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Kurzfassung

Modelle von Phasenoszillatoren sind ein Universalwerkzeug, um die kollektive Dy-

namik in periodischen Systemen zu untersuchen. Dabei führen Wechselwirkungen

zwischen gewöhnlich regulär periodischen Elementen zu einer Vielzahl an Verhal-

ten. Dazu zählen auch Chaos und Inkohärenz, welche für etliche Anwendungen

unerwünscht sind. Die Zielsetzung dieser Arbeit ist die Untersuchung von Methoden

zur Kontrolle von Chaos und Unordnung in Systemen wechselwirkender Oszillatoren

und die damit einhergehenden dynamischen Aspekte.

Dazu werden Systeme gekoppelter Phasenoszillatoren betrachtet, bei denen die

paarweise Wechselwirkung von einer Phasenverschiebung zwischen den Elementen

abhängt. Diese Phasenverschiebung kann in einem global gekoppelten System von

identischen Oszillatoren zu Desynchronisation führen. Hierbei wird der Einfluss von

externem gemeinsamen, auf alle Elemente wirkendes Rauschen untersucht. Ist dieses

Rauschen schwach, beobachten wir die Ausbildung von Clustern im System; starkes

Rauschen hingegen führt zu Synchronisation.

Betrachtet man statt der globalen Kopplung ein Zufallsnetzwerk, geht die Desyn-

chronisation in Chaos über. Die Auswertung des Lyapunov-Spektrums liefert in

diesem Fall einen hochdimensionalen chaotischen Attraktor, welcher analog zur

Phasenturbulenz in oszillatorischen Medien ist. Turbulenz kann durch die Ein-

fuehrung von globalem Feedback unterdrückt werden. Dabei kann ein Übergang

zu synchronen Oszillationen herbeigeführt werden. Entlang dieses Übergangs zeigen

solche Systeme verschieden komplexe Dynamik, wie die Ausbreitung von Phasen-

rutschen (phase slips) oder zeitweilige Turbulenz. Dabei entstehen kohärente

Muster, die als selbst-organisierte aktive Unternetzwerke auftreten, deren Größe

und Verhalten kontrolliert werden können.

Die vorliegende Arbeit verwendet Methoden, welche selten in der Analyse von

Netzwerken von Phasenoszillatoren benutzt werden. Dadurch können dynamische

Muster gefunden und beschrieben werden, die bislang möglicherweise übersehen wor-

den sind. Damit wirft diese Arbeit ein neues Licht auf selbstorganisierte Dynamik,

welche am Übergang zwischen Unordnung und Synchronisation auftritt.





Abstract

Models of phase oscillators are a universal tool for the study of collective dynamics

in periodic systems. The interactions of otherwise regular periodic elements may

produce various kinds of behavior, amongst which chaos and incoherence may not

be desirable. The objective of this work is to study possible methods to control

chaos and disorder in systems of interacting oscillators, and to study the different

kinds of dynamical states that can be induced in the process.

Systems of coupled phase oscillators are considered, which include phase shifts

in the interactions between each pair of elements. This phase shift can lead to a

desynchronization transition in a globally coupled system of identical oscillators.

Under these conditions, we investigate the effect of external common noise acting on

all elements. We observe that when such noise is weak, it gives rise to the formation

of clusters in the system, whereas strong noise intensities bring the system to a

synchronized state.

When the all-to-all coupling is replaced by a random network, desynchronization

gives way to chaos. Analysis of the Lyapunov spectrum reveals a high-dimensional

chaotic attractor which is analogous to phase turbulence in oscillatory media. By

introducing global feedback, turbulence can be suppressed and a transition to syn-

chronous oscillations can be induced. Along this transition, different kinds of com-

plex dynamics can be observed, such as propagation of phase slips or intermittent

turbulence. Emerging coherent patterns take here the form of self-organized active

subnetworks whose size and behavior can be controlled.

This work exploits methods rarely used in the analysis of phase oscillator net-

works to uncover dynamical patterns that may have previously been overlooked. As

such, it sheds new light on the kinds of self-organized dynamics that can be found

between the boundaries of disorder and synchronization.
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Introduction

The universe is abundant in systems of periodic nature. The repeated occurrence

of events at regular intervals can be found ubiquitously at all scales, from atomic to

astronomical; and oscillating quantities can be measured all around us. Oscillations

are one of the most pervasive kinds of dynamical behavior in the physical world.

Life itself seems to be dependent on the preservation of specific cycles.

The second law of thermodynamics states that a closed system will always ap-

proach an equilibrium state of maximal disorder. This should mean that all oscilla-

tions would be damped, and all activity would die out. However, the world is full of

systems that are not closed. In fact, many systems, such as living systems, cannot

be understood if not through its interaction with the environment, continually ex-

changing energy and matter. In this manner, systems that would go to a rest state

in isolation can be kept active by providing them with chemical reactants, applying

electrical currents, light or other kinds of energy.

Within the theory of dynamical systems, the appearance of oscillations can be

understood in different ways. One common type of oscillations is that which is

characteristic for Hamiltonian systems: in the absence of dissipation, oscillations

are maintained due to the conservation of kinetic energy. This is the case, for

example, of a frictionless pendulum.

A much more interesting situation is encountered when self-sustained oscillations

develop as a result of an instability of the stationary state. In this kind of systems,

oscillations are not an effect of energy conservation, but the consequence of the

presence of a periodic attractor. This means that, by maintaining a flow of energy

through the system, it can not only be brought to an active state of sustained

oscillations, but these oscillations can also be stable. Small perturbations from

this attractor do not drive the system to another state, and it relaxes back to its

oscillatory dynamics.

The widespread use of phase oscillator models in diverse research areas is an

example of the philosophy that is predominant in the science of complex systems.

The underlying idea is that the validity of results found in a certain model may

extend far beyond the specific system or object under consideration [1]. The behavior
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of a generic model may tell us something about a large class of systems, for which

this model may be a valid approximation. Indeed, phase oscillator models have

been used to address such diverse problems as pathological synchronization in the

brain and the design of therapies for it [2, 3], arrangements and control of traffic

lights [4], pattern formation in oscillatory chemical reactions [5], optimization of

telecommunication systems [6, 7], and many more.

The importance of phase oscillators models lies in that, while being extremely

simple, they capture essential features of many different systems with periodic be-

havior. Let us, for example, consider systems of very diverse nature as an enzyme, a

neuron or a machine in a factory. Each of them may be hard to describe mathemat-

ically, and this difficulty arises for different reasons. In the case of an enzyme, inter-

actions between all atoms in the molecule may not be known, and single molecule

experiments to study their behavior with enough precision may not be feasible. The

generation of action potentials in a neuron is the result of the collective action of

millions of ion channels and pumps along the membrane. And although we can

know exactly what the function of each piece of a machine is, and recognize their

interactions fully, the numerical simulation of a single machine may require extreme

computational power, in many cases impossible to reach in real time.

Nevertheless, these three kinds of systems have clear features in common, namely

that all of them operate by repeating an operational cycle. The system proceeds

through a sequence of stages, each of which has a specific functionally within its

operation. All of these systems operate by receiving a certain input, be it chemical

reactants and ligands, action potentials in the dendrites or material flow intake. The

system then goes through some conformational changes —electrochemical, physical

or mechanical— to process these inputs in a specific way. A certain output is

produced and released or emitted, and another conformational change will take

place to restore the system to its initial configuration, where it may idle for some

time (refractory period). Although variations on this cycle may exist from system to

system (indeed, a machine may have several inputs and outputs), what is important

for our consideration is that their operation, from a functional viewpoint, requires

the repeated and periodic execution of a regular operational cycle.1

If we consider the operational cycle of such systems as a circle, then the progress

along this cycle can be represented by an angle variable that increases at constant

rate, being zero at the beginning of the cycle and covering all the circle when the

end is reached. Such a variable would be known as the phase of the cycle, and the

mathematical object representing the operational progress of the system is known

as a phase oscillator. In this view, the complicated internal dynamics of a system

is reduced to a single variable description characterizing its current stage along the

operational cycle.

Of course, enormous amounts of information about the system and its state may

be lost in such a drastic simplification. But this is a loss that we may be better off

with if we want to gain in tractability and computability. What is important in this

representation, is that very general models can be devised with such an approach,

1The idling time may in principle be variable, since it depends on the input. However, an average

idling time in normal functioning may be considered, and taken to be part of the operational cycle.
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Figure 1: Operational cycle of different systems

which allow us to dispense with the specific details of a particular system, and

draw general conclusions about the behavior of systems of periodic nature. Phase

oscillators may be an overly simplistic way to describe a system, but they provide

a solid mathematical framework to formulate a generic representation of systems of

periodic nature.

A line of research has been built around the idea that the information processing

and memory storage capabilities of the brain are emergent properties which are

codified in a specific configuration of the synapses that connect the neurons and

transmit information between them. In the neural computation and neural networks

approach, so fully is the computing capability trusted to the structure of these

connections, that in many of these studies, the details of neuronal properties and

dynamics are ignored, and the brain is reduced to a network of switches. In this

view, the capacity of the brain to learn, store and process information and assimilate

new cognitive functions is rooted in the plasticity of the synapses (Hebbian learning),

and therefore, it is the specific neuronal network what determines the functioning

of a brain.

In other systems, such as a factory, the interactions between machines are also

of crucial importance, so that the functioning of the system may require an explicit

and very specific pattern of interactions defining the transmission of information,

material flows or distribution lines that are necessary for operation. In the analysis

of such system, a precise description of the dynamics of each machine may prove to

be a distraction, and in the larger picture, it might be wise to overlook such details.

Just like in the neural networks approach, much insight might be gained from the

studie of greatly simplified models.

Thus, we see that very different systems essentially represent networks of inter-

acting periodic elements. For this reason, our emphasis is placed on the interactions

between elements, more than the elements themselves. We intend to investigate

the interaction of extremely simple elements like phase oscillators, in the hope that

such simplicity will account for more generality in the results we observe. It is in

this spirit that we choose as the object of our study networks of interacting phase
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oscillators.

Through the interactions of a large number of simple elements, a great variety

of dynamical states can emerge. In the context of periodic elements, such states

can range from global synchronization to spatio-temporal chaos. For many man-

made and natural systems, it may be a task of fundamental importance to device

control methods for such dynamical states [8]. This goal is particularly clear when

considering a production system, in which a specific dynamical pattern should be

attained and preserved for the proper functioning of the system.

A desirable aspect of a control mechanism is the requirement to determine and

manipulate only a small number of parameters. Control systems that depend on

permanent measurements of the current state of the system for the calculation of a

large number of corrective parameters are not only computationally expensive, but

they also suffer from a high probability of failure [9].

A promising way to meet these requirements is to select systems that are self-

correcting, i.e., whose stationary states are reached through a self-organized dynam-

ical process. In this case, a system can adapt to perturbations maintaing its original

state [10].

A particular implementation of a self-correcting mechanism as a method of con-

trol is that of taking a signal produced by the system and applying it back to the

system as external forcing. This is what is usually referred to as a feedback mech-

anism. Although this signal might still need to be processed in some way for the

successful implementation of a control mechanism, such a strategy may provide a

solution for which no supervision or intervention is needed.

We will consider the simplest case, in which the feedback is determined by mon-

itoring the average signal of the system and applying it back directly as an external

force. In this way, only one parameter, namely the intensity of the feedback, is left

for us to determine.

In the early 1990s, much excitement in the scientific community grew around the

concept of the Edge of Chaos [11, 12]. In a number of different studies, it was found

that, when approaching chaos, many systems presented fascinating properties, such

as, e.g., the capability of universal computation [13].

Lack of general conclusions, and occationally even irreproducibility of some re-

sults made the enthusiasm wane, and critics declared such claims as lacking sub-

stance [14]. The notion of the ’Edge of Chaos’ as a mysterious realm where evolution

is maximized and life is permitted has fallen out of favor. We intend no endorse-

ment to these claims, but we would like to appeal to a rather intuitive idea: that
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between the rigidity of order and the irregularity of randomness is where a system

may respond to perturbations in its most adaptive way, allowing for flexibility and

coherence in its internal organization.

In the scientific literature on systems of interacting phase oscillators, many stud-

ies can be found which concentrate on the conditions that allow for and preserve

synchronization [15]. Spontaneous synchronization of an ensemble of oscillatory el-

ements with no kind of hierarchical organization is a remarkable phenomenon, but

as a dynamical behavior, it essentially consists of all elements acting as one. On

the other extreme, chaotic behavior of a large number of elements can hardly be

distinguished from simple randomness. In terms of dynamical richness, it is in be-

tween these two extremes where we may expect to find the emergence of complex

organization and coherent dynamical patterns [16].

Systems that are strongly ordered, as synchronized systems of oscillators, may

only respond slightly to perturbations, returning to there stable order state as the

perturbation ceases. In contrast, a chaotic system is unpredictable, and even the

smallest perturbation would lead to uncontrolled divergence from any desired trajec-

tory. On that account, the ambition of allowing for change and adaptability requires

that the system should not be in a stable ordered state, whereas the capability of

controlling the system depends on it not being in a fully chaotic state. It is this

logic that leads us to go beyond synchronization and attempt to explore what can

be found between the realms of order and disorder.

In this thesis we investigate several possible kinds of dynamical behavior observ-

able in systems of interacting phase oscillators. Our intention is to clarify some of

the aspects of the complex behavior encountered in the transition between synchro-

nization and chaos, between order and disorder. In particular, the emphasis will be

placed on the control of disordered states, and the different kinds of ordered and

coherent dynamical states that can be thereof induced.

In the first chapter, a review is given of the theoretical background and concepts

that will be used in this thesis. Mathematical tools are defined and a theoretical

framework is presented within which the work is developed. Additionally, a brief

review of the state of the research in this area is provided, and previous relevant

works are recounted.

In the second chapter we consider a system of globally coupled elements in which

a parameter representing a shift in the interactions allows us to regulate the behavior

and induce a transition between synchronization and desynchronization. In the

latter case, we consider the action of external global noise as a way to induce order

in the system and study how the manipulation of the parameters may enable us to

affect such states.

The third and fourth chapters may be considered as a conceptual unit. The for-

mer concentrates on the extension of the globally coupled case to complex networks

and possible transitions between different dynamical states. In particular, properties

of the high-dimensional network chaos and their dependence on the system parame-

ters are considered. In the latter, we study the possibility of using a global feedback
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mechanism as a method to control the high-dimensional chaos and induce coherent

patterns of activity in the system.



Chapter 1

Theoretical background

This thesis focuses on some of the possible dynamical patterns that may emerge

from the interaction of oscillatory elements. Models of phase oscillators have become

a general framework in the modern research of synchronization phenomena [17, 18,

19]. These models find their roots within the theory of dynamical systems, and they

are a very useful tool for the understanding of complex dynamics in large populations

of periodic elements.

The subject of this work is networks of interacting oscillators and the possible

coherent dynamical patterns that can be encountered between order and disorder.

To investigate this, we take inspiration in the progress made on the control of pattern

formation in oscillatory media.

