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Abstract. Magnetic resonance imaging (MRI) is used in
clinical routine to map the brain’s morphology. Structural
changes due to brain growth, ageing, surgical intervention or
pathological processes may be detected by non-linear image
registration of time-series imaging data. The resulting dis-
placement field is large and therefore, hard to interpret. For
a simplified but sufficient description of the displacement
field contraction mapping is proposed to detect vector field
singularities. This allows the detection and analysis of sin-
gularities of any order as critical points which reflect the
topology of the vector field. An application demonstrates how
this method helps to increase the understanding of pathologi-
cal processes in the brain.

1 Introduction

High-dimensional vector fields are a result of observed meas-
urements or simulated processes in a variety of applica-
tion domains (e.g., geophysics, meteorology, or medicine).
In order to improve the understanding of underlying dy-
namics it is useful to characterize the vector field by its
critical points. The most prominent critical points are at-
tractors, repellors and vortices (rotation centers). A concise
classification scheme for critical points (Fig. 1) by their so-
called phase portrait has been introduced by Abraham and
Shaw [1]. Critical points characterize a high-dimensional vec-
tor field as a sparse set of features that are sufficient to under-
stand the behaviour of the simulated physical process and its
topology.

However, the detection and visualization of critical points
is still an active research area where rather sophisticated
mathematical methods have been employed [12]. Established
are topological methods as introduced by Helman and Hes-
selink [13] that decompose vector fields in different global
regions of interest based on local linear approximations of
the Jacobian. Higher-order approximations yield different de-
compositions [22]. Philippou and Strickland [19] introduced

Fig. 1. Classification criteria for critical points (after Abraham and
Shaw [1]). λi denote the eigenvalues of the phase portrait to a critical point

a geometrical method where critical points are found at the
intersection of lines tangent with the vector orientation (or at
the intersection of planes orthogonal to the vectors). Other
widely employed methods are based on the Poincaré-Hopf in-
dex theorem (e.g., [10]).

In our application, changes of brain structure due to brain
growth, ageing, surgical intervention or pathological pro-
cesses are monitored by time-series examinations using mag-
netic resonance imaging (MRI). MR images are given as 3D
matrices of intensity values. Beyond usual comparison of the
image data, which is still the gold standard in clinical neuro-
science, structural changes with time may be detected by
non-linear registration of the imaged brain. The result of the
registration algorithm is a vector field which maps one image
onto another. This displacement field reflects the structural
change that acted on the brain.

Due to the finite spatial resolution of the images, the
displacement field is given on a discrete grid. Since, for ex-
ample, growth or atrophying processes take place in finite
sub-compartments of the brain, representing critical points
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by point sources is an over-simplification. Most conventional
methods fail therefore to detect critical points within medical
vector fields. Thus, in our application critical points are not
regarded as infinitesimally small.

We rather propose a novel method that is based on con-
traction mapping. For an application to a patient suffering
from neurodegeneration we will illustrate how non-rigid reg-
istration and critical points analysis may help to understand
the disease process.

2 Non-rigid image registration

Image registration is usually achieved by applying a vector
field transformation to one image (study) in order to match
another (reference) image. Typically, an image is given as
mapping I : Ω → V from the image coordinate-domain Ω ⊆
R

n to its intensity range V ⊆ R. The ordered pair (x, I(x))
is called a voxel (volume element) of the image, with x ∈ Ω
being an image coordinate. We refer to the study image as
S : Ω → V and the reference as R : Ω → V . Ideally, the
registration aims to determine a transformation T : Ω → Ω
such that S(T(x)) = R(x). The set of all transformations that
change an image according to IT := I(T(x) is called the trans-
formation space Γ .

