the auditory and visual domain using semantic anomalies (e.g., Kutas &
Hillyard, 1980a, 1980b), semantic cloze probability (e.g., Kutas & Hillyard, 1984),
context manipulation (Van Petten & Kutas, 1990), and semantic priming (e.g., Hol-
comb, 1988) in word lists and sentence paradigms. All results point to the fact that
the N400 component reflects the integration of semantic processes (Chwilla, Brown
& Hagoort, 1995; Holcomb, 1993; Kutas & Hillyard, 1984; Van Berkum, Hagoort
& Brown, 1999; see also Kutas & Federmeier, 2002 for a modified interpretation of
the N400).

The N400 is also elicited by pseudowords, but not by nonce words in classi-
cal lexical decision tasks (Holcomb & Neville, 1990). Furthermore, there has been
evidence that the N400 is not language specific as the N40O can be elicited in the
following situations: cross-modal paradigms in which either emotional prosodic or
musical context facilitates visual targets (Schirmer, Kotz & Friederici, 2002;
Koelsch, Kasper, Gunter & Friederici, 2004); in priming studies with pictures (Bar-
rett & Rugg, 1990; Holcomb & McPherson, 1994); and cross-modally with
words/sentences and pictures (Ganis, Kutas & Sereno, 1996; Nigam, Hoffman &
Simons, 1992). However, an N400 is not elicited by incongruent musical sequences
or incongruent geometrical figures (Besson & Macar, 1987; Besson & Faita, 1995;
Paller, McCarthy & Wood, 1992), physical variations (Kutas & Hillyard, 1980a), or
grammatical violations (Kutas & Hillyard, 1983). Recent evidence, however, shows
that the N400 is elicited in a “syntactic context” type of violation when thematic
role assignment is impossible due to case violations (Bornkessel, 2002; Frisch &
Schlesewsky, 2001) or in verb-argument violations (Friederici & Frisch, 2000;
Frisch, Hahne & Friederici, 2004).

The nature of the N400 has been a matter of a long-lasting debate. While
some priming evidence with short SOAs and low proportion manipulations point to
an automatic processing dynamic underlying the N400, most of the evidence pre-
sented above supports the notion that the N400 is integrative in nature. Furthermore,
studies utilising masked priming, a paradigm used to investigate automatic process-
ing, has resulted in controversial evidence (Brown, Jahanshahi & Marsden, 1993;
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Deacon, Hewitt, Yang & Nagata, 2000; Kiefer & Spitzer, 2001). Thus, a final func-
tional interpretation of the N400 is still outstanding. Neural generators of the N400
have been investigated with intracranial studies (Halgren, Dhond, Christensen, Van
Petten, Marinkovic, Devaux, Vignal & Biraben, 2002; McCarthy & Nobre, 1995;
Nobre & McCarthy, 1995), fMRI studies (Kotz et al., 2002; Rossell et al., 2001;
Rossel, Price & Nobre, 2003), and lesion studies (Kotz & Friederici, 2003; Kotz,
Meyer & Paulmann, in press; Swaab, Brown & Hagoort, 1997; Swaab, Brown &
Hagoort, 1998). Some of this evidence postulates that the left inferior anterior tem-
poral lobe, but potentially also the basal ganglia could be part of a neural network
generating the N400 (see discussion below). A matter of debate, though, is whether
modality specific contributions come from the inferior (visual) and superior (audi-
tory) part of the anterior temporal lobe.

4.3 Functional magnetic resonance imaging (fMRI)

The development of modern imaging techniques has enabled the measurement of
brain activity while participants do a task. While magnet resonance tomography
(MRI) has been widely used to image anatomical structures, functional MRI (fMRI)
is a relatively new procedure used to localize neuronal activity in an indirect, non-
invasive manner. fMRI is based on local, neuronally defined changes of metabolis-
tic activity. In comparison to positron-emissions-tomography (PET), fMRI is cur-
rently the only option that allows for the demonstration of repeated activation in the
human brain without the use of ionised rays (for extended literature on fMRI, see
Jezzard, Matthews & Smith, 2001; Buxton, 2002).

Due to its non-invasive nature as well as its relatively easy accessibility in
clinics and research institutes, the method has gained a critical position in clinical
neuroscience. The combination of structural and functional MRI allows for new in-
sights into the cause, development, and treatment of neurological disease in com-
parison to both structural and functional investigations in the healthy brain.

Functional magnetic resonance tomography — Biological bases

fMRI measures regional blood flow changes that reflect neuronal activity in an indi-
rect manner. This enables the identification of brain regions that are active during a
given task. The cells demand increased energy during neuronal processing, resulting
in increased oxygen use while oxygenised hemoglobin (Hb) is reduced to desoxy-
hemoglobin (dHb). Due to this not fully understood mechanism, vessels enlarge via
neuronal activity and regional cerebral blood flow (rCBF) and regional cerebral
blood volume (rCBV) increase. However, the increase of oxygenised blood is larger
than the actual need of oxygen in the tissue (Bandettini and Wong, 1998). Due to
this overcompensation the level of Hb is larger than dHB in a neuronally active re-
gion (Cohen und Bookheimer, 1994) than in a normally perfused region. In com-
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parison to the magnetically neutral Hb, dHb creates a magnetically inhomogenous
surrounding. Due to the larger portion of Hb relative to dHb, the tissue becomes
magnetically homogenous. Consequently, a contrast, i.e., the oxygenised blood and
the resulting changes in magnetic properties, can be measured. This contrast is
called the BOLD-contrast (Blood Oxygenation Level Dependent; Ogawa & Lee,
1990; Belliveau et al., 1991). The BOLD-contrast influences the transversial
dephasing of the T2*-weighted MR-signals, which results in different signal intensi-
ties. Blood that is strongly oxygenised interferes less with the dephasing of a signal,
and this in turn increases the signal. On the other hand. increased dHb-concentration
leads to stronger dephasing and a weaker signal. The linking to the hemodynamic
response is the same for all metabolic measures. The hemodynamic response only
indirectly reflects neuronal activity, is slow, and reduces itself relatively slowly.
The BOLD-signal does not have an absolute value, but rather a relative meaning in
relation to different activation states. Therefore, it is necessary to contrast different
signal intensities against each other (e.g., stimulation against rest).

Spatial and temporal resolution

The spatial resolution of fMRI studies crucially depends on the size of the voxels
measured and the resulting signal-to-noise ratio. In principle, voxels with a 3x3x4
mm dimension are measured. The smaller the voxels, the worse the signal-to-noise-
ratio. Another restriction for the spatial resolution comes from the local blood sup-
ply in cortical structures. The complete capillary bed (intra- and extra-vascular re-
gion) as well as the venuous exit areas support the BOLD-signal. As a result, the
spatial resolution is strongly linked to the local blood supply. Logothetis, Pauls,
Augath, Trinath and Oeltermann (2001) were able to show that the BOLD-signal
mainly correlates with local electrical field potentials that spatially extend beyond
the expansion of the synaptic activity.

The temporal resolution of the fMRI is limited by the slowness of the
BOLD-signals. After a brief stimulation, the BOLD-signal reaches its peak maxi-
mum after 4-6 seconds, and after 8-12 seconds, it is back to ~ 10% of its initial
level. The temporal dynamic of the BOLD-signals occurs in the range of seconds,
while real neuronal processes occur within milliseconds.

Temporally close processes elicit comparable BOLD-signals. These signals
sum up in an almost linear fashion, thus increasing the amplitude of the signal.
Therefore, an accumulation of processes elicited with short temporal spacing will
lead to a larger signal change than single processes. This temporal dynamic of the
BOLD-signals varies significantly between participants as well as between cortical
areas. Unfortunately, this variability does not allow us to draw conclusions about
the temporal characteristics of neuronal processes, making a direct comparison of
different brain areas and participants difficult. However, it was demonstrated that
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the BOLD-signal within one subject and within one brain area is extremely constant
(Neuman, Lohmann, Zysset & von Cramon, 2003).

Due to susceptibility artefacts in the region of tissue transfer (e.g., air/cortex)
the T2*- weighted signal in specific cortical regions is highly invariable. This is
particularly true for the medial orbito-frontal cortex and the anterior temporal lobe.
Due to the increased magnetic inhomogeneity of the region, the T2* signal quickly
and significantly drops down, resulting in a signal wipeout. Studies that want to in-
vestigate such regions have to rely on specific fMRI recording sequences and tech-
niques (see Jezzard et al., 2001; Norris, Zysset, Mildner & Wiggins, 2001;
Deichmann, Gottfried, Hutton & Turner, 2003).
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processing

5.1 Overview of empirical studies
As described above, the role of the basal ganglia during language processing may or
may not be language-specific. Therefore, several venues need to be considered
when looking at language-specific function and the basal ganglia. In terms of syn-
tactic processing, the discussion has centred on the question of whether or not rule-
based computation engages the basal ganglia as part of a fronto-striatal network (see
Ullman, 2001; Ullman et al., 1997). If true, the automatic application of such rules
should be impaired in patients with lesions or neurodegenerative changes of the
basal ganglia. Alternatively, language deficits described in the literature have been
described as secondary to attentional, timing, and working-memory related deficits
(see work of Grossman, Kenny & Lee, 1999; Grossman, Kalmanson, Bernhardt,
Morris, Stern & Hurtig, 2000; Grossman, Zurif, Lee, Prather, Kalmanson, Stern &
Hurtig, 2002). In a series of auditory experiments, Kotz and colleagues (Friederici
et al., 1999; Friederici et al., 2003a; Frisch, Kotz, von Cramon & Friederici, 2003;
Kotz et al., 2003 a) investigated the syntactic function of the basal ganglia with dif-
ferent basal ganglia patient populations and with different syntactic structures vary-
ing in complexity. The main prerogative of these experiments was to: 1) test rule-
based automatic syntactic processing in different patient populations (Experiments 1
& 2); 2) to dissociate a syntactic from a general cognitive deficit (Experiment 3);
and 3) to investigate syntactic parsing of different complexities (Experiment 4).
Furthermore, the contribution of the basal ganglia to lexical-semantic proc-
essing was investigated in an auditory primed lexical decision fMRI experiment in a
healthy population (Experiment 5) and in experiments including semantic selec-
tional restriction and thematic violations in BG patients (Experiments 1 to 4; Kotz et
al., 2002; Kotz & Friederici, 2003). The latter violation type allowed us to investi-
gate the potentially semantic nature of verb arguments (Kotz et al., 2003 a). Given
the variety of tasks applied to explore the relative contribution of the basal ganglia
in lexical-semantic processing (see discussion in 3.1.2.2.), an obvious question was
whether the core deficit linked to lexical-semantic information processing is in fact
selection of lexical and/or semantic information. To answer this question, it is nec-
essary to investigate a potential selection deficit in the context of automatic or con-
trolled processing induced by the task and as a function of stimulus type (e.g., cate-
gorical or ambiguous). In a first attempt, automatic lexical-semantic processing was
investigated at the word level (Experiment 5), while controlled semantic processing
was tested at the sentence level (Experiments 1-4). Last, the basal ganglia in pro-
sodic processing in the non-linguistic (e.g., emotional prosodic) and linguistic (sen-
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tential prosodic) domains have been viewed as part of a neuroanatomical network
(e.g. Adolphs et. al., 2002). This position indicates that the basal ganglia’s contribu-
tion to prosodic processing may be relative. In particular, some evidence has linked
the basal ganglia function in prosodic processing to one acoustic parameter in par-
ticular, i.e., the temporal encoding of prosodic cues in an auditory sequence (see
Pell & Leonard, 2003). In a series of fMRI investigations (Kotz et al., 2003b; in
press), we have followed up on how and under which circumstances the basal gan-
glia modulate emotional prosodic processes. Each specific language function and its
relation to the basal ganglia will be discussed in turn, focussing on both published
work as well as work in progress and preparation.

