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Using Replicator Dynamics for Analyzing fMRI Data
of the Human Brain

Gabriele Lohmann* and Stefan Bohn

Abstract—The understanding of brain networks becomes in-
creasingly the focus of current research. In the context of lunctional
magnetic resonance imagery ((MRI) data of the human brain, net-
works have been mostly detected using standard clustering ap-
proaches. In this work, we present a new method of detecting fune-
tional networks using fMRI data. The novelty of this method is that
these networks have the property that every network member is
closely connected with every other member. This definition might
to be better suited to model important aspects of brain activity than
standard cluster definitions. The algorithm that we present here is
based on a concept from theoretical biology called “replicator dy-
namics.”

Index Terms—Clustering, fMRI data, functional connectivity,
network analysis, replicator dynamies.

1. INTRODUCTION

N this paper, we will introduce a new approach to mod-
I eling and detecting functionally coherent networks in the
human brain based on a well-known concept of theoretical bi-
ology called “‘replicator equations.™ Qur approach is based on
measurement data of functional magnetic resonance imagery
(fMRI). In fMRI, test subjects are subjected to cognitive or sen-
sory stimuli and are asked to respond to them while a sequence
of T2*-weighted magnetic resonance images are acquired. In
the course of a typical fMRI experiment, several hundred or
even several thousand images are recorded at a rate of about
1-2 s/image. Usually, these image sequences are then analyzed
using standard statistical techniques to reveal areas in the brain
that are significantly activated when a stimulus conditionis con-
trasted against some baseline condition. The result of such an
analysis is an activation map that shows the degree of statistical
significance with which each pixel can be considered to be ac-
tivated.

While such maps are of large value for purposes of human
brain mapping, they do not reveal interdependencies between
areas of activations. Therefore, the aim of this paper is to present
anew approach that allows us to identify such interdependencies
of brain activations and to detect functionally coherent networks
within an fMRI image sequence. The basic assumption here is
that during the course of an fMRI experiment, several brain re-
gions are active and interact with each other and, thus, form a
functionally coherent network. We assume that these networks
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can be detected by analyzing correlations between fMRI time
courses. The important point to note here is that our algorithm
is rot a clustering algorithm because our concept of a coherent
network differs from the traditional cluster concept.

A large number of clustering methods for a variety of applica-
tion domains exist and have been described in the literature [1].
Clustering has also been applied in the present domain of appli-
cation [2]-[5]. The difference between the method proposed in
this work is in the definition of a cluster. Usually, a clustering
is defined as a partitioning of a feature space into several com-
ponents such that the elements within the same component are
close to some central element and the distances between dif-
ferent components are large. Thus, most traditional clustering
algorithms identify star-shaped topologies in which each ele-
ment of the feature space is associated with one of a few central
elements.

In contrast, we aim at finding networks (or clusters) that ex-
hibit quite different coherence properties: each element of a net-
work must be close to as many other nodes as possible. Thus,
the resulting network plays a dominant role in the graph.

This requirement seems to be better suited to our domain of
application: we want to identify networks of brain activity such
that all members that belong to the same network interact with
each other. Current knowledge about brain processes suggest
that such topologies are more realistic than star-shaped topolo-
gies. In order to differentiate between those two concepts, we
will subsequently use the term “network” instead of “cluster.”
This concept of a coherent network is close to the concept of
a clique in graph theory. A clique is delined as a collection of
nodes in a graph such that any two nodes are connected by an
arc.

The algorithm that we propose is based on a concept well
known in theoretical biology called “replicator dynamics.”
Replicator dynamics describe the growth of populations
consisting of several species (hat interact with each other.
Replicator dynamics have recently been used in the context of
graph theory as a means of detecting maximal cliques for graph
matching purposes [6].

We have adapted the concept of replicator dynamics for our
purposes because it allows us to detect networks in the sense
described above. In addition to supporting this new notion of
a network, our method has the additional advantage of only
using pairwise similarity measurements rather than an explicit
measurement vector in each pixel. In our context, this is par-
ticularly advantageous as the entities that we want to process
are very high-dimensional vectors of time courses. Similarity
measurements of time courses can be easily obtained without
loss of information, whereas time course vectors are difficult
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to handle due to the high dimensionality. Pairwise clustering
methods have been proposed by Hofmann et al.[7] for pattern
recognition purposes, but it has not been applied to fMRI data.

Recently, independent component analysis (ICA) has been
applied to perform fMRI data analysis [8]. ICA tries to decom-
pose the image sequence into a sequence of independent com-
ponents. It is related to cluster analysis in that it is also an ex-
ploratory method.