In our application, transformations correspond to spatial
displacements u of voxels and are described in the so-called
Eulerian reference frame. The set of the displacements of
all voxels of an image is called a displacement field over
domain Ω, its value at time t is denoted as u(t). The corres-
ponding transformation T can be given coordinate-wise:

T(x, t) := x −u(x, t) ∀ x ∈ Ω . (1)

The focus of registration is now to find a transformation
Tmin ∈ Γ that minimizes a given cost function F(R, ST ) in
conjunction with an energie regularisation. This function de-
scribes the similarity between the transformed study image
ST and reference image R and is usually further constraint
with an energy normalization (smoothness) term E(T ) that
enforces topology preservation:

Tmin := arg min
T∈Γ

(F(R, ST )+κE(T )) . (2)

Here, κ is a Lagrangian multiplier to balance between regis-
tration accuracy and transformation smoothness. A common
approach to solve the minimization problem (2) is to find the
root of its first order derivative

κ
∂

∂T
E(T ) = − ∂

∂T
F(R, ST ) . (3)

A rigid registration restricts the transformation space Γ to
translation and rotation only. If the transformation is not re-
stricted a priori, then the registration is called non-rigid or
deformable.

In our application, global image variability such as pos-
ition and orientation differences of subjects head have to be
removed prior to further image processing. This is carried
out by a rigid registration scheme [23]. To obtain knowlegde
about the morphological (local) change, non-rigid registration
has to be employed subsequently. The mathematical frame-
work to carry out such task with respect to the discipline of

computational anatomy has been compiled by Grenander and
Miller [11].

Image matching of deformable structures has received
considerable attention during the last decade [16]. The high
dimensional transformations involved in deformable registra-
tion generally make the problem ill-conditioned (i.e., many
possible solutions exists), so that additional constraints are
needed [2, 3, 9, 17]. Recently, Musse et al. [18] or Christensen
and Johnson [7] address also the topological issues involved
with small- and large-distance, non-linear transformations.

Bio-mechanically plausible transformations are con-
strained to be consistent with the physical properties of
deformable elastic solids. To understand how elastic image
matching works, consider the deforming image to be em-
bedded in a 3D elastic medium. The medium is subjected to
distributed internal forces, which reconfigure it, and lead the
image to match a target. In linear elastic media, the displace-
ment vector field u(x) resulting form internal driving forces
f(x) (called body forces) obeys the Navier-Stokes equilib-
rium equations for linear elasticity:

µ∇2u+ (λ+µ)

�

(

�·u) = − f (u) , ∀ x ∈ Ω . (4)

Here,

�· u = ∑
∂uj/∂xj is the cubical dilatation of the

medium, ∇2 is the Lagrangian operator, and Lamé’s coeffi-
cients λ and µ refer to the elastic properties of the medium;
λ controls the rate of growth or shrinkage of a local region
whereas µ controls the shearing between adjacent regions
of the image. With T(x) := x − u(x), ∂

∂T F(R, ST ) := f (u),
κ := 1.0, and ∂

∂T E(T ) := µ∇2u+ (λ+µ)

�

(

�·u), (4) corres-
ponds to the registration minimization problem (3).

However, the assumption of linear elasticity restricts the
registration to be globally smooth and therefore to accommo-
date only small deformations. In an extension to his initial
work [5], Christensen [6] described a registration approach
in which a viscous fluid model was used to control the
deformation.

For viscous fluids, the force f (u) is proportional to the
time rate of change in displacement. The PDE describing the
fluid transformation of the study image is given by (see Chris-
tensen et al. [8] for a detailed derivation)

∇2v+ (λ+µ)

�

(

�·v) = − f (u) , (5)

where v is the instantaneous velocity of the displacement
field u. The ∇2v term in (5) is the viscous term of the PDE.
This term constrains the velocity of the neighbouring par-
ticles of the displacement field to vary smoothly.

Due to attenuation in viscous fluids, internal forces disap-
pear with time in this model. Thus, the desired deformation
can be fully achieved, even if large deformations are required.
By applying the sum of squared differences

FSSD(T, S, R) :=
∫

Ω

(S(T(x))− R(x))2 dx (6)

as a cost function, (5) can be rewritten as

µ∇2v(x, t)+ (µ+λ)∇(∇·)v(x, t)

= − [S (x −u(x, t))− R(x)] ∇S|x−u(x,t) . (7)



Deformation fields by image registration 47

In order to solve the registration problem, the continous
domain Ω is discretized, and (7) is approximated using a fi-
nite difference scheme [21].

