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Purpose: To improve the signal-to-noise ratio (SNR) of
functional magnetic resonance imaging (fMRI) data, an ap-
proach is developed that combines wavelet-based methods
with the general linear model.

Materials and Methods: Ruttimann et al. (1) developed a
wavelet-based statistical procedure to test wavelet-space
partitions for significant wavelet coefficients. Their method
is applicable for the detection of differences between images
acquired under two experimental conditions using long
blocks of stimulation. However, many neuropsychological
questions require more complicated event-related para-
digms and more experimental conditions. Therefore, in or-
der to apply wavelet-based methods to a wide range of
experiments, we present a new approach that is based on
the general linear model and wavelet thresholding.

Results: In contrast to a monoresolution filter, the appli-
cation of the wavelet method increased the SNR and
showed a set of clearly dissociable activations. Further-
more, no relevant decrease of the local maxima was ob-
served.

Conclusion: Wavelet-based methods can increase the SNR
without diminishing the signal amplitude, while preserving
the spatial resolution of the image. The anatomical local-
ization is strongly improved.

Key Words: functional magnetic resonance imaging; fMRI;
general linear model; wavelet analysis; wavelet threshold-
ing

J. Magn. Reson. Imaging 2003;17:20-30.

© 2002 Wiley-Liss, Inc.

ALTHOUGH FUNCTIONAL MAGNETIC RESONANCE
IMAGING (fMRI) provides excellent images with a high
spatial and temporal resolution, it often results in a bad
signal-to-noise ratio (SNR) due to biological heterogene-
ity and scanner-induced noise. To improve the SNR, we
present an approach that combines wavelet-based
methods with the general linear model.
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Wavelets are widely used in signal and image pro-
cessing. The most important applications of wavelets
are image compression and noise reduction. Wavelets
have also been applied in the fMRI context (1-14). Re-
cently, wavelet analysis of fMRI time series was com-
bined with the general linear model (2). In contrast to
this approach, our method performs a spatial multidi-
mensional wavelet transform to contrast images.

In standard fMRI data evaluation, a spatial Gaussian
filter is applied to the data, which in general leads to an
increased SNR. However, the application of spatial
Gaussian filters should be considered as problematic
because any monoresolution filter reduces the real res-
olution of the images. This can result in a smeared set
of spatial undissociable activations. Moreover, these
filters cause a decrease of the signal independent of the
spatial structure of the images. In some cases, activa-
tion areas may completely disappear.

To improve the SNR and prevent these effects,
monoresolution filters should not be used. Different
brain regions have to be filtered differently, taking their
spatial properties into account. Using the wavelet
transform, the multiresolution analysis provides the
representation of the signal over several spatial resolu-
tion scales. Thus, it is possible to produce almost opti-
mal spatially adaptive filters. Ruttimann et al. (1) devel-
oped an approach to derive the optimal adaptive filters
by investigating the wavelet coefficients at various res-
olution levels of the images. Their method was derived
from the fact that a spatially localized signal can be
represented by a small number of wavelet coefficients,
while the power of white noise is uniformly spread
throughout the wavelet space.

The method of Ruttimann et al. (1) is based on the
statistical evaluation of a number of difference images
obtained by means of several on/off blocks. Under the
null hypothesis of no effect, these difference images can
be assumed to be random fields of identically and inde-
pendently distributed Gaussian noise. While perform-
ing orthonormal linear transformations, the wavelet
transform does not change the distribution properties
of the difference images. Thus, the null hypotheses can
be tested in the wavelet space by comparing each test
statistic to the appropriate chi-square quantile. Here-
after, a two-sided z-test is applied to the remaining
wavelet coefficients. To adjust for multiple compari-
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sons, the Bonferoni correction method is used. The last
step of the method is the inverse wavelet transforma-
tion.

The results of the method show a rapid improvement
of the SNR. This improvement was assessed by Desco et
al. (3), who investigated the performance of different
wavelet decomposition schemes using realistic comput-
er-simulated phantom data. Additionally, they exam-
ined the influence of several types of wavelet basis func-
tions on the size of the activation area and the activity
level. No major differences between various wavelet ba-
sis families, with the exception of the Gabor wavelet
transform, were found. However, their simulation
showed that lower wavelet orders and resolution depths
should be used to obtain optimal results. In accordance
with previous findings (1,4), Desco et al. (3) concluded
that multiresolution methods clearly outperform the
standard approach because they improve sensitivity
and can locate small activation areas. Thus, wavelet-
based methods should be preferred over spatial filtering
to improve the SNR.