II. MATHEMATICAL FRAMEWORK

The basic idea underlying our approach is that functional net-
works can be detected solely by analyzing pairwise similarity
measurements between any two time series. Thus, we start out
with a similarity matrix W = (w;;) where w;; represents a non-
negative, symmetric and real-valued similarity measurement be-
tween time courses in pixels ¢ and j.

Our goal is to detect a maximally coherent network of pixels.
We denote this network as M. The degree of coherence relative
to M is defined as follows. Let z; € [0, 1] represent the degree
of membership of pixel < in M. Thus, if + € M, then x; =
land @; =0, if 7 ¢ M. We also allow “fuzzy” membership
values, so that z; may attain any value in the interval [0, 1].
Letz = (x1,...,®,) with n being the number of pixels in the
image. We then define the degree of coherence relative to M as
T We.

In order to detect such a maximally coherent network M, we
must find a vector z that maximizes 7 Wz subject to ||z|| = 1.
The network M is then defined by its membership values x. It is
well known that the maximization problem 7 Wz is NP-hard
if W has positive eigenvalues [9]. In our case, the matrix W
usually represents a correlation matrix and so it has positive
cigenvalues. Thus, a careful choice of an optimization procedure
is needed.

We propose to use a class of dynamical systems known from
theoretical biology for this purpose. This class of dynamical sys-
tems is described by the following equation:

;—i(ci(t) =2;()[(Wa(t)); — z(t) T Wa(t)],
where W is a similarity matrix as described above. The discrete
version of the process is given by

1=1,...,n.

(We(t)):

zi(t+1) = xi(ﬂm'

These equations are known as replicator equations [10]. They
are used in theoretical biology to model frequency-dependent
evolution of a population containing several interacting species.
They have recently been used for addressing the maximum
clique problem which can also be cast into a quadratic maxi-
mization problem [11], [6].

The dynamical properties of replicator systems are described
by the famous fundamental theorem of natural selection (see
also, [6] and [12]).

Theorem [12, p. 15]: Let W be a nonnegative, real-valued
svinmetric n X n matrix. Then the function «(t)T W (t) in-
creases with increasing t along anv nonstationary (rajectorv
x(t) under both continuous-time and discrete time replicator
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dynamics. Furthermore, any such trajectory converges toward
a stationary point x. Finally, a vector & € S,, is asymplotically
stable if and only if T is a strict local maximizer of tT W in Sy,
with S, ={z € R*| Y z; =1,2; > 0,i = |,...,n}.

The process of detecting a maximally coherent network is
now straightforward. We start out with an initial vector z which
issettox = (1/n,...,1/n) to avoid an initial bias. We then
apply the replicator dynamical process during which the vector
x evolves toward some stationary value & thal maximizes ' W,

Note that the maximum = may be only local and not neces-
sarily global. The choice of the starting point determines which
of the possibly many local maxima will be reached.

As initially all components z; of of the starting vector = have
the same weight, the components that will increasce their weight
after the first iteration are the ones that interact most closely
with many other components. As the process evolves, only those
components z; will profit that interact most closely with many
other high-weighted other components. Interaction with low-
weighted components becomes less and less profitable. Eventu-
ally, a small set of closely interacting components will have re-
ceived a large weight while the remaining components become
negligible.

These components form a closely coherent network. Note that
membership in such a network is a fuzzy concept: a large value
of x; indicates a high degree of membership. In order to “de-
fuzzify” the membership concept, we define the pixel 7 to be-
long to the network if its membership value cxceeds the average
value, ie, ifz; > 1/n.

The process terminates if it becomes stationary, i.e., if the dif-
ference between subsequent iterations becomes negligible. We
determine stationarity by counting the number of voxels that
change their membership status from one iteration to the next. If
no membership changes occur for more than a a given number of
iterations then the process is assumed to have reached station-
arity. In our experiments, we assumed stationarity if member-
ships have remain unchanged through more than 50 iterations.

The first network detected by the algorithm consists of all
pixels © whose membership values at stationarity exceeds the
average, i.e., for which «; > 1/n. To detect a second network,
we eliminate all pixels that are members of the first network and
repeat the above process. Further networks can be detected like-
wise. Note that the procedure is guaranteed to terminate as each
time a network is detected a positive number of pixels are re-
moved from further consideration. Note that the networks are
ranked according to their degree of coherence. The first net-
works have a higher degree of coherence than later networks.

