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Abstract  

In the present study the oxidation state and the surface composition of a ternary PtRuCo catalyst were investigated under methanol steam reform-

ing (SRM) and water gas shift (WGS) reaction conditions at 570 K. Ambient pressure X-ray photoelectron spectroscopy (APPES) was applied in 

situ at 0.5 mbar, while simultaneously monitoring the catalytic activity of the sample by on-line mass spectrometry. Non-destructive depth profile 

measurements performed under SRM reaction conditions over a polycrystalline PtCo foil, were also used to obtain detailed depth-resolved infor-

mation. The results showed that surface segregation of cobalt and modification of its oxidation state occurs when switching from SRM to WGS 

reaction conditions. Evidence of ionic Pt was found only during WGS reaction, while Ru was mainly present in the metallic state. The results 

clearly demonstrate the dynamic response of the PtRuCo catalytic surface to the reaction atmosphere. 

 

 

Keywords: Direct methanol fuel cells; Ambient pressure photoelectron spectroscopy; Methanol steam reforming re-
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1. Introduction  

 

Fuel cells using methanol as a fuel have a high po-

tential for future energy applications. In these cells metha-

nol is electro-oxidized at the anode in the presence of water 

generating CO2, hydrogen ions and electrons traveling 

through the external circuit as the electric output of the fuel 

cell [1] and [2]. The excellent catalytic activity of Pt makes 

this metal electro-catalyst ideal for use as an anode in direct 

methanol fuel cells (DMFCs). However, the Pt metal sur-

face gets easily poisoned and deactivates at low tempera-

tures by trace amounts of adsorbed CO, which forms as a 

by-product of methanol electro-oxidation [1], [3] and Con-

siderable effort has been made to design and synthesize Pt-

based binary and ternary systems, which enhance the cata-

lytic activity by eliminating or inhibiting the CO-poisoning 

effect [4] and [5]. The addition of Ru [6] and [7], Mo [8], 

Sn [4] and [9] and W [10] to platinum has been studied as 

candidates of sustainable CO tolerant bimetallic catalysts. 

The Pt–Ru has shown superior performance compared to 

any other bimetallic catalyst and is now recognized as the 

most promising electro-catalyst for DMFCs [11]. However, 

the performance of carbon supported Pt–Ru is still not suf-

ficient and more active catalysts are needed for commercia-

lization of DMFC technology. Recent theoretical and 

experimental studies of ternary and quaternary alloy cata-

lysts of PtRuM (M = Co, Ni, W) have shown that PtRuCo 

significantly promotes the methanol oxidation reaction and 

is more resistant against CO poisoning than the bimetallic 

PtRu system [12] and [13]. 

In the present work we studied methanol and carbon 

monoxide catalytic oxidation in the presence of water 
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(SRM and WGS reactions respectively) over a PtRuCo 

catalyst. The main aim was to identify the nature of the 

working catalytic surface, hence providing the basis for 

understanding the beneficial effects of Ru and Co promo-

ters on Pt. Both reactions were performed at 570 K and at 

0.5 mbar total pressure, with simultaneous monitoring of 

the catalytic surface using synchrotron-based ambient pres-

sure photoelectron spectroscopy (APPES) [14]. Additional-

ly to PtRuCo, the SRM reaction was also studied over a 

polycrystalline PtCo foil in order to clarify issues related to 

the surface arrangement of the components. To the best of 

our knowledge this is the first time that an electro-catalyst, 

promising for DMFC applications, is characterized under 

working conditions of methanol and CO oxidation reac-

tions, using surface sensitive methods. 

 

 

2. Experimental 

 

The unsupported PtRuCo catalyst (nominal composi-

tion Pt0.375Ru0.375Co0.25) used in this study was prepared by 

combustion synthesis [15]. The PtRuCo powder was 

ground in a mortar and sized using a 63 μm mesh. The 

transmission electron microscopy (TEM) images showed 

that the catalyst forms soft agglomerates, composed of 

nanocrystalline highly dispersed PtRuCo particles in the 

range of 10–17 nm. In the X-ray diffraction (XRD) pattern 

an angle shift of Pt peaks compared to pure Pt was ob-

served, consistent with Pt-based alloy formation with Ru 

and/or Co in the bulk. For the polycrystalline Pt0.5Co0.5 

(99.99% purity) foil, bulk alloy formation was also indi-

cated in the XRD results. 

In situ X-ray photoelectron spectroscopy (XPS) ex-

periments were performed at the beamlines U49/2-PGM1 

and ISISS at BESSY II in Berlin, in a set-up described 

elsewhere [16] and [17]. About 70 mg of PtRuCo powder 

were pressed forming a ca. 0.5 mm thick and 5 mm diame-

ter pellet and placed on a sample holder, which could be 

heated from the rear by an IR laser (cw, 808 nm). The tem-

perature was measured by a K-type thermocouple fixed on 

the sample surface and the typical heating rate was 

20 K/min. CH3OH, H2O, CO, O2 and H2 gas flow into the 

reaction cell was controlled using mass flow controllers and 

leak valves. A differentially pumped quadrupole mass spec-

trometer (Balzers) was connected through a leak valve to 

the experimental cell and the gas phase composition was 

monitored by on-line mass spectrometry, while simulta-

neously characterizing the surface by XPS. The CO to CO2 

exit ratio was calculated by m/e 28 and 44 respectively, 

taking into account relative sensitivities measured in a ref-

erence experiment. A correction of m/e 28 signal due to 

CH3OH fragment (26% of m/e 31) was also considered. 