Then, registration is achieved iteratively over a time step
of ∆t. In each step, (5) is solved for constant time to estimate
the current velocity field v which is then used to update the
displacement field u by a time integration step [6]

u(x, t +∆t) := u(x, t)+∆t [v(x, t)−∇u(x, t)v(x, t)] . (8)

To avoid local minima of the minimization problem (2),
and to speed up the computation, a coarse-to-fine multi-
resolution approach is employed [24], i.e. the domain Ω is
first discretized using a coarse grid. After solving the registra-
tion problem on the coarse grid, the discretization is refined.
The registration transformation is propagated to this refined
grid, and used as starting point when searching the refined
solution. As in our application the images have a finite reso-
lution, i.e. they are usually not defined on the continous do-
main Ω but on a on a finite grid, their resolution can be seen
as a natural breaking condition for the multi-resolution step.

Wollny and Kruggel [26] proposed a fast algorithm to
carry out non-rigid registration based on fluid dynamical
modelling [25].

3 The Concept of Critical Points

Consider a vector field u : Ω →R3 for some compact domain
Ω ⊆R3 and the set:

Uε

(
x′) := {

x| ‖ x − x′ ‖< ε, x ∈ Ω
}

, (9)

for any ε > 0, ε ∈ R and a x′ ∈ Ω; the set Uε is called the
ε-environment of x′.

The Taylor series expansion of u(x) around the point x′
yields:

u(x) = ∂ui

∂xj

∣∣∣∣
x′

(
x − x′)+u

(
x′)+ O(x) .

By taking into account only its linear terms, and with the
substitution A := ∂ui

∂xj

∣∣
x′ , A ∈ R3×3 we obtain

u(x) = A
(
x − x′)+u

(
x′) . (10)

Thus, we can now define (cf. [19]):

Definition 1. A critical point xcp is an equilibrium point in the
vector field topology where u(xcp) = 0 while there exists an
ε > 0, ε ∈R so that u(x) �= 0 ∀ x ∈ Uε(xcp)\{xcp}.
Proposition 1. Within the vicinity of a critical point xcp, the
vector field u(x) – as it is outlined in (10) – can be approxi-
mated by

u(x) = A
(
x − xcp

)
,

where the matrix A is called the phase portrait of the critical
point xcp.

As a first-order Taylor series would have a limited scope
in modelling u(x) adequately, i.e., the influence of critical
point xcp would decay with distance ∆x = x − xcp, accuracy

in modelling can be increased by introducing the attenuation
factor 1/ ‖ x−xcp ‖2 (cf. [19]). Consequently, the approxima-
tion of u(x) now reads

u(x) = 1∥∥x− xcp
∥∥2 A

(
x− xcp

)
. (11)

A critical point may be classified with respect to the
eigenvalues of A (as proposed by Abraham and Shaw [1]):
we distinguish attractors, repellors, saddle points, and rota-
tion centers (see Fig. 1).

For our intended application, namely to interpret morpho-
logical changes of the brain, attractors and repellors describe
areas of matter loss and growth, respectively, saddle points
characterize configurations at barriers or membranes, and ro-
tation centers may indicate local tissue shearing.

4 Estimation of Critical Points

When registering morphological changes we obtain vector
fields – the displacements – that are not given on a continuous
domain Ω, but on its discretization Ω̂ which reflects the finite
resolution of the images. As discussed in the introduction,
a critical point in our application domain is not infinitesimally
small, but merely represents a zone where the vector field is
attracted to or repelled from, for example.

In estimating critical points we rely on the contraction
mapping theorem (e.g., [15]). From its mathematical founda-
tion, our method is able to detect attractors or repellors, only.
If a saddle point is unbalanced, i.e. the inflow of matter is
not equal to the outflow, or if a rotation center attracts/repells
during the morphological change that is registered, then we
are able to detect them by contraction mapping.