The above process can be recursively applied at a second level
of processing as follows. Suppose a number of networks have
been detected as described above. We then update the similarity
matrix such that

/ E :
o ] Wt

KENLEN,

with V; being the set of pixels belonging to network <. In other
words, similarity values of pixels belonging (o (he same network
are averaged. The replicator process is then applied again using
the updated similarity matrix.
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III. COHERENT NETWORKS AND MAXIMAL CLIQUES

As mentioned earlier, replicator dynamics have been used to
identify maximal cliques in undirected graphs [6]. Thus, there
exists a connection between clique detection and the detection
of coherent networks as proposed here. However, some differ-
ences exist as will be illustrated in this section.

The most obvious difference is of course that coherent net-
works as defined in this paper can be detected using any real-
valued, symmetric nonnegative matrix W. It nced not be a bi-
nary valued adjacency matrix representing an undirected graph.
But even if W is binary-valued, some diflerences exist.

As was shown by Motzkin and Strauss |13] and also by
Bomze [14], the detection of maximal cliques is connected to a
quadratic maximization problem of the form @7 W where W
is the adjacency matrix of an undirected graph. In general, local
maxima of = Wz correspond to maximal cliques in the graph.
However, counterexamples exist. The following example is
taken from Pardalos er al. [15]. Let

0 11
W=1]1 00
1 00

be an adjacency matrix representing the following graph

This graph has two maximal (and maximum) cliques: {1,2} and
{1,3}. However, the quadratic function =’ W has many more
maxima. In particular, all (0, 2,1 — 2),¥z € [0, 1] are global
maxima. So, there is an infinite number of global maxima, but
only two of them are characteristic vectors representing max-
imal cliques, namely z = 0 and z = ().5 (a characteristic vector
is a vector whose values are either zero or one/c, where ¢ is the
number of nodes in the clique). Therefore, not all local maxima
correspond to maximal cliques. For more about this problem,
see [14] and [16].

The replicator process applied to @7 W with starting vector
x =(1/3,1/3,1/3) convergesto (0.5, 0.25, 0.25). In our approach,
the resulting fuzzy membership vector (().5,0.25,0.25) is "de-
fuzzyfied™ to ( 1,0,0) giving us a single node {1} as the resulting
coherent network. Clearly, this solution does not correspond to a
maximal clique. In our context however, it makes perfect sense:
the node *17 is the node that interacts most closely with all other
nodes in the graph. Thus, the replicator dynamics yields a solu-
tion that agrees with our definition of a coherent network even
though it does not represent a maximal cligue.

IV. SIMILARITY METRICS

The matrix W contains similarity values that measure the de-
gree of dependence between time courses in any two voxels.

Leti = [,...,n denote pixels in a {MRI image and let U;
denote a time course in pixel ¢ so that U; = (Ujr,...,Up)

represents a time course consisting of & time steps. Let w;; >
0 denote a similarity or dependence measurement between the
time courses in pixels ¢ and j such that w;; = 0 if the time
courses are completely independent or dissimilar.

Several alternative similarity metrics are conceivable in this
context. The most obvious choice is Pearson’s linear correlation
coefficient r that measures the degree of linear dependence. As
the similarity measurements must be nonnegative, we simply
take the absolute value of r. Alternatively, negative correlations
may be set to zero.

Pearson’s correlation statistic gives useful results provided
the joint distribution of time courses U;, U; in pixels ¢ # j are
approximately binormal, If this requirement is not met then the
correlation results may be completely meaningless.

A similarity metric that is more robust against violations of
binormality is Spearman’s rank correlation. In rank correlation,
the individual measurements U;k are first ranked with respect
to their amplitudes and then their ranks are linearly correlated.
The advantage is that the distribution of the ranks is known to
be uniform, so that the interpretation of their correlation is much
more robust [17, 6391f.].

Another alternative to Pearson’s linear correlation coefficient
is mutual information. It is defined as

wi; = U log PR U
2 zp(Uu U]) 1Og p(Ui)p(Uj) :

v

Then w;; > 0 with w;; = 0 only if U; and U; are completely
independent. Its primary advantage in our context is that is is
capable of measuring nonlinear relationships. In addition, it al-
ways yields nonnegative values so that we do not need to take
absolute values. Its disadvantage is that estimates for the joint
probabilities p(U;, U;) are hard to come by and often require
some form of binning of the data.

In our experiments, we mostly used Spearman’s rank corre-
lation.