In this chapter, relevant concepts of the theory of dynamical systems are pre-

sented, and the process of reduction to phase models is introduced. Basic properties

of networks are discussed, and a brief review of previous work on synchronization

phenomena in phase models is outlined, as well as the main aspects of control of

turbulence and pattern formation in oscillatory extended systems.

1.1 Oscillations in nonlinear systems

The second law of thermodynamics announces that closed systems must irreversibly

evolve towards a disordered, inert state. This inevitable descent towards thermody-

namic equilibrium usually occurs through dissipation of energy through some form

of friction. From this it follows that dynamics may be maintained in a system if

friction is eliminated.

Such is the case of a frictionless linear pendulum. The kinetic energy conferred

to a pendulum is periodically transformed to potential energy and back, resulting

in perpetual oscillatory dynamics. Oscillatory dynamics takes place with a certain
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amplitude given by the initial energy, and a perturbation sets the system to a differ-

ent orbit with a different amplitude. Such systems are called conservative, in that

energy is conserved in the evolution.

But for many systems, exchange of energy and matter with the environment is a

fundamental aspect of their nature. In this case, the second law of thermodynamics

is inapplicable, and oscillatory dynamics need not die out. In such systems, the flow

of energy through the system may give rise to ordered self-organized oscillations

which are stable against perturbations. Stable oscillatory dynamics appear as the

result of supply of energy, rather than because of its conservation. As such, as

long as energy is supplied to the system (for example, in the form of heat, chemical

reactants, light or mechanical energy) at the rate at which it is dissipated, activity

may be maintained and the system is found in a robust persistent dynamical state.

For this reason, such systems are often called active. This kind of activity can only

arise in nonlinear systems.

x

¶ x

¶ t

x

¶ x

¶ t

Figure 1.1: Comparison between conservative and dissipative sys-

tems. The trajectories in the phase space for different initial condi-

tions are plotted for (left) a frictionless pendulum, and (right) a Van

der Pol oscillator.

Let us compare these two different situations in two different systems, shown

in Fig. 1.1. In the first panel, the dynamics of a linear frictionless pendulum is

represented by plotting its velocity versus its position. Each value of the initial

energy conferred to the pendulum defines a specific orbit, which is maintained as

long as no other sources of energy or perturbations are present. Each of these orbits

are closed, and periodic oscillations persists for all times.

The situation is entirely different in the case of a nonlinear active oscillator, such

as the Van der Pol oscillator, shown in the right panel of Fig. 1.1. Starting from any

initial condition, this system goes to a unique cyclic trajectory that describes oscil-

lations with a well defined amplitude. If the system is perturbed, it will eventually

return to this closed trajectory, and oscillations persist robustly. Such oscillatory

behavior corresponds to an attractor. The frequency and amplitude of these oscil-

lations, which are properties of the attractor, depend not on the initial conditions,
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but on the parameters that characterize the rate at which energy is supplied and

dissipated.

The study of the effects of nonlinearities is a central concern of the theory of

dynamical systems. Below we describe some formal aspects and concepts, and in-

troduce some of the tools utilized to understand the dynamics of oscillatory systems

within this context.

1.2 Dynamical Systems

A complete mathematical description of a system requires that there is a set of

variables {xi} that uniquely determine the state of the system at any given time.

Each state can thus be represented by a vector x = {x1, x2, . . . , xK}, where K is the

number of independent variables, and therefore, the dimension of the system. For

the systems plotted in Fig. 1.1, the phase space is two-dimensional, with x1 ≡ x

and x2 ≡ ∂x
∂t

. The set of all possible states is therefore a K-dimensional state space.

The evolution of a deterministic system is generally described by a set of ordinary

differential equation of the form

∂

∂t
x = F (x,p,h(t)) , (1.1)

where p represents a set of parameters that regulate adjustable properties of the

system, and h(t) accounts for external factors that may affect the dynamics of the

system and change in time independently of its state. If these factors are absent,

that is, if h(t) ≡ constant, the system is called autonomous, which stresses the fact

that its dynamics only depend on the system’s own state. This is not to say that

the system is closed. Indeed, the components of the vector of parameters p may

stand for a constant input and output of energy and matter. Nevertheless, the fact

that these parameters do not depend on time implies that the characteristics of the

environment are maintained constant.

To find a solution to Eq. (1.1) we must specify a state of the system at a given

time, for example, t = 0. x(0) is thus an initial condition which defines a unique

trajectory in the phase space consisting of the points x(t) for all values of t.

1.2.1 Attractors

The behavior of a dynamical system is often characterized by the existence of in-

variant sets. These are sets of points in the phase space such that, if we take an

initial condition within the set, then the trajectory will remain inside the set for all

times1. A set S is said to be invariant if, for any point x(0) ∈ S, then x(t) ∈ S for

all t, where x(t) is a solution to Eq. (1.1).

A special kind of invariant set is one for which all trajectories in a finite neigh-

borhood of it asymptotically approach the set. Such sets are called attractors. An

attractor is an invariant set A to which all trajectories with initial conditions in a

vicinity of A converge in the infinite time limit. The set of all initial conditions for

1This is sometimes referred to as forward or positive invariant.
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which the trajectory converges to A is referred to as A’s basin of attraction. If a

perturbation throws the system out of the attractor but leaves it in its basin of at-

traction, then the system will return to the attractor after a certain time. Therefore,

an attractor, as an invariant set, is always stable.

A less restrictive criterium is that of neutral stability. A state or set of states is

neutrally stable when small perturbations from them leave the system in a vicinity

of the initial state for all times, although the original state is not reached again.

This is the case of a ball on a flat horizontal patch of grass: the ball rests in a point,

but when it is slightly perturbed, it will rest in another point without diverging. In

this example, all points in the patch are neutrally stable.

Invariant sets may also be unstable. In this case, the invariant set is not sur-

rounded by a basin of attraction, and any perturbation that brings the system out

of the attractor will cause the trajectory to separate from it. As such, unstable

invariant sets may form “barriers” that the system will never cross on its own, and

the dynamics of the system may be radically different depending on whether it is

initialized on one or the other side of a given unstable invariant set.

A dynamical system like (1.1) may have a variety of invariant sets. They may be

manifolds of different dimensions, entire regions of the phase space or other kinds of

sets. Further more, their number, characteristics and stability may depend on the

particular choices for the values of parameters p. When the stability or the number

of invariant sets change by varying the value of a parameter, it is referred to as a

bifurcation, and the particular value of the parameter at which this transformation

takes place is called a critical value.

Different kinds of invariant sets can be found in dynamical systems. Below we

briefly describe the four main categories in which they can be grouped.

Fixed Points

The simplest case of an invariant set is that of a fixed point. A fixed point is a specific

point in state space for which the dynamics is frozen. Such a point is defined by the

condition

F (x0,p) = 0 , (1.2)

so that the system is in a stationary state in which

x(t) ≡ x0 = constant. (1.3)

If the system is initially set to the state x0, it will remain in that state for

all times. Whether this state is actually reached by the system from other initial

conditions depends on the stability of the fixed point. A stable fixed point is one

for which perturbations are damped, and the system’s evolution restores it to this

state. If it is instead unstable, perturbations will grow in time, and the system will

never return to this state.

A perturbation is a small displacement in the coordinates by δx =

(δx1, δx2, . . . , δxK). If x(t) is a solution to Eq. (1.1) Then the evolution of

the perturbed system is given by

∂

∂t
[x + δx] = F (x + δx,p) . (1.4)
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Linearizing, one obtains

∂

∂t
x +

∂

∂t
δx = F (x,p) + J [F (x,p)] · δx , (1.5)

where J is the Jacobian matrix whose components are

Jij [F(x)] =
∂Fi(x)

∂xj
. (1.6)

The first terms in both sides of Eq. (1.5) cancel out according to Eq. (1.1). Thus,

we obtain an evolution equation for the perturbation that reads

∂

∂t
δx ≈ J [F (x(t),p)] · δx . (1.7)

In the case that x(t) = x0 is a fixed point, then J [F (x0,p)] is a constant matrix,

and the solutions to Eq. (1.7) have the form

δx(t) ≈ δx(0) exp (J [F (x0,p)] × t) . (1.8)

If the initial perturbation is parallel to one of the eigenvectors ek of the matrix

J [F (x0,p))], then the evolution of this perturbation would be

δx(t) ≈ δx(0) exp(κkt) , (1.9)

where κk is the eigenvalue corresponding to eigenvector ek. If the eigenvectors form

a base, any perturbation can be decomposed into its projections on this base. The

evolution in a vicinity of the fixed point is thus determined by the eigenvalues {κi} of

the Jacobian matrix evaluated at the fixed point, and the dynamics is exponential.

If all eigenvalues are real, the fixed point is referred as a node. Each eigenvector

defines a direction, and the sign of the associated eigenvalue decides whether this

direction is stable or unstable, i.e., whether perturbations along this direction will

grow or shrink. If all eigenvalues are negative, then the magnitude of any small

perturbation from x0 decreases in time, and the system is restored to the fixed

point. Therefore, the node is in this case stable. If, on the other hand, at least

one of the eigenvalues is positive, any perturbations with a non-zero projection to

the eigenvector corresponding to this eigenvalue will grow in time, and the node is

unstable. A depiction of these situations in the two-dimensional case is presented in

Fig. 1.2.

It is also possible that some of the eigenvalues form pairs of complex conjugates.

In terms of Eq. (1.9), the presence of complex eigenvalues signifies that, apart from

approaching or leaving the fixed point, the trajectory will rotate around it with a

frequency equal to the magnitude of the imaginary part of the eigenvalue. This kind

of fixed point is referred to as a focal point. Provided that all other eigenvalues are

negative, the real part of the pair of complex eigenvalues decides the stability of the

focus. If the real part is negative, then the focal point is stable, and the trajectory

wraps around it in an inwards-directed spiral. In the case of a positive real part,

the spiral is directed outwards, and the trajectory goes away from the focal point.

Thus, such a focal point is unstable.
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(b) (c)(a)
λ1, λ2 < 0 λ1 < 0, λ2 < 0 λ1, λ2 > 0

Figure 1.2: Different kinds of nodal fixed points in a two-dimensional

dynamical system. (a) Both eigenvalues of the Jacobian are negative

and the node is stable. (b) One eigenvalue is positive and the trajec-

tories diverge in the direction of the corresponding unstable manifold.

(c) Both eigenvalues are positive and trajectories diverge in all direc-

tions.

It is clear that not only the position but also the stability of a given fixed point

may depend on the values of the parameters p1, p2, . . . , pM . By manipulating one

or more of these parameters we may change the stability of the focal point. This is,

for example, the kind of bifurcation that takes place in the case of the system

ẋ1 = ax1 + x2 , ẋ2 = −x1 + ax2 , (1.10)

where ẋj ≡ ∂xj

∂t
. For this system there is only one fixed point at the origin, which

is stable if a < 0 and unstable if a > 0. The system has thus a bifurcation at a = 0

where the stability of the fixed point is exchanged. At the critical point a = 0, the

fixed point is neutrally stable and the system is conservative. For all initial condi-

tions, the trajectory in the phase space will rotate around the focal point without

collapsing to it or going away, as happened in the case of the frictionless pendulum

in Fig. 1.1a. The amplitude of this rotation is given by the initial conditions, and it

is maintained in time. In Fig. 1.3, the different kinds of typical behavior are shown

for different initial conditions.

Nonlinearity, limit cycles and chaos

The existence of a fixed point is tied to condition (1.2). When F is a linear function

of x, then (1.2) is a set of K linear equations with K unknowns. As such, it either

has an infinite number of solutions (meaning that all states are fixed points), it has

none or it has a single fixed point. In this latter case, Eq. (1.7) is exact, and the

evolution of a perturbation necessarily follows an exponential law. Thus, unless the

system is in a critical situation of neutral stability, it can only collapse to a single

stable state, or its trajectories will grow indefinitely.

Quantities that grow to infinity are usually not physically meaningful. Therefore,

it is very often necessary to include nonlinear contributions. Nonlinearities can
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a < 0

(a)
a = 0

(b)
a > 0

(c)
Figure 1.3: Change of stability of the focal fixed point in Eq. (1.10)

when changing parameter a. (a) The fixed point is stable for negative

values of a and the orbit spiral towards it. (b) At α = 0 all orbits are

circular, and the fixed point is neutrally stable. (c) When a > 0 it is

unstable, and all orbits get away from it in reversed-rotating spirals.

drastically reduce the tractability of the system, but the presence of nonlinear terms

also allows for a greater richness in behavior.

A simple but important extension is obtained by introducing nonlinear terms in

Eqs. (1.10) in the form

ẋ1 = ax1 + x2 − x1(x
2
1 + x2

2) ,

ẋ2 = −x1 + ax2 − x2(x
2
1 + x2

2) . (1.11)

This system also has a single fixed point at the origin, and the analysis of its stability

yields the same results as for system (1.10). Nevertheless, the linear expansion (1.7)

ceases to be valid far away from the fixed point. If we write these equations in polar

coordinates, the equations for the radial and the angular variable can be decoupled.

The angular variable increases at constant rate, and the equation for the radial

coordinate r =
√

x2
1 + x2

2 is

ṙ = ar − r3 . (1.12)

When a < 0, Eq. (1.12) has only one stable fixed point at r = 0. However, if a > 0

this equation has another fixed point r =
√

a, which is stable, and r = 0 is instead

unstable. This implies that the dynamics of the system will converge to a circle of

radius r =
√

a, starting from initial conditions both inside and outside the circle.

This circle is therefore an attractor, and it is a closed trajectory along which the

system evolves perpetually with a constant period. Since all trajectories converge to

it in the infinite time limit, it is called a limit cycle. The bifurcation here depicted

is the well-known Andronov-Hopf bifurcation2. An example of different trajectories

2This type of bifurcation is often further classified into subcritical and supercritical. The consid-

ered example belongs to the latter category.
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for both a < 0 and a > 0 can be seen in Fig. 1.4.

a < 0

(a)
a > 0

(b)
Figure 1.4: Change of stability of a focal point with the appearance

of a stable limit cycle in system (1.11). (a) The fixed point is stable

for negative values of a and all orbits spiral towards it. (b) When

a > 0 the origin is unstable, but all trajectories go towards a stable

circular limit cycle with radius
√

a.

The motion along a limit cycle has a specific frequency for a given set of parame-

ter values. In systems with at least three variables, several different bifurcations may

lead to superimposed rotations with different frequencies, all of them present simul-

taneously. For example, the system might move on the surface of a torus, wrapping

around it and rotating around the symmetry axis with different frequencies. If the

ratio of these frequencies were an irrational number, the trajectory would not be a

closed curve, as it would never pass through any point twice. This kind of behavior

is known as quasiperiodic.

In a quasiperiodic attractor, the distance between two orbits that have started

from close initial conditions remains —at least on the average— constant. However,

in systems of three or more dimensions, there is a fourth kind of attractor in which

close trajectories always separate while remaining in a confined region of the phase

space. Such attractors are called chaotic. This separation of close trajectories implies

an extreme sensitivity to initial conditions. Indeed, if close trajectories separate, two

trajectories starting from very similar initial conditions will eventually be far away

from each other.3

When attempting to predict the evolution of a system, perhaps through numer-

ical computation, we need to consider that a certain error is necessarily made in

determining its initial state. For a system in a chaotic attractor, no matter how

3Since the Jacobian matrix in Eq. (1.7) is not constant in this case, Eq. (1.9) is not applica-

ble. However, it is usually accepted that the separation of close trajectories in chaotic systems is

approximately exponential [20].
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small this error is, rapid separation of close trajectories implies that this error will

grow with every time iteration, eventually rendering the prediction invalid, even if

the computation could be carried out with infinite precision.

