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Abstract

The assumption of linear response of protein molecules to thermal noise or structural perturbations, such as ligand binding
or detachment, is broadly used in the studies of protein dynamics. Conformational motions in proteins are traditionally
analyzed in terms of normal modes and experimental data on thermal fluctuations in such macromolecules is also usually
interpreted in terms of the excitation of normal modes. We have chosen two important protein motors — myosin V and
kinesin KIF1A — and performed numerical investigations of their conformational relaxation properties within the coarse-
grained elastic network approximation. We have found that the linearity assumption is deficient for ligand-induced
conformational motions and can even be violated for characteristic thermal fluctuations. The deficiency is particularly
pronounced in KIF1A where the normal mode description fails completely in describing functional mechanochemical
motions. These results indicate that important assumptions of the theory of protein dynamics may need to be reconsidered.
Neither a single normal mode nor a superposition of such modes yields an approximation of strongly nonlinear dynamics.
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Introduction

Protein machines, which may represent enzymes, ion pumps or

molecular motors, play a fundamental role in biological cells and

understanding of their activity is a major challenge. Operation of

these machines is based on slow conformational motions powered

by external energy supply, often with ligands (such as ATP). In

molecular motors, binding of ATP and its subsequent hydrolysis

induce functional mechanochemical motions, essential for their

operation. These motions, which follow after an energetic

activation, are conformational relaxation processes.

Large-scale conformational changes may take place in proteins

as a result of ligand binding [1]. Despite the large magnitude of

such changes, they are nonetheless often considered in the

framework of the linear response theory [2] and the normal

mode approximation [3–7]. The normal mode analysis is

furthermore broadly employed in the elastic-network studies of

proteins [7–18]. However, there is no general justification to

assume that relaxation processes in proteins are linear and this

assumption has to be verified for particular macromolecules.

It is known that relaxation processes in complex dynamical

systems may be strongly nonlinear and deviate much from simple

exponential relaxation. As an example borrowed from a distant

field, we can mention the Belousov-Zhabotinsky reaction which

exhibits a great variety of spatiotemporal patterns (pacemakers,

rotating spiral waves) that are however only complicated transients

accompanying relaxation to the equilibrium state [19,20].

Conformational relaxation in single protein molecules may also

be a complicated process, comprising qualitatively different kinds

of mechanochemical motions.

While partial unfolding and refolding, associated with ligand

binding, are known for some protein machines, such as the

enzyme adenylate kinase [21], usually functional conformational

motions in molecular machines and, specifically, in motor proteins

are elastic. This means that the pattern of contacts between the

residues in a protein is not changed upon ligand binding and

preserved during the relaxation process, as generally assumed in

the elastic network modeling (ENM).

Here, we provide detailed analysis of conformational relaxation

processes, associated with ligand binding and hydrolysis, in two

motor proteins — myosin V [22,23] and kinesin KIF1A [24]. Our

investigations, performed in the framework of the ENM

approximation, reveal that nonlinearity is characteristic for both

macromolecules and the normal mode description is not really

applicable for any of them. For KIF1A, a monomeric motor

protein from the kinesin superfamily, nonlinear effects are found to

dominate completely functional mechanochemical motions which

turn out to be qualitatively different from the normal mode

predictions. Despite the nonlinearity, well-defined conformational

relaxation paths, robust against perturbations, have been found in

both motor proteins.

Results

Within the coarse-grained ENM approach, a protein is modeled

as a network of point-like particles, corresponding to residues,
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which are connected by a set of elastic links [9,10]. A link between

two particles is present if the distance between them in the

equilibrium conformation of the considered macromolecule is

shorter than a cutoff length. The elastic energy of the network is

U~(k=2)
P

ij Aij dij{d
(0)
ij

� �2

, where k is the stiffness constant of

the network links, Aij is the matrix of connections inside the

network, dij is the distance between particles i and j, and d
(0)
ij is

the respective distance in the equilibrium reference state. The

characteristic time scales of functional mechanochemical motions

in motor proteins are in the millisecond range and slow

conformational relaxation motions on such timescale should

be overdamped [25]. Neglecting hydrodynamic interactions,

relaxation dynamics is then described by equations dRi=dt~
{CLU=LRi for the coordinates Ri of the particles, where C is

their mobility. Relaxation dynamics for elastic networks of proteins

has been previously considered [26].