5.2 BG and syntactic processing

5.2.1 Experiment 1

Several theories have related subcortical structures such as the basal ganglia with
syntactic processing. As discussed above, the approaches vary as a function of
whether rule-based syntactic processing is directly linked to a fronto-striatal cir-
cuitry (Lieberman et al., 1990; Natsopoulos, Katsarou, Bostantzopoulou, Grouios,
Mentenopoulos & Logothetis, 1991; McNamara et al., 1996) or whether it is part of
an executive network necessary for the processing of complex syntax (e.g.
Grossman et al., 1999). In order to understand the different processing levels impli-
cated in these results, psycholinguistic modelling of syntactic processing provides a
helpful framework. Frazier (1987) proposed that syntactic parsing occurs in two
processing stages: an early automatic and a late controlled process. At the early
stage, sentence information is structured on the basis of word category information,
while at the second stage, all sentence information — syntactic and semantic — is in-
tegrated. In seminal ERP studies, Friederici and colleagues showed that these proc-
essing stages have psychophysiological reality (Friederici, 1995; Friederici et al.,
1996; Hahne & Friederici, 1999). While detection of word category violations at the
early stage elicits an early anterior negativity (E(L)AN), late syntactic processes
correlate with a late centro-parietal positivity (P600). Thus, two syntactic processes
can be linked to the fronto-striatal circuitry: 1) automatic syntactic processing,
which is purely rule-based syntactic processing, and 2) controlled syntactic process-
ing, which is dependent on attentional resources.

In 1997, Ullman and colleagues (see also Ullman, 2001; Pinker & Ullman, 2002)
published a paper elaborating on the declarative/procedural model. Extending gen-
eral rule-based behaviour to the application of grammatical rules, Ullman et al.
(1997) reported that patients with Parkinson’s disease show limited computational
capacity to apply grammatical rules to past tense formation (e.g., wash -ed), while
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patients with Alzheimer’s disease display a problem with irregular past tense forma-
tion (e.g., go — went). Due to its unpredictable nature, past tense formation of irregu-
lar verbs is thought to be stored in memory rather than computed. Thus, Ullman’s
results imply that the basal ganglia are involved in rule-based grammatical behav-
iour. However, the question remains as to whether the basal ganglia are really a
necessary structure in grammatical rule-based behaviour. For example, Friederici
and colleagues reported ERP data from a frontal cortical lesion patient that did not
show an E(L)AN in response to word category violations (Friederici et al., 1998). In
addition, Ullman et al. (1997) and Tyler and colleagues (Tyler, de Morney-Davies,
Anokhina, Longworth, Randall & Marslen-Wilson, 2002) reported that patients
with perisylvian lesions with or without subcortical contribution have a deficit in
regular past tense formation, also implicating cortical structures in grammatical rule
application. Furthermore, Grossman et al. (2002) presented behavioural data of PD
patients that showed intact automatic access to syntactic information. Thus, the con-
tribution of the basal ganglia to automatic rule-based syntactic processing appears to
be relative. This conclusion finds further support from the fact that neuroimaging
data on syntactic sentence comprehension is not univocal on the involvement of the
basal ganglia. While some studies link the basal ganglia to syntactic processing
(Friederici et al., 2003a; Moro et al., 2001), others do not (Indefrey, Brown, Hell-
wig, Amunts, Herzog, Seitz & Hagoort, 2001; Inui, Otsu, Tanaka, Okada, Nichi-
zawa & Konishi, 1998; Just, Carpenter & Keller, 1998; Stromswold, Caplan, Alpert
& Rauch, 1996).

In a first experiment (Friederici et al., 1999) we therefore tested two patient groups
(chronic stage), i.e., three patients with left fronto-cortical lesions and four patients
with focal BG lesions in an auditory ERP sentence correctness judgement task. Data
of the patients were compared to age-, gender-, and education-matched controls. We
hypothesized that automatic rule-based syntactic processing should be affected in
patients with fronto-cortical lesions. Furthermore, if the basal ganglia play a crucial
rule in automatic rule-based syntactic processing, then patients with BG lesions
should show a comparable deficit postulated for fronto-cortical patients. While con-
trols showed the expected biphasic E(L)AN-P600 pattern elicited by word-category
violations, patients with fronto-cortical lesions did not show an E(L)AN, but a P600
component. Crucially, patients with BG lesions did show an E(L) AN, but a reduced
P600 component (see Figures 5-1 & 5-2). We therefore concluded that 1) automatic
rule-based syntactic processing is primarily regulated by the left frontal cortex (in-
cluding Broca’s area), and (2) the basal ganglia do not play a necessary role in
automatic rule-based syntactic processing. However, it appears that late syntactic
processing may be affected in patients with lesions of the basal ganglia as the am-
plitude of the P600 component was reduced.
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Figure 5-1. Displayed are averaged automatic brain responses (E(L)AN) to syntactic
phrase structure violations (dashed line) and correct syntactic phrase structure (straight
line) at selected electrode sites for patients (top row, left: cortical patients: no E(L)AN;
right: basal ganglia patients al., 1999).
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Figure 5-2. Displayed are averaged controlled brain responses (P600) to syntactic phrase
structure violations (dashed line) and correct syntactic phrase structure (straight line) at
selected electrode sites for patients (top row, left: cortical patients; right: basal ganglia
patients: reduced P600) and respective patient controls (bottom row,; adapted from Fried-
erici et al., 1999).
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What remains to be addressed are two critical issues. First, lesion patients
may simply have a different neuronal dynamic underlying syntactic processing than
patients with neurodegenerative disease such as Parkinson’s disease (see Ullman et
al., 1997). Second, if in fact automatic rule-based syntactic processing is not regu-
lated by the basal ganglia, how can we explain the fact that controlled syntactic
processing appears to be affected in patients with BG lesions? These questions were
addressed in a second experiment.

5.2.2 Experiment 2

Following up the critical issues raised in the first experiment, we investigated the
neural dynamics underlying syntactic processing in Parkinson’s patients in a second
experiment (Friederici, Kotz, Werheid, Hein & von Cramon, 2003). Patients who
participated in the experiment were once again directly compared to age-, gender-,
and education-matched controls in the same auditory sentence correctness judge-
ment task used in Experiment 1. This allowed us to directly compare two aetiolo-
gies with the same paradigm. Parkinson’s disease (PD) patients were selected by the
following criteria: 1) on average, patients were in an early PD phase (on average,
stage 2) as measured by the Hoehn & Jahr scale (1967); 2) all patients were L-Dopa
medicated when participating in the experiment; and 3) none of the patients were ei-
ther depressed or demented as measured by the GDS (Geriatric Depression Scale,
Brink, Yesavage, Lum, Heersema, Adey & Rose, 1982; Yesavage, Brink, Lum,
Huang, Adey & Leiter, 1983) and the MMSE (Mini-Mental State Examination).
The latter two factors were important to control. While dementia could affect the
patients’ capacity to process lexical-semantic information, depression could affect
prosodic perception of acoustic information and cause slowed down perception of
information in general.

In comparison to patients with BG lesions, patients with PD were not re-
quired to respond to each trial with a button press. Rather, they were asked to listen
to the sentences and to judge the correctness of the sentence covertly. This proce-
dure was chosen to avoid possible interferences between language processing and
motor demands due to motoric disabilities in all PD patients. On a critical note, one
should mention that one major advantage of using ERPs in patient studies is that the
method can be applied passively, thus reducing the physical demands on patients.
On the other hand, a drawback of this approach is that trials cannot be averaged
with only the correct responses included. Thus, no clear result on how well partici-
pants understood the critical trials correlated with a task can be achieved. However,
in order to ensure that patients were able to understand the task and items at hand,
we used an off-line paper and pencil task to test patients’ comprehension of a subset
of stimuli (20 incorrect and 20 correct items) used in the online ERP task. All pa-
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tients were able to correctly identify correct and incorrect trials and to produce a
correct version of the incorrect trials.

Results of the experiment revealed a similar pattern as in Experiment 1: PD
patients showed an E(L)AN but no P600 effect for syntactic phrase structure viola-
tions (see Figure 5-3). These data further support both a functional and structural
separation of automatic and controlled syntactic processes. While automatic syntac-
tic processes seem to be regulated in fronto-cortical regions, late syntactic processes
appear to be modulated by the basal ganglia.

Patients (n = 8) Controls (n = 8)

syntactic
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SpH — correct
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Figure 5-3. Displayed are averaged automatic (E(L)AN) and controlled (P600) brain re-
sponses to syntactic phrase structure violations (dashed line) and correct syntactic phrase
structure (straight line) at selected electrode sites for Parkinson patients (left; no P600)
and controls (right; adapted from Friederici et al. , 2003c).

Let me bridge these results to the two critical factors discussed above. Do
different aetiologies affect syntactic processing in a similar way? How can we ex-
plain the fact that controlled syntactic processes are more affected than automatic
syntactic processes? Comparing two different aetiologies with the same paradigm
allows us to conclude that the emerging ERP pattern is the same for both aetiolo-
gies. Both patients with focal lesions of the BG as well as PD patients with neu-
rodegenerative depletion of dopaminergic neurons in the BG show no deficit of
rule-based syntactic processing. However, controlled syntactic processes that have
been linked to syntactic processes in general (e.g., Hagoort, 1993; Osterhout & Hol-
comb, 1992), syntactic reanalysis or repair (Osterhout & Holcomb, 1992; Osterhout
et al., 1994; Friederici, 2002; Friederici & Mecklinger,1996), or syntactic integra-
tion costs (Kaan et al., 2000; Kaan & Swaab, 2002) are clearly modulated in both
patient groups. Independent of the functional interpretation of the P600 component,
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the controlled syntactic processing impairment due to BG dysfunction needs to be
explained.