Characterization of the as-received/fresh sample in 

UHV revealed significant quantities of carbonates and ni-

trate species. Therefore prior to the catalytic testing the 

sample was pre-treated in the XPS reaction cell by oxida-

tion (0.5 mbar O2 at 670 K) and reduction (0.5 mbar H2 at  

 

 

Fig. 1: Normalized on-line mass spectrometry data recorded upon 

heating the PtRuCo catalyst in a CH3OH:H2O = 1:2 reaction mix-

ture in a total pressure of 0.5 mbar. The doted (blue) line is the 

sample temperature corresponding to the right y-axis. 

 

 

570 K) cycles, until all carbon and nitrogen traces disap-

peared. Core-level photoelectron spectra were recorded at 

570 K in an overall pressure of 0.5 mbar. For the CH3OH 

and CO reaction measurements the CH3OH:H2O and 

CO:H2O mixing ratios were 1:2 and 1:10 respectively. The 

Pt 4f, Ru 3d, Co 2p, Co 3p, C 1s and O 1s spectra were 

recorded using appropriately selected excitation photon 

energies, resulting in photoelectrons with two characteristic 

kinetic energies for each spectrum, namely 180 and 

580 eV. In that way information at two different analysis 

depths was collected (λ[180 eV]/λ[580 eV] = 0.56) [18]. All spec-

tra were normalized by the incident photon flux, which was 

measured prior to the measurements using a photodiode 

with known quantum efficiency. The spectra presented here 

are rescaled to facilitate the observation of peak characte-

ristics. All binding energies (BE) given are calibrated with 

respect to the Fermi Edge of the analyzer. Background 

subtraction was carried out by Shirley method. Quantitative 

calculations were performed using normalized Pt 4f, Ru 3d, 

Co 2p, Co 3p, C 1s and O 1s intensities, taking into account 

the photon-energy dependence of the atomic subshell pho-

to-ionization cross-sections [19]. 

 

 

3. Results and Discussion 

 

3.1. On-line mass spectrometry results 

 

On-line mass spectrometry results for CH3OH oxida-

tion in the presence of water are given in Fig. 1, together 

with the temperature profile (right hand axis). The activity 

of the catalyst is demonstrated by the detection of the reac-

tion products H2, CO and CO2 (m/e = 2, 28, and 44 respec-

tively) in the gas phase and the consumption of CH3OH  
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Fig. 2: Core-level photoelectron peaks of PtRuCo catalyst, recorded in CH3OH:H2O = 1:2 (SRM) and CO:H2O = 1:10 (WGS) reaction mixtures 

in a total pressure of 0.5 mbar, at 570 K: (a) Pt 4f, (b) C 1s and Ru 3d (in shaded peak), magnification of the Ru 3d5/2 peak recorded using 

hv = 865 eV is presented above, (c) Co 2p3/2, dashed lines are reference curves of metallic Co (top) and CoO (bottom) recorded in the same set-up 

and (d) O 1s, gas phase peaks due to CH3OH and H2O appears above 534 eV (in shaded peak). 

 

 

 

(m/e = 31) upon rising the temperature from 310 to 570 K. 

When the catalyst is cooled the reaction stops and the MS 

signal returns to the initial (before reaction) values. From 

this figure methanol conversion of about 35% and a 

CO:CO2 ratio of 4:1 was calculated. 

The production of H2, CO and CO2 from a CH3OH 

and H2O reaction mixture, may involve several reaction 

pathways frequently discussed in the literature. Among 

them methanol steam reforming reaction (SRM) [20] and 

[21]: 

 

CH3OH + H2O → CO2 + 3H2                                       (1) 

 

is usually performed with high selectivities on copper based 

catalysts, while on noble metals methanol decomposition is 

also observed [22]: 

 

CH3OH → CO + 2H2                                                    (2) 

 

In the presence of water, adsorbed CO (COads) undergoes 

further oxidation through the water gas shift reaction 

(WGS): 

 

COads + H2O → CO2 + H2                                        (3) 

 

which is reported to be the preferential reaction pathway on 

PtRu catalyst [11]. The CO:CO2 ratio of 4:1 found here 

points to a significant rate of methanol decomposition 

(reaction (2)), however reactions (1) and/or (3) should also 

taking place as indicated by the CO2 production. 

The WGS reaction was studied separately by exposing the 

PtRuCo catalyst to a CO/H2O mixture rich in H2O (1:10) at 

570 K. This ratio is similar to the CO/H2O ratio recorded 

during the SRM reaction. The CO consumption was very 

low (around 2%), but the catalytic activity was also con-

firmed by H2 and CO2 production (data not shown). How-

ever it should be noted that the aim was not to measure the 

catalyst at optimum WGS reaction performance, but to 

compare the two reactions under similar conditions. 