Despite a wide-spread misunderstanding, elastic dynamics is

generally nonlinear. For example, macroscopic objects, such as

ribbons or membranes, can still exhibit pronounced nonlinear

effects of spontaneous twisting or buckling, while fully retaining

their elastic behavior and not undergoing plastic deformations

[27]. The energy U of an elastic network is quadratic in terms of

the distances dij and the forces acting on the particles are linear in

terms of such distances. However, the distance dij~DRi{Rj D is

itself a nonlinear function of the coordinates Ri and Rj and this makes

the forces also nonlinear functions of dynamical variables. The

presence of nonlinear effects in conformational relaxation of

proteins in the ENM approximation has been previously

demonstrated [28,29].

Explicitly, relaxation dynamics of considered proteins is

described by equations (3) in the Methods section, where further

details are also given. To study conformational relaxation, these

equations were numerically integrated starting from various initial

conditions.

Myosin V
The reference conformation, used to construct the elastic

network, was that of the ATP(analog) bound state (Protein Data

Bank (PDB) ID code: 1W7J, with MgADP-BeFx as the ATP

analog [30]). As the initial condition, the conformation corre-

sponding to the nucleotide-free state was taken (PDB ID: 1OE9

[31]). The elastic network had 855 particles connected by 7261

links. Note that only the residues whose a-carbon positions are

contained in both PDB data sets have been taken to construct the

network. Additionally, relaxation processes starting from randomly

generated initial conditions (see Methods) have been considered.

For visualization purposes, motions of three particles (Asp122 in

chain A, and Val22 and Ser135 in chain B) have been traced

(Figure 1A). Thus, each relaxation process was characterized by a

certain trajectory in the space of distances between the three

chosen labels.

Figures 1B,1C display 100 conformational relaxation trajectories,

each starting from a different random initial condition. Although

the initial conditions were generated by applying relatively strong

deformations (without unfolding) to the reference state, almost all of

them were leading back to that reference state, with just a few

metastable states found. Furthermore, one can observe that the

trajectories converge to a well-defined relaxation path.

The red trajectory in Figures 1B,1C is for the relaxation starting

from the nucleotide-free conformational state of myosin V (so that the

mechanochemical motion following ATP binding is simulated). After

a transient, this special trajectory joins the well-defined relaxation

path. This functional trajectory is robust against perturbations, as

shown by Figure 1D. Several snapshots of the conformation along

this trajectory are shown in Figure 2 (see also Video S1).

The attractive path corresponds to a deep energy valley in the

energy landscape of myosin V. Once this valley is entered, the

conformational relaxation motion becomes effectively one-dimen-

sional and characterized by a single mechanical coordinate. The

profile of the elastic energy along the bottom of such energy valley

determines the dependence of the elastic energy on the collective

mechanical coordinate (see Methods).

Figure 3A shows the dependence of the elastic energy along the

special attractive relaxation path starting from the nucleotide-free

state and leading to the ATP-bound state. Markers indicate

positions along the trajectory in Figure 1C. For twt6, the elastic

energy U is approximately quadratic in terms of the mechanical

coordinate w, i.e. U(w)^(l=2)w2
. Because dw=dt~{dU=dw, this

implies that then dw=dt~{lw and the relaxation is exponential.

Only within such harmonical neighborhood of the reference state,

the normal mode description becomes applicable (see Methods for

further discussion).

The dotted blue line in Figure 1D shows the direction of the

distance changes corresponding to the slowest normal mode (see

Methods). The nucleotide-free state of myosin V lies away from

this direction and also outside of the harmonical neighborhood.