Going back to the initial discussion at the beginning of the chapter, I would
like to focus on two possible explanations. Grossman and colleagues discussed the
role of the executive system in general (1999) and impaired processing speed for
planning and inhibition (2002) during comprehension of syntactically complex sen-
tences in PD patients. Both explanations for a syntactic comprehension deficit in PD
patients link back to a more general cognitive deficit rendering language compre-
hension secondary to a primary cognitive deficit. However, the executive system
encompasses both working memory and attentional mechanisms. Thus, it remains to
be clarified whether, or to which extent, attention or working memory deficits
modulate syntactic processing capacity. Second, if indeed a general cognitive deficit
affects language comprehension in PD patients, we need to understand why con-
trolled syntactic processes appear to be selectively impaired while controlled se-
mantic processes are affected to a much lesser degree (for further discussion, see
5.3). Longworth and colleagues (2005) proposed that both syntactic and semantic
processing may be impaired as a function of general impairment of inhibition. In
fact, the authors cite investigations that postulate the role of the basal ganglia in in-
hibition of motor control (Mink, 1996), of cognition (Lawrence et al., 1998),
masked priming (Aron, Schlaghecken, Fletcher, Bullmore, Eimer, Barker, Sahakian
& Robbins, 2003), and reversal learning (Cools, Clark, Owen & Robbins, 2002).
While this interpretation would be an intriguingly simple one, what inhibition
means in the particular language context tested still needs to be specified. This will
be discussed further in the context of semantic processing in Chapter 5.3. To follow
up on Experiments 1 and 2, the next step described in the section below involved an
attempt to dissociate the relative role of attention in language processing from con-
trolled syntactic processing. In particular, we wanted to ensure that both syntactic
and attentional processing was structurally simple to keep working memory de-
mands low.

5.2.3 Experiment 3a and 3b

Along with my colleagues (Frisch et al., 2003), I explored whether the basal ganglia
play a primary role in syntactic computation rather than a secondary role in an at-
tentional deficit. In two experiments, we compared syntactic and attentional proc-
essing directly in patients with BG lesions. This investigation elaborated on an on-
going discussion about whether the P600 elicited during controlled syntactic proc-
essing is simply a P300b elicited by the detection of an unexpected, task-relevant
target (Gunter et al., 1997; Coulson, King & Kutas, 1998a). This controversy results
from the fact that the two components have a very similar centro-parietal scalp dis-
tribution, while the latency of the components may differ due to higher complexity
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of linguistic versus non-linguistic stimuli. In the current context, testing BG patients
with both a linguistic and a non-linguistic paradigm served two purposes. First, by
potentially dissociating a P300 from a P600 component, we would be able to sepa-
rate purely syntactic from general attentional processing. Second, by the same to-
ken, finding a P300 but not a P600 in the BG patients would support the existence
of two functionally distinct components. Furthermore, if this dissociation was
found, then at least one modulating structure underlying the generation of the P600
or P300, respectively, could be identified.

Patients with left lesions including the BG and patients with left lesions ex-
cluding the BG (primarily patients with temporo-parietal lesions) judged the gram-
maticality of correct and incorrect sentences that included a morphosyntactic viola-
tion and performed a non-linguistic oddball paradigm. Morphosyntactic violations
were based on inflectional violations (e.g., In the house it was often *to
paint/painted), while the oddball paradigm used a two-tone block with a standard
600 Hz tone occurring with a 0.8 probability and a deviant 660 Hz tone occurring
with a 0.2 probability. The prediction was that patients with BG lesions should
show no P600 based on previous evidence, while patients excluding BG lesions
should show a P600. If the basal ganglia modulate controlled syntactic processes
rather than attentional processes, both patient groups should show a P300 elicited in
the non-linguistic oddball paradigm. Both predictions were confirmed (see Figure 5-
4). While both patient groups displayed a P300 in the oddball task, no P600 was
elicited by morphosyntactic violations in the patients with BG lesions.

patients with lesions patients with lesions
excluding including excluding including
the basal ganglia the basal ganglia the basal ganglia the basal ganglia
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Figure 5-4. Displayed are on the left side averaged controlled syntactic brain responses
(P600) to morphosyntactic violations (straight line) and correct morphosyntax (dotted
line) at a selected electrode site (PZ) for BG patients (left; no P600) and control patients
(right). On the right hand side the P300 response to deviant tones (straight line) and stan-
dard tones (dotted line) is shown for BG patients on the left and control patients on the
right (adapted from Frisch et al., 2003).
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Based on these data, we concluded that the basal ganglia play a modulatory
role in the generation of the P600, a claim also made in a number of previous ERP
studies with BG patients (Friederici et al., 1999; Friederici et al., 2003c). The fact
that there was a clear dissociation between the P300 and P600 components in the
BG patients suggests that general attentional processes are not affected in BG pa-
tients as otherwise, the P300 component would have been eliminated or reduced.
Furthermore, we were able to add to the discussion as to whether the P600 is simply
a P3b component. While there have been several attempts to identify the neural
generators of the P300 (see discussion in Chapter 4.2.), the search for P600 genera-
tors is wide open.

In a first attempt, Friederici and colleagues (2001) with the help of a PCA
analysis differentiated two positivities that partake in sentence revision when sen-
tences are temporarily syntactically ambiguous: a centro-parietal positivity compa-
rable to a P300 and an occipital positivity that responds specifically to syntactic as-
pects. Data from the patient investigation clearly show that the basal ganglia play a
modulatory role in the generation of the P600, but not the P300. What remains to be
clarified are several issues. First, the dissociation between linguistic and non-
linguistic processing needs to be investigated with equal complexity of stimulus in-
formation. To be more specific, the P3 oddball task presents standard and deviant
tones of the same consistent duration without building up a context. On the other
hand, the P600 is elicited in sentence context, meaning that the component may be
elicited as a function of expectancy and integration of both semantic and syntactic
information. Furthermore, in the auditory modality, word duration is random. Thus,
two factors varied between the linguistic and non-linguistic task: stimulus duration
and context. Second, more complex syntactic structures should be investigated in
order to test the relative contribution of working memory to syntactic processing.
Last, as the discussion arose why controlled syntactic processes are affected specifi-
cally but controlled semantic processes to a lesser degree in BG patients, one should
directly compare the relative contribution of the BG to these controlled processes.
This is possible within one particular syntactic structure, namely verb-argument
structure, which is reported next in Experiment 4.

5.2.4 Experiment 4

In sentence processing, the verb is characterized by the fact that it can or must take
complements. These complements are both semantically and syntactically specified
in the lexical entry of the verb. Semantically speaking, the verb fo visit expresses an
event in which one is visiting someone and one is being visited. In linguistic theory,
these acting persons are termed agent (someone doing something) and theme (the
one/thing something is done to). In linguistic terms, different participants are sub-
sumed under different thematic roles (like agent, theme, etc.). Syntactically speak-
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ing, the verb o visit needs two expressions as complements in order to form a
grammatical sentence, namely two noun phrases. In sentence (1), these are the noun
phrases the little boy and the old man.

(1) The little boy visits the old man.

Some verbs such as to grin are intransitive, i.e., they can only take an agent as an
argument. If they are presented with an agent and a theme, the sentence becomes
ungrammatical as in (2).

(2) * The little boy grins the old man.

In healthy participants, type (2) violations elicited a biphasic ERP pattern
consisting of a negativity resembling an N400 component and a positivity inter-
preted as a P600 (Frisch & Friederici 1998; 1999; Frisch et al., 2004). This pattern
suggests that verb-argument violations involve both semantic and syntactic process-
ing. The sentence becomes semantically implausible as it is nonsensical that some-
one grins someone. Syntactically, the violation of the verb’s subcategorization
frame requires the involvement of syntactic repair.

The processes of identifying verb-arguments and assigning thematic roles to
them in adequate time play a central role in the discussions on agrammatism (cf.
Caplan & Futter, 1986; Caplan & Hildebrandt, 1986; Frisch, Saddy, & Friederici,
2000; Friederici & Gorrell, 1998; Grodzinsky, 1986; 1990; 2000). Here, we consid-
ered the possibility that the basal ganglia may be involved in the modulation of both
syntactic and lexical-semantic processes as both processes are linked to controlled
processing. In addition, we were interested in testing thematic role assignment in a
more complex sentence structure, that is, in a passive verb-argument structure. For
thematic role assignment to take place during online sentence processing, rapid con-
struction of who does what to whom needs to occur. By using a passive construc-
tion, the thematic role assignment has to undergo transformation. Choosing this type
of sentence structure allowed us to investigate whether potential disruption of the-
matic role assignment in more complex sentence structures results in a similar syn-
tactic deficit as that seen in the previously tested, simpler syntactic structures
(phrase structure and verb-agreement).

Two groups of patients were tested: patient with lesions of the BG and pa-
tients without BG lesions (mainly temporo-parietal lesions, see also Frisch et al.,
2003). Correct sentences (Im Institut wurde viel gestreikt und kritisiert) and incor-
rect sentences formed by combining a subject NP with an intransitive verb made
passive (* Das Institut wurde viel gestreikt und kritisiert) were presented auditorily
and participants performed a sentence correctness judgement. Results revealed a
double dissociation of the N400-P600 complex in the two patient groups. While pa-
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tients with BG lesions showed the expected reduction of the P600 component pre-
ceded by a long-lasting negativity, patients with mainly temporo-parietal lesions
showed no negativity, but positivity to verb-argument structure violations. We con-
cluded that the data confirm the critical role of the basal ganglia in controlled syn-
tactic processing and extended it to a possible contribution to controlled semantic
processing (see Figure 5-5).
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Figure 5-5. Displayed are averaged brain responses in form of a late negativity to verb-
argument structure violations (dotted line) and correct verb-argument structure (straight
line) at a selected electrode sites for BG patients. The expected P600 as part of a bi-phasic
N400/P600 brain response to verb-argument structure violations is not present in BG pa-
tients (adapted from Kotz et al., 2003a).

Taking the combined results of Experiments 1-4, there is converging evi-
dence that the basal ganglia are engaged in the modulation of controlled syntactic
processes during receptive language processing. Interestingly, Experiment 4 also
showed that patients with BG lesions show a modified N400 component. As verb-
argument structure is often regarded as the intersection of syntactic and semantic
processing, the delayed N400 component in the BG group may indicate that con-
trolled semantic processes are also affected as a result of striatal lesions. However,
the consequence appears less severe than for syntactic processes. Taken together,
the studies by Friederici et al. (1999; 2003c), Frisch et al. (2003) and Kotz et al.
(2003a) clearly point to a functional specification of the striatum in controlled syn-
tactic processing of both simpler and more complex sentence structures and exclude
the possibility that non-linguistic attentional mechanisms override controlled syn-
tactic processes. The data also allow for the conclusion that the P3b oddball positiv-
ity and the P600 are not the same component, as patients with BG lesions indeed
show a P3b, but only a strongly modulated or completely reduced P600.
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5.2.5 Syntax — Ongoing experiments and outlook

As pointed out in the discussion above, several aspects remain to be investigated
further. First of all, the complexity of non-linguistic and linguistic information
needs to be equalized in order to fully reject the hypothesis that non-linguistic atten-
tional processes are at the core of the basal ganglia syntactic processing deficit. In
addition, the presentation rate in the P3 auditory oddball paradigm and the respec-
tive P600 paradigms was not consistent thus far. In an ongoing project, we are cur-
rently investigating stimulus complexity and varying temporal presentation rate in
both non-linguistic and linguistic visual ERP paradigms, comparing BG lesion pa-
tients and patients with focal lesions of the premotor ventral cortex and their respec-
tive age-, gender-, and education-matched controls. These experiments allow us to
address two open questions. First, by using more complex non-linguistic informa-
tion (e.g. object sequences) in a visual serial prediction task (Schubotz, 1999) com-
pared to a visual linguistic context (phrase structure violations as used in Experi-
ment 1), we predict that the dissociation of the P300 and P600 will still occur under
controlled contextual conditions. This will confirm the hypothesis that a pure atten-
tional deficit is not at the core of the syntactic deficit. Second, by varying the tem-
poral predictability of information in both the non-linguistic and linguistic context
(random, isochronously, and chunked presentation), we are able to test the implica-
tions of “adequate” stimulus timing within a sequence and whether it is affected by
BG lesions. Also, testing patients with premotor ventral as well as BG lesions
clearly allows us to test the forward model of sequential information (e.g.,
Schubotz, Sakreida, Tittgemeyer & von Cramon, 2004) in two non-motor para-
digms. As the basal ganglia are crucially involved in the timing of information
processing (see Chapter 3.2.2.), varying the presentation time in both the non-
linguistic and linguistic context should allow us to test whether controlled ERP
components (in particular the P600) vary as a function of how information is se-
quenced in time. This is another important test to find out whether or not the basal
ganglia are critically involved in language processing.

