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Abstract

In this paper we investigate the within-subject variability of dynamical aspects of the BOLD response obtained in a series of fMRI
sessions several days apart. Five different parameters describing the temporal behavior of trial-averaged time courses, such as time-to-peak
and time-to-onset, were estimated and analyzed with respect to their variability across nine sessions. Results show that small variances of
the estimated parameters can be found, provided that the analysis is restricted to voxels activated in all individual sessions. Among the
investigated parameters, time-to-peak shows the most stable behavior. These results were obtained using two different analysis methods, the
estimation of the parameters directly from trial-averaged time courses and fitting trial-averaged time courses to an assumed hemodynamic

response function. Both methods yield comparable results.
© 2003 Elsevier Science (USA). All rights reserved.

Introduction

Functional magnetic resonance imaging (fMRI) has be-
come an increasingly important method for the study of
functional neuroanatomy in humans (Ogawa et al., 1990;
Kwong et al., 1992). This noninvasive imaging method is
based on changes in the blood oxygenation level which is
supposed to be linked to neural activation. However, to date
the exact link between increased neural activity and changes
in the level of blood oxygenation is not fully understood,
making the interpretation of the acquired data difficult. This
problem becomes especially apparent when investigating
the temporal dynamics of neural activation, with the hemo-
dynamic delay of the blood oxygenation level-dependent
(BOLD) response effectively working as a temporal filter on
the actual fMRI signal.

When examining fMRI time courses, an increase in the
BOLD signal is often observed about 2 s after stimulus
onset (DeYoe et al., 1994; Buckner et al., 1996; Buckner,
1998; Menon and Kim, 1999). The BOLD signal reaches its
maximum approximately 5 to 8 s after stimulus onset and
remains increased beyond the duration of the stimulus
(Blamire et al., 1992; DeYoe et al., 1994; Menon et al.,
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1995). However, a number of studies have shown that this
general time course following stimulation can vary consid-
erably when different cortical regions and subjects are com-
pared. Although it is reasonable to assume that the variabil-
ity of the observed signal reflects at least to some degree the
variability of the underlying neural activity, this might not
be the only cause. The BOLD response is, for example,
sensitive to vessel diameter, whereby longer delays are
found for larger vessels (Lee et al., 1995). The temporal
behavior of the BOLD signal will thus be partly influenced
by differences in the underlying vasculature. Moreover,
differences in scanning hardware, procedures, and experi-
mental designs as well as analysis tools and postprocessing
strategies will most likely affect any comparative study of
brain activity. Knowing the exact amount of these influ-
ences on the measured fMRI signal is essential for a further
understanding of the neurovascular coupling and the correct
interpretation and statistical analysis of the obtained mea-
surements.

The actual source of observable variation in the BOLD
signal is manifold, reaching from differences between re-
peated sessions to variations between cortical regions and
subjects. In a number of studies, the temporal behavior of
the hemodynamic response has been found stable for re-
peated trials of a single session (Kim et al., 1997; Aguirre et
al., 1998; Miezin et al., 2000). This suggests that averaging

1053-8119/03/$ — see front matter © 2003 Elsevier Science (USA). All rights reserved.

doi:10.1016/S1053-8119(03)00177-0



J. Neumann et al. / Neurolmage 19 (2003) 784796 785

time courses over trials on a voxel-by-voxel basis preserves
the temporal properties of the individual trials. However,
differences on the order of a few seconds have been ob-
served for estimates of time-to-onset and time-to-peak when
comparing trial-averaged time courses between subjects
(Kim et al., 1997; Schacter et al., 1997; Buckner et al.,
1998; Aguirre et al., 1998; Miezin et al., 2000). Variations
of similar proportions have also been found in the timing
and shape of the hemodynamic response across different
cortical regions of individual subjects. Delays on the order
of seconds and prolonged activation were, for example,
observed for anterior prefrontal regions relative to visual
areas (Schacter et al., 1997; Buckner et al., 1998). Miezin et
al. (2000) reported considerable variation between motor
and visual cortex of individual subjects, suggesting that the
regional variation in the BOLD signal might even be sub-
stantially greater than any global factors influencing re-
sponse properties across subjects. Delays in peak times
between different cortical regions, some as long as a few
seconds, were further observed by Thierry et al. (1999) and
Kruggel and von Cramon (1999b).

Little work has been done addressing the within-subject
variability of the BOLD response across a number of dif-
ferent sessions, especially if they are several days or even
weeks apart. So far, research into the between-session vari-
ability of the BOLD response was largely directed toward
the analysis of volume and overlap of activated voxels as
well as the magnitude of their activation (Noll et al., 1997;
Rombouts et al., 1998; McGonigle et al., 2000; Waldvogel
et al., 2000; Maitra et al., 2002). One of the few reports
addressing temporal aspects come from Aguirre et al.
(1998), who found significant variability in the shape of the
hemodynamic response in three of four subjects who per-
formed a simple visually induced motor task during five
sessions taking place several days apart.