V. INTERSUBJECT AVERAGING

The replicator algorithm as described above requires a simi-
larity matrix W as input. Such a4 matrix can be readily obtained
from fMRI time series data of a single subject. However, when
fMRI data from several subjects are present, we need some
mechanism to combine the information from all data sets so that
a single combined matrix W results.

Clearly, the data sets from all subjects must first be brought
into register by aligning them with a common coordinate
system. This can be achieved by using some standard regis-
tration algorithm. In our cxperiments, we used the algorithm
described in [18].

After geometric alignment, the main idea in combining inter-
subject information is to obtain individual similarity matrices
W, = 1,....n from all n subjects and then average those
matrices. However, as we cannot assume normality for all W
we [irst normalize them using Fisher’s z transform [17, p. 637]

f) =z=0‘5|0g(ii_:) ;
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The resulting correlation values will then be approximately
normal with mean
Ttrue
5

1 rue
p=0.5 [log( R e)
1- Ttrue
and standard deviation a(z) =~ 1/v/n — 3.

We then average the transformed correlation matrices and
perform the inverse Fisher’s z transformation

U =r =y

to obtain a combined correlation matrix from all subjects. Thus,
the combined matrix W is computed as

W=y [Z f(Wi)] :

i=1

VI. MULTIDIMENSIONAL SCALING AND REPLICATOR
DyYNAMICS

The results produced by the replicator process are difficult to
validate as no “ground truth” is available. Therefore, we propose
to use multidimensional scaling (MDS) as a means to visualize
the similarity structure of the matrix W. In many cases, such a
visualization helps to validate the segmentation results.

In MDS, the items contained in a similarity matrix are
mapped into a low-dimensional space such that the similarity
values are transformed as nearly as possible into Euclidean
distance values [19], [20]. Usually, the MDS map has two or
three dimensions.

More precisely, let W = (w);; be a similarity matrix that
represents pairwise similarities between items ¢, j = 1,....7.
In MDS, these items are placed into a low-dimensional map
such that if any two item 4, j are similar, then their Euclidean
distance within the map should be small and vice versa. The
placement of the items is an optimization problem. MDS yields
good results provided the dimension of the MDS map agrees
with the intrinsic dimensionality of the data.

In our case, we use MDS to visualize the results of our net-
work analysis. For this purpose, both MDS and the replicator
process are based on the same similarity matrix and the labeling
that the replicator process produces is visualized in the MDS
map. Each voxel i = 1,...,n is represented by a mark in the
MDS map such that any two voxels 7, j whose time courses are
similar are placed in proximity in the MDS map. Some exam-
ples are shown in Section IX.

MDS has been applied to the investigation of cortical acti-
vations by a number of researchers before. Young er al [21]
have used MDS mostly for investigating EEG signals, whercas
Tagaris ef al. [22] and Friston et al. [23] have used MDS in an
fMRI context.

VII. REPLICATOR DYNAMICS AND PRINCIPAL COMPONENT
ANALYSIS

The replicator process yields a succession of networks with
the first networks being the most dominant ones and later net-
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works becoming less and less coherent. Thus, the process is in-
trinsically hierarchical.

As a result, networks further down the line become of lesser
interest to the researcher. This is an effect that may be undesir-
able in many cases. Therefore, we will propose a modification
of our original approach that often helps to illicit lower order
networks.

The main idea is to apply the replicator process to succes-
sively reduced versions of W. These reductions result from a
principal component analysis of W and a removal of high-order
components. More precisely, the modified algorithm is defined
as follows.

The first network is detected exactly as described before using
matrix W. To detect a second network, W is decomposed into

W=PI'D P

with Dy a diagonal matrix containing eigenvalues Ag, ..., An
and P; the matrix of eigenvectors of W. Since W' is real-valued
and symmetric, such a decomposition will always exist.

Now remove the first principal component by setting P to
P, and D» to Dy with Ay = 0 and let

Wo = PY Dy Pa.

The second network is detected by applying the replicator
process to matrix Wo. All subsequent networks & = 2,..., K
are obtained by applying the replicator process to

Wi = PY Dy Py

with the first k& eigenvalues removed.

Note that in our original algorithm, voxels that were identi-
fied to belong to some network are removed trom further anal-
ysis and can therefore not be part of a lower order network. This
is not the case in this modified approach. Here, all voxels par-
ticipate in the replicator dynamic and can in principle be part of
several networks. However, as the principal components are or-
thogonal, this will rarely happen in practice. Rather, this modi-
fied algorithm yields networks that are orthogonal to each other.
As in the original method, the first networks will still be dom-
inant in the sense that their members show stronger coherence
properties. In Section IX, some experimental results will illus-
trate this concept.