 

 

3.2. In situ XPS results 

 

3.2.1. Comparison of SRM and WGS reactions 

over PtRuCo catalyst 

 

Photoelectron spectroscopy results for both reactions 

were recorded under working catalytic conditions (total 

pressure 0.5 mbar, 570 K). In Fig. 2, Pt 4f, C 1s, Ru 3d5/2, 

Co 2p3/2 and O 1s photoelectron peaks for SRM (top) and 

WGS (bottom) reactions over the PtRuCo catalyst, are pre-

sented. For SRM reaction Pt is in the zero-valence state as 

indicated by the narrow Pt 4f7/2 peak at 71.1 eV. Analysis 

of the Ru 3d peak is obscured by the strong C 1s signal due 

to the presence of adsorbed carbon species formed during 

reaction. However, the overlapping concerns mainly the Ru 

3d3/2 component while the Ru 3d5/2 can be clearly distin-

guished, as shown in Fig. 2b where the energy region for 

both C 1s and Ru 3d is shown. Hydrocarbon and/or graphit-

ic carbon species located at 284.4 eV dominate the C 1s 

region [23] and [24]. Two additional components at 286.0 

and 288.2 ± 0.2 eV are assigned to oxygen bound carbon 

species; alcohol/carbonyl groups and formate groups re-

spectively [23], [24] and [25]. The Ru 3d5/2 peak at 

280.0 eV is very close to the binding energy previously  
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measured on clean metallic Ru (0 0 0 1) in the same set-up 

[26]. The Co 2p3/2 peak (solid black line) shown in Fig. 2c 

is centered at 778.2 eV and is accompanied by weak satel-

lite structure at higher energies. The BE and the weak satel-

lite structure is characteristic of metallic cobalt (Co0) [27] 

and [28]. However, comparison of Co 2p3/2 regions record-

ed under SRM with fully reduced Co recorded in pure H2 

(dashed blue line), revealed some extra features around 

781 eV (indicated in the graph by an arrow). This is a 

sound indication of ionic cobalt species (Cox+) mixed with 

the dominant Co0 phase [27], [28] and [29]. 

The O 1s spectrum in Fig. 2d shows a complex struc-

ture, indicative of a number of different oxygen species on 

the sample surface. In order to fit the O 1s curve two oxy-

gen components were used (plus two components for 

CH3OH and H2O gas phase above 534 eV, shown as pat-

terned peaks) with quite broad peak widths, taking into 

account that each component probably contains various 

oxygen species close in BE [14]. Two components at 530.3 

and 532 eV with FWHM 1.4 and 2.2 eV respectively, 

emerge from the fitting. Depth dependent measurements 

using higher photon energies (see also below) indicated that 

the peak at 530.3 eV is to a large extent due to sub-surface 

species. However the position of this peak is shifted about 

0.8 eV as compared to that of the lattice oxygen peak of 

CoO and Co3O4 oxides (at 529.5 ± 0.2 eV), reported in the 

literature [30] and measured on reference compounds in the 

same set-up [31]. The interpretation of 530.3 eV peak will 

be given below in combination with other results. The 

broad, surface located, peak at 532 eV most probably is a 

convolution of peaks due to various types of chemisorbed 

oxygen species, including OH groups [23], [32] and [33]. 

In the lower section of Fig. 2 photoelectron peaks 

recorded during the WGS reaction are shown. Apart from 

the main Pt 4f peak at 71.1 eV a new Pt doublet at 72.5 eV 

is needed to fit the overall Pt 4f spectrum (Fig. 2a). The 

component at 72.5 eV can be attributed to ionic platinum, 

most probably due to hydroxyl-Pt complexes [34]. It should 

be noted that the component at 72.5 eV, was much less 

pronounced when the Pt 4f peak was recorded using higher 

photon energies (not shown), indicating that the 72.5 eV 

peak is primarily located at the surface. In the C 1s region 

(Fig. 2b) the main component appears at 284.4 eV, while 

carbon–oxygen species are indicated by the components at 

286.2 and 288.4 eV, very similar to those observed under 

SRM reaction conditions. The Ru 3d peak is severely atte-

nuated, and hardly resolved. In the magnified spectra, rec-

orded using higher photon energy, the Ru 3d5/2 peak at 

280.0 eV can be seen, pointing to metallic Ru as described 

above. Cobalt (Fig. 2c) is mainly in the oxide form under 

WGS reaction conditions, as indicated by the BE position 

of the main peak at 780.4 eV and the intense satellite struc-

ture at the high BE side [29] and [30]. Comparison with 

reference a CoO spectrum reveals an extra bump to the low 

BE side of the peak (indicated by an arrow). The position 

of this extra feature at about 778 eV indicates that a small 

portion of reduced/metallic cobalt coexists with cobalt 

oxide under WGS reaction conditions. 

To deconvolute the O 1s spectrum in Fig. 2d, three 

components were used; two non-gas phase components at 

529.4 and 531.2 eV (FWHMs 1.3 and 2.0 eV respectively) 

and one for gas phase H2O above 534 eV (patterned peak). 

Due to the very low CO partial pressure (0.04 mbar) gas 

phase CO is not visible. Depth dependent measurements 

indicted that the 529.4 eV component is located in deeper 

layers compared to that at 531.2 eV. In accordance, the BE 

at 529.4 eV is indicative of lattice oxygen due to CoO 

and/or Co3O4 (529.5 ± 0.2 eV see also above) [31], in full 

agreement with the cobalt oxide evidence in the Co 2p3/2 

region. As described above the broad surface component at 

531.2 eV is a convolution of various oxygen species includ-

ing defective cobalt sub-oxides (CoOx), adsorbed OH 

groups, methoxy and formate species [14] and [24]. 