In addition, we are testing patients with anterior cortical lesions, lesions of
the BG, and PD patients in a verb-participle production task. As all our evidence
concerning the contribution of the basal ganglia to rule-based grammatical behav-
iour has been receptive, we want to ensure that modality (that is, production vs. per-
ception) is not the critical factor contributing to the controversy in the literature.
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5.3 BG and lexical-semantic processing

5.3.1 Experiment 5

As discussed in Chapter 3.1.2.2., there is extensive literature connecting not only
syntactic but also lexical-semantic processing with the basal ganglia. In addition,
there is dispute as to whether the basal ganglia alone, or the thalamus alone (in par-
ticular the pulvinar), or both structures are involved in lexical-semantic processing.
Of importance, however, is to first specify the level of processing and modality in-
vestigated with a particular task. As was the case for syntactic processing, produc-
tion and perception during lexical-semantic processing needs to be considered sepa-
rately. Second, selection and/or categorization of lexical-semantic information
needs to be distinguished.

There is evidence that patients with BG lesions suffer from semantic
paraphasia implicating the lexicalisation stage during language production (Cros-
son, 1985; Damasio et al., 1982; Wallesch & Papagno, 1988). Very recent in vivo
fibre tracking in patients during intraoperative language mapping (Henry, Berman,
Nagarajan, Mukherjee & Berger, 2004) reports two cortico-subcortical connections
related to speech arrest and anomia. The white matter connections associated with
speech arrest, anomia, and mouth motor function are similar but distinct, including
cortico-spinal, cortico-bulbar, and primary/supplementary motor association tracts
as well as cortic-striatal connections. The authors speculate that the latter connec-
tions belong to the cortico-striatal motor loop going from the motor cortex to the
putamen via the external capsula. In particular, the anterior and inferior putamen are
thought to be connected to motor aspects of speech, while the superior and medial
putamen are implied in lexical processes of anomia. Interestingly, the authors report
work by Kotz et al. (2002) and Friederici et al. (2003 a) linking the two potentially
functionally distinct putaminal areas reported for speech production to receptive
fMRI language studies. Thus, language production and perception may both involve
motor programmes.

However, lexical and/or semantic processing may occur at both the automatic
and controlled levels of processing. Following the logic of automatic vs. controlled
syntactic processing, parallels can be drawn for lexical- and/or semantic processing.
If indeed the basal ganglia are more involved in controlled processes, it should be
the selection or categorization of lexical- and/or semantic information that engage
the basal ganglia. Longworth and colleagues (2005) discussed this option and postu-
lated that the inhibition of semantic information could be impaired in BG patients.

In Experiment 5, Kotz and colleagues (2002) investigated auditory primed
lexical decision in healthy participants using fMRI. Semantic priming was tested in
an automatic processing situation (short inter-stimulus interval of 100ms between
prime and target word) while participants judged whether the target word was a
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German word or not. Furthermore, semantic prime-target pairs belong to two differ-
ent semantic relation types: associative relations belonging or not belonging to the
same category (e.g., mouse-cat, mouse-cheese) or semantic relations (mouse-dog)
belonging to the same category. The lexical effect (direct contrast of words against
pseudowords) revealed a cortico-striatal network involving the MTG bilaterally as
well as the left putamen (anterior and posterior) and caudate. Looking at the seman-
tic priming effect, bilateral fronto-temporal activation (BA 45, posterior STG) was
found, but no subcortical activation. While activation of BA 45 activation has been
linked to selection, the posterior STG activation has been interpreted as access to
semantic information.

The data allow two conclusions in terms of the basal ganglia and their role in
lexical-semantic processing. Lexical decision implies checking the word status of a
stimulus by applying phonotactic rules and starting a lexical search. If a word or a
pseudoword adheres to the phonotactic rules of a language, lexical search will be
disrupted once a word is clearly identified and selection can occur. In turn, other
word candidates are suppressed, and a lexical decision response takes place. Thus,
selection of a word over a pseudoword occurs at the lexical level. This process
seems to rely on a temporo-striatal network supporting the role of the striatum in
lexical decision during auditory word processing. Interestingly, the lexical decision
on pseudowords seems to be engaging the left anterior/middle rather than the left
posterior superior temporal region, but not subcortical regions. This is supported by
the fact that pseudowords compared to words activated the left anterior/middle
STG, and patients with left lesions of the anterior temporal lobe showed no N400
lexicality effect, but an N400 priming effect in the auditory modality (see Kotz et
al., 2002; Kotz & Friederici, 2003). Granted that both words and pseudowords elicit
an N400, it appears that the neural underpinnings of the N400 and its relationship to
lexical- and/or semantic information processing are far from being understood.
However, the current results indeed show that the basal ganglia can be involved in
the selection of words at the lexical level of processing.
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Lexical Effect - Words versus Pseudowords

Left hemisphere Right hemisphere

Location Zscore x vy z BA Zscore x y z BA

Words > pseudowords

Anterior putamen 441 -23 13 1 - - - -
Posterior putamen 440 -32 6 9 - - - -
Caudate 427 -14 11 5 - - - -
Middle temporal gyrus 546 -44 -66 18 19 424 49 49 9 21
Middle temporal gyrus 4.69 -53 -46 32 21 - - - -
Angular gyrus/tpTA 592 -36 -62 32 40 - - - -

Pseudowords > words

Inferior frontal sulcus -330 34 4 29 6/8 -370 28 6 26 6/8
Anterior superior temporal gyrus 370 56 20 22 - - - -
Middle superior temporal gyrus -480 -56 -22 9 22 - - - -
Deep frontal operculum - - - - =370 25 25 7
Middle frontal gyrus - - - - -4.50 40 26 19 46/45

Table 5-1. Displayed are functional activations for contrasts between words and pseu-
dowords (top) and pseudowords and words (bottom) in the lexical decision task. Z-scores
indicate the magnitude of statistical significance. Localization is based on stereotactic co-
ordinates (Talairach & Tournoux, 1988). The coordinates refer to the location of maximal
activation thresholded at Z> 3.1 (uncorrected). Distances are relative to the intercommis-
sural (AC-PC) line in the horizontal (x), anterior-posterior (y) and vertical (z) directions.

What needs to be investigated further is why there was no apparent frontal
activation in connection with the striatal activation for the lexicality effect. There
are at least two options to be considered. The lack of frontal activation could simply
be due to subject variance, i.e., some participants showed the effect, while others
did not. On the other hand, it could be that the cortico-striatal loop involved in the
access and selection of lexical and/or semantic information involves not only a
fronto-striatal circuitry, but also a temporo-striatal circuitry for the auditory modal-
ity that is comparable to the visual temporo-striatal circuitry proposed by Middleton
& Strick (2000). This circuitry could be envisioned as parallel circuitries that can
shortcut selection in frontal areas when it is not competitive in nature (based on
multiple candidates) but based on one-on-one selection as in lexical decision. Indi-
rect evidence for this comes from the semantic priming effect in the current study.
Here, we find activation in BA 45, which has been linked to selection between com-
peting alternatives (Thompson-Shill, D’Esposito & Aguirre, 1997). But why is this
activation not found in conjunction with basal ganglia activation? If indeed the sup-
pression of competing alternatives is highly automatic, there should be no such acti-
vation. To test this option directly, a critical test would be to investigate semantic
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selection with a working memory load. The possibility of an auditory temporo-
striatal circuit will also be taken up in the final discussion in Chapter 6.

5.3.2 Experiments 1, 2, and 4

Taking up the hypothesis that the basal ganglia may be involved in the modulation
of lexical-semantic processes, all studies with BG patients that involved semantic
processing at the sentence level should be reconsidered. In both Experiments 1 and
2, semantic selection was tested by means of a semantic restriction selection crite-
rion. That is, participants had to evaluate whether the verb phrase presented at the
end of a sentence matched the previous context or not. In case of a semantic incon-
gruency, integration of verb information should be hampered and elicit an N400 un-
der controlled processing conditions. In Experiment 4, the integration of semantic
and syntactic information offers a situation where selection of thematic roles can
occur, but integration thereafter is violated due to the subcategorization violation of
the verb.

Reconsidering the patient data of Experiments 1, 2, and 4, the following pic-
ture emerged. Patients with BG lesions (Experiment 1) did show an N400 effect
elicited by semantic restriction violations, but the N400 effect was extended in la-
tency and did not return to baseline (even after 1500 ms) as compared to controls. A
similar picture emerged for the PD patients in Experiment 2. The N400 effect in
Experiment 2 was statistically significant, but was absent at some electrode-sites
and also showed an extended latency.
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Figure 5-7. Displayed are averaged controlled (N400) brain responses to semantic viola-
tions (dashed line) and correct semantics (straight line) at selected electrode sites for
Parkinson patients (left) and controls (right; adapted from Friederici et al., 2003c).

With regard to Experiment 4 (see Figure 5-5 above), there is an important
post-hoc observation to be mentioned. Here, we discussed possible reasons why the
modulation of the N400 in verb-argument structure violations is less severe than the
modulation of the P600. From a functional standpoint, the N400 in the biphasic
N400-P600 complex may not be the same N400 seen in lexical-semantic paradigms
or in experiments involving semantic selection restrictions. If the N400 in combina-
tion with the P600 is more “syntactic” in nature, then the involvement of the stria-
tum in the modulation of this biphasic ERP complex should be viewed as qualita-
tively different from that of a purely “semantic” N400. That is, the N400 elicited by
violations of semantic selection restrictions should be modified differently than the
N400 elicited by thematic role assignment after lesions or neurodegenerative
change of the striatum. Clearly, this is not the case when comparing the extended
latency of the N400 across the three patient experiments. While the extended la-
tency in Experiments 1 and 2 have not been statistically confirmed, it is very likely
that selection and final integration of semantic information was affected. However,
the fact that the N400 and the P600, both elicited under controlled processing condi-
tions, appear to be differentially affected after BG damage deserves further explana-
tion.