A common property of chaotic attractors is that their geometry in the phase

space is often very complex. This is clearly seen in the embedding dimension of the

attractor. In the case of fixed points and limit cycles, there is no question of the

dimension of such attractors: as any single point, a fixed point has dimension 0;

and a limit cycle (a closed curve) has dimension 1. Quasiperiodic attractors may

be of any higher dimension, depending on how many different rotation modes they

include. If, for example, the system moves on the surface of a torus, the dimension

of the attractor is 2.

When it comes to chaotic attractors, it is usually found that their geometry

is more intricate, and standard definitions of dimension —like the box-counting

dimension4 or the Hausdorff dimension— yield non-integer values [21, 22]. In the

terminology of Mandelbrot, such kinds of objects are called fractals. Below in Sec.

1.2.2 we introduce the particular measure of embedding dimension that will be used

in this work.

1.2.2 Lyapunov exponents

The distinctive property of systems with chaotic attractors is their sensitivity to

initial conditions. If we consider a trajectory x(t) in the attractor, then this sensi-

tivity implies that another trajectory with initial conditions x(0) + δx, no matter

how small δx is, will quickly become separated from x(t). For small displacements,

this separation is approximately exponential in time [20].

Of course, the rate of separation may change from point to point in the tra-

jectory, or may even become negative. The sensitivity to the initial conditions is

therefore a property that should take into account all points of the trajectory. This

is characterized by the quantity

λ1(x(0), δx(0)) = lim
t→∞

1

t
ln

( |δx(t)|
|δx(0)|

)
, (1.13)

which is called the maximal Lyapunov exponent. Sensitivity to initial conditions

requires that this quantity be positive. Since δx(0) is infinitesimal, then so will be

δx(t) for all times, and Oseledec’s multiplicative ergodic theorem guarantees that

the limit exists under very general conditions. In principle, this limit will depend

on the initial condition x(0) and initial perturbation δx(0). Nevertheless, roughly

speaking, we can imagine that the trajectory will cover the entirety of the attractor

in the infinite-time limit. Therefore, we can expect that the value λ1 will be the

same for all initial conditions in the attractor.

As we have seen before, the stability properties of a fixed point are determined

by the Jacobian matrix of the system, more specifically by the eigenvalues of the

Jacobian of the equations of motion evaluated at the fixed point. However, other

attractors for which the dynamics of the system persist may not be analyzed in this

4Also known as the MinkowskiBouligand dimension.
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way. Therefore, other characteristics should be analyzed to determine the stability

and other properties of an attractor.

Different criterions for stability exist. In general, the strongest criterion is that

of asymptotical stability which roughly means that all trajectories in a close (finite)

neighborhood of an attractor will converge to it in the infinite-time limit. If we take

all points in the K-dimensional volume of this neighborhood as initial conditions for

the system and let them evolve independently, then after infinite time this volume

will be collapsed to the volume of the attractor, which is necessarily smaller then the

initial volume of the neighborhood. The existence of an attractor therefore requires

that the volume in its vicinity is compressed by the evolution.

At any point x0 in the phase space, we may in the same way choose a K-

dimensional sphere with center at this point and infinitesimal radius δr, so that its

volume is V0 = π(δr)K and all points in the sphere may be considered to be initial

conditions for different trajectories. After an infinitesimal time of evolution δt, the

sphere will be deformed by the evolution. According to Eq. (1.7) the evolution of

this sphere will be governed by the Jacobian matrix of the system. If we assume

that J [F (x0(0))] ≈ J [F (x0(δt))], then the sphere will stretch and compress approx-

imately along the directions of the eigenvectors ek of the Jacobian matrix, according

to the associated eigenvalues κk. In this infinitesimal evolution time, the sphere

with radius δr will become an ellipsoid with K principal radii δr1, δr2, . . . , δrK ,

where the ordering is taken according to decreasing size. It will therefore be that

δrj ≈ δr exp (κjδt), and then the volume after the infinitesimal evolution time will

be

V0(δt) ≈ π

K∏

i=1

δr exp(κiδt)

≈ V0(0) exp

[
δt

K∑

i=1

κi

]
. (1.14)

If the sum of the eigenvalues is negative, then the volume in the phase space in the

vicinity of x0 will shrink. A schematic representation of this is shown in Fig. 1.5.

The eigenvalues of the Jacobian κi depend on the point at which the Jacobian

is calculated. Consequently, the rate of compression or expansion of a volume in

the phase space is different at each point of a given trajectory, and the directions

along which it stretches and contracts change. To construct properties that char-

acterize the entire attractor rather than a given point, we let such an infinitesimal

K-dimensional sphere of infinitesimal radius δr and center at x0(0) evolve for a

long period of time t . The sphere will in general deform to an K-dimensional

ellipsoid, whose center is at x0(t) and whose principal axes can be identified as

u1(t), u2(t), . . . , uK(t), where the order is such that the principal radii δri(t) associ-

ated with each axis ui are in decreasing order, that is δr1(t) > δr2(t) > . . . > δrK(t).

If x0(0) is a point inside the attractor, we can consider the limits

λi = lim
t→∞

1

t
ln

( |δri(t)|
|δr|

)
, (1.15)
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Figure 1.5: Evolution of a sphere of infinitesimal radius δr in the

phase space. After a small time t, the sphere is deformed to an ellip-

soid with radii δrj(t) in the orthogonal directions.

which, under very general conditions, exist and are independent of the center of

the sphere of initial conditions. The K quantities λi constitute the full spectrum

of Lyapunov exponents. They determine the rates of compression or expansion of

volume in the phase space in different directions along the trajectories inside the

attractor. For λ1, this definition is equivalent to 1.13. Therefore, λ1 measures the

average rate of expansion or compression along the direction of maximum stretching

(or minimum shrinking) at each point in the attractor. Since the principal axes of an

ellipsoid are orthogonal, λ2 determines the average maximal rate growth or minimal

rate of shrinking in the subspace orthogonal to the direction of maximum growth

or minimal shrinking. In this sense, all Lyapunov exponents measure the rates of

expansion and contraction in a recursive series of nested orthogonal subspaces.

The Lyapunov exponents provide a convenient way of characterizing the attrac-

tor, and thus the dynamics of a system. The fact that an attractor exists requires

that the sum of all Lyapunov exponents be negative, since the contrary would imply

that the volume in the phase space grows unboundedly. The presence of an attrac-

tive fixed point requires furthermore that all of them be negative, since any volume

within the basin of attraction should shrink in all directions until collapsing to a

point.

If the maximal exponent were to be zero and all other negative, this would

mean that all trajectories collapse to a line, on which they remain, in the average,

at constant distance from each other. This is what is encountered, when a stable

limit cycle is present. Similarly, if the k largest exponents are zero and the rest

are negative, we can infer that the trajectories will collapse to a k-dimensional

quasiperiodic attractor. However, if the system is in a neutrally stable state, any

trajectory in its close vicinity will remain close but always at a finite distance.

Therefore, the maximal Lyapunov exponent would also be zero in this situation.

A chaotic attractor is characterized by a positive (non-zero) maximal Lyapunov

exponent λ1. However, as we have seen, the presence of an attractor requires that

the mean value of the Lyapunov spectrum be negative. The case in which the sum of

Lyapunov exponents is negative, but more than one of them is positive is sometimes
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referred to as hyperchaos.

Exact determination of Lyapunov exponents in numerical simulations is impos-

sible, and therefore only estimations can be made. For numerical calculation, the

main problem lies in the assumption that a single trajectory should cover all points of

the attractor. For many attractors, in particular chaotic attractors, this assumption

may be far from being true for any finite time. Nonetheless, it can be shown that

for well behaving systems, convergence to asymptotic values occurs rather quickly,

so that a suitable estimation can be reached in reasonable computation times.

Numerical calculation

Computing the trajectories for infinitely many initial conditions in a sphere of in-

finitesimal radius for an infinitely long time is obviously impossible in a numerical

integration. Approximate numerical methods for the calculation of the Lyapunov ex-

ponents assume that the behavior of the trajectories for all initial conditions within

the sphere can be accounted for with a finite number of them. A standard such

method is the one introduced by Benettin et al. [23] and Shimada and Nagashima

[24].

In numerical integrations of the equations of motion, time is divided in in discrete

increments ∆t. Moreover, since infinitesimal perturbations cannot be accounted for

with a limited numerical precision, the evolution of perturbations needs to be ana-

lyzed in the tangent space of a trajectory, that is, by tracking the evolution of finite

perturbation vectors according to the linearized system, where the linearization takes

place at each point of the non-linearized, unperturbed trajectory. The perturbation

vectors evolve according to Eq. (1.7). If x0(t) represents the trajectory whose initial

condition is x0(0), then each perturbation vector δxj , after an integration time-step,

will be

δxj(t + ∆t) ≈ ∆t × J [F (x0(t))] · δxj(t) + δxj(t) . (1.16)

Recursively, the evolution of such a perturbation can be tracked over long periods

of time for each perturbation vector as

δxj(M∆t) ≈
[

M∏

m=0

∆t × J [F (x0(m∆t))] + I

]
· δxj(0) , (1.17)

where I is the identity matrix. If K perturbations are set to evolve simultaneously

according to 1.17, they will all rapidly align with the direction of maximum elon-

gation beyond numerical precision. To avoid this, a process of orthonormalization,

such as the Gram-Schmidt method, must be applied to the set of perturbation vec-

tors after a certain number of iterations. This orthonormalization must follow a

decreasing order in the magnitude of the perturbation to preserve the growth or

shrinking of volume in the phase space along perpendicular direction. The first vec-

tor of the orthonormal base will therefore coincide in its direction with the largest of

the perturbation vectors at the end of the evolution time. After such a process has

been applied, an approximate value for the Lyapunov exponents can be calculated

from the projection of the perturbation vectors to the orthonormal base. More in-
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formation on the method to calculate the Lyapunov exponents is provided in Ref.

[25].

Kaplan-Yorke dimension

The existence of an attractor implies that any expansion along certain directions in

the phase space should be compensated by contraction along other directions. Thus,

the dimension of an attractor may be characterized by the number of such orthogonal

directions along which the expansion and compression balance out. This is the idea

behind the definition of the Kaplan-Yorke measure of embedding dimension of an

attractor [26], given by

DKY = q +

∑q
i=1 λi

|λq+1|
, (1.18)

where q is an integer such that

q∑

i=1

λi > 0,

q+1∑

i=1

λi < 0 . (1.19)

If λ1 < 0, then the Kaplan-Yorke dimension is zero, as corresponds to a fixed

point. Generally, DKY specifies the number of directions in the attractor necessary

to balance out expansion and compression. Note however that the definition (1.18)

may yield non-integer values. As was discussed before, this is what occurs for chaotic

attractors, since the geometry of such object is in general fractal.

There are several different measures of embedding dimension. Whether the

Kaplan-Yorke dimension coincides with other methods has never been mathemat-

ically proved, and the debate is ongoing. Still, numerical calculations for different

systems give satisfactory results, and the Kaplan-Yorke dimension is a broadly used

measure to determine the embedding dimension of attractors in dynamical systems.

1.3 Oscillators

Dynamical systems may have any number of degrees of freedom. Thus, a limit

cycle may be embedded in a phase space of any dimension, as a result of highly

nonlinear coupling between variables. The analytic treatment of such systems is

rarely possible.

Even for tractable cases, taking into account interactions between a large number

of elements in limit-cycle oscillations may be a futile task. However, the problem can

be greatly simplified if only weak interactions are considered, such that deviations

from the limit cycle are small. In this case, the number of effective degrees of freedom

can be greatly reduced. Within this framework, general models can be constructed

in which the interactions of oscillatory elements can be studied. Below we present

essential ideas of the reduction method.
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1.3.1 Phase reduction

The system 1.12 has a stable limit cycle with constant radius r =
√

a, whereas the

angular variable θ(t) evolves according to equation

θ̇ = t . (1.20)

The evolution in state space consists of rotations at constant angular velocity. For

a fixed value of the parameter a, the trajectory in the limit cycle is fully described

by the angular variable.

x

¶ x

¶ t

cosHΘL

sinHΘL

Figure 1.6: Mapping of a limit cycle in a dynamical system (Van

der Pol oscillator) to the unit circle. Subsequent dots in the left panel

are visited in equivalent time intervals. Subsequent dots in the right

panel correspond to exp(iθ(t)) for equivalent phase intervals, so that

θ̇ = 2π/T .

In most systems of interest, a periodic attractor will be much more complicated

than the attractor of system (1.11), involving many variables that change at different

rates. Nevertheless, no matter how complicated a limit cycle may be, it will always

be a closed curve, and therefore can be mapped to a circle. Hence, a system in

a limit cycle can always be described by a single variable called the phase of the

oscillation, such that it increases linearly in time from 0 to 2π, and is bounded to

this range5. Thus, the phase describes the progress of the system along the periodic

attractor.

The introduction of the phase variables implies the need of finding a mapping

that projects the stable limit cycle to a circle, given by x → θ(x). Furthermore,

each point in the limit cycle should be mapped to a point on the circle in such a way

that any pairs of points on the limit cycle visited with a constant time difference

should be mapped to a point on the circle with a constant phase difference. This

leads to the condition,
∂θ(x(t))

∂t
= constant =

2π

T
, (1.21)

5The phase variable operates under a modular arithmetic with modulo 2π. Consistently, all

functions involved are 2π-periodic.
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where T is the period of the limit cycle. In Fig. 1.6, such a mapping is shown for

the Van der Pol oscillator.

When two or more systems involved in periodic oscillations interact, it is gen-

erally the case that each of them will be pushed off of the limit cycle on occasion.

If the interactions are weak enough, these deviations from the limit cycle will be

small, and the system will not leave the basin of attraction of the limit cycle. For

this reason, it is important that the definition of a phase variable not be restricted

to the limit cycle, but be also valid in its vicinity.

I(θ)

x1(0)

x2(0)
x0(0)x0(t) ≈ x1(t) ≈ x2(t)

Figure 1.7: Schematic representation of an isochronous surface in

the vicinity of a limit cycle. Two states are assigned the same phase

value if the distance between them vanishes in the infinite time limit.

In general, every point in the basin of attraction may be identified with a given

phase value according to where it will land on the limit cycle after infinite time has

passed. If x0(0) is a point on the limit cycle, then x0(t) will be on the limit cycle for

any time t, and θ(x0(t)) is the phase of each point in the limit cycle, defined up to

a constant value in [0, 2π). We can therefore also say of all points x(t) in the basin

of attraction, such that

lim
t→∞

|x0(t) − x(t)| = 0 , (1.22)

that θ(x0(t)) ≡ θ(x(t)). Each point in the limit cycle thus defines an isochronous

surface I(θ) of states that will coincide on the limit cycle after infinite time, and all

points on this surface are assigned the same phase value. Small perturbations from

the periodic attractor may thus be accounted for as changes in the phase value of the

trajectory, according to the isochronous surface to which the perturbed state belongs.