The C, O, Pt, Ru and Co atomic ratios, under SRM 

and WGS reaction conditions, were calculated assuming 

homogeneous distribution of the elements on the surface 

[18] and using theoretical cross-sections from reference 

[19]. It should be noted that this model is a required ap-

proximation, since the precise distribution of the catalyst 

components on the surface is practically unknown. There-

fore only comparison of the calculated ratios and not abso-

lute values will be considered here. In Fig. 3a and b the 

atomic ratios for SRM and WGS reactions respectively, at 

two information depths (1.8 and 3.2 nm) [35], are given. It 

is evident that for both reactions C and O ratios (contains 

both the surface and the sub-surface oxygen components) 

are higher in the surface mode, while Pt, Ru and Co show 

the opposite trend. This observation shows that carbon and 

an oxygen species are located to a large extent on the sur-

face of PtRuCo catalyst. By dividing the oxygen contribu-

tion into surface adsorbed (Oads) and sub-surface (Osub) 

oxygen species following the deconvolution procedure 

shown in Fig. 2d, it is evident that the main oxygen contri-

bution in the most surface sensitive mode (1.8 nm) is from 

Oads species, confirming the assignment of the two oxygen 

components at different depths. 

In Fig. 3c atomic ratios from SRM and WGS reac-

tions are compared using spectra recorded at the same in-

formation depth (3.2 nm). Significantly higher carbon 

amounts were observed during SRM, while oxygen species 

(adsorbed and due to CoOx) dominates in WGS reaction. In 

addition, there is a major influence of the reaction mixture 

on the Pt and Co atomic ratio signifying substantial surface 

rearrangement. In particular, in the SRM reaction the sur-

face is Pt enriched, while during WGS cobalt atomic ratio 

is enhanced (see Fig. 2c). This is a strong indication of Co 

segregation over Pt and Ru during WGS reaction. Surface 

segregation, i.e. the enrichment of one element at the sur-

face relative to the bulk, is not unusual in bulk metal alloys 

[4] and [36]. Since segregation is kinetically limited, tem-

perature is an important factor in this process. The above 

presented results are referred to isothermal and isobaric 

conditions; therefore surface composition transformations 

are primarily related to the redox properties of the gas mix-

tures. 
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Fig. 3: Surface atomic ratio of C, O (both adsorbed and sub-surface species), Pt, Ru and Co calculated for (a) SRM reaction using photoelectron 

peaks recorded at two different kinetic energies, resulting in average information depths of 1.8 and 3.2 nm. The inset shows the magnification of 

atomic ratios for Pt, Ru and Co, (b) as in (a) but for WGS reaction and (c) comparison of surface atomic ratio between SRM and WGS reaction 

using the results of 3.2 nm information depth. All data were recorded under working catalytic conditions (570 K and total pressure of 0.5 mbar). 

 

 

 

 

3.2.2. SRM reaction over polycrystalline PtCo foil 

 

From the above presented results it is evident that 

under WGS reaction conditions cobalt is oxidized and se-

gregates on the surface, most probably encapsulating plati-

num. However, apart from the significant carbon 

deposition, little can be said about the PtRuCo surface 

composition during SRM reaction. The structural com-

plexity and the inhomogeneity of the PtRuCo powder ob-

scure a precise description of the surface and impose to 

study of a better defined model system. Therefore, the 

SRM reaction was studied over a polycrystalline PtCo 

(1:1)-alloyed foil, under identical pretreatment, temperature 

and gas mixture composition to the PtRuCo catalyst (only 

the overall pressure was kept slightly lower at 0.3 mbar, in 

order to enhance photoelectron signal). The gas phase anal-

ysis indicated that PtCo is also active for the SRM reaction, 

although much lower methanol conversion rate (around 

10%) was observed compared to PtRuCo catalyst (35%), 

apparently due to the lower surface area of the foil com-

pared to the powder. 

The spectroscopic results under reaction conditions 

were pretty much identical to those found for PtRuCo cata-

lyst. In particular, Pt is in the metallic state, extra features 

at about 781 eV observed in the Co 2p3/2 spectrum and 

significant amounts of carbon were deposited on the sur-

face (Pt 4f and C 1s peaks are not shown here). The O 1s 

peaks obtained under SRM conditions at two photoelectron 

kinetic energies (information depths) are presented in Fig. 

4. Apart from the gas phase contribution which is visible 

above 534 eV (shaded peak), two additional oxygen spe-

cies at 530.3 (1.7 eV) and 532.4 (2.0 eV) eV are clearly 

distinguishable (in parenthesis the FWHM of the peak is 

given). The relative intensity of the low BE component at 

530.3 eV is increasing as the information depth increases, 

indicating that this component is mainly from sub-surface 

oxygen species. In agreement with the results found on 

PtRuCo, the binding energy of the sub-surface component 

at 530.3 eV does not correspond to any known cobalt oxide 

phase. The surface component at 532.4 eV is assigned to 

various types of adsorbed oxygen species as described 

above (see comments of Fig. 2d). 