Knowing the within-subject variability across sessions is
essential for the interpretation of results from between-
subject analyses. Knowledge of the exact amount of be-
tween-session variability is required in order to dissociate
the amount of between-subject variability that can truly be
attributed to the differences between subjects from the vari-
ability simply caused by differences between sessions.
Moreover, knowing the amount and sources of within-sub-
ject variations across sessions becomes particularly impor-
tant, for example, for studies addressing learning and habit-
uation effects on a subject’s performance as well as aging or
recovery of function after brain lesions in patients. Our own
work presented in this paper was therefore aimed toward
studying the between-session variability for subjects per-
forming the same task in a number of sessions spread out
over a few weeks. Given the stable temporal behavior of the
BOLD response across trials in a single session, we would
expect the within-subject variability between scans to be
considerably smaller than the between-subject variability,
provided the experimental conditions do not substantially
differ from one session to the next. In order to include large

parts of the cortex in our analysis, a variant of the Stroop
task (Stroop, 1995), known to produce activation in a num-
ber of frontal and parietal areas, was chosen as the experi-
mental paradigm.

A second aspect of our investigation addressed the ques-
tion of whether there exist one or more parameters of the
hemodynamic response, i.e., distinct points in the course of
the hemodynamic response, that show a particularly consis-
tent temporal behavior. This question was already ad-
dressed, for example, by Menon et al. (1998). Using a 4
Tesla scanner, trial-averaged time courses were obtained for
V1 after presenting visual stimuli with various delays. An
analysis of these time courses showed that only delays in the
onset of the time courses correlated with the delay of the
stimulus presentation. Other parameters such as time-to-
peak and amplitude of the BOLD response exhibited a less
stable behavior. This result is in stark contrast with obser-
vations reported by Miezin et al. (2000). Comparing the
reliability of a number of different parameters of BOLD
signals in the visual cortex, they found the estimates of
amplitude and time-to-peak to be the most stable ones. This
discrepancy clearly needs further investigation.

Finally, we were interested in the influence of the anal-
ysis method used to obtain estimates of time lags in the
hemodynamic response. Two general approaches can be
found in the literature. Specific time points in the BOLD
signal, typically time-to-onset and time-to-peak, can be de-
rived directly from preprocessed data as done, for example,
by Kim et al. (1997) and Menon et al. (1998) discussed
above. Alternatively, parameters of functions assembling
the assumed shape of the hemodynamic response and fitted
to the acquired data can serve as estimates of such time lags.
Examples of this methodology, including linear and nonlin-
ear regressions of Gamma and Gauss functions and linear
combinations thereof, can be found in Henson et al. (2002),
Liao et al. (2002), Miezin et al. (2000), Kruggel and von
Cramon (1999a), and Cohen (1997). These two approaches
are subjected to different amounts of numerical instability
and interpolation from the measured signal. In order to
investigate such influences we applied both methods to our
experimental data and compared the results with respect to
the reliability of the obtained estimates.

Methods
Subjects and experimental task

For our analysis we used data obtained from an event-
related single trial version of the Color—Word Matching
Stroop task (Zysset et al., 2001). Four subjects (three fe-
male, mean age 23 years) were examined, from whom we
obtained written consent prior to the scanning sessions.
After instructions and a practice session, nine experimental
sessions were performed by each subject within 9 weeks.
With one exception, sessions took place on the same day
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and time every week. There were three experimental con-
ditions (neutral, congruent, and incongruent). During neu-
tral trials, letters presented in the top row of the screen were
XXXX’ printed in red, green, blue, or yellow, and the
bottom row consisted of the color words ‘RED,” ‘GREEN,’
‘BLUE,” and ‘“YELLOW?’ printed in black. For congruent
trials, the top row consisted of the color words ‘RED,’
‘GREEN,” ‘BLUE,’ and ‘YELLOW’ printed in the congru-
ent color. The incongruent condition was identical to the
congruent one, except that the color word was printed in an
incongruent color (e.g., ‘GREEN’ printed in red), in order to
produce an interference between color word and color
name. The conditions were presented in a randomized order.
Stimuli were presented until the subjects responded by tap-
ping the index or the middle finger of the right hand. This
led to the presentation of a new stimulus every 6 s on
average. A variable onset delay of 0, 400, 800, 1200, or
1600 ms produced an oversampling of the actual image
acquisition time of 2000 ms by a factor 5, leading to an
acquisition sampling rate of 400 ms.

MRI scanning procedure

The experiment was carried out on a 3T scanner (Med-
spec 30/100, Bruker, Ettlingen). Sixteen axial slices (19.2
cm FOV, 64 by 64 matrix, 5 mm thickness, | mm spacing),
parallel to the AC-PC plane and covering the whole brain,
were acquired using a single shot, gradient recalled EPI
sequence (TR 2000 ms, TE 30 ms, 90° flip angle). One
functional run with 648 time points each was conducted,
with each time point sampling over the 16 slices. Prior to the
functional runs, 16 anatomical T1-weighted MDEFT (Ugur-
bil et al., 1993; Norris, 2000) images (data matrix 256 X
256, TR 1.3 s, TE 10 ms) and 16 T1-weighted EPI images
with the same parameters as the fMRI data were acquired.

fMRI data analysis

The fMRI data were processed with the software LIPSIA
(Lohmann et al., 2001). This software package contains
tools for preprocessing, registration, statistical evaluation,
and presentation of fMRI data.