Therefore, we can reduce the effective degrees of freedom of any K-dimensional

system in the vicinity of a stable limit cycle to a 1-dimensional description of phase

dynamics. This mathematical process is usually referred to as phase reduction.

This kind of formalism is very useful, in that it allows us to describe an enormous

class of systems by a generic model involving extremely simple mathematical objects

called phase oscillators, whose dynamics is given by a single variable. Conversely,
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results found for such simple systems can be transferred to the dynamics of complex

oscillators whose perturbations are small enough to allow such a phase description.

1.3.2 The Kuramoto model

Within the framework of phase-reduced systems, the interactions between different

oscillatory systems are greatly simplified. If a set of N oscillatory systems of the

form 1.1 is considered, then the equation for the i-th element will generally have the

form
∂

∂t
xi = Fi

(
xi

)
, (1.23)

where xi ∈ RK . If these systems interact with each other weakly, their equations

become
∂

∂t
xi = Fi

(
xi

)
+ ǫGi

(
x1,x2, . . . ,xN

)
, (1.24)

with the small parameter ǫ ≪ 1 indicates the weak intensity of the interaction.

Assuming that each of these systems has a stable limit-cycle attractor of period T i

for ǫ = 0, the phase reduction formalism tells us that there is a continuous mapping

that projects the solutions of Eqs. (1.24) to the N -torus, where the solutions are

described by
∂

∂t
θi = Ωi + ǫHi (θ1, θ2, . . . , θN , ǫ) , (1.25)

where Ωi = 2π/T i. It can be shown that if the frequencies of the different interacting

systems are similar, this mapping can be chosen in such a way that the coupling

function takes the form

∂

∂t
θi = Ωi + ǫhi (θ1 − θi, θ2 − θi, . . . , θN − θi, ǫ) + O(ǫ2) , (1.26)

where hi(θ) are 2π-periodic functions.

Y. Kuramoto [5] used a perturbation method of time-averaging to derive a sim-

pler expression. By making variable change in the form θi = Ωt+φi, the system can

be analyzed in terms of how it deviates from collective oscillations. The variables

φi are sometimes called phase deviation variables. With this method, Y. Kuramoto

showed that the phase reduced system for weakly coupled, nearly identical limit-

cycle oscillators generally is

∂

∂t
φi = ωi + ǫ

N∑

j=1

Γij(φi − φj) , (1.27)

where the interaction between each element and the environment is given as a su-

perposition of its pair-wise interactions with each other element in the ensemble.

Functions Γij can be further expanded in Fourier series, of which commonly

only the first order terms are retained. With this approximation, the general model

becomes

∂

∂t
φi = ωi +

N∑

j=1

Kij sin(φj − φi + αij) (1.28)
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where αij is a natural phase shift in the interaction, and Kij characterizes the

intensity of the interaction between different pairs of elements. The presence of the

phase shifts αij makes the analytic treatment of this model complicated, and they

are often omitted. The role of phase shifts as a factor that introduces frustration

in the system has been discussed by Daido [27], who considered the special case in

which the phase shifts are either 0 or π. Then, interactions may be attractive or

repulsive, and frustration may lead to interesting dynamics [28]. However, these

phase shifts may be of great importance for reasons that we see below.

As a simple case, Y. Kuramoto considered the situation in which all interactions

between the elements are equally weighted. This allows the system to be studied

within a mean-field approach. This leads to the system commonly known as the

Kuramoto model, given by

∂

∂t
φi = ωi +

µ

N

N∑

j=1

sin(φj − φi) (1.29)

The Kuramoto model as given by Eq. (1.29) is the cornerstone for studies of syn-

chronization phenomena. Many variations and extensions of this model have been

investigated, and its mathematical implications have been explored extensively [29].

1.3.3 Phase shifts as time delays

The model (1.24) describes oscillatory elements coupled in such a way that the state

of each element affects all others at a given time. An extension to this model is

needed when the interactions take place through the transmission of information

between elements, so that a certain time delay exists in the coupling function.

As a simple case, let us consider the situation when all the time delays are the

same. The equations are

∂

∂t
xi(t) = Fi

(
xi(t)

)
+ ǫGi

(
x1(t − τ),x2(t − τ), . . . ,xN (t − τ)

)
(1.30)

It has been proven by Izhikevich and Hoppensteadt [30, 31] that if the phase shift

is small enough —namely, if τ ≪ ǫ−1— then a phase reduction can be performed

such that in the phase model the time delay is no longer explicit, but only a phase

shift appears in the equation. The general form of such phase model would be

∂

∂t
θi = Ωi + ǫhi (θ1 − θi − α, θ2 − θi − α, . . . , θN − θi − α) + O(ǫ2) (1.31)

where α = τΩ mod 2π and the functions hi are the same as in 1.26. The presence

of time delays in the original system is thus translated to the phase model in the

form of phase shifts. As we mentioned before, phase shifts are often discarded in

the studies of the Kuramoto model. We now see that considering these phase shifts

not only addresses a more general problem, but also allows to take into account the

effect of time delays in the interactions. Phase shifts can also appear when higher

harmonics in the functions Γij(φ) are considered, which can lead to very interesting

dynamics [32, 33, 34, 35, 36]. The presence of phase shifts in the interactions between

pairs of elements plays a leading role throughout this work.
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1.4 Networks

Figure 1.8: Different paradigms for networks. (a) All-to-all or global

coupling, (b) lattices and (c) directed networks.

In systems of interacting elements, the interactions between them may take di-

verse forms. The specific set of interactions can be a fundamental property of a

system, on which its functioning or stability may be entirely dependent. In Fig. 1.8,

three different examples of interaction orgnization are shown.

Fig. 1.8a correspond to global or all-to-all coupling. Here, each element inter-

acts with all others in the same uniform and reciprocal way. This may be a valid

approximation to a situation in which interactions have no dependence on the spa-

tial distance between the elements, as occurs when the coupling takes place through

a fast-diffusing chemical agent. In such cases, it is usually possible to analyze the

system within a mean-field approach.

The case in Fig. 1.8b corresponds to a lattice. Each element occupies a point in a

regular grid and interacts reciprocally and uniformly with its neighboring elements.

The number of elements with which each element interacts is directly proportional

to the dimension of the system. This is a typical representation of systems for which

the spatial distribution of the elements is the decisive factor in determining the

pattern of interaction (for example, where interactions are a function of the physical

distance between the elements). In this approach, each connection has the same

associated distance in Euclidean space. The continuous limit can be reached when

this distance goes to zero as the number of elements is increased.

A more general case is that in which the interactions take place only between

certain prescribed pairs of elements. The resulting networks may be highly heteroge-

neous and may have complex topological properties. A diagram of such a network is

shown in Fig. 1.8c. This situation can be found when interactions depend not only

on the distance between elements, but also on several other factors, as it happens

with networks of trains traveling between stations, logistic and distribution net-

works, streets connecting intersections or dendrites and axons connecting neurons.

The connections may be established through a growth process, as in the case of the

links between webpages in the World Wide Web or the growth of tubular hyphae in

mycelial fungi [37]; or result from specific requirements, as happens with conveyor
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belts between machines in a factory and in logistic netwroks [38, 39]. The structure

of networks can moreover result from a predominantly random process. This may

be the case, for example, in social networks, where the factors that lead a person to

interact with another one may be largely accidental [40].

Another important aspect of networks is that they may exhibit non-reciprocal

interactions, as is indeed the case in all the examples given above. This is a property

that may not be particularily relevant for physical systems, but can be crucial for

technological and biological applications.

It is important to point out that the diagrams presented in Fig. 1.8 are arbitrary

graphical representations of three given networks. The particular layout, that is, the

location of each point in the drawing, is chosen for each of them as to facilitate

understanding. However it must be kept in mind that the connections the between

elements are an abstract concept. Any deformation to these schematic representa-

tions consisting of moving the points by keeping them linked to the same neighbors

correspond to the same network.

1.4.1 Aspects of Network Theory

Networks constitute a broad category that incorporates all patterns of interaction

whose description accepts a scalar representation of the pair-wise interactions. The

mathematical abstraction of a network is a graph, although in modern literature

both terms have become practically interchangeable [42]. In essence, a network is

simply a set of nodes6 or vertices, which represent the elements of the system, and a

set of edges or links, ordered pairs which correspond to each one of the interactions.

A simple way to represent a network is by its adjacency matrix A, whose elements

are aij = 1 if there is a directed link from node i to node j, and aij = 0 otherwise7. If

this interaction is reciprocal between all pairs of elements, that is, if A is a symmetric

matrix, the network is referred to as being undirected. However, for many interesting

systems it is a defining aspect that the interactions are not reciprocal. Instead,

interactions are unidirectional, i.e., carry information or material flow only in one

direction. In this work, we generally concentrate on directed networks, of which

global coupling is the limiting case with all connections present.

A weakly connected network is one which cannot be divided in two networks

without removing any edges. This means that a weakly connected network is one

single structure. A more stringent condition is that of strong connectedness: In this

case, any node may be reached from any other by transiting the links according to

their direction. For undirected networks, these two conditions coincide.

If a network is strongly connected, it means that from a given node i, any

other given node j may be reached by following the directions of the edges. This

establishes an ordered set or sequence of nodes that are transited together with the

edges between them. This sequence is know as a path from i to j, and the number

6This terminology is widely used in the literature. Nevertheless, the meaning of the word “nodes”

in this section is completely unrelated to the meaning given in Sec. 1.2.1.
7This is the case for unweighted networks. Weighted networks allow for a specific non-binary

quantity to characterize the intensity of each interaction. Such case will not be considered in the

present work.
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of edges transited is the path’s length. Of course, in a network there may be several

different paths leading from i to j. However, the shortest of these paths is the

most relevant8, and throughout this thesis, we will refer to the shortest path when

ambiguity may arise. It is clear that, in a directed network, the shortest path from

i to j need not have the same length as that from j to i.

For any pair of elements in a strongly connected network, the length of the

shortest path between them can be determined. The maximum of these lengths

amongst all ordered pairs of elements in a network is called the diameter. The

diameter of a network is an important quantitative property, in that it introduces

a sense of “maximum distance” between elements. The definition of diameter can

also be extended to weakly connected networks, by considering only the maximum

lengths amongst the shortest paths between pairs of elements for which a path

between them exists. A quantity similar to the diameter that can be calculated to

describe the properties of a network is its average path length, defined as the mean

value of the length of the shortest paths between all possible pairs of nodes in the

network. the

A characteristic aspect of networks is their heterogeneity with respect to nodes

nodes. In principle, each node may have a different amount of incoming and outgoing

connections. The number of edges that a given node i has is said to be its degree

ki. For directed networks, a distinction should be made between the indegree, or the

number of edges that are directed to the node, and the outdegree, or the number of

edges that connect the node to other nodes in the network. Therefore, we have

kin
j =

N∑

i=1

Aij kout
j =

N∑

i=1

Aji . (1.32)

Since an edge may only connect one node to another, the sum of the indegrees of all

nodes should be equal to the sum of their outdegrees, which equals the total number

of edges. If the number of nodes is N and the number of edges is M , then it is clear

that the the mean value of the degree is

〈kin〉 = 〈kout〉 =
1

N

N∑

i=1

N∑

j=1

Aij =
M

N
. (1.33)

The distribution of degree values in the network has for a long time been consid-

ered a defining feature of a network. It has been found that networks encountered

in many natural systems and systems subject to evolutionary processes have degree

distributions that follow power-laws and fat-tailed distributions. The distribution

of degrees in the network may play a very relevant role in the propagation of infor-

mation and its robustness [43, 44].

1.4.2 Random networks

In 1959, Paul Erdős and Albért Rényi made a statistical analysis of the expected

properties of a graph chosen randomly from the set of all possible graphs with N

8There still may be more than one with the same minimal length.



1.4 Networks 27

nodes and M edges [45, 46]. This gave rise to the theory of random graphs, but

also brought the idea of not only analyzing the statistical properties of an ensemble

of graphs, but of constructing a graph according to a random process. They sub-

sequently proposed a model in which a set of N nodes is connected in such a way

that each pair of elements would have an edge between them according to a certain

probability ρ.

Since each element can have at most N − 1 neighbors, and each of the edges to

these neighbors exists with a probability ρ, the probability that any given node has

k edges to other nodes is

PER(k) =

(
N − 1

k

)
ρk(1 − ρ)N−1−k . (1.34)

This degree distribution is the same for incoming and outgoing edges, and its mean

value is simply (N−1)ρ. Since there is no correlation between the degrees of different

nodes, such networks are said to have random structure. Other network models are

known to have more complex topological properties.

Erdős and Rényi derived a general description of statistical properties of networks

constructed in this way. This work awoke the interest of many mathematicians who

studied random graphs for decades, but the repercussions of these findings did not

have a great impact on other disciplines for almost forty years. In 1998 Watts and

Strogatz introduced their famous model, which consisted of a random process to

generate networks with properties that emulated statistical aspects of real social

networks [40]. This model inspired a myriad of investigations in diverse areas of

science, where network models play a central role.

The design of random processes for constructing networks with specific proper-

ties have permitted the development of models that emulate statistical aspects of

real-world systems. This was particularly prolific in the areas of social networks,

economic systems, and artificial networks like the internet or power grids. As stud-

ies continued to demonstrate that dynamical properties of different systems may

show an important dependence on the network topology, the need for more refined

models, as well as better measurements that captured the meaningful properties of

networks, lead to intense research in these fields [47].

Several models to generate networks that emulate the patterns of interactions

in systems of interest have been developed. Many of them rely on probabilistic

methods that are designed to describe the process of growth of a network, such as

the Barabasi-Albert preferential attachment growth model [48]. In this particular

model, the network is constructed as if nodes were aggregating to the system one

by one, connecting to already present nodes with a probability that is a function of

the number of edges they already have.

Robust properties of natural systems (whose millions of years of evolution may

be seen as an optimization process) are sometimes believed to be codified in their

network structure [49]. Attempts to characterize these aspects have led to the intro-

duction of increasingly sophisticated measures, such as assortativity, betweenness,

degree centrality or modularity.

Progress in network research has been extensively reviewed [43, 44, 50, 51]. Since

this work concentrates on general aspects of synchronization phenomena, we prefer to
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work with the simplest network models, obtained by connecting any pair of elements

in an uncorrelated way. Such random networks are of the Erdős-Rényi type, and

only they will be considered in this work.

1.5 Synchronization

The phenomenon of synchronization has intrigued scientists for centuries, probably

since the discovery of C. Huygens in 1665 that two almost identical pendulums hang-

ing from the same beam tended to oscillate with the same frequency and in opposite

directions. He called this a strange “kind of sympathy” between the pendulums, and

he further observed that if this oscillation state was perturbed, the counter-phase

oscillations were restored within a half hour. Huygens deduced that this remarkable

behavior arose from imperceptible movements and deformations of the beam, which

however small, over time lead the two oscillators to a stable state of synchrony [52].