 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig4
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Fig. 4: The O 1s peak obtained on a polycrystalline PtCo foil un-

der SRM reaction conditions (at 570 K, total pressure 0.3 mbar) 

using two different excitation energies (hv), resulting in two elec-

tron kinetic energies (KE) and information depths (ID): (i) 

hv = 720 eV, KE = 190 eV, ID  1.8 nm and (ii) hv = 1120 eV, 

KE = 590 eV, ID  3.2 nm. The gas phase components are shown 

in shaded peaks. 

 

 

The depth distribution of Pt and Co over the first few 

atomic layers was investigated by non-destructive depth 

profile measurements. In brief, upon photo-ionization the 

photoelectron kinetic energy (KE), and thus the information 

depth [18], is determined by the core-level binding energy 

(BE) and the incident photon energy (hv) [KE = hv − BE]. 

To calculate each Pt 4f/Co 2p atomic ratio, the incident 

energies for Pt 4f and Co 2p peaks were chosen such that 

the photoelectrons of both peaks originate within the same 

sample depth, i.e. the kinetic energies of Pt 4f and Co 2p 

photoelectrons are equal. Five different information depths 

are used for analysis. Evidently, the contribution of surface 

components is less influential as the electron kinetic energy 

increases. The Pt 4f/Co 2p atomic ratio (normalized to the 

photon flux and the photo-ionization cross-section) is 

shown in Fig. 5. As the electron kinetic energy increases 

(deeper layers are probed) the Pt/Co intensity ratio gener-

ally increases. The only exception is the measurement at 

180 eV ( 1.7 nm) for which a significantly lower Pt/Co 

ratio was measured. It should be noted that qualitatively 

similar results were found also under pure H2 atmosphere 

(data not shown), while reference experiment on PtCo layer 

prepared by atomic vapor deposition and measured at room 

temperature in vacuum, indicates a monotonic increase of 

Pt/Co (Fig. 5, open circles). 

 
 

Fig.5: The Pt/Co atomic ratio calculated from the Pt 4f and Co 2p 

photoelectron peaks, as a function of the electron kinetic energy. 

Closed circles represent data recorded under SRM reaction condi-

tions (570 K, total pressure 0.3 mbar) over PtCo polycrystalline 

foil. Open circles are measured in vacuum over a reference 2.5 nm 

PtCo layer deposited on TiO2 at room temperature. On the upper x-

axis the estimated average information depth is given. 

 

 

Increase of Pt/Co ratio with the electron kinetic ener-

gy can be rationalized by two possible surface arrangement 

models. In the first (layer model) Pt and Co form a homo-

geneous mixture (alloy), with Pt preferentially located in 

the sub-surface region, while cobalt is mainly on the sur-

face. Within the layer model, the decrease of Pt/Co ratio at 

EK = 180 eV ( 1.7 nm) could be explained by the forma-

tion of the so-called “Pt skin” layer proposed earlier to 

explain improved electrocatalytic performance of PtCo 

alloys [37]. Adsorbed carbon and oxygen species should 

form a homogeneous surface layer over the Pt skin. 

A second more complex surface arrangement, which 

could explain the depth profile measurements, is a patched 

PtCo surface constituting of discrete Pt and Co areas (isl-

ands model). If carbon is preferentially deposited on Pt and 

not on Co, in the surface sensitive mode only the Pt photoe-

lectron peak would be severely attenuated, and therefore 

the Pt/Co ratio would be small. At higher electron KEs, Pt 

from deeper layers contributes to the Pt 4f signal, thus the 

Pt/Co ratio increases. The island model, however, seems 

more unlikely since it cannot explain the drop in Pt/Co ratio 

at EK = 180 eV. In addition, ethanol reforming experiments 

on monometallic cobalt surfaces, under similar reaction 

conditions (data are not presented here), showed a signifi-

cant amount of carbon deposited on cobalt surfaces. There-

fore carbon deposition only on Pt arrays, which is a 

prerequirement for the island model, is not supported. 

As mentioned above, extra features at about 781 eV 

were observed at Co 2p3/2 peak during SRM reaction on 

PtCo, which could be assigned to traces of ionic cobalt 

species (Cox+), in line with the observations on the PtRuCo 

catalyst (see Fig. 2c). The intensity ratio between the ionic 

(Cox+) and metallic (Co0) components in the Co 2p3/2 peak  

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#bib18
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#bib37
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig2
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Fig. 6: (a) The ionic (Cox+) to metallic (Co0) cobalt intensity ratio as a function of the electron kinetic energy, measured over polycrystalline PtCo 

foil under SRM reaction conditions (570 K, total pressure 0.3 mbar). On the upper x-axis the estimated information depth is given. In the inset 

figure is a schematic representation of the proposed surface arrangement model of the PtCo foil, based on the depth profile results of [Fig. 4], 

[Fig. 5] and [Fig. 6] (note that the thickness of each layer is not in scale) and (b) characteristic example of Co 2p3/2 spectra subtraction. 

 

 

 

for five different information depths is presented in Fig. 6a. 