Functional data were corrected for motion using a match-
ing metric based on linear correlation. To correct for the
temporal offset between the slices acquired in one session,
a sinc-interpolation based on the Nyquist-Shannon Theo-
rem was applied. A temporal high-pass filter with a cut-off
frequency of 1/84 Hz was used for baseline correction of the
signal and a spatial Gaussian filter with 4.24 mm FWHM
was applied. To align the individual functional data slices
onto the corresponding 3D stereotactic coordinate reference
system, a rigid linear registration with six degrees of free-
dom (3 rotational, 3 translational) was performed. The ro-
tational and translational parameters were acquired on the
basis of the MDEFT and EPI-T1 slices to achieve an opti-
mal match between these slices and the individual 3D ref-

erence data set. This 3D reference data set was acquired for
each subject during a previous scanning session. The
MDEFT volume data set with 160 slices and 1 mm slice
thickness was standardized to the Talairach stereotactic
space (Talairach and Tournoux, 1988). The rotational and
translational parameters were then used to transform the
functional slices using trilinear interpolation, so that the
resulting functional slices were aligned with the stereotactic
coordinate system.

In order to detect significant activations, a statistical
evaluation was performed based on a least-squares estima-
tion using the general linear model for serially autocorre-
lated observations (Friston, 1994; Worsley and Friston,
1995; Zarahn et al., 1997). The design matrix was generated
utilizing a synthetic hemodynamic response function and its
first and second derivative (Friston et al., 1998; Josephs et
al., 1997). This way, the amplitude as well as temporal
aspects are taken into account for the detection of activated
voxels. The model equation, including observation data,
design matrix, and error term, was convolved with a Gauss-
ian kernel with a dispersion of 4 s FWHM. Contrast maps,
i.e., estimates of the raw-score differences between speci-
fied conditions and baseline, were generated for each sub-
ject and session. For these contrasts one-sample ¢ tests were
performed assessing the null hypothesis of zero response,
and statistical parametric maps SPM{¢} were constructed
indicating the significance of the response. Obtained ¢ val-
ues were subsequently transformed into z values, giving an
SPM{Z} for each subject and condition. Voxels exceeding
the threshold z = 3.09, corresponding to P < 0.001, were
included in the analysis of temporal aspects of the BOLD
response. Since the contrast between the neutral and the
incongruent conditions represents the main Stroop interfer-
ence, only these conditions were considered.

In order to further restrict parts of the analysis to voxels
showing activation in every individual session, binary
masks were obtained for each subject and condition, mark-
ing voxels which exceed a threshold of z = 2.33, corre-
sponding to P < 0.01, in every individual contrast map for
a condition and subject. Regions of interest (ROI) were
formed within the marked cortical areas, including the local
maximum of activation together with all voxels within its
26-adjacency, i.e., voxels whose Euclidean distance from
the maximum of activation did not exceed V'3 X voxel size.
Voxels within this neighborhood that were not activated in
all individual sessions were excluded from the ROI.

Analysis of BOLD dynamics

Trial-averaged time courses were obtained on a voxel-
by-voxel basis for each session, subject, and condition at a
sampling rate of 200 ms, which is twice the rate of image
acquisition. Activations for time points falling between two
observed points were linearly interpolated from the
weighted activation of their neighbors. Four points of inter-
est along the trial-averaged time courses of all subjects,
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Fig. 1. A typical trial-averaged time course of an activated voxel (Subject 1, Session 2, neutral condition). The original time course and the fitted y function
are shown. The five parameter estimates describing distinct points between stimulus onset and maximum activation in the time course are marked.

scans, and conditions were identified as follows. The min-
imum and the maximum activation and their respective time
lags with reference to stimulation onset, #,;, and ¢,,,, were
sought in the time range of 0 to 5 s and 3 to 8 s, respectively,
with £, < t,.... These time ranges were chosen in accor-
dance with earlier reports about the usual time ranges of
time-to-onset and time-to-peak (Blamire et al., 1992;
DeYoe et al., 1994; Menon et al., 1995; Buckner et al.,
1996). In addition, the first and second derivatives of the
time courses at each time step were calculated using Taylor
polynomial approximations

df _flx+h) = flx—= 1)

dx 2h M

min

and

&P fx+ k) = 2f(x) + flx — h)

dx* h

2

with 2 = 1. Time lags of the discrete approximations to the
minimum and maximum of the second derivative were then
determined by

&’f
Lyeep - Arg max, e 3)
and
. df
o @ Arg min, e 4)

for all x € [0 ... n], whereby

af

daf
a (‘xts|ccp) > 0’ E (xtﬂm) > 0 and tsteep < tﬁat'

&)

Iieep Marks the point along the time course where the BOLD
response starts rising steeply from the baseline after the
presentation of a stimulus. This point can be interpreted as
onset of the response function. #, marks the point along a
time course where the function flattens out again before
reaching the maximum of the activation. This point should
be in close proximity to time-to-peak, but unlike time-to-
peak should not be prone to estimation errors caused by
prolonged activations. Such prolonged activations result in
plateaus in the estimated BOLD response which make the
exact identification of time-to-peak difficult. However, the
length of activation should not affect #;,, as this always
marks the beginning of a period of increased activation, be
it a single well-defined peak or a plateau of several seconds.

A typical trial-averaged time course with the four points
of interest marked is shown in Fig. 1. Note that reliably
estimating ., and g, required smoothing the time courses
using a Gauss filter with o = 1, thereby reducing the
number of local extrema of the first and second derivatives.