The approach of Ruttimann et al. (1) is limited to
images acquired under two experimental conditions us-
ing long blocks of stimulation. However, recent neuro-
psychological studies have used many conditions and
more complicated experimental designs with event-re-
lated paradigms. Often, very short stimuli have been
used. Therefore, the aim of this work is to present a
generalization of Ruttimann’s method combining wave-
let-based methods with the general linear model. A de-
tailed treatment of the general linear model can be
found in Refs. 15-17.

The key idea is to consider the effect values (so-called
betas in the general linear model) using wavelet analy-
sis. Even if the signal is highly correlated, the correla-
tion between the wavelet coefficients will be small (5).
Thus, under the null hypothesis of no effect, the wavelet
coefficients of contrast images (which are linear combi-
nations of betas) can be assumed to be independently
and identically distributed, and Gaussian. Using an
improved variance estimate obtained from pooling the
residual variances over all intracranial voxels, whole
wavelet space partitions as well as single wavelet coef-
ficients can be statistically assessed.

To demonstrate the approach, we apply the method to
fMRI data acquired in a recent study by Zysset et al.
(18). Those data were obtained using a variation of the
Stroop task, which is called “color-word matching
Stroop.” For comparison, we perform a standard fMRI
data evaluation, presmoothing the images by applying a
spatial Gaussian filter.

MATERIALS AND METHODS
Wavelet Decomposition

In the following, a brief introduction to wavelet decom-
position is given, describing the basic relations that are
used in this context. For a detailed treatment, see the
monograph of Daubechies (19). Bultheel (20) gave an
excellent introduction to wavelet theory and multireso-
lution analysis.

Let us consider decompositions of a signal finto basis
functions of the space of square integrable functions L,
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on the real axis R. The x-axis can coincide with the
temporal domain, if fis a time course. However, in our
case we will investigate the wavelet transform for im-
ages, i.e., the x-axis will coincide with the spatial do-
main.

A signal is said to be local if it has almost compact
support, i.e., if most of its energy is located in a finite
interval. If 8 denotes the Dirac delta function, then the
functions {8(x — w},cr are a set of orthonormal basis
functions in L,. Those basis functions are extremely
local in the spatial domain, but in the frequency domain
the Fourier transform of §(x — u) is supported on the
whole real axis.

In a different situation, one might consider the or-
thonormal basis {€"*},cr. Now, the basis functions are
associated with just one frequency, and in the spatial
domain they are supported on the whole axis.

Thus, wavelets are basis functions that are local in
the spatial and frequency domain.! This property
makes wavelets very suitable for analyzing a signal by
decomposing it into components that are local in both
domains. We can look at the signal in local regions of
the image using a window moving over the signal. At the
same time, we can consider several resolutions that
would correspond to a sliding window over all possible
frequencies.

If they are still an orthonormal set, wavelets become
particularly interesting because of their decorrelating
property. After a wavelet transformation, the noise is
uniformly spread throughout the wavelet space,
whereas the noiseless signal is effectively compressed
into a small number of coefficients (this is also called
the whitening property (5). Thresholding the smaller
uncorrelated coefficients removes noise. Thus, wavelet
denoising techniques can be considered to be a non-
parametric method. No particular model or parameters
must be specified a priori.

In the remainder of this section a brief introduction is
given to the computation of the wavelet transforms.
Orthonormal wavelet bases can be constructed via a
given scaling function ¢(x) and its associated mother
wavelet

B = D, gl)d(2x — k) (1)
k

using a suitable weighting sequence g(k). The scaling
function ¢(x) is determined by a so-called refinement
filter h(k) and a certain dilation equation:

() = >, h(k)d(2x — k). (2)
k

This is also called a two-scale relation. If that dilation
equation (Eq. [2]) can be solved for some choice of the
refinement filter h(k), the functions

bl x) = 22$(2x — k) (3)

!Considering the Fourier-Heisenberg uncertainty principle, it is not
possible to have compactness in both the spatial and the frequency
domain.
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may be considered. The functions ¢;. are often called
“father functions” or “father wavelets.” The weighting
sequence g(lJ and the refinement filter h(k) can be se-
lected such that the functions

Yi(x) = 27724(2/x = k) (4)
form an orthonormal basis of L,. Using the inner prod-
uct in L, the functions {y;;} form an orthonormal set, if

<lbjk’ Yim) = ajlakm' (5)
The translations k of the wavelet correspond to a sliding
window in the spatial domain. The dyadic dilations j of
the wavelet will have a windowing in the frequency
domain (20). Thus, using the wavelet transform, one
can produce spatially adaptive filters. In contrast to
monoresolution filters, spatially adaptive filters can
handle different regions of an image with different filter
widths, which can be derived considering the signal in
various resolution levels.

The wavelet and the approximation coefficients have
the form

di(k) = (f. by and ¢fk) = (f. dyo. (6)
respectively. The set of coefficients dj(k) is called the
wavelet transform of the signal f with respect to the
basis {y;d.