VIII. REPLICATOR DYNAMICS AND KOIIONEN MAPS

Instead of applying the replicator dynamics directly to fMRI
raw data, it is also possible to pre-cluster the data and apply the
process to time courses that represent cluster centers. A method
of pre-clustering that is particularly useful in this context are
Kohonen maps [24]. Kohonen maps have previously been used
for clustering MRI time series by Fischer ef ¢l. [25] and Ngan
et al. [26].

The basic principle in Kohonen mapping is the following.
We begin by [ixing a dimension and a lattice for the Kohonen
map and initialize its nodes. For instance, the map may be a
two-dimensional (2-D) lattice consisting of 1 x 11 grid points
(nodes). These nodes represent cluster centers. We then ran-
domly select an fMRI time series and find the node in the lat-
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tice to which it is closest. This node is then moved toward the
selected time series. Neighboring nodes are moved elastically
along. This process is continued until some stopping criterion is
satisfied.

IX. EXPERIMENTS

The replicator algorithm was applied to data from two fMRI
experiments. The experiments illustrate various modes in which
the replicator process can be applied. In the first experiment, it
is applied to all pixels belonging to the visual cortex that was
activated in this case.

In the second experiment, the replicator process is only ap-
plied to maxima within the = map so that each activation area is
represented by one item in the similarity matrix.

In the following, each of these experiments is described in
detail.

A. Experiment 1

Two test subjects participated in our first experiment. Both
were healthy volunteers who gave informed consent. The image
data were acquired at a 3T Bruker 30/100 Medspec MRI scanner
using a gradient recalled EPI sequence (TR = 1000 ms, TE =
40 ms, and flip angle = 40). Three fMRI slices were recorded
each with a thickness of 5 mm, an interslice distance ¢f 2 mm
and a field of view (FOV) of 19.2 cm. The image matrix of
contained 64 x 64 pixels. 300 time steps corresponding to a
recording time of 5 min were acquired.

During the experiment, the subjects were subjccted to visual
stimuli. The experiment was designed such that baseline trials
and stimulation trials alternated. During the stimulation trials,
the subjects saw a pattern of rotating L-shaped [igures and a
fixation cross in the center. The subjects were asked to fixate the
cross and press a button whenever the appearance of the cross
changed. During the baseline trials only the fixation cross was
visible.

The fMRI data were preprocessed using a temporal highpass
filter so that baseline drifts were eliminated. In addition, a spatial
Gaussian smoothing filter with a standard deviation of ¢ = 0.8
was applied. A standard statistical analysis using the “Lipsia™
software [18] was applied to identify those brain regions that
were activated by the visual stimuli.

Experiment 1a—Standard Replicator Dynamics: In a first
test, the replicator dynamic was applied to the preprocessed
data. Only pixels showing a significant activation were used for
the network analysis. In subject A, 665 pixels were activated
so that a 665 X 665 similarity matrix W was used. We used
Spearman’s rank correlation as a similarity metric. In subject
B, 595 pixels were activated resulting ina 595 x 595 matrix W.
The results of the analysis are shown in Fig. 1.

Experinient 1b—PCA and Replicator Dynamics: Inasecond
test, a combination of principal component analysis and repli-
cator dynamics as described in Section VII was applied. The re-
sult is shown in Fig. 2. Note that a pattern similar to the one of
experiment 1a emerges. However, fewer networks are detected.

Experiment 1c—Kohonen Networks, MDS and Replicaror
Dynamics: TFinally, we applied the Kohonen clustering prior to
the network analysis using the approach described by Fischer

Fig. 1. Experiment la. The left image shows subject A, the right image shows
subject B. The networks are color coded with the most prominent network
appearing in red, less prominent networks appear in yellow and the least
prominent networks appear in white. The red areas in both subjects belong to
the primary visual cortex (V1/V2).

Fig. 2. FExperiment 1b. The input data were the same as in experiment la
However, this time the principal component approach as described in section VI
was used. The network belonging to the first PCA is shown in red, the network
belonging to the second PCA is shown in yellow. Four networks were detected.

et al. [25]. A 2-D Kohonen net consisting of an 11 x 11 lattice
was generated and linear correlations were computed between
any two nodes on the lattice. Thus, the similarity matrix
W contained 121 x 121 entries representing the 121 cluster
centers.