For each subject and condition, the values for the four
points of interest were averaged across the nine sessions on
a voxel-by-voxel basis. Mean 7 and standard deviation o for
each point were color-coded and represented in intersection
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Fig. 2. Intersection flat maps showing means ¢,
across all sessions. Only voxels exceeding a z score of 3.09 in the corresponding SPM{Z} are shown. Mean values vary in a range of 0.2 to 3.3 s in different
cortical regions. Standard deviations obtained across all sessions range from 0.1 to 2.33 s, but exceed 1 s in some cases only.

Fig. 4. The two estimates for the variability of time-to-peak, o,,,, and oj,, shown for the incongruent condition in Subject 4. Visual inspection already reveals
that the two estimates obtained by two different methods provide nearly identical values.

steep

flat maps (Lohmann et al., 2002). These maps describe a
projection of cortical regions onto a 2D plane which mini-
mizes geometrical distortion along the lateral left—right di-
rection and allows for a convenient inspection of wide parts
of both hemispheres.

Our second method of analysis was chosen based on the
observation that specific parameters or time points of the
hemodynamic response can be derived directly from param-
eters of a model function fitted to the acquired data. It is
believed that the course of the BOLD signal can be reason-
ably well approximated by a y function (Friston et al., 1994;
Boynton et al., 1996; Lange and Zeger, 1997). Friston et al.
(1998) suggested a sum of two <y functions to account for
the often observed undershoot following maximum activa-
tion. Since we were primarily interested in the temporal
behavior of the hemodynamic response up to the maximum
activation, we used only a single y function. However, in

(top) and standard deviations o,

(bottom) for the incongruent condition in Subject 4 after averaging

steep

preliminary studies we found fitting unsatisfactory when
using the usually applied three-parameter y function (Co-
hen, 1997; Miezin et al., 2000). For about 10% of all
activated voxels, no fit could be obtained within 10,000
iterations of the fitting procedure. Changes in parameter
initialization had only marginal impact on these results.
Moreover, visual inspection of the fitted functions revealed
that, although in many cases the obtained fit resembled the
shape of the underlying time course, the amplitude in par-
ticular was often not very well approximated. We therefore
introduced an additional parameter which allowed a more
flexible modulation of the amplitude of the function and
fitted the four-parameter function

b
flx) = (;—C) et ©)
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Fig. 3. Cortical regions with standard deviations o < 0.5 found for the five estimates in the neutral condition in Subject 1. Regions with small variance largely
overlapped with highly activated areas but differed between the five points along the BOLD response. In this example o, produced no such region.

leaving all four parameters subject to the optimization. Data
were fitted to the model and the model parameters estimated
using the Levenberg—Marqghardt algorithm, a standard rou-
tine for nonlinear least-squares minimization. For discus-
sion of the algorithm see, e.g., Seber and Wild (1989). The
standard deviations obtained for all data points when cal-
culating the trial-averaged time courses served as additional

input to the fitting procedure. In this way, the adaptable
parameters were forced to fit more reliably measured points
better than highly unstable ones. In order to ensure that data
were fitted best in the area of the four points of interest, the
time range for fitting was restricted from the minimum of
the average time course to 1 s after the maximum activation.
From Eq. (6) the product of the parameters » and d can be
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Table 1

Relative number of voxels where each estimate showed the smallest standard deviation

Subject Condition Voxels [0 Oteep Ofiat Tnax [

1 Incongruent 11689 22.59% 6.60% 15.39% 23.37% 32.05%
Neutral 6769 21.23% 2.98% 16.65% 29.43%

2 Incongruent 12658 14.12% 4.09% 20.87% 22.67% 38.25%
Neutral 10341 11.81% 2.82% 20.10% 32.38%

3 Incongruent 15104 10.74% 2.93% 10.18% 20.74% 55.41%
Neutral 14081 10.18% 2.25% 10.87% 26.59% 50.10%

4 Incongruent 8284 28.15% 7.50% 13.55% 18.60% 32.20%
Neutral 6982 25.78% 6.86% 18.17% 22.16% 27.03%

Note. A comparison of the standard deviations of all five estimates for the incongruent and neutral conditions in all subjects. Each row shows the number
of activated voxels and the relative number of voxels where each of the five estimates showed the smallest standard deviation (summing up to 100%). In most
cases, time-to-peak estimated from the fitted y function shows the highest number, i.e., is the most stable among the five estimates. For the two exceptions,
the neutral condition in Subject 1 and Subject 2, it is the second stable estimate with nearly the same share of voxels as the first.

taken directly as an estimate for the time-to-peak of the
fitted data (Cohen, 1997; Glover, 1999; Liao et al., 2002).
This point, subsequently called #5,, was chosen for compar-
ison with the results of our first analysis method. It is shown
together with the four direct estimates in Fig. 1.

The least variable of the five obtained estimates was
found by comparing their standard deviations after averag-
ing across all sessions of a subject on a voxel-by-voxel
basis. For each estimate the number of voxels for which it
showed the smallest standard deviation was counted.