In practice, the function fis a sampled signal, i.e., fis
discrete. Then the wavelet decomposition can be per-
formed only over a finite number of resolution levels J.
The signal f can be represented in the form

S0 =2 d(lk)+ > cll)da (7)

j=1 Ik I

The wavelet transform (Eq. [6]) can be easily extended
to the multidimensional case by applying the wavelet
transform successively along the separate dimensions
of the data (1,20,21). Thus, the wavelet transform in
two dimensions can be computed applying the one-
dimensional transform successively along the columns
and the rows of the image (21). Therefore, the two-
dimensional wavelet transform generates four quad-
rants at each resolution. In the g-dimensional case, 29
different types of basis functions are generated, i.e., 29
quadrants are generated at each resolution level. Let x
= (x1, . .., Xg). Then, the g-dimensional scaling func-
tions are

bu® =[] byl (8)

where k = (k, ..., kj is a g-dimensional vector of
indices. The g-dimensional wavelet functions can be
obtained in the same way by replacing one or several
factors in Eq. [8] by a wavelet function Wik, (see Eq. [4]).
According to the notation of Ref. 1, let by, . . ., b;be a
binary vector that indicates the replacement of the fac-
tors in Eq. [8], i.e., b; is set to one if ¢, is replaced by
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Wi If the resulting factors are denoted by ¢, the
g-dimensional wavelet functions are

oi® =[] ¢u(x), m= >, b2 9)

The index m = 1, ..., 29 — 1 is the so-called spatial
direction indicator. For example, in the 2-dimensional
case, the directions m = 1, 2, 3 correspond to wavelets
that are oriented along the vertical, horizontal, and
diagonal directions, respectively. Using Eq. [9], the
multidimensional wavelet and approximation coeffi-
cients have the form

dj'(k) = (f. o) and ¢(k) = (f. b, (10)
respectively. For a more detailed treatment of the the-
ory, we refer to the original paper (21). Also see Ref. 22
for practical implementation.

Wavelet Thresholding

As noted in the previous section, noise is uniformly
spread throughout the wavelet space, whereas the
noiseless signal is effectively compressed into a small
number of coefficients (23). Therefore, thresholding the
smaller uncorrelated coefficients removes noise.

Thresholding policies for wavelet filtering were devel-
oped by Donoho and Johnstone (23,24). They proposed
a so-called universal threshold

®=¢21log N (11)

that is based on the estimated noise variance 6. The
idea is to remove all wavelet coefficients that are smaller
than the expected coefficients of an assumed noise,
where N is the number of measurements. There are two
standard thresholding choices: hard thresholding

dyii(l) = dy(k)I(| (k)| > ©) (12)
and soft thresholding
d;.s(k) = sgn(d(k)(|d(k)| — ©)I(d\(})| >©)  (13)

where I(A) is the indicator function that yields one, if
condition A is fulfilled, and zero otherwise. Hard
thresholding is an unbiased procedure that does not
change the size of the preserved wavelet coefficients.
This can lead to noisy artifacts because of the hard
separation of noise and signal. Soft thresholding re-
duces the value of the preserved coefficients. However,
this leads to an increased bias, because the preserved
coefficients are reduced by an equal amount (see Refs.
23 and 24). Ruttimann et al. (1) introduced a thresh-
olding concept from the statistical point of view. Be-
cause insignificant wavelet coefficients are set to zero,
this concept is a type of hard thresholding. Our ap-
proach is an enhancement of Ruttimann et al.’s
method, whereby the general linear model is used to
obtain appropriate thresholds.
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Statistical Analysis

In this section we describe a wavelet-based detection
method for contrast images obtained by the general
linear model. The wavelet statistics are based on a two-
stage approach of Ruttimann et al. (1) that tests for
significant wavelet coefficients in several resolution
channels.

The general linear model is often used for evaluation
of fMRI data. It is implemented in several software
packages. An introduction to the general linear model
with respect to experimental designs can be found in
Ref. 16. The general linear model has the form

Y=XB+e (14)
where Y is the response variable of unsmoothed data for
each observation. In most cases, the response variable
is a matrix of all time-series of all voxels. We will as-
sume that the components of the error term e are inde-
pendently and normally distributed with mean O and
variance o2. The design matrix X is the so-called pre-
dictor variable and contains the covariates of the model.
The number of covariates coincides with the number of
columns of X.