The replicator process was then applied to the matrix W. The
results are shown in Fig. 3. To better asses the correctness of the
labeling, the results are additionally visualized in a 2-D MDS
map (Fig. 3). Note that the MDS map reflects the topology-
preserving property of the Kohonen clustering.

B. Experiment 2: Maxima of z-map

Four subjects participated in our second experiment. As be-
fore, that data were acquired at a 3T Bruker 30/100 Medspec
MRI scanner using a gradient recalled EPI sequence with TR =
1500 ms, TE = 40 ms, flip angle = 40, 19.2-cm FOV. Sixteen
fMRI slices with a thickness of 5 mm and an interslice distance
of 2 mm were recorded. Fach slice contained 64 x 64 pixels.
The tMRI time series data contain 720 time steps corresponding
to a recording time of 18 min.

The experimental design was an implementation of the
so-called “‘color-word matching Stroop paradigm™ [27]. The
Stroop interference task [28] requires a person to respond
to specific dimensions of a stimulus while suppressing a
competing stimulus dimension. Subjects were presented two
words (e.g., GREEN written in blue ink; BLUE written in black
ink) and they had to match the color of the top word with the
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Experiment lc. The input data were the same as in experiments 1a,b. The data were pre-clustered using a Kohonen mapping. The top row shows the result
of the network analysis. The bottom row shows the corresponding MDS maps.

Fig. 4. Experiment 2. Local maxima of the = map were used for the replicator process. They are displayed here as colored dots against a line representation of
the sulct. Three networks were detected: ifems belonging to the first (most prominent) network are shown in blue, the second most prominent network is shown in

green and the least prominent network is shown in red.

meaning of the bottom word (Does the color of the top word
correspond with the meaning of the bottom word?). Varying the
dimension of the top word (neutral, congruent or incongruent
words to the presented color) allows for the investigation of
interference effects. The words were randomly presented cvery
6 s on average. Each condition was repeated 30 times.

As in the first experiment, we applied a standard statistical
processing for each dataset resulting in one contrast image/sub-
ject in which all experimental conditions were contrasted
against a baseline condition. A one-sample t-test across all con-
trast images yielded a multisubject z map (statistical parametric
map). All data sets had been geometrically aligned beforehand.

We computed 16 local maxima within this multisubject z map
where a pixel was defined to be a local maximum if its z value
was maximal withina radius of 7mm and if the = value exceeded
a threshold of = = 8.0.

For each of the four subjects, a 16x 16 similarity matrix W
was computed using Spearman’s rank correlation as a similarity
metric. The correlation values were obtained at the locations
of the local maxima of the z map. The four resulling correla-
tion matrices W, ¢ = 1,...,4 were normalized using Fisher's
z transformation and then averaged as described in Section V.
The replicator dynamic was applied to the averaged 16X 16 ma-
trix W. Three networks were detected. In I'ig. 4 they are shown
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as colored dols against a sulcal line representation that was ex-
tracted using the algorithm described in [29].

The most dominant network that the algorithm detected
is known as the fronto-parietal network involving the infe-
rior-frontal and intra-parietal sulcus as well as the pre-SMA.
The second network (shown in green) corresponds to primary
sensory-motor areas and the least significant network (shown
in red) is an assembly of remaining arcas.

Note that the degree of coherence as expressed by &’ Wz de-
creases from the first to the third network. FFor the {irst network,
it equalled ' Wz = 0.37; for the sccond, it was 'War = 0.29;
and for the third, it was ='Wz = 0.24. Therefore, the third
network might perhaps not truly represent a functionally mean-
ingful network.

X. DISCUSSION

We have presented a new approach to detecting functional
networks in fMRI time series. Our definition of a network re-
sembles that of a clique in a graph. Therefore, it captures enti-
ties that are different from those targeted in standard clustering
algorithms. This new concept seems to be betler suited to the
present domain of application.

Another advantage over many traditional clustering methods
is that we only use pairwise similarity values. Thus, weavoid
problems inherent in high dimensionality. I‘urthermore, our
method requires no prior information about the number of
networks, about their locations in space or their statistical
distributions.

A potential problem of the approach may be the restriction
to nonnegative similarity values. At present, we simply set neg-
ative values to zero, or use their absolute valucs. In practice,
this approach seldom causes serious problems. The time courses
used in the experiments reported here were all positively corre-
lated as they were all influenced by similar experimental condi-
tions.