Results

A typical distribution of the mean time lags and respec-
tive standard deviations of voxels exceeding a z score of
3.09 in the corresponding SPM{Z} is exemplified in Fig. 2
for time-to-onset obtained for the incongruent condition in
Subject 4. Representing the results in an intersection flat
map provides an overview of the time lags over the whole
brain, also showing the variability of the estimates between
different cortical regions. Mean time lags fsteep in this ex-
ample range from 0.20 to 3.30 s with 0y, between 0.14
and 2.33 s. Similar time differences in mean values between
voxels were observed for the other subjects and conditions.
Roughly speaking 7, and fsteep were found to be between
0 and 4 s and between 0.1 and 4.4 s, respectively. Values for
faa and 7., lay between 3 and 7.6 s and between 3.3 and
7.9 s, respectively. The values of the obtained standard
deviations were usually in a range of 0.1 to 2 s, in most
cases below 1 s, but in single cases as high as 4 s. A
systematic difference in the estimates between the examined
conditions could not be observed.

Note that the individual values 7., fceps far AN Zay
obtained before averaging across sessions were distributed
over the entire time range permitted, i.e., between 0 and 5 s
for 7, and 7, and between 3 and 8 s for 74, and 7,,,,,
respectively. The values of f;, were not restricted and even
exceeded these boundaries. These widespread values can be
explained by the fact that some voxels included in the

SPM{Z} with a relatively small value were not activated in
all individual sessions. For nonactivated voxels, however,
the shape of the time course might not be well approximated
by the y function and the points of interest can be placed
outside the assumed range. This in turn accounts for the
relatively high standard deviations observed in some cases
when averaging across sessions.

The large variations observed for at least some voxels
lead us to believe that the within-subject variability of the
BOLD response is not significantly smaller than the be-
tween-subject variability observed in the literature. How-
ever, a closer inspection of the obtained estimates reveals
that some cortical areas containing voxels with consistently
small variation can be identified in all four subjects. This is
exemplified in Fig. 3 for the neutral condition of Subject 1.
Areas containing voxels with standard deviation o < 0.5 are
shown for all estimates. This particular threshold was cho-
sen to be notably smaller than the variance of response
estimates across subjects, which is typically as large as a
few seconds.

With the exception of fsteep, all estimates produced a
number of cortical areas with such small temporal variation
in the BOLD response. Although not completely identical,
these areas largely overlapped with highly activated areas.
They include the presupplementary motor area, the left
inferior frontal sulcus, the left intraparietal sulcus, and the
left inferior temporal gyrus, which have also produced dis-
tinguished activations in previous Stroop studies (Zysset et
al., 2001). As can be seen, however, different points of
interest produced different such areas, indicating that the
variances in the BOLD response do not only depend on the
cortical region but might also vary along the time course of
the signal.

Since we were interested in the question of which of the
five parameters can be most reliably estimated and shows
the most stable temporal behavior, a comparison of the
standard deviations of all five estimates was performed for
all subjects. The results are presented in Table 1. For each
subject and condition the number of activated voxels was
counted and the relative number of voxels (in percentage)
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where an estimated parameter produced the smallest stan-
dard deviation was determined. For example, 11,689 voxels
were activated for the incongruent condition in Subject 1.
For 32.05% of these voxels, o, was smaller than the stan-
dard deviations of the other four estimates, which makes 7,
the least variable point along the trial-averaged time courses
of this subject. o,,,,, was the smallest of all five estimates for
23.37% of all voxels, followed by o, with 22.59% of all
voxels, and so on. As can be seen in Table 1, with two
exceptions oy, was most often found to be the smallest of
the five estimated standard deviations usually with about
30%, in Subject 3 with even over 50% of all activated
voxels. This means that fm, i.e., time-to-peak estimated from
the fitted y function, was the most stable point along the
average time courses. Among the four estimates obtained
directly from the time courses, there also seems a tendency
for time-to-peak to be the least variable point. This agrees
with the observations reported by Miezin et al. (2000) who
found time-to-peak the most stable point along trial-aver-
aged time courses. Our data do not support the observations
by Menon et al. (1998), who reported the early part of the
hemodynamic response to show stable dynamic behavior.
On the contrary, fsteep in particular was by far the least
reliable estimate for all subjects. We note, however, that
Menon’s analysis is not directly comparable to our results as
the time-to-onset was determined by different methods in
the two studies.

For the comparison of the two analysis methods, obtain-
ing estimates directly from the averaged time courses and
by means of fitting the data to a -y function, visual inspection
of intersection flat maps for o,,,, and oy, proved sufficient.
This is exemplified in Fig. 4 for the incongruent condition in
Subject 4. As becomes immediately obvious, standard de-
viations of both estimates are of the same magnitude. Sim-
ilar results were obtained for all other subjects and condi-
tions. We would thus argue that neither of the two
approaches is generally to be preferred over the other when
investigating the variability of parameters of the BOLD
response describing its dynamic aspects.