In spite of its early start, a solid foundation for a theory of synchronization in

populations of interacting units was not established for centuries. It was first Arthur

T. Winfree who, already in his early publications put forth central ideas that would

be the catalyzer for many forthcoming works [56]. After Winfree’s death, Strogatz

[54] wrote: “Winfree’s first paper [53] concerned the mutual synchronization of

biological oscillators. How is it that thousands of neurons or fireflies or crickets can

suddenly fall into step with one another, all firing or flashing or chirping at the

same time, without any leader or signal from the environment? Norbert Wiener had

posed this problem in his book Cybernetics [55], but he did not make significant

mathematical progress on it, nor did anyone else until Winfree came along.”

Winfree formulated the problem in terms of large populations of interacting

elements, which would be mathematically intractable. However, he understood that

the problem would be greatly simplified if the elements were nearly identical, and

the interactions between them were weak enough. He proposed a model in which he

assumed that each element was coupled to a global field generated by all elements,

with equations of the form

φ̇i = ωi +




N∑

j=1

X(φj)


 Z(φi) , (1.35)

similar to the mean-field approximation in statistical physics [56]. With some nu-

merical simulations and analytical approximations, he found a temporal analog to a

phase transition leading to the spontaneous formation of clusters of oscillators that

freeze in synchrony.

Y. Kuramoto took up these ideas, and formulated them in more sound mathe-

matical terms [5, 57, 58]. With the use of the perturbative method of averaging, he

showed that Eq. (1.27) is a universal expression for weakly coupled, nearly identical

oscillators, where the functions Γij can be calculated from the original equations of

motion of the oscillators.

Even though this kind of phase reduction approach is a great simplification,

the analysis of large populations of weakly interacting, nearly identical oscillators



1.5 Synchronization 29

is generally too complex for analytical treatment. Kuramoto, as Winfree, acknowl-

edged that the mean-field case would be the most tractable, and therefore proposed

the simplest non-trivial case of equally weighted, uniform interactions, in which the

functions Γij are given by the first Fourier component. With this assumptions, he

derived a mean-fieald theory to describe the emergence of synchronization in large

populations of phase oscillators [5].

1.5.1 Synchronization in the Kuramoto model

The evolution equations of the Kuramoto model (1.29) may be further simplified by

introducing the global order parameter

Z ≡ R exp(iΦ) =
1

N

N∑

j=1

exp(iφi) . (1.36)

This order parameter has a clear geometrical interpretation. Let us imagine oscil-

lators swarming on the unit circle, where node j is represented by exp(iθj). As

illustrated in Fig. 1.9, the order parameter characterizes the rotation asymmetry

in the distribution of phases.. The modulus R determines how concentrated the

phases of all elements are, and is therefore known as phase coherence. Φ measures

the global phase of coherent rotations.

R measures the coherence of the elements, and is therefore a measure of the

spontaneous emergence of order in the system. However, other kinds of ordered

states can also be present in the system, which would yield R = 0. For example,

clustered states are highly ordered states that cannot be detected by parameter Z.

R

Φ

θj

eθj

Figure 1.9: Geometrical interpretation of the global order parameter

Z ≡ R exp(iΦ) = 1
N

∑N
j=1 exp(iφi).

In terms of these quantities, the Kuramoto model can be rewritten as

φ̇i = ωi + KR sin(Φ − φi) , (1.37)

where all equations are effectively uncoupled, and all elements only interact with

the global field which is generated collectively. This result corresponds to the model
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proposed by Winfree, but in the analysis by Kuramoto they emerge naturally as a

consequence of pairwise interactions between the elements.

Eq. (1.37) has the form of a mean-field coupling by which each oscillator is

affected by the global signal from all elements in the system. This constitutes a

positive feedback: if an asymmetry in the distribution of phases is present and a

non-zero magnitude of the Kuramoto parameter arises, the interactions will foster its

growth, which in turn will make the interactions stronger. A sort of circular causality

is thus present that leads to the emergence of self-organized global rotations.

In his analytical theory, Y. Kuramoto assumed that the frequencies ωi are dis-

tributed according to a unimodal probability density g(ω) which is symmetric around

the mean value Ω. In this formulation and in the infinite-size limit N → ∞, Ku-

ramoto found the existence of a critical value for the coupling strength Kc such that

for K < Kc all elements roam incoherently with different frequencies, and the order

parameter is R = 0. However, above the critical value K > Kc, a finite number

of elements become entrained in coherent rotations with the same average velocity,

yielding a finite value R > 0. Kuramoto found the analytical expression for this

critical value to be

Kc =
2

πg(Ω)
. (1.38)

A schematic representation of the dependence of the order parameter R on the

coupling strength is shown in Fig. 1.10.

In the particular case in which all elements are identical, that is, ωi = Ω for

all i, the distribution of the frequencies has the form g(ω) = δ(Ω − ω). From

expression (1.38), it can be deduced that the critical value of the coupling strength

is Kc = 0, and the system synchronizes for any positive value of K. In this case,

the dependence shown in Fig. 1.10 would be a Heavyside step function with a phase

coherence R = 1.

0
K

0

1

Kc

R∞

Figure 1.10: General form of the dependence of the average magni-

tude of the order parameter on the coupling strengh at the onset of

synchronization.

1.5.2 Synchronization of globally coupled identical oscillators

The Kuramoto model is a very useful approach to a great variety of systems [59]. In

the case of globally coupled identical oscillators, this model is even further simplified,
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given that all frequencies are equal, that is ωi = ω, and all interaction functions are

the same, namely Γij = Γ. However, the presence of higher harmonics or phase

shifts may introduce effects that cannot be captured with interactions of the form

(1.29).

However complicated the function Γ(φ) may be, it can be shown that the syn-

chronized state is stable against small perturbations if

∂Γ(φ)

∂φ

∣∣∣∣
φ=0

< 0 , (1.39)

and unstable otherwise [42, 18]. If we define a function F ≡ Γ(φ) − Γ(0), then

by rewriting Eqs. (1.27) with this definition we will see that Γ(0) determines the

velocity Ω of the synchronized state, and F is an attractive interaction in the vicinity

of the synchronized state if condition (1.39) is satisfied.

When condition 1.39 holds, it remains satisfied if we replace Γ → KΓ as long

as K > 0. Manipulating the intensity of the interaction will not destabilize the

synchronized solution when elements are identical. Therefore, synchronization is

stable without a threshold, that is, for any positive intensity K. A desynchronization

transition will therefore take place when this parameter crosses zero.

Such a transition may also be induced by changing parameters other than the

intensity. In Chapter 2 we will study the case in which this desynchronization

transition takes place when varying the phase shift value while keeping the intensity

of the interactions constant.

1.5.3 Synchronization on networks

The remarkable result that a population of interacting oscillators may spontaneously

develop synchronous coherent dynamics has attracted attention from different areas

of the scientific community, and many attempts have been made to try to extend

these results to more specific situations. Here we will discuss two aspects of the

model (1.29) and its analytical description that are pertinent to our investigations.

The analytical mean-field description one must assume that the number of ele-

ments is infinite. This is necessary to be able to assume the existence of a stationary

state in which the phases of all elements have a stationary density, even though

they rotate with different velocities, so that R remains constant. This renders the

analysis invalid for systems with a finite number of elements, and many attempts

have been made to solve this conflict [59]. Nevertheless, numerical simulations have

shown that the predictions of this theory are valid even far from the thermodynamic

limit [60, 61].

The second aspect of the model that has been extensively addressed is the uni-

form global coupling. Different interaction schemes have been devised [63], but the

most prominent approach has been the consideration of interactions given through a

network [42]. The revival of the interest in networks that has taken place within the

physical and biological sciences has also put forth the question on how the emergence

of synchronization may be affected by the presence of network interactions. To take

into account network interactions in the Kuramoto model, we must return to the

general form of a phase model for nearly identical elements, given by Eq. (1.27). In
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this case, it is clear that Γij(φj − φi) ≡ 0 if Tij = 0, that is, if there is not an edge

from node i to node j. In the first harmonic apporximation, the Kuramoto model

in a network takes the form

∂

∂t
φi = ωi +

µ

N

N∑

j=1

Tij sin(φj − φi) , (1.40)

where all network interactions are assumed to have the same intensity µ.

A general mathematical description of the onset of synchronization in the Ku-

ramoto model on networks can be found in Ref. [62]. As a general result, the

introduction of network interactions produces a rescaling of the critical coupling in-

tensity given by Eq. (1.38). An estimation of the critical value in the presence of a

network is given by

µc = Kc
N

Λ
, (1.41)

where Λ is the largest eigenvalue of the adjacency matrix T [62]. This estimate

is in good agreement with numerical simulations for networks with uncorrelated

structure, as in the Erdős-Rényi model. However, the results are not valid in cases

where there is a strong correlation between the indregee and outdegree of each node,

or between the degrees of neighboring nodes, as in the case of scale-free networks

[42]. In these cases, the critical value of the coupling intensity at which the onset of

synchronization takes place can be largely reduced [64].

A recent review of different results obtained for the onset of synchronization in

networks and various applications is given in Ref. [42].

1.5.4 Desynchronization and collective chaos in the globally cou-

pled Kuramoto model

The study of ensembles of coupled oscillators has mostly concentrated on the onset

and stability of synchronized oscillations. However, in many situations, as in the

case of neurons in the brain, the onset of collective synchronized firing is a decid-

edly undesirable phenomenon, and schemes to prevent it have direct and important

medical applications [2, 3]. Therefore, the destruction of the synchronized state also

has aspects worth studying.

In general, in the globally coupled Kuramoto model (1.29), the absence of syn-

chronous oscillations is characterized by a vanishing phase coherence, that is R = 0.

In this case, as can be seen from Eq. (1.37), the interaction between each element

and the global field disappears, and each element is effectively independent from

all the rest. Therefore, all elements rotate with their own frequencies, unaffected

by the presence of others. As such, changing the coupling strength in the range

0 < K < Kc produces no effect in the dynamics of the system in the infinite-size

limit.

For a finite number of elements, fluctuations in the order parameter R remain for

all times if the frequencies of all elements are not identical. Popovych, Maistrenko

and Tass [65] have found a general route to desynchronization where frequency

splitting is observed as the coupling strength is reduced towards the critical point.
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Below the critical point, a region is found where the dynamics of the system is

chaotic, interjected by a series of periodicity windows.

Chaos in this case emerges out of the heterogeneity of the elements. Each element

has its own frequency, and the interaction of different elements leads to complex

dynamics. Indeed, if all elements had identical frequencies, not only chaos, but any

dynamics would actually be absent, and the desynchronization transition would lead

to a stationary state in which R = 0 for any system size.

In this work we will examine how introducing network interactions between iden-

tical oscillators may lead to a different kind of chaos in the desynchronization tran-

sition.

1.6 Oscillatory extended systems

A special kind of interaction between oscillatory elements is found in continuous

media, such as chemical systems, where the spatial distribution of concentrations

plays a decisive role. In particular, when the local dynamics of the concentrations

is periodic, one speaks of oscillatory extended systems, or oscillatory media.

A way to represent such systems is to consider a lattice of oscillators, in which

the interactions take place between direct neighbors. The equations would be of the

form 1.24, where function G includes a summation over neighbors of the nodes,

∂

∂t
xi = Fi

(
xi

)
+ ǫ

∑

j∈Ni

Gji

(
xj ,xi

)
, (1.42)

where Ni is the set of neighbor nodes of node i.

In such a lattice, the connections between the nodes have an associated distance

d in the physical space. Since this elementary lattice distance is small, a linear

approximation can be used, where the interaction would be of the kind

∂

∂t
xi = Fi

(
xi

)
+ ǫ

∑

j∈Ni

K
(
xj − xi

)
. (1.43)

Here, it is convenient to represent the system not as a set of individual oscillators, but

as a field with different values at different nodes. Then, we substitute the discrete

index i with a continuous spatial variable x, where we consider the one-dimensional

case for simplicity. The resulting equations are

∂x(x, t)

∂t
= Fi (x(x, t)) + ǫK (x(x + d, t) − x(x, t)) + ǫK (x(x − d, t) − x(x, t)) .

(1.44)

The continuous limit may be attained by taking the limit d → 0. For this we

redefine the interaction intensity ǫK ≡ Dd−2, and decompose the interaction term

in Taylor series up to the second degree, i.e.,

∂

∂t
x = Fi (x) +

D

d2

[
x + d

∂x

∂x
+ d2 ∂2x

∂x2
− x + x − d

∂x

∂x
+ d2 ∂2x

∂x2
− x

]
. (1.45)
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Thus, we finally obtain

∂

∂t
x(x, t) = Fi (x(x, t)) + D∇2x(x, t) . (1.46)

The general Eq. (1.46) represents a reaction-diffusion system, in reference to the

chemical systems. The first term dictates the local dynamics of the system at each

point in space (for example, the dynamics of the concentrations of different reac-

tants), and the second indicates how different chemical agents diffuse through the

system. Nevertheless, the applications of such models are not restricted to chemi-

cal systems, and they are frequently used in ecology, biology, cardiology, and other

scientific fields [66, 67].

1.6.1 The complex Ginzburg-Landau equation

A reaction-diffusion system would correspond to a system of oscillatory dynamics

if function F in Eq. (1.46) describes a system with a stable limit cycle attractor.

However, a phase reduction cannot be always be performed. In the continuous limit,

also the solutions to (1.46) must be continuous in space, and to satisfy this condition,

the inclusion of an amplitude variable may be necessary.

For systems in the vicinity of an Andronov-Hopf bifurcation like the one in

system (1.12), it can be shown that a general mapping to the complex plane exists,

though which the dynamics can be appropriately described by equation

∂A

∂t
= (1 + iω)A − (1 + iα)|A|2A , (1.47)

where A is a complex variable, and ω and α are real-valued parameters. This is

known as the Stuart-Landau equation, and its solutions approach a stable limit

cycle in the complex plane, in which the system rotates with unit amplitude and

constant frequency ω − α. The limit cycle solution is therefore A = exp[i(ω − α)t].

A reaction-diffusion system like (1.46), for which the local dynamics are oscilla-

tory in the vicinity of an Andronov-Hopf bifurcation, can be generally described by

what is known as the complex Ginzburg-Landau equation, which reads

∂A

∂t
= (1 + iω)A − (1 + iα)|A|2A + (1 + iβ)∇2A , (1.48)

where β is also a real-valued parameter. The intrinsic velocity ω may be removed

from the equations by going to a co-rotating frame of reference, i.e. by making a

variable change A → A exp(iωt). Therefore, the behavior of this system effectively

depends on two parameters α and β, which characterize the nonlinear frequency

shift and the linear dispersion, respectively. The interplay between local oscillatory

dynamics and diffusion can give rise to a variety of different kinds of behavior, in-

cluding plane waves, spiral waves, localized coherent structures and spatio-temporal

chaos [68, 69, 70, 72]. Uniform oscillations are stable as long as the condition

1 + αβ > 0 (1.49)
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is satisfied. When this condition is violated, the instability of the synchronous

state leads to spatio-temporal chaos. This transition is known as the Benjamin-

Feir instability, and it may result in different kinds of turbulence, depending on the

parameter values.