The algorithm has several areas of application. First, it may
be used for explorative bottom-up preprocessing of the data so
that dominant networks and perhaps also antifacts are detected
prior to further statistical processing. Networks can, thus, be
identified without any prior knowledge about the experimental
design. Some networks may even be independent of the exper-
imental design. They would remain undeteeted in standard sta-
tistical processing techniques.

The algorithm may also be helptul in detecting functional net-
work where no design information is available. For instance,
one might want to mask all pixels in an image that are acti-
vated within one particular experimental condition. Our algo-
rithm might then be used to further subdivide this mask into
pixels belonging to several coherent networks that are activated
under the same experimental condition. We are currently inves-
tigating further domains of application.

However, the algorithm is vulnerable to physiological effects
in the data. In a number of recent publications, large temporal
shifts between time series measured in distant voxels was ob-
served. For instance, in [30] temporal displacements of up to
3 s were noted between time serics of voxels within the visual
cortex. Such displacements cannot be solely due to cognitive

effects. Rather, we must assume that some physiological influ-
ences play arole. Clearly, these temporal shifts might distort our
correlation matrices.

This problem hampers not only our replicator procedure.
Rather, any algorithm that is based upon correlations between
fMRI time series is potentially threatened by such noncognitive
effects in the data. For instance, methods based upon PCA
[31], [32], ICA [8], or structural equation modeling [33], [34]
all face the same problem.

ACKNOWLEDGMENT

The authors would like to thank Dr. T. Mildner and Dr. S.
Zysset for providing the fMRI data. They would also like to
thank Dr. V. Jirsa, Florida Atlantic University, Boca Raton FL,
for his very helpful suggestions regarding the principal compo-
nent analysis.

REFERENCES

[11 R. O. Duda and P. E. Hart, Pattern Classification and Scene Anal-
ysis.  New York: Wiley, 1973.

[2] C. Goutte, P. Toft, E. Rostrup, F. Nielsen, and L. K. Hansen, “On clus-
tering fMRI time senes,” Neurolmage, vol. 9, pp. 298-310, 1999.

[3] A.Baume, F. T. Sommer, M. Erb, D. Wildgruber, B. Kardatzki, G. Palm,
and W. Grodd, “Dynamical cluster analysis of cortical fMRI activation,”
Neurolmage, vol. 9, pp. 477-489, 1999.

[4] R. Baumgartner, C. Windischberger, and E. Moser, “Quantification in
functional magnetic resonance imaging: Fuzzy clustering vs. correlation
analysis,” Magn. Reson. Imag., vol. 16, no. 2, pp. 115-125, 1998.

[5] K.-H. Chuang, M.-J. Chiu, and C. C. Lin, “Model-free functional MRI

analysis using Kohnen clustering neural network and fuzzy c-means,”

IEEE Trans. Med. Imag., vol. 18, pp. 1117-1128, Dec. 1999.

M. Pellilo, K. Siddiqi, and S. W. Zucker, “Matching hierarchical struc-

tures using association graphs,” IEEE Trans. Pattern Anal. Machine In-

tell., vol. 21, pp. 1105-1119, Nov. 1999.

[7] T.Hofmann and J. M. Buhmann, “Pairwise data clustering by determin-
istic annealing ,” [EEE Trans. Pattern Anal. Machine Intell., vol. 19, pp.
1-14, Jan. 1997.

[8] M.J. McKeown, M. I. S. Makeig, G. G. Brown, T. P. Jung, S. S. Kinder-
mann, A. J. Bell, and T. F. Sejnowski, “Analysis of fMRI data by blind
separation into independent spatial components,” Human Brain Map-
ping, vol. 6, no. 3, pp. 160188, 1998.

[9] P. M. Pardalos and S. A. Vavasis, “Quadratic programming with one
negative ¢igenvalue is NP-hacd,” J. Global Optimizat., vol. 1, no. 1, pp.
15-22, 1991.

[10] P.Schuster and K. Sigmund, “‘Replicatordynamics,”J. Theoretical Biol.,
vol. 100, pp. 533-538, 1983.

[11] I M. Bomze. M. Pellilo, and V. Stix. “Approximating the maximum
weight clique using replicator dynamics,” [EEE Trans. Neural Networks,
vol. 11, pp. 12281241, June 2000.

[12] J. Hofbauer and K. Sigmund, The Theory of Evolution and Dynamical
Svstems. Cambndge, U.K.: Cambridge Univ. Press, 1988.

[13] T.S. Motzkin and E. G. Strauss, “Maxitma for graphs and a new proof

of a theorem of Turan,” Can. J. Math., vol. 17, pp. 533-540, 1965.