The contribution of Cox+ species to the overall Co 2p3/2 

spectrum (Fig. 6b) was obtained by subtraction of Co 2p3/2 

peaks recorded in SRM (full line) and in pure H2 (dashed 

line), using spectra excited with the same photon energy. 

The position of the difference peak at 781.2 eV, is shifted 

to higher BEs compared to CoO/Co3O4 oxides measured in 

the same set-up, but is very close to literature reported val-

ues for Co(OH)2 (at around 780.9 eV) [29]. As shown in 

Fig. 6, the relative intensity of Cox+ increases as the elec-

tron KE/information depth increases, indicating that ionic 

cobalt species are mainly in the sub-surface region. By 

combining depth dependent information presented in [Fig. 

4], [Fig. 5] and [Fig. 6], a schematic model is proposed (see 

inset of Fig. 6a), to describe the average arrangement of the 

first few atomic layers (up to 4 nm) of the PtCo surface 

under SRM reaction conditions. The driving force for sur-

face segregation observed in the reaction mixture is the 

oxygen chemical potential, as proposed by theoretical in-

vestigations of diluted PtRu surfaces [38]. In addition simi-

lar arguments were recently proposed to explain surface 

restructuring of Rh–Pd nanoparticles observed under oxi-

dizing and reducing conditions [39]. 

 

 

3.3. General discussion 

 

Overall, our study gave a rather detailed picture of 

the PtRuCo surface composition and valence state in two 

reaction environments. It is thus interesting to comment on 

the origin of the enhanced catalytic activity of bimetallic 

and ternary Pt-based catalysts. Two main models have been 

put forward in the literature; the “bifunctional effect”, in 

which admixtures like Co and Ru supply adsorbed oxygen 

species to oxidize carbonaceous adsorbents on Pt sites, and 

the “ligand” or “electronic effect”, in which the electronic 

properties of Pt are affected by the presence of admixture 

metals, so as its adsorption properties [5] and [11]. In both 

models the presence of Pt on the surface is essential for the 

catalytic activity. This fact is also supported here by the 

low CO consumption observed for WGS reaction, where 

spillover of cobalt oxide over Pt was observed. It is inter-

esting to note that the abundance of adsorbed oxygen spe-

cies at around 531.2 eV during WGS reaction ([Fig. 2] and 

[Fig. 3]), does not seem to favor the CO oxidation rate, 

qualifying these species mainly as non-reactive. In SRM 

reaction, the evidence of Pt-rich surface nicely correlates 

with the high methanol conversion rates. However, no evi-

dences were found that the electronic structure of Pt is in-

fluenced by the presence of Co and Ru additives or by the 

reaction mixture. On the other hand, a complex sub-surface 

arrangement including oxygen and cobalt ions (not cobalt 

oxide), was revealed. 

Our experimental evidences could not indicate a sin-

gle type of active sites, and thus a sole promoting mechan-

ism, involved in both reactions. What is even more unlikely 

is that the same active sites could survive in different reac-

tion environments, taking into account the drastic modifica-

tions observed here upon switching the reaction mixture. A 

balance between “bifunctional” and “ligand” active sites, 

depending on the reaction environment, appears more 

plausible. However, one should also not overlook the role 

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=28741&_coverDate=11%2F17%2F2010&_rdoc=1&_fmt=full&_orig=search&_origin=search&_sort=d&view=c&_acct=C000003598&_version=1&_urlVersion=0&_userid=28741&md5=95be09ee4c3cdd6730b93e95e73443f0#fig4
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=28741&_coverDate=11%2F17%2F2010&_rdoc=1&_fmt=full&_orig=search&_origin=search&_sort=d&view=c&_acct=C000003598&_version=1&_urlVersion=0&_userid=28741&md5=95be09ee4c3cdd6730b93e95e73443f0#fig5
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=28741&_coverDate=11%2F17%2F2010&_rdoc=1&_fmt=full&_orig=search&_origin=search&_sort=d&view=c&_acct=C000003598&_version=1&_urlVersion=0&_userid=28741&md5=95be09ee4c3cdd6730b93e95e73443f0#fig6
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#fig6
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that sub-surface species, like oxygen, could play in such 

promoting schemes. An alternative mechanism could de-

scribe the role of Ru and Co promoters as reservoirs for 

sub-surface oxygen. Such sub-surface species may act in 

two ways: either by emerging on the surface and directly 

participate to the reaction or by modifying the Pt local elec-

tronic structure by inducing strain in platinum crystal lat-

tice, as was recently proposed for the SRM reaction on 

ZnO supported Cu catalysts [14]. 

 

 

4. Summary and conclusions 

 

The surface of an unsupported PtRuCo catalyst under 

SRM (CH3OH:H2O) and WGS (CO:H2O) reaction condi-

tions (P = 0.5 mbar, T = 570 K), was characterized by am-

bient pressure photoelectron spectroscopy. Gas phase 

analysis of the products indicated that in the SRM reaction 

the catalyst is relatively active, but not hydrogen selective, 

while during WGS at the same P, T conditions the activity 

was much lower. It was clearly demonstrated that the sur-

face of PtRuCo catalyst is dynamic and undergoes signifi-

cant modifications in its composition and chemical state, in 

response to the reaction mixture. In particular, under SRM 

reaction conditions Pt and Ru were metallic, while apart 

from the dominant Co0 state, traces of ionic Cox+, were also 

observed. Significant amounts of adsorbed carbon and oxy-

gen species were attached to the surface under working 

conditions, while indications of sub-surface (not lattice) 

oxygen were also found. 