Because of the unknown autocorrelation of the ob-
served data, Y is multiplied by a convolution matrix K
whose rows represent the hemodynamic response func-
tion (16). To obtain an estimate of B, the least-squares
estimation to the smoothed observations yields

b = G'KY (15)

where

G" = (G'G)"'G" (16)
is the so-called Moore-Penrose inverse of G, and G = KX
denotes the convolved design matrix X. Using the esti-
mated parameters (Eq. [15]), statistical inferences
about effects of interest can be addressed using linear
compounds or contrasts. A contrast vector c is a set of
weights that sum to zero. A contrast is a linear combi-
nation of parameter estimates

f=cb (17)
using a contrast vector c. If there is only one effect, the
contrast vector is simply ¢ = 1. Often, f is called an
estimation of the signal. The variance-covariance ma-
trix of the parameter estimates can be expressed as
Var(b) = a>°G"V(G")" (18)
where V = KK” represents the assumed autocorrelation
(25). An unbiased estimator for the variance ¢ in Eq.

[18] can be obtained by dividing the residual sum of
squares by its expectation in the following way:

T
9 rr

= &@®RV) (19)

g
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where r = RKY is the vector of residuals (16) and R =1 —
GG™ is the pre-residual matrix (see Ref. 25). The esti-
mated variance associated with the contrast f can be
obtained by

62 = Var(f) = Var(cb)
= ¢ Var(b)c”

= g2¢G'V(cG") . (20)
Because the error term e is homogeneous by assump-
tion, an improved variance can be estimated by pooling
67 over all intracranial voxels. Let $ be the set of all
intracranial voxels, N be the number of elements of 4,
and 67(k) denote the estimated variance of voxel k.
Then

(21)

This improved variance P yields an approximation of
the variance of the error term ce (26).

In order to detect significant activations, contrast im-
ages are investigated using methods of multiresolution
analysis. This approach is based on wavelet threshold-
ing and Bonferoni correction. The most important prop-
erty of the discrete wavelet transform is the following:
Generally the correlation between the wavelet coeffi-
cients of a signal will be small even if the signal is highly
autocorrelated itself. The errors in the wavelet domain
can be assumed to be independently and identically
distributed, and Gaussian. Furthermore, under the
null hypothesis, the scaled sum of squares of any set of
coefficients follows the chi-square distribution. In con-
junction with the orthogonality of the wavelet decom-
position, these properties permit the two-stage ap-
proach of statistical postprocessing developed by
Ruttimann et al. (1).

The first stage of the procedure considers the ques-
tion of whether there is enough power in the resolution
channels. For this purpose, the contrast values (Eq.
[17]) are transformed into the wavelet domain in order
to perform a multiresolution decomposition. At each
resolution level j, the wavelet coefficients of f(k) are
denoted by dj"(k), where m denotes the three spatial
directions in each resolution level. See Egs. [9] and [10]
for the computation of the coefficients dj"(k).

Let the wavelet coefficients be normalized by dividing
by the improved variance (Eq. [21]) as follows:

ape) = 4 (22)
3

Under the null hypothesis and the assumption of a

homogeneous error term e, the normalized wavelet co-

efficients El}"(k) follow the standard Gaussian distribu-

tion Ny ;. Furthermore,

d'(k)? ~ iid x3. (23)
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Based on Eq. [23], the sum of the squared normalized
wavelet coefficients is a chi-square variate where the
degree of freedom coincides with the number of sum-
mation terms. This leads to a test procedure of the
statistical significance of the wavelet coefficients of
each resolution level j. Let I denote the indicator func-
tion. Then, the null hypothesis of no activation is tested
using

die) = aﬁkn( S awe> @1) (24)
KEIjm
and
®j = Slezcj,m;a (25)

where Ik ,, is the number of intracranial wavelet coeffi-
cients k € 9;, at level j and directions m. The signifi-
cance level

a=p/3J (26)
is adjusted using the Bonferoni correction method,
where J denotes the number of statistical tests that
coincides with the number of detail levels. Nonsignifi-
cant wavelet coefficients are assumed to provide only
noise. They are therefore excluded from further analy-
sis.

The next step of the method is based on the standard
Gaussian distribution of the normalized wavelet coeffi-
cients. Thus, the null hypothesis of no activation is
tested by comparing each wavelet coefficient with the
standard Gaussian quantile

d'(k) = d"(&)I(d}"(k)| > 7) (27)

where

T =242, (28)
This corresponds to a two-sided z-test for the wavelet
coefficients of the channels (resolution levels j and di-
rections m) that were determined to carry significant
power. The number of statistical tests coincides with
the number of wavelet coefficients in the significant
channels.

To take into account the false-positive detection rate,
the significance level is controlled by a Bonferoni cor-
rection to adjust for multiple comparisons. The signifi-
cance level a; can be adjusted by

w_ P
Y Km

JmMEI;m

(29)

where $; ,, is the set of remaining intracranial wavelet
coefficients in the resolution level j and direction m. In
the wavelet domain, a Bonferoni correction is not too
conservative because of the decorrelating property of
the wavelet transform. The Bonferoni correction is op-
timal, if the hypotheses being tested are independent of
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each other (27). The method is also certainly valid for
the detection of the false positives. Because of the in-
dependence of the wavelet coefficients and the un-
known smoothness, the method of Worsley et al. (26) is
not applicable in this context.