The initial stage of the functional mechanochemical motion (until

time t6) cannot be quantitatively analyzed in terms of the normal

modes.

Kinesin KIF1A
The reference conformation for KIF1A is the ADP-bound state

(PDB ID: 1I5S, with MgADP [32]). Relaxation starting from the

initial condition, corresponding to the ATP(analog)-state (PDB ID:

1I6I, with MgAMPPCP as an ATP analog [32]) and from

randomly generated initial conditions was considered. The elastic

network has 320 particles and 2871 links. Only the residues whose

a-carbons are in both PDB data sets have been used. Visualization

labels are Glu233, Ala286, and Asn211 (Figure 4A).

100 relaxation trajectories, starting from random initial

conditions, are shown in Figures 4B,4C. The presence of an

attractive relaxation path, corresponding to a deep energy valley,

can be noticed.

Author Summary

Biological cells use a variety of molecular machines
representing enzymes, ion channels or pumps, and
motors. Motor proteins are nanometer-size devices gen-
erating forces and actively moving or rotating under the
supply of chemical energy through ATP hydrolysis. They
are crucial for many cell functions and promising for
nanotechnology of the future. Although such motors
represent single molecules, their operation cycles cannot
be followed in detail in simulations even on the best
modern supercomputers and some approximations need
to be employed. It is often assumed that conformational
dynamics of motor proteins is well described within a
linear response approximation and corresponds to excita-
tion of normal modes. We have checked this assumption
for two motor proteins, myosin V and kinesin KIF1A. Our
results show that, while both these biomolecules respond
by well-defined motions to energetic excitations, these
motions are essentially nonlinear. The effect is particularly
pronounced in KIF1A where relaxation proceeds through a
sequence of qualitatively different conformational chang-
es, which may facilitate complex functional motions
without additional control mechanisms.

Nonlinearity of Mechanochemical Motions in Motors
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The red lines in Figures 4B,4C display the special relaxation

trajectory starting from the ATP-bound state. Surprisingly, we find

that, in contrast to myosin V, this trajectory is different from the

typical relaxation path. By applying small random initial

perturbations to the initial ATP-bound state and integrating the

dynamical equations, it can be demonstrated that this trajectory is,

Figure 2. Relaxation motion in myosin V. Snapshots of the conformations of myosin V along the special relaxation path are shown. The essential
light chain, displayed in green, is included into the model.
doi:10.1371/journal.pcbi.1000814.g002

Figure 1. Relaxation paths of myosin V. The elastic network model is constructed for the ATP-bound structure as the reference state. The red
line shows the trajectory in the plane of distances u12 and u13 between labels 1, 2 and 3 indicated in panel (A) starting from the nucleotide free state,
so that this path corresponds to the conformational transition upon ATP binding. In panels (B) and (C) (magnified), gray lines display trajectories
starting from 100 different random initial conditions (see Methods). In panel (D), gray lines represent relaxation trajectories with 100 different random
deformations applied to the same initial structure as that for the red line. The dotted line in panel (D) shows the direction of distance changes
corresponding to the slowest normal relaxation mode. Black dots indicate (meta)stable states reached. Times ti at points i~0 to 7 indicated in panel
(C) are ti~0, 10, 30, 100, 300, 1000, 3000, and 10000, respectively.
doi:10.1371/journal.pcbi.1000814.g001

Nonlinearity of Mechanochemical Motions in Motors
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Figure 3. Profiles of elastic potential energy. (A) Myosin V and (B) KIF1A. Elastic energy U during transitions, corresponding to the trajectories

shown by red lines in Figures 1 and 4, is plotted against coordinate w. The dashed line shows U~
1

2
l1w2, the quadratic approximation corresponding

to the slowest normal mode (see Methods). Numbers correspond to time moments indicated in Figures 1C and 4C.
doi:10.1371/journal.pcbi.1000814.g003