While speculative, there is behavioural evidence that controlled semantic in-
formation processing is affected in PD patients (Copland, 2003; Longworth et al.,
2005). However, on a critical note, patients are always medicated when they are
tested. Thus, a direct comparison of the same patients in both medicated and un-
medicated conditions should serve to determine if semantic deficit varies as a func-
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tion of medication. Second, selection and integration of semantic and syntactic in-
formation could be qualitatively different. That is, while semantic violations are in
principle local violations that can be detected online at the place of violation, the re-
analysis of syntactic information involves detection, backtracking to the place of
violation, and correction. Thus, syntactic reanalysis appears to engage the re-
sequencing of information, which is not necessary in the case of semantic viola-
tions. Third, to test further if semantic selection restrictions and thematic role as-
signment engage the same N400, we are currently comparing the effects of verb-
argument structure violations and semantic selectional restriction violations directly
in the fMRI (Raettig, Kotz, Frisch & Friederici, 2005) and in a group of anterior
cortical patients.

5.3.3 Lexical-semantics — Outlook and ongoing experiments

We have taken up the possibility that medication in PD patients distinctly affects
semantic processing. In an ongoing project (Kotz, Schwarz, Winkler, Preul, von
Cramon & Friederici, 2005) that investigates possible re-enervation of controlled
syntactic processes in late stage PD after deep-stimulator placement (DSP) in both
an on and off state, we also test the effects of L-Dopa and agonist medication on
both semantic and syntactic controlled processes before DSP placement. Data is
currently under statistical analyses. First evidence indicates that medication indeed
affects controlled semantic and syntactic information processing differently. While
PD patients show almost no N400 effect under medication, the N400 effect reap-
pears under wash-out of L-Dopa and/or agonists. This is not the case for syntactic
processing. Here, medication in late stage PD does not appear to affect syntactic
processing. This is first evidence that L-Dopa treatment may affect semantic and
syntactic processing qualitatively differently.

Furthermore, as mentioned above, we are following up the possible dissocia-
tion of the N400 elicited by semantic vs. thematic violations in an ongoing fMRI
investigation (Raettig et al., 2005). Along the same lines, we have started to look at
patients with anterior cortical lesions who seem to show dissociation between the
two N400 types.

Last, we have tested the possibility that processing emotional semantics may
also recruit the basal ganglia (Kotz, Paulmann & Raettig, 2005). Our primary inter-
est in this investigation was to test the respective contribution of the right hemi-
sphere in discriminating between emotional and neutral semantics. Comparable to
the processing of emotional prosody, there has been discussion about the involve-
ment of subcortical structures in the discrimination of emotional and neutral seman-
tics. In order to test this hypothesis, the same participants were tested with two task
instructions. In the implicit condition, subjects listened to prosodically neutral sen-
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tences with three emotional semantic contents (positive, neutral, and negative) and
decided on a three-point scale whether the second noun phrase of a sentence was of
feminine, neutral, or masculine German grammatical gender. In the explicit condi-
tion, subjects had to categorize the same sentences (different randomisation) as
positive, neutral, or negative on a three-point scale. Presentation of task instruction
was counterbalanced across subjects. After correction of data in the implicit condi-
tion, each subject’s rating of the emotional content (explicit task) was applied to the
implicit condition to ensure maximal comparison of implicit and explicit emotional
semantic processing.

Bilateral fronto-temporal activation was found for negative as compared to
neutral semantics in the implicit task. In the explicit task, there was similar bilateral
fronto-temporal activation as well as bilateral subcortical activation of the caudate,
putamen (mid portion) and the thalamus (see Figure 5-8). Activation for the contrast
between positive and neutral semantics did not pass statistical threshold, but did en-
gage a similar network as the negative vs. neutral contrast under both task instruc-
tions. The current results clearly show that the basal ganglia system is involved
when information (in this case, emotional semantics) is categorised and selected
under controlled processing conditions. This further supports the notion that infor-
mation processing under controlled conditions engages the basal ganglia system.

Implicit task Explicit task

Figure 5-8. Displayed are in an axial and left sagittal view the activation patterns for the
direct contrast between negative (red) and neutral semantics in the implicit task (left) and
the explicit task (right). Statistical threshold was set at Z>3.09, uncorrected. Activated
brain regions comprised of at least 163 mm’ of connected neural tissue.

5.4 BG and emotional prosodic processing

5.4.1 Experiment 6

Most discussion on emotional prosodic processing has centred on a cortical laterali-
sation hypothesis, or whether the right hemisphere plays a more enhanced role in
emotional prosodic and perhaps in prosodic processing in general (Blumstein &
Cooper, 1974; Heilman, Bowers, Speedie & Coslett, 1984; Starkstein et al., 1994).
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However, some researchers have questioned a strong lateralisation of prosodic
processing and proposed that prosodic processing engages a bilateral network
(Bryan, 1989; Cancelliere & Kertesz, 1990; Dykstram Gandour & Stark, 1995; Pell
& Baum, 1997; Van Lancker & Siditis, 1992) that may also include subcortical
structures such as the basal ganglia (Bradvik et al., 1991; Blonder, Gur, Gur, Saykin
& Hurtig, 1989; Cancelliere & Kertesz, 1990; Morris et al., 1999; Pell, 1998; Pell &
Leonard, 2005).

In a first fMRI study (Kotz et al., 2003b), the neuronal network underlying

emotional prosodic processing was investigated. In order to separate the effects of
perception of pure emotional prosodic prosody and the interplay between emotional
prosody and semantics, two conditions were created. For condition 1, a trained fe-
male speaker spoke semantically neutral sentences with either a happy, neutral, or
angry prosody. For condition 2, the same sentences were filtered with the PURR-
filter (for specifics, see Sonntag & Portele, 1998). This filter procedure eliminates
the segmental and lexical information in an auditory sequence, but leaves su-
prasegmental information intact. Thus, both lexical emotional speech in condition 1
and purely prosodic speech in condition 2 displayed the same acoustic profile. Par-
ticipants responded on a five-point scale whether the prosody they had heard was
positive, neutral or negative.
It was predicted that a direct contrast between lexical and prosodic speech would
point to brain areas that respond specifically to the interplay of prosodic and lexical
information and to prosodic information only. If the basal ganglia modulate the per-
ception of emotional prosodic processing, then there should be overall activation in
the basal ganglia especially for the purely prosodic condition.

Results are displayed in Figure 5-9 and showed the following; 1) the laterali-
sation of purely prosodic effects was not mainly right lateralised but involved a bi-
lateral fronto-striatal network; 2) the perception of combined lexical and emotional
prosodic information also engaged a bilateral network, but here, temporo-striatal ar-
eas were activated. In summary, the contribution of the basal ganglia in both condi-
tions supports the notion that the basal ganglia play a key role in emotional prosodic
processing. However, there was a clear trade-off in terms of the cortico-striatal cir-
cuitry involved in the two conditions. In the purely prosodic condition, a classical,
though bilateral, fronto-striatal network including the IFS/MFG, the frontal opercu-
lum, and the head of the caudate was activated. This could imply that when lan-
guage content is eliminated, the categorisation of emotional prosody relies on a
basal ganglia circuitry (in particular caudal) that is also linked to general cognitive
processes (see Middleton & Strick, 2000). Thus, two questions remain: 1) Why was
there no activation of the affective circuitry proposed for emotional evaluation? and
2) Is the activation reported here not specific to emotional prosodic processing but
instead reflects the categorisation effort of the participants?
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In contrast to pure prosody, the combined lexical and emotional prosodic
condition showed that the temporo-striatal circuitry associated with the perception
of emotional prosody in language context (as induced by the task) engages the sec-
ondary auditory cortex (anterior and posterior) as well as the basal ganglia (the ante-
rior and middle portion of the putamen bilaterally). Here, as pointed out above (sec-
tion 5.2.), additional evidence is provided for the existence of an auditory sensory
circuitry between the basal ganglia and secondary auditory cortices, involving pri-
marily the superior temporal gyri and also potentially the superior temporal sulci.
This circuitry is comparable to the visual sensory circuitry proposed by Middleton
and Strick (2000). This proposal will be taken up again in Chapter 6.

Figure 5-9. Displayed are as a result of a direct contrast in left sagittal, axial, and right
sagittal view the activation patterns for lexicalised (ved) and delexicalised (blue) emo-
tional speech. Functional activation was thresholded at Z>4.0 for lexicalised speech and

Z23.1 for delexicalised emotional speech.

5.4.2 Emotional prosody — Outlook and ongoing experiments

Taking up the question whether the basal ganglia play a role in emotional prosodic
processing, we retested the materials of Experiment 6 in a blocked presentation de-
sign (Kotz et al., in press). Previous results have shown enhanced bilateral, left-
accentuated activation of both cortical and subcortical brain areas for emotional
prosodic processing. The continuous categorisation of lexicalised and delexicalised
emotional prosody may have forced participants to template matching of lexicalised
and delexicalised emotional prosody. This in turn may have resulted in an increased
effort to categorise emotional prosodic information. By presenting both lexicalised
and delexicalised emotional prosody in separate blocks, but leaving the design
event-related, we were able to retest the relative contribution of the basal ganglia to
emotional prosodic processing. The results show that lexicalised emotional prosodic
processing engages a bilateral temporo-striatal network, and delexicalised emotional
prosodic processing activates a bilateral fronto-striato-thalamic network. In com-
parison to the activation patterns in Experiment 6, the lateralisation of activation
was more right lateralised (see Figure 5-10.).
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Lexical speech Delexicalized speech

Figure 5-10. Displayed are as a result of a direct contrast between emotional and neutral
prosody in an axial and a right sagittal view the activation patterns for lexicalised and del-
exicalised emotional speech. Functional activation was thresholded at Z>3.09 for both
conditions. Results of a conjunction analysis reveal a common activation area in the right
middle STG for both conditions.

The data suggest that subcortical contribution to emotional prosodic processing
does not vary as a function of template matching and increased effort while catego-
rising emotional prosody. Additionally, activation of emotional prosodic processing
was more right-hemisphere accentuated. At the moment we follow up two crucial
questions: 1) Is the contribution of the basal ganglia to emotional prosodic process-
ing task specific, that is, does explicit categorisation of emotional prosody rely on
basal ganglia? 2) Does differentiation of emotional prosody (i.e. positive vs. nega-
tive emotional prosody) critically hinge on temporal cues?

As discussed in Chapter 5.3.3., categorisation and selection of lexical-
semantic information may critically depend on the basal ganglia. If indeed the basal
ganglia play a more general, domain non-specific role, then emotional prosodic
processing may not depend on the basal ganglia when tested under implicit process-
ing conditions. A recent fMRI experiment looks at this possibility in healthy par-
ticipants. In addition, a series of ERP experiments has been started looking at im-
plicit and explicit task effects as well as the temporal dynamics of basic emotions
(happy, pleasant surprise, sad, angry, disgust, fear, and neutral) during emotional
prosodic processing in both healthy, basal ganglia patients (Paulmann & Kotz,
2005), and Parkinson’s patients.