Rich in water WGS mixture favors surface oxidation 

of the PtRuCo reflecting the higher oxygen chemical poten-

tial compared to the SRM mixture. The surface of PtRuCo 

catalyst responded fast to the reaction environment by sig-

nificant surface reconstruction. In particular during WGS 

cobalt segregates over platinum and is, to a large extent, 

oxidized. Interestingly, traces of ionic Pt species were also 

observed, while Ru was mainly metallic. Adsorbed carbon 

and oxygen species were formed, though compared to SRM 

reaction relatively less carbon and more oxygen was found. 

The photoelectron spectroscopy results represent an 

average surface state and the ternary PtRuCo catalyst is too 

complex to give unambiguous structure–catalytic activity 

relationship. In order to get a more detailed description of 

the system and confirm the trends found on PtRuCo, the 

SRM reaction was studied over polycrystalline PtCo foil. 

The results showed that the outermost layers are enriched 

with cobalt, though depth profile measurements gave indi-

cations of a Pt-rich or a “Pt-skin” layer over the outermost 

cobalt layers. The presence of sub-surface oxygen and ionic 

cobalt species was confirmed. The ionic cobalt species are 

to a large extent diluted in the sub-surface region. 

The detailed characterization of PtRuCo surface 

structure may provide the basis for understanding the role 

of Ru and Co promoters, in multi-component Pt catalysts. 

The chemical nature of the promoters should strongly in-

fluence their promoting effect. Our study clearly demon-

strates that the reaction mixture can induce drastic changes 

on the surface composition and the chemical state of the 

catalyst. As was recently proposed [14], such promoters 

may store oxygen species which in a reducing reaction 

cycle can segregate on the surface and participate (directly 

or act as structure stabilizers) in the reaction. However the 

description of the reaction mechanism requires further ex-

periments which are under way. 

 

 

Acknowledgements 

 

The authors would like to thank the BESSY staff for 

help in carrying out the experiments. G.P. F.P and S.G.N. 

gratefully acknowledge the EU (Grant number: RII 3 CT-

2004-506008) and S.Z. the BESSY II EUSA programme 

for financial support during the experiments. 

 

 
 
References  
 

[1] A. Hammnett, Catal. Today 38 (1997), p. 445. 

[2] G.T. Burstein, J. Barnett, A.R. Kucernak and K.R. Williams, 

Catal. Today 38 (1997), p. 425.  

[3] C. Lamy, J.M. Leger, J. Clavilier and R.J. Parsons, Elec-

troanal. Chem. 150 (1983), p. 71.  

[4] N.M. Markovic and P.N. Ross, Surf. Sci. Rep. 45 (2002), p. 

117.  

[5] R. Liu, H. Iddir, Q. Fan, G. Hou, A. Bo, K.L. Ley, E.S. 

Smotkin, Y.-E. Sung, H. Kim, S. Thomas and A. Wieckows-

ki, J. Phys. Chem. B 104 (2000), p. 3518.  

[6] M. Watanabe, M. Vehida and S. Motoo, J. Electroanal. 

Chem. 229 (1987), p. 395.  

[7] P. Waszczuk, G.Q. Lu, A. Wieckowski, C. Lu, C. Rice and 

R.I. Masel, Electrochim. Acta 47 (2002), p. 3637.  

[8] G. Samjeske, H. Wang, T. Loffter and H. Baltruschat, Elec-

trochim. Acta 47 (2002), p. 3681.  

[9] M. Gotz and H. Wendt, Electrochim. Acta 43 (1998), p. 

3637.  

[10] P. Shen, K. Chen and A.C.C. Tseung, J. Electrochem. Soc. 

142 (1995), p. L85.  

[11] J.S. Spendelow, P.K. Babu and A. Wieckowski, Curr. Opin. 

Solid State Mater. Sci. 9 (2005), p. 37.  

[12] P. Strasser, Q. Fan, M. Devenny, W.H. Weinberg, P. Liu and 

J.K. Norskov, J. Phys. Chem. B 107 (2003), p. 11013.  

[13] T. Huang, X. Wang, J. Zhuang, W.-B. Cai and A. Yu, Elec-

trochem. Solid-State Lett. 12 (2009), pp. B112–B115.  

[14] M. Salmeron and R. Schlögl, Surf. Sci. Rep. 63 (2008), p. 

169.  

[15] B. Moreno, J.R. Jurado and E. Chinarro, Catal. Commun. 11 

(2009), p. 123 

[16] H. Bluhm, M. Hävecker, A. Knop-Gericke, E. Kleimenov, R. 

Schlögl, D. Teschner, V.I. Bukhtiyarov, D.F. Ogletree and 

M. Salmeron, J. Phys. Chem. B 108 (2004), p. 14340.  

[17] A. Knop-Gericke, E. Kleimenov, M. Hävecker, R. Blume, D. 

Teschner, S. Zafeiratos, R. Schlögl, V.I. Bukhtiyarov, V.V. 