In the vicinity of the destabilization of uniform oscillations, a regime of phase

turbulence develops, where small deviations in the phase and amplitude values occur

with respect to the synchronous regime. This is accompanied by the propagation of

amplitude shocks, or narrow regions with amplitude higher than the average value,

that travel along the system. An example of this regime can be seen in Fig. 1.11a,

where the amplitude of the oscillations is shown in gray scale for a one-dimensional

system as a function of time.

As we move away from the instability line, the system becomes more strongly

turbulent, and a regime of defect turbulence appears. Defect turbulence is character-

ized by the presence of a large number of amplitude defects, or points in the system

where the amplitude vanishes, which is accompanied by a discontinuity in the phase

value. These phase singularities are often referred to as phase slips or kinks, and

they can diffuse and wander along the system, as well as reproduce and propagate.

In fully developed defect turbulence, these phase slips occupy a large part of the

medium, and dominate the dynamics, as can be seen in Fig. 1.11b.

Figure 1.11: Different kinds of turbulence in the one-dimensional

complex Ginzburg-Landau equation. (a) Phase turbulence close to the

Benjamin-Feir stable region. (b) Fully developed defect turbulence.

(c) Cascades of defects propagating on the background of uniform

oscillations in the intermittent turbulence regime. This figure has

been taken from [72].
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The behavior of such phase slips may be very rich, and their dynamics can be

quite different for different parameter values [73]. A regime that is of particular

interest for our work is that of intermittent turbulence in which phase slips persist

even into the Benjamin-Feir stable region. In this situation, the repeated occurrence

of cascades of phase slips takes place in a background of plane waves or uniform

oscillations. This is what is shown in Fig. 1.11c, where it can be seen that phase

slips appear, reproduce and propagate, colliding with each other and annihilating,

or spontaneously dying out.

1.6.2 Control of turbulence

Different methods to control turbulence in oscillatory reaction-diffusion systems have

been proposed. Amongst these, methods that are applied globally to the entire

system have proven to be the most interesting, since local access to specific regions

of the system may often be unavailable.

A particularly interesting method of control is that of global feedbacks. This

scheme involves taking signals from the system itself and using them to generate a

control signal that acts back on the elements as a common parameter that affects

the entire medium. The convenient aspect of such mechanisms is that no control

signal needs to be externally designed or attended. Rather, it is the system itself

which produces the acting force which exerts control. In this sense, the restoration

of synchronization or the formation of patterns induced by global feedback control

methods are self-organized processes.

The action of a global feedback can be included in the complex Ginzburg-Landau

equation as

∂A

∂t
= (1 + iω)A − (1 + iα)|A|2A + (1 + iβ)∇2A + µeiχ〈A〉 , (1.50)

where 〈A〉 =
∫
S

A(x, t)dx represents the average value of A over the entire system.

Here, parameter µ controls the intensity of the global feedback, and χ is a phase

shift that accounts for a delay in the application of the force.

For an oscillatory system in the turbulent phase, a global feedback like the one in-

troduced in Eq. (1.50) can be shown to induce uniform oscillations [75, 76]. Hence,

turbulence can be fully suppressed, and order can be reestablished in the system

through such a control mechanism. Perhaps a more interesting aspect is that, for

intermediate parameter values between turbulence and the restoration of uniform os-

cillations, a variety of patterns and coherent structures can be induced by the global

feedback. Examples of this are the formation of phase clusters, where the system

segregates into well-defined domains with synchronous dynamics; the formation of

cellular structures, where an approximately regular array of phase defects and phase

clusters is formed, such as honey-comb lattices of small amplitude domains; or the

emergence of turbulent “bubbles”, a higher-dimensional analog of defect cascades,

in which persistent growth and death of defect-like structures occur on a background

of uniform oscillations. This type of patterns have been observed to appear in the

general model of the complex Ginzburg-Landau equation [76, 75], as well as in ex-

perimental and theoretical studies of the catalytic CO oxidation reaction [77, 78].
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Figure 1.12: Intermittent turbulence induced by a global feedback

in the complex Ginzburg-Landau equation. Cascades of phase slips

or kinks propagate on the background of uniform oscillations. This

figure has been taken from [69].

Global feedback allows one to control the dynamics of such defect cascades or

turbulent bubbles. Indeed, the number, frequency and mean life of such cascades

can be affected by the feedback parameters, as can be seen in Fig. 1.12. Varying

the intensity of the global feedback (and also other parameters, such as the phase

shift of the feedback) allow us to control turbulence and induce different levels of

activity.

It should also be said a global feedback is an effective way to control the formation

of patterns, even if the system is initially in an ordered state. By changing the phase

shift value χ in Eq. (1.50), the feedback may have the effect of destroying uniform

oscillations, allowing for the emergence of different kinds of patterns. Different routes

to turbulence are characterized by the appearance of different coherent structures

and different kinds of dynamical behavior [79, 80, 70, 71].
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Chapter 2

Globally coupled systems

The emergence of collective global dynamics from simple interactions at the

individual level is a common paradigm of self-organization. In such a picture, the

properties of the microscopic interactions involving each pair of elements lead to the

occurrence of macroscopic order without the regulation of external control.

However, collective behavior need not emerge from specific sets of microscopic

interactions. A notable example of such a case is that presented by Teramae and

Tanaka [81]. They have analized a system of identical oscillators which are com-

pletely independent, i.e., they have no interaction with each other. Instead, they

are subject to an external common noise which affects all elements equally. They

have found that, under the action of such a noise, starting from any initial condition

for all the elements, they will eventually reach a synchronized state, in which the

phases of all elements coincide.

This result may not be an astonishing one, if one looks at it from the perspective

of a single element. Under a prescribed sequence of perturbations, it is not surprising

that the final state will always be the same, independent of the initial condition.

Nevertheless, it is not trivial either, and from the perspective of collective behavior

it is still a remarkable concept: incoherent random forcing leads a population of

fully independent elements to a fully coherent state.

Systems in nature are hardly ever independent of each other. Even disregarding

the ever present gravitational force, the concept of system becomes superfluous, were

there not a certain type of interaction between its composing parts. In fact, in a

wide class of systems of different nature, it is often encountered that the elements

that compose it interact reciprocally and homogeneously with each other. This can

happen for example when interactions take place through a fast diffusing chemical

reactant, or when the range of interactions is so large in comparison to the size of

the system, that spatial distribution becomes irrelevant. In these cases, we say of

the elements that they are globally coupled. This is the case, when interactions

between all pairs of elements are of identical form and intensity.
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With this kind of coupling, it is usually possible to reformulate the interactions

within a mean field approach, in which each element interacts with a global field

which is in turn generated by equal contributions from all elements. The nature of

the interactions between elements can lead to a variety of different dynamic behaviors

and of available equilibrium states.

A trademark phenomenon in systems of globally coupled identical oscillators is

the presence of a desynchronization transition [5, 83]. In such a transition, the system

evolves to a completely incoherent state, and the field they generate (and interact

with) vanishes. In such a situation, the elements become effectively independent as

their total interactions cancel each other out.

The presence of global noise may be encountered in very general situations. It

may correspond to the case in which fluctuations in the parameters of a system

affect the collective dynamics of all elements. The question we would like to address

in this chapter is the following: if the elements of a globally coupled system be-

come essentially independent in a desynchronization transition, and the action of a

common noise may drive a system of independent elements to synchronization, then

what would be the effect of an external common noise? Or to put it differently: can

incoherent and uncontrolled perturbations induce order in a system of incoherent

globally coupled elements?

To investigate this, we will study a system of globally coupled elements whose

interactions are mediated through a phase shift. This phase shift will allow us to

induce different types of behavior in the system, in particular a desynchronization

transition. Under these circumstances, the action of external forcing and common

noise is studied in detail.

2.1 Globally coupled oscillators with a common phase

shift

In the following we analyze a system of globally coupled identical oscillators in which

the interactions are mediated through a phase shift. The fact that they are identical

implies that the natural frequency of all of them is the same, that is, ωi = ω. The

equations governing the system are

∂φi

∂t
= ω +

K

N

N∑

j=1

sin(φj − φi + α) , (2.1)

where α is a phase shift in the interaction, which is equal for all pairs of elements.

This system is clearly a special case of the general model (1.28), in which Kij = K

and αij = α for all i 6= j. We will retain α as a control parameter which allows us

to affect the nature of the interactions, making them attractive or repulsive in the

limits α = 0 and α = π respectively. We can readily note that condition (1.39) is

satisfied for α = 0, but is not for α = π.

It is easily seen that a change of variables of the form φi → φ′
i+ωt will remove the

natural frequency ω from the equation for φ′
i. This amounts to moving to a frame of
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reference that rotates with the natural frequency of the oscillators. This shows that

the choice of natural frequency is arbitrary, and we can eliminate it without any

loss of generality. Similarly, once the natural freqeuncy has been removed, we can

redefine the time units in the way t → t′/K, in which case the left hand side term

in Eq. (2.1) will be ∂φi/∂t = ∂φi/∂t′ × ∂t′/∂t = φ̇i K. Thus, the coupling constant

can also be removed from the equations by an appropriate rescaling of time. Thus,

Eq. (2.1) can be reduced to

∂φi

∂t
=

1

N

N∑

j=1

sin(φj − φi + α) . (2.2)

These equations describe a set of N elements interacting pair-wise with each

other, and by changing the parameter α this interaction can be manipulated. Intro-

ducing the global parameter given by Eq. (1.36), we find the equality

Z(t)e−iφi(t)eiα =
1

N

N∑

j=1

ei(φj(t)−φi(t)+α . (2.3)

Equating the imaginary parts of both sides of this equation we get

R sin (Φ − φi + α) =
1

N

N∑

j=1

sin (φj − φi + α) , (2.4)

which is the right hand side of Eq. (2.2). Here R is the phase coherence, and Φ is the

global phase of the system. This means that the pair-wise interaction in a globally

coupled system can be reinterpreted as the individual interaction of each element

with a global field, which is in turn generated by all elements. The field acts on each

element with the same phase shift as the individual interactions. This system may

therefore represent an ensemble of oscillators coupled to a delayed global signal. In

complex notation, the decoupled equations of motion can be written as

φ̇i =
1

2i

(
Zeiαe−iφi − c. c.

)
, (2.5)

where c. c. represents the complex conjugate of Zeiαe−iφi . In this equation it is

clear that any state in which Z = 0 will be a fixed point of the system. On the other

hand, it is also clear that if two elements have identical phases at a given moment,

they will always be equal, since they are subject to the same forces. Therefore, if

Z = 1 at any moment, meaning that all phases are identical, they will remain so,

and this is therefore also a stationary state. The stability of these states will be

analyzed in Sec. 2.2.

In Eqs. (2.5) it also clear that changing α by −α is equivalent to making a

variable change φi → −φi for all i (of course, this would mean Z → Z∗). This

implies that the dynamics of the system is symmetric with respect to α → −α, and

thus also α → 2π − α. Therefore, it is enough for us to concern ourselves with the

behavior of the system in the range α ∈ [0, π].
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2.1.1 Order parameters

Eq. (2.5) states explicitly the interaction of each element with a global field. This

field is in turn generated by all elements collectively. Thus, the quantity Z as

defined in Eq. (1.36) can be thought to represent both a dynamic order parameter

to measure the level of similitude of the phases or phase coherence in the system, as

well as a dynamic global signal, which all elements perceive and interact with. It is

therefore reasonable to attempt to describe the behavior of the field as a dynamic

description of the system.

From Eq. (1.36) we can readily determine that

Ż =
i

N

N∑

j=1

eiφj φ̇j . (2.6)

Inserting Eq. (2.5) in this equation we get

Ż =
i

N

N∑

j=1

eiφj

{
1

2i

(
Zeiαe−iφj − c. c.

)}
,

=
1

2
Zeiα − 1

2N
Z∗e−iα

N∑

j=1

e2iφj . (2.7)

In this way, we obtain an equation for the evolution of the global parameter. However

this equation is not closed, and continues to depend on each individual value of the

phases through the sum in the last term. We can define a new order parameter to

represent this dependence as

η =
1

N

N∑

j=1

e2iφj , (2.8)

so that

Ż =
1

2
Zeiα − 1

2
Z∗e−iαη . (2.9)

In the same way we can define a whole family of order parameters of the form

Z = ρ1 ≡ 1

N

N∑

j=1

eiφj ,

η = ρ2 ≡ 1

N

N∑

j=1

e2iφi ,

ρ3 ≡ 1

N

N∑

j=1

e3iφi ,

ρk ≡ 1

N

N∑

j=1

ek iφi . (2.10)

Each of these order parameters is a complex number whose magnitude is smaller

or equal to 1. The k-th order parameter will have magnitude 1 when each element
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occupies one of k equally distributed clusters (even if some of this clusters are empty).

This means, for example, that ρnk = 1 when ρk = 1 for all n = 1, 2, 3, . . .. All these

order parameters are 1 in the synchronized state, when Z = 1.1

Just as we did with Z we can write an evolution equation for each of these order

parameters in the form

ρ̇k =
k

2

[
Zρk−1e

iα − Z∗ρk+1e
−iα .

]
(2.11)

In particular, the equation for η is

η̇ = Z2eiα − Z∗ρ3 e−iα . (2.12)

This formalism allows us to move from a picture in which the system is described

by the individual phases of all elements, to a picture in which a family of order

parameters describes the configuration of the system as a superposition of clustered

states. This family of order parameters is in principle infinite, but for our purposes

it suffices to consider only the first three, namely on Z, η and ρ3 from now on.

The first order parameter ρ1 coincides with the standard global order parameter

Z. The synchronous state |Z| = 1 is a fully coherent state, and a state for which

Z ≈ 0 is an incoherent state. In this terminology it is explicit that Z measures

a level of global coherence or order in the system, in as much it allows to identify

macroscopic rotations performed by the elements collectively.

As a collective phenomenon, phase coherence may be interpreted as a macro-

scopic variable, in the same sense that pressure is the macroscopic force exerted by

an ensemble of particles. Thus, the global order parameter can be interpreted to be

a global signal, as could be measured by an external observer without access to the

specific distribution of phases.

However, an incoherent state need not be a disordered state. Indeed, many

regular distributions of phases may be imagined for which no macroscopic signals

are produced. In particular, clustering is a kind of internal organization that fails to

be represented by the global order parameter. Thus, we can see that ρk with k ≥ 2

characterize hidden internal levels of order in the system.

2.2 Synchronization and desynchronization

To analyze the stability of the fixed point Z = 0, we can study a linearized version

of Eq. (2.9). To this effect, we propose a solution of the form

Z = C1e
(γ+iω)t + C2e

(γ−iω)t , (2.13)

where |C1| and |C2| are assumed to be very small, that is |C1|, |C2| ≪ 1, so that

Z ≈ 0. Inserting this solution back in Eq. (2.9) one gets

(γ + iω)C1e
(γ+iω)t + (γ − iω)C2e

(γ−iω)t =

=
1

2
eiα

(
C1e

(γ+iω)t + C2e
(γ−iω)t

)
− 1

2
e−iαη

(
C∗

1e(γ−iω)t + C∗
2e(γ+iω)t

)
.