5.5 General summary

To summarise, the current thesis set out to investigate the functional contribution of
the basal ganglia to auditory language processing. In particular, the question was
addressed whether this contribution is domain specific or not. To this end, both
ERPs and fMRI were applied. Utilising ERPs, patients with BG damage (lesions or
neurodegenerative change) and age-matched controls were tested in a number of
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syntactic violation paradigms (phrase structure, verb-agreement, verb-argument
structure) to test whether the basal ganglia play a role in rule-based automatic syn-
tactic behaviour (Experiments 1 & 2). The results suggest that this is not the case as
both BG and Parkinson’s patients show a brain response to automatic syntactic
processes comparable to age-matched controls. However, patients show a deficit for
controlled syntactic processing. Experiments 3 & 4 explored whether this deficit is
purely attention based and whether other controlled language-specific processes (i.e.
lexical-semantic and/or thematic) are similarly affected as controlled syntactic proc-
esses. The data suggest that receptive syntactic processing deficits in BG patients
cannot simply be explained as an epiphenomenona of an attention deficit as non-
linguistic, attention-specific ERP components (P300) were comparable for patients
and controls.

The role of the basal ganglia, or the basal ganglia in conjunction with the
thalamus, in lexical-semantic processing is more complex. Generally, however, the
present evidence points to the possibility that the BG system is engaged in the regu-
lation of selection in lexical-semantic processing. In ERP studies (Experiments 1, 2,
& 4) that used selectional restriction violations and verb-argument violations, both
BG and Parkinson’s patients displayed a delayed and reduced ERP response (N400)
to incorrect semantic or thematic sentences. In an auditory fMRI experiment (Ex-
periment 5) with healthy participants words activated the striatum of the left hemi-
sphere during a lexical decision task. Both patient and fMRI data thus support the
possibility that the basal ganglia play a role in selection.

Last, the basal ganglia seem to be actively involved in the perception of emo-
tional prosodic cues. FMRI data acquired in two experiments with healthy partici-
pants (Experiment 6 & follow-up experiment) revealed bilateral striatal activation in
explicit emotional prosodic categorisation tasks.

All of the current results render a picture of the basal ganglia in auditory lan-
guage processing that could be domain-specific, but clearly deserves further inves-
tigation. In particular, non-linguistic (e.g., working memory, attention, and timing)
and linguistic cognitive functions need to be compared directly with the same level
of processing complexity and similar task demands in order to decide whether audi-
tory language deficits in PD and BG lesion patients are in fact language-specific.
Thus, whether the basal ganglia play a primary role in auditory language production
and perception remains an open and challenging task to pursue in further research.

In the final chapter of this thesis I want to borrow from non-human primate
research and sketch a model for a possible auditory temporo-stiatal loop as a basis
for future research on auditory language processing in an extended functional net-
work.
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VI Projections from and to the basal ganglia via the
temporal lobe: Outlook on an auditory cortico-
striatal loop

Going back to evidence on cortical projections to and from the striatum, I would
briefly like to refocus on the split circuitry model proposed by Joel & Weiner
(2001). According to the authors a loop model that adheres to the direct/indirect
pathway principles but includes both open and closed loops for information process-
ing would allow transfer of information between cortical areas that 1) do not project
to the striatum itself; and 2) support communication between closed circuitries
and/or open and closed circuitries. This in turn could explain diverse functional
deficits that have, for example, been reported in Parkinson patients. How could such
a model be adapted to an auditory language-processing pathway that could be dif-
ferentiated for language sub-processes and/or non-domain specific processes?

Auditory language processing relies on successful perception and integration
of “meaningful units” evolving in time at several processing levels. Successful
computation of such units is essential for successful auditory language comprehen-
sion. I would like to argue that in relation to functionally specific areas of the tem-
poral lobe (see for a recent review Scott, 2005) and/or frontal brain regions, the
basal ganglia might be a player in the successful computation and selection of audi-
tory information during language processing.

In the non-linguistic domain the basal ganglia have been linked to the regula-
tion of sequential processing (Brown, 1999), dopamine-dependent temporal dis-
crimination (Rammsayer & Classen, 1997), the chunking of action sequencing
(Graybiel, 1998), and temporal chunking (Schubotz & von Carmon, 2001) to name
just a few. Sequencing and the correct timing of “meaningful units” in a sequence
are also inherent to auditory language processing. However, language processing is
highly automatised and only calls attention into action when expectancies or predic-
tions are not fulfilled. Saint-Cyr (2003) proposed that the basal ganglia get engaged
in attentional and preparatory function in the motor and action domain. Taking a big
leap, one could speculate that the basal ganglia come into play when the computa-
tion of linguistic information is not occurring in appropriate time and in conse-
quence affecting not only computation, but potentially also the re-sequencing, selec-
tion and response to auditory information. If true, a temporo-striato-temporal loop
most likely in combination with a fronto-striatal loop (i.e. for selection and response
functions) would have to be considered for auditory language processing. While the
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nature of such a loop remains to be defined (open vs. closed or being part of a split
ciruitry) I would like to take a first descriptive step in this direction.

Presented in Figure 6-1 is an attempt to adapt auditory non-human primate
projection models to a potential auditory human projection model. This model de-
scribes input projections from temporal lobe areas to the basal ganglia as well as
output projections from the thalamus to temporal lobe areas. While there is paucity
of non-human primate research in terms of striato-thalamo-striatal projections (see
LeDoux, Sakaguchi & Reis, 1984 for an exception in the rat model) as can be seen
in the described model below, there is even less non-human primate or human re-
search exploring potential connections between temporo-striato-temporal areas in
the auditory domain (Yeterian & Pandya, 1998). However, evidence presented by
Middleton & Strick (2000) provides an encouraging model for such connections in
the visual domain.

In particular input projections from the superior temporal gyrus (STG; ante-
rior and mid portions) to mainly anterior and mid portions of the putamen and cau-
date have been described in the squirrel monkey (Borgmann & Jiirgens, 1999) and
the rhesus monkey, respectively (Yeterian & Van Hoesen, 1978; Yeterian &
Pandya, 1998). Furthermore, there are direct projections from the anterior portion of
the STG as well as of the posterior STG and superior temporal sulcus (STS) to the
amygdala as demonstrated in the macuaque monkey (Stefanacci & Ameral, 2000;
2002). As pointed out, clear ideas as to the nature of striato-thalamic projections are
sparse. However, some auditory evidence describing outflow from posterior tha-
lamic nuclei (i.e. medial pulvinar, medial geniculate nucleus) to anterior and poste-
rior portions of the STG and STS (Hackett, Stepniewska & Kaas, 1998; Pandya &
Rosene, 1993) in macaque and rhesus monkey models shows that connections (in
some cases bi-directional) between the thalamus and the STG/STS exist. Romanski
and colleagues (Romanski, Giguere, Bates & Goldman-Rakic, 1997) described pro-
jections from the medial pulvinar to the rostral STG/STS as crucial to auditory in-
formation processing. By further describing projections from the medial pulvinar to
prefrontal cortex a first demonstration of parallel circuitry involving both temporal
and frontal cortical brain regions connected to subcortical regions such as the stria-
tum and the thalamus is given. While the current observations are by far conclusive
in terms of a cortico-striatal auditory pathway model that could explain functionally
differentiated auditory language processing, a closer exchange between animal
modelling, functional neuroimaging, diffusion tensor imaging, and lesion studies is
warranted in order to substantiate our understanding of a neural auditory pathway(s)
supporting language processing.
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Figure 6-1. Overlay on human brain structure of non-
human primate studies revealing mainly anterior tempo-
ral input to the anterior and middle portions of the stria-
tum and projections from the thalamus (here dominantly
from the pulvinar and the medial geniculate nucleus)
back to both anterior and posterior temporal areas in the
superior temporal gyrus and the superior temporal sul-
cus. Colours reflect the specific tracer studies identified
by author.
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VII Deutschsprachige Kurzfassung

Die Rolle der Basalganglien bei der auditiven Sprachverarbeitung:
Nachweise aus EKP-Lisionsstudien und funktionellen Kernspin-
studien

Die vorliegende Arbeit untersucht den funktionellen Beitrag der Basalganglien in
der auditiven Sprachverarbeitung. Eine zentrale Frage, die mit Hilfe der vor-
liegenden Untersuchungsreihe adressiert wurde, ist, ob die Basalganglien funk-
tionsspezifisch zur auditiven Sprachverarbeitung beitragen oder nicht.

Versuchspersonen, die an Untersuchungen zur syntaktischen Verarbeitung
teilnahmen, waren Patienten mit fokalen Lasionen der Basalganglien oder Parkin-
son Patienten, sowie Alterskontrollen. Experimente zur lexikalisch-semantischen
Verarbeitung wurden sowohl mit den zuvor beschriebenen Patienten als auch mit
jungen gesunden Personen durchgefiihrt, wihrend Untersuchungen zur emotionalen
Prosodieverarbeitung nur mit jungen Probanden stattfanden. Messmethodisch
wurde sowohl die Elektroencephalographie (EEG) als auch die funktionelle Mag-
net-Resonanz Tomographie (fMRT) eingesetzt.

Untersuchungen spezifischer Gehirnldsionen ermdglichen Aussagen {iber die
funktionelle Organisation der Sprache im Gehirn in Abhédngigkeit von Plastizitét
und Reorganisation. Auch Untersuchungen der sprachlichen Funktionen bei hirnge-
sunden Sprechern mit bildgebenden Verfahren, wie ereigniskorrelierten Hirnpoten-
tialen (EKPs) und der funktionellen fMRT, haben dies zum Ziel. Diese Methoden
geben weiteren Aufschluss dariiber, wie die zeitliche Dynamik (EKPs) oder aber die
Neurotopographie (fMRT) einzelner sprachlicher Funktionen aussehen. Das Loka-
lisieren und das zeitliche Differenzieren einzelner sprachlicher Funktionen liefert
Daten, die ein Mapping der Organisation des neuronalen Systems fiir Sprache er-
moglicht.

Im ersten Teil der vorliegenden Arbeit werden Patienten-EKP Studien vorge-
stellt, die sich mit der Verarbeitung syntaktischer Strukturen auseinandersetzen. Die
Verwendung eines Verletzungsparadigmas akzentuiert dabei die Verarbeitung spe-
zifischer regelgeleiteter syntaktischer Strukturen. Im Falle der Phrasenstrukturver-
letzung wird eine Wortkategorieerwartung verletzt. Das heiflt, nach einer kasus-
markierten Préposition wird statt einem Nomen ein Verbpartizip prisentiert. Im
Normalfall resultiert eine solche Verletzung in einer frithen anterioren Nega-
tivierung (E(L)AN), die mit der Identifikation von Wortkategorien einhergeht. Die-
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ser fritheren Negativierung folgt eine zentro-parietal auftretende Positivierung
(P600), die mit Reanalyseprozessen korreliert wird.