Hence, the final step of the procedure is to compute
the inverse discrete wavelet transform to the threshold
wavelet coefficients.

Stimuli and Imaging Procedure

We applied wavelet-based methods to fMRI data ac-
quired in a previous study by use of the Stroop inter-
ference task (18).

In the present study, the data from two subjects (22
and 23 years old) were used. Both subjects were native
German speakers; they were right-handed and had nor-
mal or corrected-to-normal vision, and normal color
vision. The subjects provided informed consent prior to
the scanning session. Stimuli were projected by an LCD
projector onto a back-projection screen mounted in the
bore of the magnet behind the subject’s head. Subjects
viewed the screen wearing mirror glasses, which were
equipped with corrective lenses as necessary.

The subjects were told that they would see two rows
of letters, and were instructed to decide whether the
color of the top-row letters corresponded to the color
name written in the bottom row. During the neutral
trials, the letters in the top row were “XXXX” printed in
red, green, blue, or yellow, and the bottom row con-
sisted of the words “RED,” “GREEN,” “BLUE,” and
“YELLOW” printed in black. For the congruent trials,
the top row consisted of the words “RED,” “GREEN,”
“BLUE,” and “YELLOW” printed in the congruent color.
The incongruent trial was identical to the congruent
one except that the color word in the top row was
printed in an incongruent color, e.g., “GREEN” printed
in red.

For each session, stimulation started and ended with
a black screen for 30 seconds containing the fixation on
a small gray dot. For the Stroop task paradigm, four
neutral blocks alternated with four congruent and four
incongruent blocks. If no response was given after a
maximal time of 1.5 seconds, the next trial was pre-
sented. In the case of a response, the stimulus disap-
peared and the residual time was filled by a blank
screen. Given a fixed interstimulus interval of 1.5 sec-
onds, the subjects completed 20 trials during each
(neutral/congruent/incongruent) block of 30 seconds,
80 trials of each type during a single session, and 160
trials during both sessions.

Imaging was performed at 3T on a Bruker Medspec
30/100 system, and the standard birdcage head coil
was used. The subjects lay on the scanner bed and
cushions were used to reduce head motion. In addition
to the functional data sets, high-resolution whole-brain
images were recorded to improve the localization of ac-
tivation foci using a T1-weighted 3D segmented Modi-
fied Driven-Equilibrium Fourier Transform (MDEFT)
sequence (128 slices sagittal, 1.5 mm thickness, 256 X
256 pixel matrix). For details see Ugurbil et al. (28) and
Lee et al. (29).
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Figure 1. Several axial slices and zoomed contrast images of the subject HS obtained (a) without any spatial filtering, (b) using
the wavelet-based approach, and (c) applying a spatial Gaussian filter. Both the wavelet and the Gaussian filter lead to reduced
noise. However, the wavelet-based method depends on the variance of the signal (see Eq. [21]), and therefore leads to a stronger
improvement of the SNR compared with Gaussian filtering (see Table 1).

To align the echo-planar images to the 3D images,
conventional anatomical images in plane with the func-
tional images were acquired as an intermediate step
using a T1-weighted MDEFT (28) sequence (TE = 10
msec, TR = 1300 msec, 256 X 256 matrix). These im-
ages were obtained with a non-slice-selective inversion
pulse followed by a single excitation of each slice (30).

Finally, 16 functional slices (192 mm FOV, 64 X 64
pixel matrix, 5-mm slice thickness, 2 mm interslice
distance) were acquired parallel to the AC-PC plane
covering the whole brain. Functional images were ac-
quired using a single-shot gradient-recalled echo-pla-
nar imaging (EPI) sequence (TR = 2000 msec, TE = 30
msec, 90° flip angle). Two functional sessions with 210
scans each were recorded for all subjects.

Data Analysis

The fMRI data were processed on an SGI Origin 2000
using software developed at the Max Planck Institute of
Cognitive Neuroscience in Leipzig, Germany. Prepro-
cessing, registration, and visualization of the data were

performed using the software package Lipsia (31). The
tool for the wavelet-based procedure was implemented
as explained in the Statistical Analysis section.

Functional data were corrected for motion using a
matching metric (rigid-body realignment) based on lin-
ear correlation. To correct for the temporal offset be-
tween the slices acquired in a session, a sinc-interpo-
lation based on the Nyquist-Shannon theorem was
applied. The mathematical basis is the well-known
Nyquist-Shannon sampling theorem. Any continuous
band-limited function is completely determined by dis-
crete measurements taken at a constant sampling in-
terval. In other words, any function value for which no
direct measurement exists can be reconstructed exactly
and without loss of information by interpolating be-
tween the measurement points (22,32).