Figure 4. Relaxation paths of KIF1A. The ADP-bound structure has been used to construct the elastic network. The visualization labels are
indicated in panel (A), and the relaxation paths are displayed in panels (B) to (D) in the same way as in Figure 1, panels (B) to (D), respectively. The
initial condition for the red line is the ATP-bound state, so that this trajectory corresponds to the transition from the ATP-bound state to the ADP-
bound state. Times ti at points i~0 to 9 indicated in panel (C) are ti~0, 0:1, 0:3, 1, 3, 10, 20, 25, 30, and 100, respectively.
doi:10.1371/journal.pcbi.1000814.g004

Nonlinearity of Mechanochemical Motions in Motors
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however, also stable with respect to the perturbations (Figure 4D).

The dotted blue line in Figure 4D shows the direction of the

distance changes in the slowest normal mode of KIF1A.

Thus, in KIF1A the deep energy valley leading to the reference

ADP-bound state gets branched at some distance from it. The

path corresponding to the functional mechanochemical motion

from the ATP-bound state belongs to the side branch. Only at the

final relaxation stage, in the immediate vicinity of the equilibrium,

the valleys merge and the functional motion begins to coincide

with the typical relaxation motion in this protein.

The branching of the energy valley is already an indication of

strong nonlinearity in the relaxation dynamics. We have also

determined the profile of the elastic energy U as a function of the

mechanical coordinate w along the path connecting the ATP- and

ADP-bound states (Figure 3B). The profile becomes quadratic only

starting from time t9, very close to the equilibrium reference state.

Figure 5 shows snapshots of KIF1A along the special attractive

relaxation path (see also Video S2). At the early relaxation stage

(until t5), the relaxation motion represents a combination of the

rotation of the switch II helix and of the sliding of the switch I

loop. Relaxation at the end of such initial stage is apparently

hindered, as revealed in the presence of a plateau in the

dependence of the elastic energy on the mechanical coordinate

in Figure 3B near t~t5. Only once the sliding is completed,

further local structural reorganization, representing a transition

from the loop to the a-helix, becomes possible and is indeed

observed approximately after time t6.

Discussion

The normal mode description is broadly used in structural studies

of proteins. The analysis of thermal fluctuations and the

interpretation of the respective experimental structural data are

traditionally performed assuming that fluctuations are linear and,

hence, correspond to thermal excitation of various normal modes

(see, e.g., [3,4]). The linear response of a protein macromolecule to

structural perturbations, such as ligand binding, is an often used

assumption [2]. To a large extent, the elastic-network analysis of

ligand-induced macromolecular motions is based on determining

normal modes in the elastic networks of the considered proteins (see,

e.g., [7]). The patterns of atomic displacements in such normal

modes are further compared with the experimentally measured

atomic displacements in the same proteins that are induced by a

change of the chemical state, such as binding of an ATP molecule

[7,14–17]. Large overlaps with only a few slowest normal modes are

seen as the evidence for the applicability of the elastic-network

ansatz, whereas the wide distribution of overlaps is considered as the

indication that the elastic network description fails for a particular

macromolecule. Specifically, strong overlaps between ligand-

induced conformational changes and atomic displacements in the

few slowest modes have been found for scallop myosin and F1-

ATPase, while such overlaps were absent for kinesin KIF1A [18].

Our numerical investigations of elastic conformational motions

in two motor proteins (myosin V and KIF1A) have revealed

however that in both of them the nonlinearities play an essential

role. While slow conformational relaxation motions in myosin can

still be qualitatively characterized in terms of the normal modes,

the normal mode description breaks down completely for KIF1A.

The observed breakdown of the normal mode description does not

however mean that conformational motions become irregular. We

have seen that ordered and robust mechanochemical motions are

characteristic for both protein motors, even though they cannot be

described in terms of the linear response.