Vorhergehende Arbeiten zum automatischen regelgeleiteten Verarbeiten syn-
taktischer Information (Ullman et al., 1997, Ullman et al., 2001) haben postuliert,
dass regelgeleitetes syntaktisches Verarbeiten durch ein fronto-striatales Netzwerk
unterstiitzt wird. Daraus ergeben sich folgende Hypothesen. Sowohl Patienten mit
Léasionen links anteriorer Hirnstrukturen (z.b. dem Broca Areal) als auch Patienten
mit Lasionen der Basalganglien sollten Ausfille bei der Verarbeitung automatischen
regelgeleiteten syntaktischen Wissens zeigen. Dies hitte zur Folge, dass beide Pa-
tientengruppen keine E(L)AN zeigen sollten, jedoch eine P600. Die Ergebnisse der
Studie bestétigen den Ausfall automatischen Regelwissens bei Patienten mit links
anterioren L&sionen, nicht aber bei Patienten mit fokalen Lasionen der Basalgan-
glien (Friederici et al., 1999). Jedoch scheint es, dass Patienten mit Basalgan-
glienldsionen eine reduzierte P600 Komponente aufweisen. Daraus ldsst sich
schlieBen, dass primér links anterior kortikale Areale bei der Umsetzung automa-
tischen syntaktischen Regelwissens eine Rolle spielen.

Eine kritische Uberlegung, die aus der vorliegenden Studie resultierte, war,
inwiefern unterschiedliche klinische Atiologien zu kontroversen Ergebnissen fiihren
konnen. Ullman und Kollegen (1997) hatten in ihrer Studie Parkinsonpatienten un-
tersucht. Diese neurodegenerative Erkrankung hat zur Folge, dass die neuronale
Versorgung durch Dopamin auf Dauer nicht gewihrleistet ist und zu sowohl mo-
torischen als auch kognitiven Ausfallerscheinungen fiihrt. Im Vergleich dazu fiihrt
eine Hirnldsion potentiell zu einer kompletten Unterbrechung eines neuronalen In-
formationstransfers.

In einer zweiten Studie wurden daher Parkinson Patienten in einem frithen
Stadium der Erkrankung untersucht. Die Annahme war, dass Parkinson Patienten
ein dhnliches Profil wie Patienten mit Lisionen der Basalganglien aufweisen soll-
ten. Das heiit, eine E(L)AN als frithen Marker fiir Phrasenstrukturverletzung und
eine reduzierte P600 als Reanalysereaktion. Parkinson Patienten zeigten ein dquiva-
lentes Profil zu Patienten mit Lésionen der Basalganglien (Friederici, Kotz, et al.,
2003). Es wurde geschlussfolgert, dass die Basalganglien bei der Verabreitung
automatischen regelgeleiteten syntaktischen Wissens keine entscheidende Rolle
spielen.

Im dritten Experiment zur syntaktischen Verarbeitung wurde untersucht, ob
ein Ausfall oder eine Reduktion der P600 Komponente bei syntaktischer Reanalyse
aufgrund eines allgemeinen Aufmerksamkeitsdefizits auftritt oder nicht. In der Lit-
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eratur wurde bisweilen die P600 als eine zur P300 Familie gehorenden Komponente
betrachtet, da beide Komponenten eine zentro-parietale Verteilung aufweisen, je-
doch ihre Latenz aufgrund unterschiedlicher Stimuluskomplexitit variieren kann
(Gunter et al., 1997; Coulson et al., 1998a). Da die P600 im Kontext der syntak-
tischen Reanalyse unter Aufmerksamkeit ausgelost wird, wurde in einem direkten
Vergleich die P600 mit der P300 bei Patienten mit Basalganglienldsionen ver-
glichen. Um die Komplexitit der Verarbeitung dhnlich zu gestalten, wurden als syn-
taktische Verletzung, die Verletzung morphosyntaktischer Strukturen verwendet
(Inflektionsverletzungen des Verbs) wihrend die P300 durch einen Vergleich zwi-
schen Standardtonen mit abweichenden Tonen evoziert wurde. Die Vorhersage war,
dass die P600 keine P300 ist und daher Patienten mit Lasionen der Basalganglien
eine reduzierte P600 und eine normale P300 zeigen sollten.

Diese Vorhersagen wurden durch die Ergebnisse bestitigt. Die Tatsache,
dass eine klare Dissoziation zwischen den beiden Positivierungen auftrat erlaubt die
Schlussfolgerung, dass die P600 keine P300 ist, und dass der Ausfall der P600 bei
Patienten mit Basalganglienlésionen nicht aus einem generellen Aufmerksamkeits-
defizits resultiert (Frisch, Kotz et al., 2003).Wenn jedoch keine aufmerksamkeitsge-
leitete syntaktische Reanalyse von Fehlern bei Patienten mit Lésionen der Basal-
ganglien moglich ist, so stellt sich die Frage, ob andere sprachliche aufmerksam-
keitsgeleitete Prozesse, wie die lexikalisch-semantische oder thematische Verarbei-
tung dhnlich betroffen sein sollte. Dazu bietet sich die Untersuchung von Verb-
Argumentstrukturen an.

Eine Verletzung der Verbargumentstruktur 16st bei hirngesunden Probanden
einen bi-phasischen Komplex aus einer N400 und P600 aus (Frisch et al., 2004).
Dieses Muster deutet an, dass Verbargumentstrukturen sowohl semantisch als auch
syntaktisch verarbeitet werden. Des weiteren ist es dadurch méglich im direkten
Vergleich zwei unter Aufmerksamkeitskontrolle stattfindende Prozesse zu verglei-
chen. Wenn also der Ausfall der P600-Komponente bei Patienten mit Basalgan-
glienldsionen spezifisch mit syntaktischer Reanalyse korreliert ist, sollte die N400
bei Verbargument-Strukturverletzungen vergleichbar zu Kontrollen sein.

Experiment 4 testete Verbargumentstrukturen und ihre Verletzung bei Pa-
tienten mit Basalganglienldsionen im Vergleich zu Patienten mit links temporo-
parietalen Lasionen (Kotz et al., 2003). Interessanterweise gibt es in der Literatur
zur Verarbeitung dieser Struktur Hinweise, dass eine zeitlich addquate Zuweisung
thematischer Rollen (d.h. wer macht was mit wem/was?) notwendig ist. Haufig
wurde bereits dokumentiert, dass dies bei agrammatischen Patienten (d.h. meistens
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Patienten mit links anterioren Hirnldsionen) nicht der Fall ist (z.b. Grodzinsky,
2000; Frisch et al., 2000).

Die Ergebnisse gestalteten sich wie folgt. Patienten mit Basalgan-
glienldsionen zeigten keine P600. Die vorhergehende Negativierung war vorhanden,
wies aber eine extrem lange Latenz auf. Im Vergleich dazu zeigten Patienten mit
temporo-parietalen Lisionen ein P600, aber keine Negativierung. Daher bestitigen
auch Daten aus der Testung komplexerer syntaktischer Strukturen, dass die Basal-
ganglien eine entscheidende Rolle in der Modulation der P600 spielen. Funktionell
lasst sich daraus schlieBen, dass strukturelle oder neurodegenerative Verdnderungen
der Basalganglien das Reanalysieren struktureller Information beeintriachtigt.

Zusammenfassend ldsst sich sagen, dass die Ergebnisse der vier syntak-
tischen Experimente eine klare Rolle der Basalganglien bei der syntaktischen Ver-
arbeitung belegen und zudem ausschlieBen, dass die Beeintrichtigung des syntak-
tische Reanalyseprozess rein aufmerksamkeitsbedingter Natur ist.

Die Tatsache, dass auch die mit der P600 kombinierte Negativierung, evoz-
iert durch Verbargumentstrukturverletzungen, eine verdnderte Latenz aufweist kann
zweil Dinge bedeuten. Diese Negativierung ist funktionell nicht vergleichbar mit
einer lexikalisch-semantisch evozierten N400, d.h. ist eher syntaktischer Natur. Das
wiirde bedeuten, dass eine N400 bei semantischen Verletzungen unbeeintrachtigt
sein sollte. Wenn jedoch semantische Verletzungen eine &hnliche La-
tenzverzogerung aufweisen wie die durch Verbargumentverletzungen evozierte
Negativierung, dann spricht ein solches Ergebnis fiir eine zeitliche Verédnderung der
semantischen/thematischen Integration, die durch strukturelle/neurodegenerative
Veranderungen in den Basalganglien erfolgt. Warum potentiell eine qualitativ
unterschiedliche Beeintrichtigung lexikalisch-semantischer/thematischer und struk-
tureller Prozesse auftritt bleibt eine offene Frage.

Die Patientenliteratur deutet darauf hin, dass sowohl die Basalganglien
(Damasio, 1982; Wallesch & Papagno, 1988) als auch die Basalganglien im Ver-
bund mit dem Thalamus (Crosson, 1985) eine Rolle bei lexikalisch-semantischer
Verarbeitung spielen kénnen. Neuere bildgebende Daten weisen zudem darauf hin,
dass Faserbahnen zwischen kortiko-striatalen Gehirnarealen zum einen motorische
Aspekte der Sprache regulieren, zum anderen lexikalische Prozesse (Henry et al.,
2004). Um eine solche Hypothese zu {iberpriifen und zudem abzugrenzen, ob se-
mantische und thematische Verletzungen in einer dhnliche Modulation der N400 re-
sultieren, wurden Daten aus den Experimenten 1 und 2 reanalysiert.
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Teil dieser Untersuchungen war neben den Phrasenstrukturverletzungen,
auch eine Verletzung der semantischen Selektionsrestriktion. Im Falle einer nicht
vorhanden semantischen Passung (z.b. “Der Honig wurde ermordet.” statt “Der
Honig wurde gegessen.”) 16st das nicht passende Wort eine N400 aus, die mit lexi-
kalischer/semantischer Integration Hand in Hand geht. Eine genauere Betrachtung
dieses Verletzungstyps ermoglichte zum einen die lexikalisch-semantische Integra-
tionsfahigkeit bei Patienten mit Lasionen der Basalganglien und Parkinson Patien-
ten zu tiberpriifen. Zum anderen konnten die Ergebnisse dieser beiden Experimente
mit den Ergebnissen der thematischen Integration (Experiment 4) verglichen wer-
den.

Trotz der Tatsache, dass ein solcher Vergleich zwischen Experimenten post-
hoc ist, bestétigen die Ergebnisse, dass in beiden Patientengruppen die Latenz der
Negativierung nach semantischen Selektionsverletzungen und thematischen Ver-
letzungen dhnlich beeintréchtigt ist. Im Falle der Parkinson Patienten kam es sogar
an manchen Elektroden zu dhnlich starken Ausfallerscheinungen wie fiir die P600.

Diese Ergebnisse belegen, dass auch semantische und thematische Integra-
tion bei strukturellen und neurodegenerativen Verdanderungen der Basalganglien be-
eintrachtigt ist.