As our earlier results show, using statistical parametric
maps to mask activated voxels for further analysis is prob-
lematic, because they might include voxels that do not show
activations in all individual sessions. We would expect
considerably less variation in the parameters describing the
BOLD dynamics when only voxels which are activated in
all sessions are considered. We thus restricted another step
of our analysis to cortical regions only containing such
voxels. We chose the incongruent condition for this analy-
sis, which produced the strongest activations in all four
subjects. Binary maps were obtained for all subjects mark-
ing voxels that exceeded the threshold z = 2.33 in all
contrast maps of the incongruent condition. Five cortical
areas where found to contain such voxels in all four sub-
jects. These areas are shown in Fig. 5 and include the
presupplementary motor area (preSMA), the left and right
intraparietal sulcus (L SIP and R SIP), and the left and right

inferior precentral sulcus (L IPCS and R IPCS). ROIs were
formed within these areas as described in the previous
section, and average time courses for these regions, the
estimates of the points of interest along the time courses,
and their respective means and standard deviations across
the nine sessions were obtained. The standard deviations for
all estimates in the five ROIs of each subject are listed in
Table 2.

As expected, for these consistently activated voxels the
standard deviations of the time lags are considerably below
1 s, often even below 0.5 s. An exception iS Oy, the
standard deviation of time-to-onset. However, time-to-onset
was already found to be by far the least stable point along
the BOLD response, shown by the small values for oy, in
Table 1. Overall, the small standard deviations show that
estimates of parameters describing the temporal behavior of
the BOLD response can be meaningfully averaged across a
number of sessions of the same subject as long as this
averaging is performed only on voxels activated in all in-
dividual sessions.

Note that although the small number of subjects does not
provide the means for a between-subject analysis, the ob-
tained standard deviations were at least of the same magni-
tude when compared between subjects. However, the mean
values of the estimates, shown in Table 3, varied consider-
ably across cortical regions and across subjects. This is true
even for the most stable estimate 7, as can be seen in Fig.
6. Subjects 2 and 4 show a faster BOLD response in all
cortical regions than Subjects 1 and 3. Moreover, mean
time-to-peak varies considerably between cortical regions in
all four subjects and, most notably, the order of activation in
the five cortical regions differs immensely between sub-
jects. This supports earlier observations by Miezin et al.
(2000), who found that absolute estimates of time-to-peak
and time-to-onset in the hemodynamic response have only a
rough relation to the likely ordering of neural activity in
different cortical regions. Despite the relatively low vari-
ance of these estimates within the same subject, their exact
interpretation thus still remains an open question.

Discussion

The main findings of this experiment can be summarized
in three points. First, the between-session variability of the
hemodynamic response is comparatively small, usually well
below 1 s, for voxels activated in every individual session.
The between-session variability of the BOLD response for a
single subject is thus much smaller than the variability
between subjects, where estimates of time-to-onset and
time-to-peak are usually reported to vary in a range of a few
seconds. Second, among different points along a trial-aver-
aged time course, describing its temporal behavior from
stimulus onset to maximum activation, time-to-peak shows
at least a tendency to be the least variable one. Finally, the
two common approaches to estimating parameters of the
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Fig. 5. Five cortical regions were found activated in all individual sessions for the incongruent condition in all four subjects. The regions are shown here for
Subject 4 and include presupplementary motor area, left and right intraparietal sulcus (top row), and left and right inferior precentral sulcus (bottom row left

and right, respectively).

Fig. 6. Mean values and standard errors of the time lags for the center of activation in the 5 ROIs of all subjects. The most stable estimate 7, obtained for
the incongruent condition is shown. Even for this estimate, mean values vary significantly between cortical regions in single subjects and even more so
between different subjects. Also note a different temporal order of the five cortical regions in all subjects.

BOLD response, deriving them directly from trial-averaged
time courses or from functions fitted to the acquired data,
yield nearly identical results when applied to our data. Thus,
neither of the two methods is generally to be preferred over
the other.

The lack of reports concerning the within-subject vari-
ability of the BOLD response across different scanning

sessions can probably be attributed to the relatively high
effort, time, and expense required for such long-term stud-
ies. Moreover, as for comparisons across subjects, the anal-
ysis of temporal aspects of the hemodynamic response is
hampered by the relatively low reproducibility of activa-
tions and a high variability in activation magnitude across
different sessions. Noll et al. (1997), for example, found
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Table 2
Standard deviations of all estimates in five cortical regions

Subject  Estimate preSMA LIPCS RIPCS LSIP R SIP
1 Coin 0.33 0.36 0.59 054 052
Trtee 0.69 0.74 0.55 097 LI5
T 0.57 0.70 0.63 030 065
O 0.52 0.60 0.55 033 036
O 0.40 0.56 0.74 030 034
2 Coin 0.45 0.34 0.61 028 054
Treep 0.87 0.72 0.99 068 117
T 0.27 0.14 0.28 059 037
Conax 0.57 0.40 0.33 061 048
O 047 0.49 0.26 041 041
3 Coin 0.35 0.69 0.55 062 055
Teep 0.79 0.94 1.07 044 084
T 035 0.48 0.50 068 026
T 0.24 0.26 0.18 037 015
O 0.20 0.38 0.25 019  0.19
4 Coin 0.18 0.22 0.39 026 037
Trtee 0.21 0.48 0.83 055 065
T 0.19 0.24 0.31 013 026
O 0.19 0.28 0.27 022 025
O 0.18 0.33 0.33 027 023

Note. Standard deviations (in s) of the five estimates in five comparable
cortical regions for all subjects. Standard deviations for most estimates are
considerably below 1 s, often found between 0.1 and 0.5 s. Only time-to-
onset (O, shows higher variation for all four subjects.