We want to emphasize that, when the dynamics is nonlinear,

neither a single normal mode, nor a combination of many such

modes can reproduce the motions. Thus, the normal mode

description fails completely in this case and the problem is not that

many normal modes must be taken into account. Actually, as we

have shown, even for KIF1A, one normal mode would be

sufficient to describe long-time relaxation within the harmonic

domain — however, this domain is restricted to a tiny

neighbourhood of the equilibrium state.

Thermal fluctuations have not been explicitly included into our

dynamical ENM simulations. However, such fluctuations are

effectively generating random conformational perturbations. In

Figure 5. Relaxation motion in KIF1A. (A) Conformation snapshots (seen from two different viewpoints). Switch I and switch II regions are
indicated in green and orange, respectively. (B,C) Schematic representation of the relaxation motion, observed in the simulation from the ATP-bound
state (red) to the ADP-bound state (blue). In switch I region, as shown in panel (B), reconfiguration of the structure (2), i.e., transformation from a loop
to an a-helix, occurs only after the sliding motion (1) is completed. For reference, relative positions of KIF1A and tubulin monomers (PDB ID: 2HXF and
2HXH [39]) are shown in panel (C).
doi:10.1371/journal.pcbi.1000814.g005

Nonlinearity of Mechanochemical Motions in Motors
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our study, relaxation processes starting from random conforma-

tional perturbations have indeed been considered.

In myosin V, one well-defined nonlinear conformational

relaxation trajectory, leading to the equilibrium state, has been

identified. Starting from an arbitrary initial conformation (but still

without unfolding), rapid convergence to this special trajectory

takes place. While the motion corresponding to the special

attractive trajectory is initially nonlinear, it becomes harmonical

later and a substantial part of the ordered conformational

relaxation process is within the harmonic domain of the

equilibrium state. Similar behavior has been previously noted by

us [29] for scallop myosin and F1-ATPase, but its detailed analysis

has not yet been performed.

The situation is more complex for the monomeric kinesin

KIF1A. Instead of a unique deep energy valley leading to the

reference ADP-bound state, two such valleys, both leading to the

equilibrium state, are present. These valleys correspond to two

kinds of ordered conformational motions possible in the protein.

The first of them is relatively wide and, when thermal

conformational fluctuations are excited, they would typically proceed

along it. However, the conformational relaxation motion starting

from the ATP-bound state follows a different path, which

corresponds to the second energy valley branching from the typical

fluctuation path already at very small deviations from the equilibrium

state. Note that the branching takes place as the change in the

distance between the molecular labels Glu233 and Ala286 is still less

than an angstrom, which is much smaller than the intensity of typical

thermal fluctuations for such a distance. Thus, the nonlinear effects in

KIF1A are strong even for the typical thermal fluctuations.

Remarkably, such second relaxation path is also stable with

respect to perturbations, i.e. structurally robust. Our numerical

investigations reveal that motion along this path can be divided into

two qualitatively different stages. At the first of them, sliding of the

switch I loop is observed, whereas at the second stage a transition

from the loop to the a-helix is realized. Structural reorganization,

corresponding to this transition, is not possible until the sliding

motion is completed, lifting a restriction through the backbone

chain. Recent crystallographic studies suggest that the switch I

loop/helix plays an important role in control of the motor function

through interaction with Mg2z and switch II [33].

Thus, in contrast to myosin, a single ATP binding event induces

in KIF1A a complex, but ordered conformational motion

characterized by two qualitatively different consequent phases.

As we conjecture, this special dynamical property of KIF1A may

be needed for the processive motion of this single-headed

molecular motor [24].