(2.14)

1The synchronous case, where all elements are in one cluster coincides with the case with k

clusters with k − 1 of them empty.
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In this approximation, η is taken to be a constant parameter. Since e(γ+iω)t and

e(γ−iω)t are linearly independent, this equation can be separated in the two following

equations.

(γ + iω)C1 =
1

2
eiαC1 −

1

2
e−iαηC∗

2 ,

(γ − iω)C2 =
1

2
eiαC2 −

1

2
e−iαηC∗

1 . (2.15)

Solving for C∗
2 in the lower equation and plugging this in the first one, and

introducing the notation λ = (γ + iω), we get

(
λ − 1

2
eiα

) (
λ − 1

2
e−iα

)
=

1

4
|η|2 , (2.16)

which is a quadratic equation on λ. The solution to this equation is

λ = γ + iω =
1

2

(
cos α ±

√
|η|2 − sin2 α

)
, (2.17)

which gives us the exponents for the time dependence of Z in Eq. (2.13). If γ > 0

it means that |Z| & 0 will grow in time; therefore, any state with Z = 0 will be

unstable. Correspondingly, if γ < 0, all small perturbations of Z = 0 will be damped

and the system will be restituted to a Z = 0 configuration. If the square root in

the second term is real, it can at most be equal to 1
2 cos2 α, which only happens in

the special case in which |η|2 = 1 exactly. Any other configuration with |Z| ≈ 0

results in growth of |Z| for 0 < α < π/2, and collapse to the Z = 0 surface when

π/2 < α < π. The solutions to Eq. (2.17) as a function of |η| are plotted in Fig.

2.1 for diferent values of α. Here it can be seen that, in the range π/2 < α < π, γ

is negative for all values of |η|.
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Figure 2.1: Solutions to Eq.2.17 for different values of parameter α.

The solutions for this exponent have two branches for certain values of |η|. This

is reflected in the fact that the relaxation to the fixed point has two modes. A plot

of this relaxation for different initial values of |η| is shown in Fig. 2.2. Here it can
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Figure 2.2: Time-volution of the convergence to the incoherent at-

tractor Z = 0 for different initial values of |η|. The dotted lines

represent fits whose exponents are calculated with Eq2.17. α = 0.8π,

N = 100.

be seen that the relaxation is indeed exponential, where two different modes with

two different exponents are present. Furthermore, in dashed line we show fittings

produced with the exponents calculated with Eq. (2.17) for the initial value of η. As

can be seen, the agreement between the simulations and the theoretical prediction

is quite good.

An important thing to point out is that, for all values of α, the positive branch

of λ reaches exactly 0 when |η| = 1, the state in which all elements are distributed

in two clusters separated by a phase difference of π. At this point also the negative

branch reaches its minimum value. This may indicate that the two-cluster state

is neutrally stable against a certain kind of perturbation, while maximally stable

against others.

The results of this linear stability analysis show that the incoherent state is

unstable in the range 0 < α < π/2, and stable when π/2 < α < π. As should be

expected, the only stable state when 0 < α < π/2 is the phase-synchronized state.

This can be seen in Fig. 2.3, where the magnitude of the global order parameter is

plotted as a function of α in the long-term limit.

Another important set of quantities to elucidate on the stability of different

states are the Lyapunov exponents, introduced in Sec. 1.2.2. In Fig. 2.4 we see

the largest of them, and the three smallest, calculated as a function of parameter

α. It can be seen in Fig. 2.4 that all Lyapunov exponents are negative in the range

α < π/2. However, in the range π/2 < α < π, all but the last two exponents are

zero. This means that there are N − 2 effective degrees of freedom, determining

N −2 linearly-independent directions in the phase space along which the system can

move without leaving the attractor.

In terms of the Kaplan-Yorke dimension, as defined in Sec. 1.2.2, the fact that

all but two exponents are equal to 0 implies that the dimension of the attractor is

N − 2. In Fig. 2.5 we plot the calculated Kaplan-Yorke dimension, as numerically

obtained from simulations. As expected, the dimension jumps from 1 to N − 2 at
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Figure 2.3: Mean magnitude of the global order parameter Z as

a function of α in the long-term limit, starting from random initial

conditions. N = 100.
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Figure 2.4: The two largest and the three smallest Lyapunov expo-

nents as a function of α. N = 100.

α = π/2. 2

The condition |Z| = 1 necessarily implies that all phases are equal, and since

R = 1 the only degree of freedom left is that associated with Φ which consists in rigid

rotations of a frozen configuration. On the other hand, the condition Z = 0 imposes

a restriction on the possible configurations of the system, but infinitely many states

satisfy it. In fact, Z = 0 defines an (N − 2)-dimensional surface of states that are

fixed points of Eqs. (2.5), and all of these fixed points are neutrally stable against

perturbations along this surface in the parameter range π/2 < α < π. Perturbations

that bring the system away from this surface are damped, as follows from Eq. (2.17).

However, the convergence to these states happens at different rates depending on

the value of |η|. In a sense, we can understand that the dynamics of the global

parameter depends on the internal organization of the system. States with higher

2The dimension DKY = 1 corresponds to the rotations of the synchronized state.
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values of |η| will relax to the incoherent state more slowly. Nevertheless, since all

points in the surface are neutrally stable, the state to which the system relaxes may

not be the same in which it was before the perturbation.
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Figure 2.5: Embedding dimension as calculated by the Kaplan-Yorke

formula in (1.18) as a function of α. N = 100.

Let us consider a situation where the system is persistently moved away from

the hypersurface Z = 0, for example, by the action of fluctuations or noise. All

points on this surface correspond to marginally stable fixed points, and thus, any

perturbation that leaves the system on the surface will bring the system to a new

marginally stable fixed point. However, transversal perturbations will unfreeze the

dynamics of the system, which will evolve towards the stable surface systematically.

In this case, the system will effectively drift along the region of the state space

where Z ≈ 0, always keeping close to the surface Z = 0 but never exactly on it.

A schematic representation of this can be seen in Fig. 2.6. In some regions, the

relaxation to the surface will be slower, and we can imagine that the system will

spend more time in these regions than in regions where relaxation is faster. In a

situation like this, we expect the system to go to states with higher values of |η|,
and therefore naturally organize in a clustered state.

2.3 Forcing and common noise

The system evolves towards an incoherent state in the parameter range π/2 < α < π,

but still an infinite number of states can be chosen to satisfy this condition. We now

turn our attention to the possible effects on such states of global external forcing

as a possible mechanism to control the specific equilibrium state of the system. We

begin by considering the simple case of a constant force applied in pulses.
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Figure 2.6: Schematic representation of the dynamics in the phase

space with persistent perturbations. The system evolves towards the

(N − 2)-dimensional surface of fixed points (black dots). Persistent

perturbations “knock” the system away form this surface, letting it

evolve back towards it. If the system lands in a different point of the

surface, then the presence of small persistent perturbation will effec-

tively amount to making the system drift along the surface (slashed

black line).

2.3.1 Constant external forces and pulses

In the following, we will analyze the action of a constant external force on the system.

The equations describing this would take the form

φ̇i =
1

2i

(
Zeiαe−iφi − c. c.

)
+

1

2i

(
Fe−iφi − c. c.

)
, (2.18)

where F is a complex constant number, such that each element is attracted to the

argument of F with an intensity proportional to its modulus. Rewriting, we get

φ̇i =
1

2i

[(
Zeiα + F

)
e−iφi − c. c.

]
. (2.19)

In this equation it is clear that, if |F | < 1, the new equilibrium state will be one for

which Zeiα + F = 0. Therefore, the global order parameter will have a magnitude

equal to the external force, and the system will reorganize to satisfy this condition.

Clearly, a strong enough force will bring the system to a synchronized state.

Eq. (2.19) tells us that this will already happen for |F | = 1, and it will naturally

also occur for even stronger forcing. On the other hand, the effect of a force with

magnitude smaller than one will be to compress the distribution of the phases to

accommodate for Zeiα = −F . For example, when α = π, Z coincides with F in the

stationary state.

For |F | < 1 there are infinite configurations that satisfy this condition. If such a

force is applied at a time moment when the system has already attained a stationary

state with Z = 0, then the system will evolve towards a new state with |Z| = |F |.
Removing the force after some time will let the system relax back to the Z = 0

surface. However, the specific configuration that the system adopts after this may

be entirely different to the one before applying the force.
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Forcing the system will induce coherence, but it may also induce a level of internal

ordering that persists even after the force stops acting on the system. Therefore, we

may ask the question of whether levels of internal order are indeed affected by such

pulsing perturbations.
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Figure 2.7: Time realization of the first two order parameters under

the action of repeated external pulses with constant magnitue and

phase. In the last panel, the data from the third panel has been

magnified in the vicinity of |η| ≈ 0. |F | = 0.5, α = 0.6π and N = 100.

In Fig. 2.7 we see a numerical integration of the system equations under the

action of repeated pulses with constant amplitude and phase. The magnitudes of

the first two order parameters Z and η are monitored as the configuration changes

under the alternating presence and absence of force. As seen in the second panel,

the global parameter follows the magnitude of the forcing, and after brief transients,

a state with |Z| = |F | is reached. The second order parameter also follows the time-

dependence of the forcing, but the values that it reaches are different for each pulse,

meaning that different configurations are attained in each instance. Correspondingly,

the stationary value of |η| in the absence of forcing changes after each pulse, as can

be seen in the last panel, where the scale has been magnified. This means that, even

though the global phase coherence in the system repeatedly relaxes to zero, different

internal configurations are visited, each with different levels of internal organization.

If after each subsequent pulse the value of |η| changes, then it is possible that

a systematic change occurs if pulsing is persistent. In figure 2.8, the modulus of

parameter η after each pulse is plotted as the number of applied pulses progresses.

As can be seen, |η| increases systematically (although not monotonically, as clearly

seen in the lower panel of Fig. 2.7 and in the early stages of the evolution in Fig2.8),

eventually reaching |η| ≈ 1 after a large number of pulses has been applied. The

number of pulses necessary for this to happen is very likely to be reduced when the

intensity of the pulses is increased.

We can conclude that a series of repeated pulses affects the system by inducing

the formation of clustered states. In terms of our discussion in Sec. 2.2, and refer-

ring to Fig. 2.6, it is important to note that such pulses act as a perturbation in a

direction transversal to the Z = 0 surface. After each pulse, the system relaxes back
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Figure 2.8: Evolution of the second order parameter |η| after the

application of successive pulses of constant magnitude and phase.

|F | = 0.5, α = 0.6π and N = 100.

to the surface, landing at a different point of it, which represents a different config-

uration with a different level of internal ordering. Repeating this process lets the

system evolve from one point in the surface to the next, progressively approaching

a clustered state.

2.3.2 Common noise

Inducing order with controlled forcing may be a rather simple task, since a strong

enough force will always bring the system to a synchronized state. A more interesting

scenario may be that in which the system is subject to random and incoherent forcing

[84]. This is the case when common noise is present.

In the beginning of this chapter we mentioned previous studies on populations

of independent elements under the action of common noise. The action of such

common noise results in synchronization of all elements without a threshold on the

noise intensity.

In contrast to the case of independent elements, the synchronized solution is not

available to our system in the absence of forcing in the parameter range π/2 < α < π,

and the system evolves to any state in the surface Z = 0. By introducing a global

noise acting as external random forcing we keep the system slightly away from this

surface. Since in our interpretation, pulses act as generic perturbations, noise may

play a similar role. In this way, we may see whether the system evolves towards a

certain region of the phase space.

We introduce a new term in Eqs. (2.5) of the form

φ̇i =
1

2i

(
Zeiαe−iφi − c. c.

)
+

σ

2i

(
ξ(t)e−iφi − c. c.

)
, (2.20)

where the value of ξ(t) at each time moment is the same for all i, and σ is a real-

valued control parameter that determines the intensity of the noise. Both terms

have the same form, meaning that each element interacts with the noise field in the
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same way it does with the global signal. This is clear if we rewrite these equations

in the form

φ̇i =
1

2i

[(
Zeiα + σξ(t)

)
e−iφi − c. c.

]
, (2.21)

where the action of the noise is expressed explicitly as fluctuations of the global field.

In this sense, the noise acts as a perturbative force on the global coupling.

An external fluctuation of this sort can be thought to represent a wide variety

of different external factors that can influence the system as a whole. This could be

fluctuating temperatures that affect the periodicity of chemical oscillators, changing

light conditions, or even electromagnetic field that acts on charged particles. As the

simplest assumption, we will choose to use a white noise of Gaussian distribution,

avoiding to temporal correlations that may indeed represent some of these circum-

stances more realistically, but would introduce unnecessary parameters that would

obstruct the analysis.

Therefore, we define ξ(t) as a random complex-valued process whose modulus

|ξ| has Gaussian distribution, and its argument arg(ξ) is uniformly distributed in

[0, 2π). Its statistical properties are of the form

〈ξ〉 = 0 ,

〈ξ(t1)ξ(t2)〉 = 0 ,

〈ξ(t1)ξ∗(t2)〉 = δ(t2 − t1) . (2.22)

Just as with Eq. (2.4), the second term of Eq. (2.20) can be written as a

1

2i

(
σξ(t)e−iφi − c. c.

)
= σ|ξ(t)| sin (arg (ξ(t)) − φi) , (2.23)

meaning that all elements are attracted to the instantaneous phase of the noise field,

with an intensity proportional to its instantaneous magnitude and to the control

parameter σ.

2.3.3 Infinite-noise limit and synchronization

In the extreme case of σ → ∞, the dynamics is dominated by the noise term,

and the interactions between the elements can be disregarded. In such a case, the

situation would be equivalent to that of independent elements under the action of

common noise. As said at the beginning of this chapter, a common noise acting on

independent identical elements induces phase synchronization. Although only the

case of the real noise was considered in Ref. [81], the fact that the noise is complex

makes little difference.

In Fig. 2.9 we show the time evolution of the magnitude of the order parameter

Z for a realization with noise intensity σ = 100, for which the initial conditions are

set randomly with uniform distribution in the circle. The order parameter grows

until reaching unity, indicating that all phases become identical.

The synchronized state should be found for any values of the interaction param-

eter in the infinite-noise limit, and, as shown by Fig. 2.9, it is also observed for large

but finite values of the noise intensity σ. In the absence of interactions (that is, if



52 Globally coupled systems

0 0.0002 0.0004 0.0006 0.0008 0.001

Time
0

0.2

0.4

0.6

0.8

1

|Z
 |

Figure 2.9: Time-realization of |Z| for a very large noise intensity.

α = 0.6π. N = 100, σ = 100

the noise was the only term in Eq. (2.20)), this would happen with no threshold for

the noise intensity.

Thus, when for α > π/2, Eq. (2.20) is composed of two competing terms: the

first term will drive the system to an incoherent state , and the second term will

drive the system to a fully coherent, synchronized state. The interplay between

these two conflicting forces is what we will study next.