considerably less reliability of voxel activation between
sessions than between scans in a single session. Rombouts
et al. (1998) reported a ratio of overlapping activated voxels
as low as 64% for scans of the same subject obtained in
sessions several days apart. Waldvogel et al. (2000) ob-
served a variability of the number of activated voxels across
sessions as high as 1150% and of the activation amplitude
of 250%. Most notably, in an extensive long-term study
McGonigle et al. (2000) acquired data from 99 sessions of
a single subject presented with simple visual, motor, and
cognitive paradigms. For all tasks the pattern of activation
varied widely between repeated sessions, with some ses-
sions showing no significant activation at all. Thus, even a
large number of repeated sessions makes inferences about
general patterns of activation difficult. High variability of
the magnitude and pattern of activation must clearly influ-
ence the analysis of temporal aspects of the hemodynamic
response, however.

We would argue that the relatively high variances we
initially observed for some voxels was largely caused by the
fact that these voxels were not consistently activated in all
sessions. As can be seen in Fig. 4 for o0,,,, and oy, such
voxels were usually located close to the edge of clusters of
activated voxels. Time courses of such voxels often did not
possess the parameters we wished to analyze, however.
Frequently, we found a number of local minima before a
larger signal increase, and the signal did not rise steadily,
causing a large number of local extrema in the second
derivatives. In some cases we observed two or even three

peaks of activation, and some time courses did not show any
increase of activation in the assumed time range at all. This
of course makes providing sensible estimates for parameters
like time-to-peak and time-to-onset difficult. Moreover, the
v function fits only poorly to such data. Thus, given the
relatively small number of sessions investigated, estimates
from a voxel with no activation in only one session can
already increase the variance of the averaged data consid-
erably. The two methods of analysis, though they can the-
oretically be applied to the whole brain, therefore only yield
interpretable results for voxels activated in all investigated
sessions.

It has been argued that model-based analysis methods for
functional magnetic resonance images are hampered by the
fact that they make specific assumptions or require a priori
knowledge about the shape of the time courses to be inves-
tigated (Duann et al., 2002; McKeown et al., 1998). Build-
ing upon such model-based approaches in turn restricts any
further analysis of temporal aspects of the BOLD response
to voxels whose time course correlates well with a predicted
response function. Recently, Duann et al. (2002) demon-
strated that when abandoning any a priori assumptions
about the shape of the hemodynamic response and adopting
data-driven analysis approaches like ICA, one finds marked
variations of the derived components not only between
subjects but also across stimulus types, sessions, and within
sessions across trials, suggesting even higher variability of
the hemodynamic response than observed with model-based
analysis methods. However, components derived by PCA or

Table 3
Mean values of all estimates in five cortical regions

Subject  Estimate preSMA L IPCS RIPCS L SIP R SIP
1 Toin 0.33 0.33 0.40 062 073
ocep 1.16 1.42 1.29 1.24 1.78
That 4.20 433 4.62 438  5.04
. 4.71 491 4.87 4.89 5.47
e 4.62 4.95 4.90 483 534
2 Toin 0.49 0.16 0.31 0.11 0.27
fotcep 0.96 0.40 0.82 0.29 1.38
Tt 4.16 4.07 4.13 400  4.04
T 4.53 4.42 4.69 451 427
T 4.48 438 455 445 421
3 Toin 0.73 0.73 0.33 0.56  0.40
fcep 1.22 1.29 1.07 2.16 1.20
Tou 4.40 4.44 431 436 418
Tax 4.73 5.04 4.96 520 473
e 4.75 5.02 4.88 525 479
4 Toin 0.40 0.24 0.24 0.18 031
ocep 0.89 0.76 0.80 096  0.67
That 4.00 4.20 4.07 400  4.07
. 4.27 438 431 429  4.40
) 4.11 4.26 4.08 432 441

=

Note. Mean values (in s) of the five estimates in five comparable cortical
regions for all subjects. Values vary considerably across cortical regions
and subjects. A comparison of the mean values of the most stable estimate
f; can also be seen in Fig. 6.
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ICA usually lack a clear physical interpretation. This makes
a direct comparison of their variability to the variability of
parameter estimates of the BOLD response like time-to-
peak and time-to-onset impossible. It should also be noted
that while abandoning a priori assumptions about the shape
of the hemodynamic response, data-driven analysis methods
are still based on assumptions which are not guaranteed to
be met by fMRI data sets (Stone et al., 2002). PCA and ICA,
for example, assume orthogonality and spatial indepen-
dence of the derived components, respectively. Results from
these methods thus depend crucially on the validity of such
assumptions, just as the success of a model-based analysis
depends on the correctness of the assumed hemodynamic
response model. We still regard model-based approaches as
appropriate tools for the analysis of BOLD response dy-
namics. This view is further supported by the point raised
above, namely that only restricting the analysis to activated
voxels, i.e., to voxels with time courses that roughly follow
the assumed shape of a model function of the hemodynamic
response, provides interpretable and comparable estimates
of parameters describing the temporal behavior of the
BOLD response.