4.1 Estimation algorithm

The algorithm to estimate attractors and repellers is sub-
divided in three steps: (1) cumulation and (2) clustering of
attracting/repelling areas followed by (3) a phase portrait es-
timation to carry out a classification. In the following, with
respect to an attractor the transforamtion T : Ω → Ω will be
applied, so that

T(x) = x+u(x) . (12)

T is achieved by non-rigid registration (Sect. 2) and resides in
an Euclidean reference frame. Accordingly, repellors can be
attributed to

Tinv(x) = x −u(x) . (13)

4.1.1 Cumulation. To find a fix point a in the displacement
field u, we define a counter C on the dicretized domain Ω̂.
Introducing a threshold t, and

Ω̂start :=
{

x| ‖ u(x) ‖> t, t > 0, x ∈ Ω̂
}

, (14)

yields a set of starting points, that are linked to the at-
traction areas Θ(a) ⊃ {a} (i.e. an attraction area will con-
tain more then just one point). Now consider the sequences
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[
T k(x)

]
k=0,1,...

. When reaching the condition u(T k(x)) < t
we increment the counter C(T k(x)). The distribution of the
counter values C(x) reflects the distribution of fix points of
the vector field u, after an iteration over all x ∈ Ω̂start.

4.1.2 Clustering. With two sequences
[
T k(x1)

]
k=0,1,...

and[
Tl(x2)

]
l=0,1,...

we will converge to the same fix point a if the
following assumption is fulfilled

u
(
T k (x1)

)
< t

∧ u
(
Tl (x2)

)
< t → ∥∥T k (x1)− Tl (x2)

∥∥ < α (15)

for a certain value α > 0, α ∈ R. The value of α should be
chosen according to resolution of the grid Ω̂.

Attracting points are obtained by clustering the counter C.
First, all locations s ∈ Ω̂ where C has a local maximum are
marked as point size cumulation areas Θs . Using a relative
threshold t(C(s)) the final size cumulation area is estimated:
the area Θs establishes by adding neighboring grid points x,
as long as C(x) > t(C(s)). If during this search C(x) > C(s),
then Θs is discarded as cumulation area since we found an-
other maximum counter value in the vicinity of s. After the
area Θs has established its final size, its center of gravity is
calculated, weighted with the counter values C(x), x ∈ Θs
and then used as critical point location:

xcp :=
∑

x∈Θs
C(x)x∑

x∈Θs
C(x)

. (16)

4.1.3 Phase Portrait Estimation and Classification. Since we
are seeking for an approximation of the vector field u(x) in
the environment of a critical point xcp, we may substitute
∆x := x − xcp in (11) and yield:

‖ ∆x ‖ u
(
xcp +∆x

) = A(∆x) . (17)

Accounting for a certain environment around xcp, with (17)
we obtain an over-determined system of linear equations [19]
which can be solved by using Householder transform-
ations [21]. Since the phase portrait A is a 3 ×3 matrix, its
eigenvalues can be calculated easily by solving the character-
istic equation

det(A−λI) = 0

using Cardan’s formula [4]. Critical points are classified by
examining their eigenvalues (see Fig. 1).

5 Application – Visualization of shape change

We applied our algorithm to magnetic resonance (MR) im-
ages of a patient suffering from a neurodegenerative disease.
A local destruction of brain tissue, which is removed during
degeneration, is compensated by an increase in cerebro spinal
fluid (CSF). Analyzing the pattern of matter loss is import-
ant to improve the understanding of the pathological process
induced by the disease.