In einem weiteren Experiment (5; Kotz et al., 2002) wurde mit hirngesunden
Probanden eine fMRT Studie durchgefiihrt. Mit Hilfe einer geprimten lexikalischen
Entscheidungsaufgabe wurde iiberpriift, welche Gehirnareale bei lexikalischer Dif-
ferenzierung zwischen Worten und Pseudoworten, aber auch beim erleichterten
Zugriff auf semantisch relatierte Wortpaare aktiv sind. Wihrend das Priming (d.h.
erleichterter Zugriff auf relatierte semantische Information im Vergleich zu unre-
latierter semantischer Information) ein fronto-temporales Netzwerk beanspruchte
(BA 45 und posteriorer STG), wurde fiir die lexikalische Verarbeitung Aktivierung
im MTG sowie dem anterioren und posterioren Striatum gefunden. Die Ergebnisse
belegen, dass ein einfacher Zugriff auf Worte bei auditiver Verarbeitung neben
klassischen semantischen Spracharealen auch durch die Basalganglien involviert.

Zusammenfassend ergibt sich aus der bereits beschriebenen Reihe von Pa-
tienten- und fMRT Experimenten folgendes Bild. In der auditiven Sprachverarbei-
tung sind die Basalganglien sowohl auf einfacher lexikalischer Ebene (Experiment
5) als auch bei der semantisch/thematischen Integration von semantischer Informa-
tion (Experiment 1, 2, & 4) beteiligt. Das heif3it, die Ebene der sprachliche Kom-
plexitdt scheint auf beiden Verarbeitungsebenen (Wort/Satz) nicht den relativen
Beitrag der Basalganglien zu regulieren. Offen bleibt dabei die Frage, ob eine
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hohere Ebene der semantischen Komplexitit, wie im Falle der semantischen Wort-
oder Satzambiguitit, bei Patienten mit Basalganglienldsionen ein deutlicheres De-
fizit auslosen wiirde, d.h. statt einer zeitlichen Verzogerung einen kompletten Aus-
fall der Negativierung.

Behaviorale Studien mit Parkinson Patienten bestitigen eine solche
Moglichkeit (z.b. Copland, 2003). Jedoch muss in diesem Zusammenhang kritisch
beachtet werden, dass die meisten semantischen Ambiguitétsstudien, die mit Park-
inson Patienten durchgefiihrt wurden, Patienten im medizierten Zustand gemessen
haben. Jedoch zeigten Parkinson Patienten auch bei einfacher semantischer Integra-
tion an selektiven Elektroden keine N400 Reaktion. Es wére daher sinnvoll einen
direkten Vergleich zwischen einfacher und komplexerer semantischer Verarbeitung
bei Parkinson Patienten im medizierten und nicht-medizierten Zustand
durchzufiihren. Eine dhnliche Argumentation gilt demnach auch fiir Untersuchun-
gen syntaktischer Natur. Jedoch bleibt hier zu bemerken, dass die Ausfallerschein-
ungen im Bezug auf syntaktische Renalayse (P600) bei Patienten mit Lésionen der
Basalganglien und Parkinson Patienten nicht unterschiedlich war.

In den letzten beiden Experimenten, die die Untersuchungsreihe dieser Ha-
bilitationschrift beschlieBen, wurde ein weiterer Aspekt der auditven Sprachverar-
beitung, emotionale Prosodie, untersucht. Obwohl bei Untersuchungen der emo-
tionalen Prosodie primér die Frage im Vordergrund steht, ob ein rechtslatralisiertes
korikales Netzwerk diesen Prozess unterstiitzt, gibt es einige Hinweise aus der klini-
schen Literatur, die auch den Basalganglien bei der Verarbeitung emotionaler
Prosodie eine Rolle zuweisen. So weisen Studien mit Lasionspatienten und Parkin-
son Patienten darauf hin, dass sowohl die Identifikation, Erkennung sowie die
Diskrimination emotionaler Prosodie gestort sein kann (Bradvik et al., 1991;
Blonder et al., 1989; Cancelliere & Kertesz, 1990; Morris et al., 1999; Pell, 1998;
Pell & Leonard, 2004).

In einer fMRT Untersuchung (Experiment 6) mit hirngesunden Probanden
(Kotz et al., 2003) wurde die Erkennung und Zuordnung von emotional intonierten,
semantisch neutralen Sitzen mit emotional intonierten gefilterten Sétzen verglichen.
Um moglichst prazise Vorstellungen davon zu bekommen, welche Gehirnareale bei
der Verarbeitung reiner Prosodie und kombinierter Prosodie und Semantik aktiv
sind, wurden die semantisch neutralen Sitze mit unterschiedlichen emotionalen
Prosodien (drgerlich. neutral und gliicklich) mit einem Spezialfilter bearbeitet
(Sonntag & Portele, 1998), der segmentale und lexikalische Information eliminiert,
jedoch die suprasegmentale Information aufrechterhilt. Dies ermdglichte einen di-
rekten Vergleich der suprasegmentalen Information in beiden Bedingungen.
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Die Probanden fiihrten mit Hilfe einer Fiinf-Punktskala eine prosodische
Kategorisierung der gehorten auditorischen Sequenzen durch. Wenn die Basalgan-
glien in der Wahrnehmung und Kategorisierung emotionaler Marker eine Rolle
spielen, so sollte insbesondere bei der Verarbeitung reiner prosodischer Stimuli Ba-
salganglienaktivierung auftreten. In beiden Konditionen trat bilaterale Aktivierung
der Basalganglien auf. Im direkten Vergleich wurde jedoch war bei der Verarbei-
tung lexikalisch-emotional-prosodischer Information ein temporo-putaminales
Netzwerk aktiv, wihrend in der reinen Prosodiebedingung ein fronto-caudales
Netzwerk aktiviert wurde.

Die Tatsache, dass in beiden Bedingungen Basalganglienaktivierung auftrat,
jedoch in differenzierten Arealen (Putamen vs. Caudatum) kann bedeuten, dass die
Verarbeitung reiner Prosodie ohne sprachlichen Inhalt erschwert ist und dadurch
einen Basalganglienkreislauf aktiviert, der auch bei genereller kognitiver Verarbei-
tung nachgewiesen wurde (Middleton & Strick, 2000). Die Frage entsteht, ob dieses
Aktivierungsmuster emotional prosodische Verarbeitung reflektiert oder den Auf-
wand der Probanden emotional prosodische Information zu kategorisieren.

In einem ersten Schritt wurde daher in einem Folgeexperiment (Kotz et al.,
in press) die Présentation gefilterter emotionaler Prosodie und lexikalischer emo-
tionaler Prosodie getrennt, da die Annahme bestand, dass die Kategorisierung gefil-
terter emotionaler Prosodie durch einen nicht pradiktierbaren Wechsel zwischen den
beiden sprachlichen Bedingungen erschwert worden sein kann.

Lexikalisierte und gefilterte emotionale Prosodie wurden in den drei zuvor
verwendeten Kategorien (drgerlich, neutral, gliicklich) in Blocken prisentiert. Die
Blockabfolge wurde tiber die Probanden hinweg ausbalanciert. Die Ergebnisse aus
diesem Experiment komplementieren die Ergebnisse aus Experiment 6. Wihrend
lexikalisierte emotionale Prosodie ein bilaterales temporo-striatales Netzwerk ak-
tivierte, kam es bei Présentation gefilterter emotionaler Prosodie wiederum zu einer
bilateralen fronto-striato-thalamischen Aktivierung.

Diese Ergebnisse bestitigen, dass der Beitrag der Basalganglien zur emo-
tional prosodischen Verarbeitung nicht nur von generellen kognitiven Faktoren ab-
hiangen kann. Jedoch untersuchen wir im Moment eine weitere wichtige Frage.
Kann die Basalganglienaktivierung bei emotional prosodischer Verarbeitung von
der Aufgabenstellung beeinflusst sein? Dazu haben wir ein weiteres fMRT Experi-
ment mit den gleichen Stimuli wie in Experiment 6 durchgefiihrt. Statt einer Kate-
gorisierungsaufgabe mussten die Probanden jedoch eine physikalische Qualitit der
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auditiven Stimuli beurteilen (Tonhohe). Damit ist eine implizite Verarbeitung emo-
tionaler Prosodie gewihrleistet. Wenn unter diesen Verarbeitungsbedingungen den-
noch Basalganglienaktivierung auftritt, kann diese Aktivierung nicht als allgemein
kognitives Phénomen erklédrt werden und bestétigt Vermutungen in der Literatur,
dass die Basalganglien bei temporaler Sequenzzierung und Diskriminierung audi-
tiver sprachlicher Stimuli eine Rolle spielen (siehe Pell & Leonard, 2004).

Die vorliegende Arbeit befasste sich mit einer Reihe von Untersuchungen,
die es zum Ziel hatten, den funktionellen Beitrag der Basalganglien in der auditiven
Sprachverarbeitung zu spezifizieren. Insbesondere stand die Frage im Vordergrund,
ob dieser Beitrag sprachspezifisch sei oder nicht. Zur Untersuchung dieser Frage
wurde sowohl das EKP und das fMRT eingesetzt. In den EKP-Studien wurden Pa-
tienten mit strukturellen und neurodegenerativen Verdnderungen der Basalganglien,
sowie klinische Kontrollen und Alterskontrollen mit verschiedenen syntaktischen
Strukturen untersucht (Phrasenstruktur, Verbkohérenz, Verbargumentstruktur). Da-
bei konnte nachgewiesen werden, dass automatische regelgeleitete Syntaxverarbei-
tung bei subkortikalen Patienten intakt ist, wéhrend syntaktische Reanalyse betrof-
fen ist. Dies wiederlegt zum einen die Hypothese, dass die Basalganglien eine
entscheidende Rolle bei automatischem regelgeleitetem Wissen spielen (z.b. Ull-
man, 2001). Zum anderen bestétigen die Patientendaten, dass Reanalyseverhalten
beeintrachtigt ist. Diese Beeintrachtigung tritt aber nicht als Folge einer priméren
Aufmerksamkeitsstorung oder komplexerer syntaktischer Verarbeitung auf.

Die Beteiligung der Basalganglien oder der Basalganglien im Zusammen-
hang mit dem Thalamus bei lexikalisch-semantischer Verarbeitung gestaltet sich
komplexer. Jedoch deuten die Ergebnisse aus Patienten und fMRT -
Untersuchungen an, dass die Basalganglien die Selektion lexikalisch-semantischer
Information mitsteuern.

Die Basalganglien scheinen bei der Verarbeitung emotional prosodischer In-
formation involviert zu sein, jedoch stehen hier noch entscheidende zu beant-
wortende Fragen im Raum, die kldren miissen, ob die Beteiligung der Basalganglien
prozessspezifisch oder eher aufgabenspezifisch ist.

Zusammengefasst bestdtigen die vorliegenden Untersuchungen, dass die Ba-
salganglien bei der auditiven Sprachverarbeitung eine sprachspezifische Rolle
spielen konnen. Weitere Untersuchungen, die mit &dhnlichen Aufgabenstellungen
und dhnlicher Stimuluskomplexitit sowohl sprachliche und nicht-sprachliche Ver-
arbeitung direkt vergleichen stellen eine Herausforderung fiir weitere Untersuchun-
gen sowohl mit Patienten als auch fMRT Untersuchungen in der nahen Zukunft dar.
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