The actual method of finding parameters (amplitude,
time-to-peak, time-to-onset, etc.) that make comparisons of
BOLD responses possible can also be viewed in the light of
model-based versus data-driven methods. Such parameters
or time points can be derived directly from preprocessed
and (sometimes) averaged data as done with our first
method and also, for example, in the work by Kim et al.
(1997) and Menon et al. (1998) discussed at the beginning
of the paper. Alternatively, parameters of functions fitted to
the acquired data can serve as estimates for parameters of
the BOLD response. This was demonstrated, for example,
by Liao et al. (2002), Henson et al. (2002), Kruggel and von
Cramon (1999a), and Miezin et al. (2000), and in our second
analysis method. For our data, both methods yield compa-
rable results, leaving the choice of method to the experi-
menter. It is worth pointing out, though, that both methods
have their advantages and disadvantages. As argued above,
the former approach is difficult to implement, if the data
differ widely from the assumed shape and time range of the
hemodynamic response. If these underlying assumptions are
met, however, the derived parameters should be very accu-
rate and close to reality, as the method operates directly on
the acquired data, with few approximations and interpola-
tions from the measured signal. In contrast, the method of
fitting a function to the acquired data provides estimates of
temporal properties of the BOLD response depending on
parameters which are in turn estimated, and might thus be
prone to high estimation errors. This was explicitly pointed
out by Henson et al. (2002), who described latency differ-
ences across trial types by the ratio of two parameters of a
fitted canonical function and its derivative. On the other
hand, fitting a function to the data has the advantage that
obtained parameters of the model functions can directly
(and quickly) serve as descriptions of temporal aspects of

the underlying data, with good fitting procedures provided.
This is particularly true for fitting nonlinear functions like
the y function to the data, where some of the obtained
parameters have a clear physical interpretation such as time-
to-peak or amplitude of the activation. This immediate in-
terpretation of the fitted parameters is more difficult when
fits of linear combinations of functions are employed.

Somewhat surprisingly, we observed a higher variability
for the estimated time-to-onset than for all other points
along the trial-averaged time courses. Moreover, the vari-
ability of 7, was not, as initially expected, generally
smaller than that of time-to-peak. We would argue that these
results are caused by the fact that it is relatively difficult to
exactly determine these two points from real fMRI signals.
YVhile it is possible to unambiguously determine fsteep and
t5. from a model function like vy, the method becomes less
accurate when applied to real data, as the first and second
derivatives of the estimated hemodynamic responses still
contain a large number of local extrema. The high variabil-
ity of the two points might thus not so much reflect their
instability in the measured signal but the still insufficient
means used for their exact determination. Methods for a
more accurate identification of the two points from the
obtained measurements will have to be the subject of further
research.

While we could present results showing that trial-aver-
aged time courses have a relatively stable temporal behavior
within a single subject, the comparison of time courses
obtained from different subjects remains problematic. In
their early work Buckner et al. (1998) and Schacter et al.
(1997) observed that the estimated hemodynamic response
functions were relatively stable when compared across in-
dependent groups of subjects. Time courses averaged over
groups of six and seven subjects, respectively, nearly over-
lapped. These observations were recently supported by Mie-
zin et al. (2000), who reported some strong tendencies
present in the hemodynamic responses of different subjects
which deem averaging across a relatively large number of
subjects reasonable. However, such tendencies could not be
found in our four subjects. Mean response times and the
response order of five cortical regions differed considerably
from subject to subject. While the number of subjects in this
experiment is too small for any statistical analysis, these
results still demand particular caution for the interpretation
of hemodynamic response functions averaged across sub-
jects or different cortical regions.

Note finally that the correctness of a comparison of the
BOLD response across different cortical regions and sub-
jects will depend on the parameters or entities used for the
comparative studies. We would argue that a parameter
which can be reliably estimated for a region in a single
subject is the natural choice for the detection of differences
between regions and subjects. Our results suggest that time-
to-peak is such a parameter. However, one has to keep in
mind that the reasons for the stability of some parameters
and the instability of others are still not fully understood.
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Stability of a parameter could, for example, be caused by
saturation effects influencing the neurovascular coupling.
Although such effects are more conceivable for the ampli-
tude of an activation than for temporal aspects, they so far
cannot be excluded. While in the absence of better knowl-
edge a stable parameter should be the best choice for com-
parative studies, the actual physical interpretation of the
stability still needs further research.

Conclusion

We have presented an experiment addressing the within-
subject variability of temporal aspects of the hemodynamic
response across a number of sessions several days and
weeks apart. For four subjects time lags of four points along
the time course of activated voxels were analyzed using two
different methods. The results of both methods applied to
the whole brain revealed relatively high variance across
scanning sessions for at least some voxels. Estimates for
different points along trial-averaged time courses varied for
some voxels in a range of a few seconds, which is compa-
rable to the between-subject variability of the hemodynamic
response reported in the literature. However, these relatively
unstable voxels, although exceeding the commonly used
threshold in the SPM {Z} obtained from all sessions, were
not found activated in all individual sessions. For voxels
activated in all individual sessions the between-session vari-
ability of the BOLD response was much smaller. Variances
as small as 0.1 s were found, suggesting a constant temporal
behavior of the BOLD signal in cortical regions with stable
activation across all sessions. The complete physiological
and functional interpretation of the observed variability of
the hemodynamic response and the exact relation of be-
tween-subject variability of the BOLD signal to the be-
tween-session variability of single subjects still remain open
research questions, however, and will be the subject of our
future work.
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