In myosin V, conformational motions driven by random thermal

fluctuations are similar in their properties to the relaxation motion

from the nucleotide-free state. This may facilitate exploitation of

such fluctuation motions for the motor operation, as suggested by

recent single-molecule experiments [34]. In KIF1A, where the

energy valley splits into two branches, typical thermal conforma-

tional fluctuations are qualitatively different from the relaxation

motion starting from the previous ATP-bound state. The latter

motion is entropically hindered for thermal fluctuations and cannot

be reversed through them. This may turn out to be important for the

understanding of the operation of the monomeric kinesin as a

molecular motor. Latest experimental techniques permit simulta-

neous observation of stepping motion and conformational changes of

a motor [35]. The coarse-grained modeling, including our present

study, can contribute further suggestions for the design (e.g., by

determining positions for fluorescent labeling) of such experiments.

Finally, we note that our study has been based on the elastic

network approximation for proteins. More detailed descriptions,

such as, e.g., G�oo-like models, can also be used to consider

conformational relaxation processes [36]. We expect that similar

behavior will then be observed.

Methods

Elastic network models
In this study, we employ elastic network models where material

points are connected by a set of elastic springs [8–11]. Each particle

corresponds to a residue in the considered protein. The equilibrium

positions R
(0)
i of the particles are determined by the locations of a-

carbon atoms in the reference state of the protein, taken from the

PDB database. Two particles in a network are connected by an

elastic spring if at equilibrium the distance d
(0)
ij ~DR(0)

i {R
(0)
j D

between them is less than a certain cutoff length l0. The natural

length of an elastic link is equal to the equilibrium distance d
(0)
ij . The

cutoff distance l0~10 Å has been used in our study.

The elastic forces obey the Hooke law and all springs have the

same stiffness constant k. Elastic torsion effects are not included.

Thus, the force acting on particle i is

Fi~{k
XN

j~1

Aij dij{d
(0)
ij

� �Ri{Rj

dij

, ð1Þ

where N is the total number of particles in the network, Ri(t) is the

actual position of the particle i and dij~DRi{Rj D is the actual

distance between two particles i and j. The adjacency matrix of

the network is defined as having Aij~1 if d
(0)
ij vl0 and Aij~0

otherwise. The total elastic energy of the network is

U~
k

2

X
ivj

Aij dij{d
(0)
ij

� �2

: ð2Þ

Because slow conformational dynamics of proteins in the solvent

is considered, the motions are overdamped (see [25]) and the

velocity of a particle is proportional to the force acting on it, i.e.

dRi=dt~CFi where C is the mobility. We assume that the

mobilities of all particles are the same. Hydrodynamical effects are

neglected (they can be however incorporated into the elastic

network models as shown in ref. [37]).

Explicitly, the relaxation dynamics is described by a set of

differential equations:

dRi

dt
~{

XN

j~1

Aij DRi{Rj D{DR(0)
i {R

(0)
j D

� � Ri{Rj

DRi{Rj D
: ð3Þ

Here, time is rescaled and measured in units of (Ck){1. Hence,

the relaxation dynamics of a network is completely determined by

its pattern of connections (matrix Aij ) and the equilibrium

distances d
(0)
ij between the particles. Equations (3) were integrated

to determine conformational relaxation motions.

Simulations
To prepare random initial conditions, the following procedure

has been employed. Random static forces f i, acting on all particles

in the network have been independently generated with the

constraint that (1=N)
P

Df i D2~F2
ini. The equations of motion were

integrated in the presence of such static forces for a fixed time tini.

The conformation which was thus reached has been then used as

the initial condition for the relaxation simulation. The parameters

were Fini=k~0:3 Å, tini~105(Ck){1 for myosin V and Fini=k~

Nonlinearity of Mechanochemical Motions in Motors
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0:5 Å, tini~3|104(Ck){1 for KIF1A. With these parameter

values, relatively large overall deformations (*20% typical) could

be reached, while still avoiding unfolding. In the deformed states,

the lengths of the links did not exceed 13:4 Å for myosin V and

11:5 Å for KIF1A.