The patient was scanned twice within 12 month (Fig. 2).
Both datasets were registered by the fluid dynamic, non-rigid

approach described in Sect. 2. We obtained a displacement
vector at every point of the reference image, corresponding to
the shift of tissue during the time interval. Figure 3 serves as
a first example to visualize such morphological change. The
ventricular system (the low-intense cavities within the brain
in Fig. 2) was segmented from the brain. The spatial pattern
of shape change is visualized as follows: for each point on the
ventricular surface, the displacement vector is decomposed
into its normal and tangential components. Inward-pointing
normals are coded in red, outward-pointing in blue; colour
intensity reflects its magnitude. The scale is given in mm.
The displacement vectors are shown as arrows. It is inter-
esting to note that the ventricles are clearly enlarged, most
notable in superior direction. This a consequence of a loss of
brain tissue, resulting in an increase in the CSF volume. The
superior orientation of the ventricular enlargement indicate
a more profound tissue damage in the supra-ventricular com-
partment.

Fig. 2. Axial slice 90 (top row) and coronal slice 140 (bottom row) from
200× 256× 200 voxel MR data sets taken 3 months (left panel) and
15 month (middle panel) after the patients’ initial diagnostic findings. The
right panel shows the difference between both images

From the displacement field we extracted about 110 crit-
ical points. To represent their properties, a colour scheme is
implemented, where green and red indicate repelling or at-
tracting property, and blue a rotation component. With this
colour-code a critical point could be easily visualized: a repel-
lor appears purely green, an attractor red, and a rotation center
blue. Different types of saddle points may be distinguished by
mixing the respective colours.

The set of critical points is dominated by a strong repel-
lor locate in the pre-frontal CSF compartment (Fig. 4), and by
several saddle points with strong repelling properties within
the occipital CSF compartment (Fig. 5). A focus of matter
loss is in the frontal lobes, leading to an increase of the CSF
component close to the frontal pole. Displacement stream
lines (Figs. 4 and 5) map the “flow” of tissue along the mid
line structures (as a correlate of a global atrophy) and reveal
a retraction of the brain in the frontal-occipital direction. The
occipital saddle point (Fig. 5) can be interpreted as a back-
ward shift of the brain, while pushing CSF in the repelling
direction. As could be deduced by Fig. 4 the strongest defor-
mations occur in the posterior portions of the first and second
frontal gyrus on both hemispheres.
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Fig. 3. Shape difference of a pa-
tients’ ventricular system between
two examination time points (see
text). The colour indicate the
orientation and magnitude of shape
difference; arrows indicate the dis-
placements. Note the overall en-
largement of the system which is
a consequence of the tissue loss
(atrophy) of the surrounding brain

Fig. 4. Pattern of shape change
of a patients’ brain between two
examination time points. Changes
in morphology are visualized by
colours; red and blue indicate in-
ward and outward direction, re-
spectively, and the magnitude of
shape change perpendicular to the
surface of the brain. The major
displacement lines (arrows) de-
pict the deformation lines. The
critical point (repellor) within the
frontal CSF compartment indicates
a virtual flow in fronto-occipital
direction
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Fig. 5. View of an axial slice
(taken from Fig. 4) with major
displacements (arrows) and crit-
ical points of high magnitude.
A repellor (green object) in the
frontal cerebro-spinal fluid (CSF)
and the displacement lines de-
pict a virtual flow in occipital
direction. Saddle points of type II
(cf. Fig. 1) with strong repelling
properties (green part) lie within
the occipital CSF; those reveal
a retraction of the brain. Small at-
tractors (red) some with rotation
properties (red-magenta) corres-
pond to areas a regionally more
profound matter loss

6 Conclusion

We proposed to describe displacement fields obtained from
non-rigid registration of temporal series of MR images by
its critical points. We introduced a novel method for finding
critical points in discrete vector fields, which is based on con-
traction mapping.

However, our method fails to detect some specific critical
points, namely rotation centers and balanced saddle points.
Here, local measures based on the Jacobian [14] or global ap-
proaches like recently introduced by Polthier and Preuß [20]
will be integrated with this method.

The advantage of conducting a biomedical analysis over
simple visual comparison as carried out in clinical routine is
obvious: the consequences of a neurodegenerative disease are
understood as a circumscribed tissue loss leading to quantifi-
able deformations of the brain structures.
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