Temporal filtering was done applying a high-pass fil-
ter for both sessions with a cutoff frequency of 1/120
Hz. Filtering was performed by multiplying the signal
after Fourier transformation by a sigmoidal cutoff func-
tion and converting it back by the inverse Fourier trans-
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form. The effect of such a transformation is a baseline
correction of the signal (see Ref. 31).

To compare the effect of the wavelet-based filtering
with a standard fMRI data analysis, three analyses were
performed. In the first analysis, no spatial filter was
applied. In the second analysis, a spatial two-dimen-
sional Gaussian filter with a standard deviation (SD) of
0.8 was applied to each fMRI slice. With respect to the
voxel size, the SD of 0.8 leads to a kernel size of 5.65
mm. The data were analyzed a third time using the
wavelet-based approach described herein.

The statistical evaluation was based on a least-
squares estimation using the general linear model for
serially autocorrelated observations (15-17). The de-
sign matrix was generated using all four experimental
conditions (blank screen/neutral/congruent/incon-
gruent). Thus, the design matrix consists of four col-
umns that were generated using a boxcar function. The
model equation, including the observation data, the
design matrix, and the error term were convolved with a
Gaussian kernel (Eq. [15]). The Gaussian kernel of 4
seconds FWHM was chosen to emulate the dispersion
associated with the hemodynamic response function
(15,16). Combining the parameter estimates for the
neutral and incongruent condition, contrast and vari-
ance images were generated as described in Eqgs. [17]
and [20]. Note that the other conditions also served as
covariates in the design matrix. Thus, all conditions
were used for parameter estimation. Using the variance
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Figure 2. Sagittal slices (left lat-
eral, X = —44 and X = —46, respec-
tively) of two individual subjects,
showing a chain of dissociable acti-
vations obtained by the wavelet-
based approach using a P-level of
0.05. The activation IDs correspond
to the numbering of Table 2. For
corresponding axial slices and the
color map, see Figures 3 and 4.

images, an improved variance was estimated as in Eq.
[21].

To detect significant activations, wavelet-based
methods were applied to contrast images. As the wave-
let basis, the Daubechies wavelets (19) were chosen. We
also tried other wavelet basis families but found no
major differences. Using synthetic data, Desco et al. (3)
investigated the influence of the choice of the wavelet
basis. They also found no major differences. However,
in their study, the Gabor decomposition yielded the
best results. The simulation (3) showed that lower
wavelet orders and resolution depths should be used to
obtain optimal results. Therefore, the number of four
coefficients was chosen.

After computing the discrete wavelet transform to the
contrast values, a two-stage thresholding procedure (1)
was applied to the wavelet coefficients. For each of the
resolution levels and each of the three directions, the
null hypothesis of no activation was tested by compar-
ing each test statistic to the appropriate chi-square
quantile (see Egs. [24] and [25]). Nonsignificant coeffi-
cients were excluded from further analysis. The re-
maining coefficients were used to compute a second
test of statistics by dividing each wavelet coefficient by
the estimated noise variance (Eq. [22]). Then the null
hypothesis of no activation was tested by comparison of
each test statistic to the appropriate standard Gauss-
ian quantile (Eq. [27]). The Bonferoni method was used
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Figure 3. Axial and sagittal slices (X = —44, Z = 26)
of the subject SJ through the left lateral prefrontal
cortex. The figure shows contrast images obtained (a)
without any spatial filtering, (first row) (b) using the
wavelet-based approach, (second row) and (c) apply-
ing a spatial Gaussian filter (last row). The local max-
ima of the activations are listed in Table 2. See Fig. 2
for allocating the activations to the IDs of Table 2.
Using the wavelet filter (b), the SNR increased, and
activations were even more dissociable than in the
original unfiltered data. In contrast, the application of
the Gaussian filter (c) leads to reduced contrast val-
ues in all activations.

at both stages to adjust the results for multiple com-
parisons (see Eqgs. [26] and [29]).

To align the contrast images with a 3D stereotactic
coordinate reference system, a rigid linear registration
with six degrees of freedom (three rotational and three
translational) was performed. The rotational and trans-
lational parameters were acquired on the basis of the
MDEFT slices to achieve an optimal match between
these slices and the individual 3D reference data set.
This 3D reference data set was acquired for each sub-
ject during a prior scanning session. The MDEFT vol-
ume data set with 160 slices and 1 mm slice thickness
was standardized to the Talairach stereotactic space
(33). The resulting parameters were then used to trans-
form the contrast images using trilinear interpolation,
so that the resulting images were aligned with the ste-
reotactic coordinate system.