Kaichev, I.P. Prosvirin, A.I. Nizovskii, H. Bluhm, A. Bari-

http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#bib14
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#gs1
http://www.sciencedirect.com/science?_ob=ArticleURL&_udi=B6TFG-4YWBBR3-1&_user=10&_coverDate=04%2F18%2F2010&_alid=1330817858&_rdoc=2&_fmt=high&_orig=search&_cdi=5226&_sort=d&_docanchor=&view=c&_ct=333&_acct=C000050221&_version=1&_urlVersion=0&_userid=10&md5=320f58a162ac6c27b7c9560f3c9648ab#gs1


A comparative in situ XPS study of PtRuCo catalyst in methanol steam reforming and water gas shift reactions, S. Zafeiratos et al..,  

Catalysis Today 157 (2010) 250-256 
 

 

Preprint of the Department of Inorganic Chemistry, Fritz-Haber-Institute of the MPG (for personal use only) (www.fhi-berlin.mpg.de/ac) 

9 

nov, P. Dudin and M. Kiskinova, Advances in Catalysis vol. 

52, Academic Press (2009) pp. 213. 

[18] M.P. Seah (2nd ed.) In: D. Briggs and M.P. Seah, Editors, 

Practical surface Analysis vol. 1, Willey & Sons, Chichester, 

UK (1990). 

[19] J.J. Yeh and I. Lindau, Atom. Data Nucl. Data Tables 32 

(1985), p. 1.  

[20] A.W. Grant, J.H. Larsen, C.A. Perez, S. Lehto, M. Schmal 

and C.T. Campbell, J. Phys. Chem. B 105 (2001), p. 9273.  

[21] G. Jacobs, P.M. Patterson, U.M. Graham, A.C. Crawford, A. 

Dozier and B.H. Davis, J. Catal. 235 (2005), p. 79.  

[22] N. Iwasa and N. Takezawa, Top. Catal. 22 (2003), p. 215.  

[23] N.M. Rodriguez, P.E. Anderson, A. Wootsch, U. Wild, R. 

Schlögl and Z. Paal, J. Catal. 197 (2001), p. 365.  

[24] J. Torres, C.C. Perry, S.J. Bransfield and D.H. Fairbrother, J. 

Phys. Chem. B 106 (2002), p. 6265.  

[25] J.G. Wang, W.X. Li, M. Borg, J. Gustafson, A. Mikkelsen, 

T.M. Pedersen, E. Lundgren, J. Weissenrieder, J. Klikovits, 

M. Schmid, B. Hammer and J.N. Andersen, Phys. Rev. Lett. 

95 (2005), p. 256102.  

[26] R. Blume, M. Hävecker, S. Zafeiratos, D. Teschner, E. 

Kleimenov, A. Knop-Gericke, R. Schlögl, A. Barinov, P. 

Dudin and M. Kiskinova, J. Catal. 239 (2006), p. 354 

[27] J.W. Chai, J.S. Pan, S.J. Wang, C.H.A. Huan, G.S. Lau, Y.B. 

Zheng and S. Xu, Surf. Sci. 589 (2005), p. 32.  

[28] C.R. Cho, J.P. Kim, J.Y. Hwang, S.Y. Jeong, Y.G. Joh and 

D.H. Kim, Jpn. J. Appl. Phys. 43 (2004), p. L1323.  

[29] A.M. Saib, A. Borgna, J. van Loosdrecht, P.J. van Berge and 

J.W. Niemantsverdriet, J. Phys. Chem. B 110 (2006), p. 

8657.  

[30] M.A. Langell, J.G. Kim, D.L. Pugmire and W. McCarroll, J. 

Vac. Sci. Technol. A19 (2001), p. 1977.  

[31] S. Zafeiratos, T. Dintzer, D. Teschner, R. Blume, M. 

Hävecker, A. Knop-Gericke and R. Schlögl, J. Catal. 269 

(2010), p. 309.  

[32] R. Denecke, Appl. Phys. A 80 (2005), p. 977.  

[33] L.A. Langley, D.E. Villanueva and D.H. Fairbrother, Chem. 

Mater. 18 (2006), p. 169.  

[34] J.E. Drawdy, G.B. Hoflund, S.D. Gardner, E. Yngvadottir 

and D.R. Schryer, Surf. Interface Anal. 16 (1990), p. 369.  

[35] The information depth is estimated after multiplying the 

inelastic mean free path (λ) by 3. 

[36] S. Piccinin, S. Zafeiratos, C. Stampfl, T.W. Hansen, M. Hae-

vecker, D. Teschner, V.I. Bukhtiyarov, F. Girgsdies, A. 

Knop-Gericke, R. Schloegl and M. Scheffler, Phys. Rev. Lett. 

104 (2010), p. 35503. 

[37] H.T. Duong, M.A. Rigsby, W.-P. Zhou and A. Wieckowski, 

J. Phys. Chem. C 111 (2007), p. 13460.  

[38] B.C. Han, A. Van der Ven, G. Ceder and B.-J. Hwang, Phys. 

Rev. B72 (2005), p. 205409.  

[39] F. Tao, M.E. Grass, Y. Zhang, D.R. Butcher, J.R. Renzas, Z. 

Liu, J.Y. Chung, B.S. Mun, M. Salmeron and G.A. Somorjai, 

Science 322 (2008), p. 932 

 