When relaxation from specific conformations has been consid-

ered, initial positions of all particles were allocated according to the

respective PDB structures. When robustness of a relaxation path

starting from a specific conformation was investigated, the initial

condition was prepared by randomly shifting the positions of

all particles with respect to their locations in that conformation with

a certain root-mean-square displacement dini. We have chosen

dini~2 Å for myosin V and 0:5 Å for KIF1A.

To visualize conformational motions, three particles labeled as

1, 2 and 3 were chosen and the distances u12 and u13 were

monitored in the simulations. Thus, the relaxation motion was

represented by a trajectory on the plane (u12, u13).
The choice of the visualization labels is essentially arbitrary. In a

simulation, motions of all residues were traced (see, e.g., Videos S1

and S2) and different residues could be selected for a specific

visualization. If a molecule has a low-dimensional attractive

relaxation manifold, this is a property of the respective dynamical

system and it cannot depend on the visualization method. When

selecting the labels, one should only pay attention to the fact that the

distances between them should significantly vary during the

relaxation process. If, by chance, two labels belonging to the same

stiff domain in a protein have been taken, the distance between

them would remain almost constant, so that such a choice would be

inconvenient. When the normal mode description approximately

holds and, furthermore, relaxation is well described by a few slowest

modes, one can choose the labels so that the distances between them

reveal variations characteristic for the first few normal modes. Such

selection was previously made [29] for scallop myosin and F1-

ATPase, and it has been adopted in the present study for myosin V.

For KIF1A, the labels have been chosen in such a way that motions

in switch I and switch II regions are well resolved.

Profiles of elastic potential energy
The collective mechanical coordinate w along a relaxation path

was defined by requiring that its dynamics obeys the equation

dw=dt~{CLU=Lw and that w?0 as t??. Multiplying both parts

of this equation by dw=dt, we find that it is equivalent to the equation

dw

dt
~{

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{C

dU

dt

r
: ð4Þ

Equation (4) can be used to determine the coordinate w along a given

relaxation trajectory and the dependence of the elastic energy U on

this coordinate.

For each point along the trajectory, the time t when it is reached

in the relaxation process is known. Moreover, the actual network

configuration corresponding to this point is also known from the

simulation. Therefore, for each point specified by time t the

respective elastic energy U(t) is determined. The mechanical

coordinate w, reached at time t, is given by the integral

w(t)~

ð?
t

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
{C

dU

dt

r
dt: ð5Þ

Normal mode description
We provide a summary of the results on the normal mode

description of conformational relaxation processes. If deviations

ri~Ri{R
(0)
i from the reference conformation are small for all

particles, the nonlinear equations (3), describing conformational

relaxation of an elastic network, can be linearized:

dri

dt
~{

XN

j~1

Aij u
(0)
ij
: ri{rj

� �h i
u

(0)
ij , ð6Þ

where u
(0)
ij ~ R

(0)
i {R

(0)
j

� �
=d

(0)
ij .

Equations (6) can be written in the matrix form as

dri

dt
~{

XN

j~1

Lijrj , ð7Þ

where L is the 3N|3N linearization matrix:

Lis,jg~Aiju
(0)
ij,su

(0)
ij,g (for i=j)

Lis,ig~{
X

j

Aiju
(0)
ij,su

(0)
ij,g,

ð8Þ

where s, g~(x, y, z).

The general solution of these linear differential equations is

given by a superposition of 3N{6 exponentially decaying normal

modes, i.e.

ri(t)~
X3N{6

a~1

kae{Clate
(a)
i : ð9Þ

Here, la and e
(a)
i are the eigenvalues and the eigenvectors of the

linearization matrix, i.e.

Le
(a)
i ~lae

(a)
i : ð10Þ

This matrix has 3N eigenvalues, but 6 of them must be zero,

corresponding to free translations and rotations of the entire

network.

Generally, all normal modes are initially present. As time goes

on, first the normal modes with the larger eigenvalues la decay. In

the long time limit, relaxation is characterized by the soft modes

corresponding to the lowest eigenvalues.