For the contrast images, local maxima were com-
puted. A pixel was defined to be a local maximum if its
value exceeded 0.5 and if it was largest within a 5 mm
radius. Local maxima residing in activation areas
smaller than 50 mm?® were not reported.

RESULTS

For the color-word matching Stroop task, the main con-
trast was the incongruent condition against the neutral
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condition. This interference condition elicited activa-
tions in the lateral prefrontal cortex in the form of a
chain of activations along the left inferior frontal sulcus
(IFS). These activations were located from the anterior
tip of the IFS (BA 46/9) through the middle IFS up to
the junction point of the posterior IFS and the precen-
tral sulcus (BA 6). Figure 2 shows a strong activation in
the inferior frontal gyrus (BA 44). These results were
also reported by Zysset et al. (18).

Figures 1, 3, and 4 compare the multiresolution
methods with the application of a monoresolution filter,
showing contrast images for (a) without any spatial
filtering, (b) with the wavelet-based postprocessing us-
ing a P-level of 0.05, and (c) with a spatial Gaussian
monoresolution filter of 5.65 mm FWHM. Table 1 shows
the variance for thermal and other system noise deter-
mined in appropriate regions of interest (ROIs) outside
the brain. Both the wavelet and the Gaussian filter lead
to reduced noise (see Fig. 1). However, the application of
a monoresolution filter leads to reduced effect values in
the contrast images, as shown Figures 3c and 4c. When
a Gaussian filter was applied to the data, all local max-
ima of the contrast images were considerably lower
than in the results without spatial smoothing. On av-
erage, the signal height was only 60% of the original
signal (see last column of Table 2). Thus, when higher
thresholds were selected for the activation maps, sev-
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eral activations vanished completely. Furthermore, the
monoresolution filter also reduced the real resolution of
the activation maps. The activations along the IFS were
larger and no longer dissociable. They could be inad-
vertently interpreted as a single large activation around
the IFS, as shown in Figures 3c and 4c.

In contrast to the Gaussian filter, the application of
the wavelet-based method increased the SNR without

Table 1

Thermal and Other System Noise With Different ROl Size*
Subject No g X 10° o8y X 10° aBg x 10°
SJ 2496 21.76 119 (5.47)  5.38 (24.72)
3264 21.45 1.33 (6.20) 5.22 (24.34)
4032 21.72 1.45 (6.68) 5.25 (24.17)
HS 2496 26.90 2.43 (9.03) 6.70 (24.91)
3264 25.85 2.42 (9.36) 6.28 (24.29)
4032 26.26 2.42 (9.22) 6.17 (23.50)

*Raw noise variance o3 determined in several ROIls with different
size Np. The column o8, shows the reduction of the noise variance
using wavelet filtering with P = 0.05, and the last column o8, shows
the reduction of the noise variance using Gaussian filtering with 5.65
mm FWHM. The bracketed numbers express the noise decrease in
percent. Using the Gaussian filter, the noise decrement only de-
pends on the selection of the filter width. In contrast, the result of
wavelet-based noise reduction depends on the variance of the signal
(see Eq. [21)).

Mdller et al.

Figure 4. Axial and sagittal slices (X = —46, Z = 23)
of the subject HS. See Fig. 3 for details.

the unwanted effects described above. Figures 3b and
4b show a set of clearly distinguishable activations
along the IFS. Because of the noise reduction, the acti-
vations were even more dissociable than in the original
unfiltered data (compared with Figs. 3a and 4a; see also
Fig. 1). Furthermore, there was no significant decrease
of the maxima of the contrast images. Using the wave-
let-based filtering, the size of the effect values was (on
average) more than 90% of the original values (see
Table 2).

DISCUSSION

The general idea of our approach is to combine wavelet-
based methods with the general linear model. Estimat-
ing the variance-covariance matrix of the model and
computing the spatial wavelet transform of contrast
images, wavelet coefficients can be statistically as-
sessed in a postprocessing step. This removes noise
and leads to an increased SNR.

Recent works by Ruttimann et al. (1) and Brammer
(4) presented a multiresolution approach for fMRI data.
They reported a higher sensitivity in the detection of
activated brain areas compared to more established
methods. However, their method is restricted to the
investigation of differences between images acquired
under two experimental conditions using long blocks of
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Table 2
Local Maxima Residing in Activation Areas of Contrast Images*
Subject ID X y z Corig Cw Cg
SJ 1 -50 11 -1 3.53 3.41 (96.6) 1.87 (563.0)
2 —38 10 29 1.30 1.28 (98.4) 0.89 (68.5)
3 —48 18 26 1.63 1.47 (90.2) 0.97 (59.5)
4 —44 24 16 1.13 1.21 (107.1) 0.77 (68.1)
5 —48 28 8 1.25 1.23 (98.4) 0.72 (57.5)
6 —44 31 0 1.22 0.99 (81.1) 0.82 (67.2)
7 —-41 47 -5 1.22 1.13 (92.6) 0.88 (72.1)
HS 1 -55 18 -4 2.38 2.09 (87.8) 1.53 (64.3)
2 -47 11 26 1.71 1.47 (86.0) 1.22 (71.3)
3 -52 22 23 1.53 1.29 (84.3) 0.96 (62.7)
4 —49 32 13 1.31 1.32 (100.8) 0.89 (67.9)
5 —46 42 4 1.27 1.05 (82.7) 0.89 (70.1)