[. M. Bomze, “Evolution toward the maximum clique.” J. Global Opti-

mizat., vol. 10, pp. 143164, 1997.

P. M. Pardalos and A. T. Philipps. A global optimization approach for

solving the maximum clique problem,” Int. J. Comput. Math., vol. 33,

pp. 209-216, 1990.

M. Pellilo and A. Jagota, “Feasible and indeasible maxima in a quadratic

program tor maximum clique,” J. Artif. Neural Nenvorks, vol. 2, no. 4,

pp- 411-420, 1995.

W. H. Press, S. A. Teukolsky. W. T. Vetterling, and B. P. Flannery, Nu-

merical Recipes in C, 2 ed. U.K.: Cambridge Univ. Press, 1992.

[18] G. Lohmann, K. Miiller. V. Bosch. H. Mentzel. 8. Hessler, L. Chen, and
D. Y von Cramon. “Lipsia—A new software system for the evaluation
of functional magnetic resonance images of the human brain,” Compuz-
erized Med. Imag. Graph., vol. 25. no. 6. Nov.'Dec. 2001,

[19] W. 8. Torgerson, Theorv and Methods of Scaling. New York: Wiley,
1958.

[6

[t

[14]

[15]

[16]

[17]



492

[23]

[24]
[25]

[26]

G. A. F. Scber, Multivariate Analysis. New York: Wiley, 1984.

M. P. Young, J. W. Scannell, and G. Burns, The Analvsis of Cortical
Connectivity. Berlin, Germany: Springer Verlag, 1995.

G. A. Tagans, W. Richter, S. G. Kim, G. Pellizzer, P. Andersen, K.
Ugurbil, and A. P. Georgopoulos, “Functional magnetic resonance
imaging of mental rotation and memory scanning: A multidimensional
scaling analysis of brain activtion patterns,” Brain Res. Rev, vol. 26,
no. 2-3, pp. 106-112, 1998.

K. J. Friston, C. D. Frith, P. Fletcher, P. . Liddle, and R. S. I. Frackowiak,
“Functional topography: Multidimensional scaling and functional con-
nectivity in the brain,” Cerebral Cortex, vol. 6, pp. 156-164, 1996.

T. Kohonen, Self-Organizing Maps. New York: Springer Verlag, 1995.
H. Fischer and J. Hennig, “Neural network-based analysis of MR time
senies,” Magn. Reson. Med., vol. 41, pp. 124-131, 1999.

S.-C. Ngan and X. Hu, “Analysis of functional magnetic resonance
imaging data using self-organizaing mapping with spatial connectivity,”
Magn. Reson. Med., vol. 41. pp. 939-946, 1999.

S. Zysset, K. Miiller, G. Lohmann, and D. Y. v. Cramon, “Color-word
matching stroop task: Separating interference and response conflict,”
Neuroimage, vol. 13, pp. 29-36, 2001.

{28]

{29]

(30]

f31]

(32]

[33]

[34]

IEEE TRANSACTIONS ON MEDICAL IMAGING. VOL. 21, NO. 5, MAY 2002

J. Stroop, “Studies of interference in serial verbal reactions.” Exp.
Psveh., vol. 18, pp. 643-662, 1935.

G. Lohmann, “Extracting line representations of sulcal and gyral pat-
terns in MR images of the human brain,” IEEE Trans. Med. Imag., vol.
17, pp. 1040-1048, Dec. 1998.

K. Miiller, G. Lohmann, and D. Y. von Cramon, “"On multivariate sprec-
tral analysis of fMRI time senies,” Neuroimage, vol. 14, pp. 347-356,
2001.

K. J. Friston, “Functional and effective connectivily in neuroimaging: A
synthesis,” Human Brain Mapping, vol. 2, pp. 56-78, 1994.

E. T. Bullmore, S. Rabe-Hesketh, R. G. Moms, S. C. R. Williams, L.
Gregory, J. A. Gray, and M. J. Brammer. “Funclional magentic reso-
nance image analysis of a large-scale neurocognitive network,” Neu-
rolinage, vol. 4. pp. 16-33, 1996.

C. Biichl and K. J. Friston, “Modulation of connectivity in visual path-
ways by attention: Cortical interactions evaluated with structural equa-
tfion modeling and fMRL,” Cerebral Cortex, vol. 7, no. 8, pp. 768-778.
Dec. 1997.

K. A. Bollen, Strucrural Equation Models With Latent Variables.
York: Wiley, 1989.

New