Figure 6 shows the computed eigenvalue spectra of myosin V

and KIF1A. The eigenvalues are normalized to the lowest nonzero

eigenvalue l1 and the logarithmic representation is chosen.

Note that in both motor proteins a significant gap, separating

the soft mode from the rest of the spectrum, is present. This means

that, in the linear approximation, long-time relaxation in these

Figure 6. Eigenvalue spectra of the elastic network models.
Eigenvalues la in the normal mode description (eqn. (10)), normalized
to the lowest non-zero eigenvalue l1 , are shown. There is a significant
gap between the lowest and the second lowest modes.
doi:10.1371/journal.pcbi.1000814.g006

Nonlinearity of Mechanochemical Motions in Motors

PLoS Computational Biology | www.ploscompbiol.org 7 June 2010 | Volume 6 | Issue 6 | e1000814



proteins is effectively characterized by a single degree of freedom,

representing the amplitude of the soft mode. The pattern of

displacements of particles (i.e., residues) from the reference

positions is determined by the eigenvector e
(1)
i of the soft mode.

In the plane (u12, u13) of the distances between the labels 1, 2
and 3, used by us for the visualization of conformational

motions, the exponential relaxation motion corresponding to

the soft mode should proceed along the direction defined by the

vector with the components u
(0)
12
:(e(1)

1 {e
(1)
2 ) and u

(0)
13
:(e(1)

1 {e
(1)
3 ).

Such directions are indicated by dotted blue lines in Figure 1D

and Figure 4D.

When relaxation is reduced to a single soft mode, the elastic

potential is quadratic in terms of the mechanical coordinate, i.e.

U(w)~(1=2)l1w2
.

Note that the representation of the relaxation process as a

superposition (9) of normal relaxation modes holds only in the

harmonic domain, i.e. when linearization (6) of full nonlinear

relaxation dynamics equations (3) is valid. If dynamics is nonlinear

and the linearization does not hold, relaxation dynamics cannot be

viewed at all as a superposition of any normal modes. Whether just

one normal mode or many of them should be included into a

description of long-time relaxation dynamics is determined by the

properties of the eigenvalue spectrum and not related to the

possible invalidity of the harmonic approximation.

As an extension, iterative normal mode analysis has been

proposed [21,38]. This method is applied to obtain an optimal

sequence of conformational states, transforming an initial given

conformation into a target conformation, which may be known

with a low resolution or only partially, and thus to reconstruct

missing details of that structure. Each next conformation in the

sequence is obtained by making a step into the direction

maximizing similarity with the target, restricted however to a

superposition of a certain number of the lower normal modes. At

the next iteration step, the previous conformation is chosen as a

new reference state and a new set of normal modes is determined.

This prediction method is useful and provides valuable results,

e.g., in the refinement of low-resolution structures from electron

microscopy [38]. It should be however emphasized that the

sequence of conformational states yielded by such a method is

generally different from the path along which conformational

relaxation from the target to the reference state would proceed.

Even in the normal mode approximation, dynamics of conforma-

tional relaxation depends not only on the eigenvectors, but also —

and very significantly — on the eigenvalues of normal modes.

Generally, the next iteration state in this method would not be the

next conformation along the actual relaxation path. This

difference can be clearly demonstrated by considering the example

of KIF1A. The conformational relaxation path transforming the

initial ATP-bound state into the (equilibrium) ADP-bound state is

non-monotonous (Figure 4). It proceeds via intermediate states

(particularly of the switch I region) which cannot be obtained by

gradual interpolation maximizing similarity of the structures along

the optimization path.

Supporting Information

Video S1 The motion of myosin V along the special relaxation

path. t = 0 to 2000.

Found at: doi:10.1371/journal.pcbi.1000814.s001 (1.25 MB

MOV)

Video S2 The motion of KIF1A along the special relaxation

path. t = 0 to 50.

Found at: doi:10.1371/journal.pcbi.1000814.s002 (0.76 MB

MOV)
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