*The table shows local maxima of activation areas of the left lateral prefrontal cortex. The values ¢,y are local maxima of contrast images
without any spatial filtering, c,, with the wavelet-based postprocessing using a P-level of 0.05, and ¢4 using a spatial Gaussian monoresolution
filter of 5.65 mm FWHM. The bracketed numbers express the signal decrease in percent. The indicated activation IDs correspond to

Figure 2.

stimulation. The work of Ruttimann et al. (1) was im-
proved by Feilner et al. (8,9). Under two experimental
conditions, a t-test can be performed completely in the
wavelet domain. Taking into account the variability of
each wavelet coefficient separately, their approach
works also in the case of nonstationary Gaussian noise.
However, their method is still restricted to the standard
block paradigm. Many neuropsychological questions
require more than two conditions and the ability to
handle event-related designs. Therefore, the approach
of Ruttimann et al. (1) was enhanced using the general
linear model (15,16). Thus, there is no constraint that
requires long blocks of stimulation. This strategy allows
the treatment of event-related hemodynamic responses
evoked by different sorts of stimuli (17). Moreover, sin-
gle trials may be evaluated.

Although the parameter estimation is performed in
the temporal domain, the significance of the coefficients
is completely assessed in the wavelet space. Because of
the decorrelation property of the wavelet transform, the
false-positive rate can be controlled adjusting the sig-
nificance level using the Bonferoni correction method.
The Bonferoni correction is optimal for nearly indepen-
dent observations (27). Thus, in the wavelet space, Bon-
feroni correction is a simple type of alpha adjustment
that yields optimal results. Random field methods (26)
are not applicable to multiresolution approaches be-
cause of the independence of the wavelet coefficients
and the unknown smoothness (1).

From a practical point of view, our method is easy to
integrate into fMRI data processing, because the gen-
eral linear model is well established for statistical eval-
uation. Thus, the method can be quickly incorporated
into common fMRI software (see, e.g., Refs. 15, 31, and
34). Wavelet thresholding can be easily performed on
contrast images after parameter estimation for the
model. Once the residual variance is estimated, the
wavelet coefficients can be statistically assessed using
the chi-square and the standard Gaussian distribution.
The resulting maps show a clear improvement of the
SNR without destroying the signal, and without decre-
ment of the resolution of the image. Because of the
improved SNR, the resulting activations are even more

dissociable than in the unfiltered data. The size of the
activations does not grow, and the height of the signal
does not change significantly.

In standard fMRI data evaluation, the SNR is im-
proved by applying a Gaussian monoresolution filter.
The wavelet-based approach was compared with a
Gaussian filter with an SD of 0.8 that corresponds to a
filter size of 5.65 mm FWHM. This relatively small filter
size was chosen to obtain a fair comparison. Some
studies have recommended presmoothing the images
with a Gaussian filter of 8-12 mm FWHM (15,16). In-
deed, the application of a Gaussian filter with such a
large filter width can strongly increase the SNR. How-
ever, applying a monoresolution filter reduces the real
resolution of the image. The image is blurred and some
activations are no longer dissociable. This effect can
also be observed for relatively small filter widths. With
the use of a larger filter, the activations are more un-
differentiated, and the anatomical localization is more
imprecise. Furthermore, the application of a Gaussian
filter destroys the signal. Small activations may vanish
completely.

In fMRI group studies, individual brains are often
transformed by linear scaling to a standard size (33).
However, linear scaling does not consider the anatom-
ical structure of the different brains. Therefore, Gauss-
ian filtering is often used in group studies, because a
monoresolution filter reduces the individual specifics in
the functional data. As a result of reduced resolution,
there is a stronger overlapping between the activation
areas of the individual contrast images. In contrast, the
multiresolution approach preserves the anatomical
specifics of the data, and nonlinear normalization
methods have to be applied for group statistics.

In conclusion, wavelet-based multiresolution meth-
ods are generally more suitable for inference in fMRI
than monoresolution filters. Using the general linear
model, contrast images can be postprocessed in the
wavelet domain by thresholding the wavelet coefficients
and applying the Bonferoni correction method. In par-
ticular, if the smoothness and the location of the signal
are unknown, wavelet-based methods avoid the prob-
lem of having to select the best monoresolution filter.
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