2.3.4 Two-cluster state

Since any state with Z 6= 0 is unstable in the absence of noise, we can expect this

to be the case for small values of σ. However, the system can still move freely along

the surface defined by Z = 0. Additionally, small but non-zero values of σ will cause

the system to remain slightly off of this surface, and allow it to drift along it.

As it turns out, this interplay results in driving the system to a clustered state.

In Fig. 2.10 we show the evolution in time of the magnitude of parameters Z

and η for a system of N = 100 elements and α = 0.6π. The magnitude of the

noise intensity here is σ = 0.01, and the system is initialized with homogeneously

distributed, random phase values. Indeed, |Z| remains close to zero, but |η| grows

in time, reaching finally values very close to 1. This means that the system never

moves away of the Z = 0 surface but instead drifts on towards a state where the

elements are distributed in two clusters.
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Figure 2.10: Time-realization of |Z| (black) and |η| (red) for α =

0.6π. N = 100, σ = 0.01
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The modulus of the order parameter η only reaches its maximum value 1 when

all elements are distributed in two clusters which are separated by a phase difference

of π, and such that the phases of the elements in each cluster are identical. Fur-

thermore, if the modulus of the global order parameter Z is to be zero, then these

clusters must have the same number of elements. As seen in Fig. 2.10, |η| reaches a

value very close to 1.

To characterize the distribution of the phases in the long-term limit, we monitor

the phase distance between elements, which, for elements i and j, we define as

di,j = dj,i ≡ min {|φi − φj | , 2π − |φi − φj |} , (2.24)

where the phases are mapped to the interval [0, 2π], that is, φk → φk mod 2π is

applied. This distance goes to zero when the i-th and j-th oscillators have identical

phase values.

With this definition of the distance, we may introduce the average distance

between close elements as

q =
1

N

N∑

i,j=1
di,j<h

di,j . (2.25)

The threshold value h determines a vicinity around each element within which the

distance is taken into account.

The time evolution of q(t) is shown in Fig. 2.11a, where the threshold value

h = π/2 was chosen. As we can see in the logarithmic scale, this average distance

tends to decrease to very low values, eventually reaching 0 for our numerical preci-

sion. Although large fluctuations are present, this quantity approximately follows

an exponential decay with an exponent 1.9 × 10−4, which is certainly a function of

the noise intensity.

This means that no element is in the vicinity of any other element at a small

finite distance, indicating that all elements arrange in clusters within which the

phases of all elements are identical. The progressive formation of such clusters can

be seen in panels (b) through (d) in Fig. 2.11, where histograms of the distribution

of phases (mapped to the [0, 2π] interval) are computed for different instants along

the evolution. Form an initially uniform distribution, the elements progressively

approach each other, eventually forming two clusters that are singular. This point-

like clusters are approximately separated by phase difference of π.

The stability of singular clusters can be understood in the infinite-size limit, if

one considers a perturbation consisting of pushing one element slightly away from

one of the clusters. If two clusters A and B are considered with phases ΦA and ΦB

respectively, both of which contain the same amount of elements, then the equation

of motion for the first cluster will be

Φ̇A =
1

2
[sin(ΦB − ΦA + α) + sin(α)] +

1

2i

(
σξ(t)e−iφi − c. c.

)
, (2.26)

and a similar equation will govern the dynamics of the second cluster. If we consider

that one element is moved slightly away from the cluster, then in the infinite-size
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Figure 2.11: (a) Time evolution of the mean distance between close

elements q(t). (b-d) Snapshots of the distributions of phases at dif-

ferent times during the evolution. α = 0.6π, σ = 0.1 an N = 100.

limit, the dynamics of cluster A would not be altered. However, the equation for

the phase ψ of this single element would be

ψ̇ =
1

2
[sin(ΦB − ψ + α) + sin(ΦA − ψ + α)] +

1

2i

(
σξ(t)e−iφi − c. c.

)
. (2.27)

The stability of this state against the global coupling requires that ΦB − ΦA ≈ π.

In this case, the first term of these last two equations would vanish, and only the

noise term would be present. These equations would then be equivalent to those

of two independent oscillators with close phase values under the action of common

noise. According to the results presented in Refs. [81, 82], these two elements

would synchronize, and then the state with two point-like, evenly populated clusters

would be restored. This argument supports the idea that a common noise term may

stabilize a state that would otherwise be marginally stable.

In Eq. (2.21) it is clear that the noise term can be considered as a perturbation

to the global field to which all elements are coupled. Since this filed is in turn

generated by all elements, we can expect fluctuations to the global field Z to be

of the order of the noise term. In Fig. 2.12, the average value of the magnitude

of the global parameter is plotted as a function of the noise intensity. We can see

here that the dependence between these quantities is approximately linear. Since

the magnitude of the global parameter is constricted to the range [0, 1], this implies

that there is a certain value of the noise intensity above which |Z| = 1. This is to

be expected, as discussed before, since in the limit of σ → ∞, only the synchronized

state should be stable.

This implies the presence of a transition on the noise intensity between the two-

cluster state in the low-nosie limit and the synchronous state in the large noise limit.

To investigate this, we plot in Fig. 2.13 the time-average value of |Z| and |η| in the

long-term regime for different values of the noise intensity, while α is kept fixed at
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Figure 2.12: Mean magnitude of the global order parameter |Z|
(black) as a function of the noise intensity. A straight line (red) is

included as a reference. α = 0.6π, N = 100.

a value 0.6π. The system is always initialized in a uniform state with all phases

randomly distributed in the circle. As expected, when the noise intensity is large

enough (σ & 1) the system goes to the synchronized state with |Z| = 1 (and |η| = 1

as well). However, the convergence to the two-cluster state in the low-noise limit

seems to occur with no threshold. This state, as indicated by the vanishing value of

the mean distance between close elements q, consists of singular clusters for finite

values of σ as well.
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Figure 2.13: Mean value of |Z| and |η| as a function of the noise

intensity σ. The logarithmic scale is used along the horizontal axis.

N = 100, α = 0.6π.

However, as can be seen in Fig. 2.10, even though the mean distance between

close elements q does indeed go to zero, |η| is not exactly 1, and |Z| is only close to

zero, but clearly fluctuates. This means that we can consider all the elements in each

cluster as a single element, and the dynamics of the system in the clustered state
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should be the same of that of a system with only two oscillators with a repulsive

interaction. In this case it is clear that the transition from Z ≈ 0 for σ ≪ 1 to

the synchronous state with |Z| = 1 when σ ≫ 1 takes place through fluctuations in

the relative positions of the two elements. Indeed, for small noise intensities both

elements would remain approximately opposing to each other. In the limit of σ → 0

and t → ∞, |η| would be exactly 1. Increasing the noise intensities will bring them

together, eventually making them collapse in a single point when the noise is strong

enough.
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Figure 2.14: Distributions of phases at a single time moment for

different noise intensitites σ. All phases are projected to the [0, π]

interval. N = 100, α = 0.6π.

The transition in a system with many oscillators takes place in the same way.

In Fig. 2.14 we show snapshots of the distribution of phases at a given moment in

the long-time limit for different values of the noise intensity. It is clear in this figure

that even though the relative positions of the clusters change, the spread in phases

within each cluster remains very narrow, and presumably vanishing in the infinite

time limit. It is also worth noting that for intermediate noise intensities (in this

figure, for example, σ = 0.1 and σ = 0.19) the elements may distribute in clusters

with slightly different numbers of elements. These might be metastable states, in

which the system may spend a long time before going to the more strongly stable

state with both clusters equal. In the weak noise limit, since any configuration with

unevenly distributed clusters would have Z 6= 0, these states will be clearly unstable,

and the larger cluster would rapidly spread out.

For intermediate values of the noise intensity, both clusters remain well defined,

and the angle between them fluctuates around a certain mean value. This mean

value decreases as the noise intensity is increased. In Fig. 2.15 we can see how this

average distance between the phases of the clusters depends on the noise intensity.

The distance here is taken as defined by (2.24), where the phase values of each cluster

are taken into account, and the time-averaged value is calculated. Therefore, the

mean value of this distance is always smaller than π. In the figure we can see that
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the difference between the two clusters is close to π at small noise intensities, and

this difference decreases for stronger noises, dropping to 0 for σ > 1. This denotes

the collapse of both clusters into one.
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Figure 2.15: Average phase difference between the two clusters in

the infinite time limit for different values of σ. N = 100, α = 0.6π.

2.3.5 Three-cluster state

The existence of a stable clustered state when the noise is weak depends on the value

of α. Indeed, we have seen that for α < π/2 the only stable state is the synchronized

state, or equivalently, a single-cluster state. In the previous section we have analyzed

the behavior for a given value in the range α > π/2, namely α = 0.6π, and we have

seen that the stable state in the low-noise limit is one with two opposing and equal

clusters.

For larger values of α, also the two-cluster state becomes unstable, and a stable

three-cluster state appears. This is signaled by a growth in the modulus of parameter

ρ3. In Fig 2.16 we monitor the moduli of the first three order parameters Z, η and

ρ3, starting from uniformly random initial conditions, and we compare the situation

at two different values of α. As in the case of α = 0.6π, in the top panel we see

that |η| oscillates near the maximum value, while |Z| remains close to zero. |ρ3|
fluctuates broadly around intermediate values.

The situation for α = 0.8π, plotted in the lower panel of Fig. 2.16, is quite

different. Here, the modulus of η remains small, whereas the modulus of ρ3 steadily

grows in time. This indicates that the system gradually approaches a state with 3

clusters with approximately equal spacing. The fact that Z remains close to zero

implies that these clusters are similarly populated.3

The time-scale involved in the growth of ρ3 for α = 0.8π is orders of magnitude

larger than that associated with the growth of η at α = 0.6π (in fact, this latter

3A wide variety of clustered configurations with different populations in each cluster may yield

Z = 0. However, those with very dissimilar populations would also yield a value of |ρ3| far from one.

Only small differences in the populations of the clusters may satisfy both conditions simultaneously.
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Figure 2.16: Time-realization of |Z| (black), |η| (red) and |ρ3|
(green) for α = 0.6π and α = 0.8π. Initial conditions are the same for

both realizations, and they are randomly and uniformly distributed.

N = 100, σ = 0.1.

is so fast in comparison, that it seems instantaneous in Fig. 2.16). This time-

scale depends strongly on the noise intensity. However, very strong noises guarantee

synchronization, as it did for other values of α. Therefore, there is an optimal level

of noise to attain the three-cluster state, which still sets a very large limit on the

minimum simulation times necessary to reach this state. This poses a practical

problem in the implementation of the numerical integration of Eqs. (2.20) in which

a tradeoff must be evaluated between numerical precision and simulation times. The

low-noise limit is thus very hard to investigate in the case of the three-cluster state.

This difference in time-scales can also be observed in Fig. 2.17, where the mean

phase distance for close elements q(t), as defined in Eq. (2.24), is ploted as a function

of time for a realization with α = 0.8π and σ = 0.1. As can be seen, the distance

drops in an approximately exponential fashion, eventually reaching exactly zero for

our numerical precision. This means that the clusters in this case are also perfectly

defined, point-like clusters. As compared to Fig. 2.11, the decay is much slower,

and the times necessary for this distance to vanish are much longer.

As seen for the two-cluster case for α = 0.6π, the three clusters are well defined

in the infinite-time limit but fluctuations in their positions persist for all times,

and |ρ3| will never reach unity. In Fig. 2.18, histograms of the distribution of the

magnitude of the three first order parameters are shown in the long-time limit for

four different values of α. Here it can be seen that the fluctuations of |η| in the cases

of the two-cluster state are lower than the fluctuations of |ρ3| when three clusters

are present. What is also quite interesting is that the distributions in the first and

second panel, and those in the third and fourth panel are very similar separately,

and there are barely any variations in the distributions between different values of

α that lead to the same clustered state.
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Figure 2.17: Time evolution of the mean distance between close

elements q(t). α = 0.8π, N = 100, σ = 0.1.
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Figure 2.18: Histograms of the values of |Z| (black), |η| (red) and

|ρ3| (green) for different values of α. N = 100, σ = 0.01.

2.3.6 Parameter dependences

We have seen that in the range of α < π/2 the system has a single stable state

corresponding to synchronized oscillations. For different values of α in the range

π/2 < α < π we have found that a two-cluster state and a three-cluster state can

be found for small noise intensities. Examining the whole interval of possible values

of α we find that these states are found in wide ranges of the parameter space.

In Fig. 2.19 we explore the range 0 < α < π for a constant noise intensity, while

we monitor the three first order parameters. The mean values of the modulus of

Z, η and ρ3 are measured in the long-term limit for each value of α, starting from

randomly distributed initial conditions for each point. Here it can be seen that a

two-cluster state is reached for all values in π/2 < α . 3π/4, whereas a three-cluster

state seems to be the pervasive stable state within 3π/4 . α < π.

Interestingly enough, for any value of α the system goes to a state with either
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one single cluster (synchronization), a state with two clusters or a state with three

clusters. Presumably, this will also happen for weaker noises in the infinite-time

limit. In this sense, it seems that clustering is the natural state of the system in the

presence of common noise.

2.3.7 Clusters as single elements

In Sec. 2.3.4 we have considered the case of systems of infinite size to understand

the stability of the state with two point-like clusters. This leads us to equations

for each cluster that are equivalent to that of a single element. In principle, any

clustered state can be treated in the same way, provided that the proper weight is

given to the interactions. In particular, the dynamics of any clustered state with

k singular clusters with equal populations should be equivalent to that of a system

with k elements, and the statistical properties of these systems should be identical.
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Figure 2.19: Average value of |Z| (black), |η| (red) and |ρ3| (green)

as a function of α. N = 100, σ = 0.1.

Thus, the dynamics of a system with hundreds of elements should coincide, in

the infinite-time limit, with the dynamics of a system with two elements in the

π/2 < α < 3π/4 range, and with three elements in the range 3π/4 < α < π.

A system with either two or three elements has a single state which satisfies

Z = 0, this state will be the only stable one available to the system in the range

π/2 < α < π. This suggests that the clustering behavior observed in the simulations

so far presented for a system with N = 100 elements should already be observed in

a system with only N = 6 elements, which can be arranged in both two-cluster and

three-cluster states maintaining Z = 0.

In Fig. 2.20, a plot like the one in Fig. 2.19 was constructed for a system of

N = 6 oscillators. Here we can see that the clustering behavior in the infinite time

limit is the same as observed in the larger system. These results suggest that a

system of any large number of elements will behave like a system k elements when

it is in a k-cluster state with all clusters equally populated.

These results imply that the behavior of the system should prove to be size inde-

pendent, provided that the elements in the system can be (at least approximately)
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distributed in two and three clusters with equal populations. Furthermore, since our

analysis has been mostly performed on a system with N = 100 oscillators—which

cannot be allocated to three even clusters exactly—but the results are very simi-

lar, this behavior proves to be robust even against this restriction. We have also

run preliminary simulations with much larger systems, for which the behavior here

presented has also been consistently observed.
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Figure 2.20: Average value of |Z| (black), |η| (red) and |ρ3| (green)

as a function of α. N = 6, σ = 0.1.

2.3.8 Uneven cluster distributions

As our stability analysis showed in Sec. 2.2, only incoherent states (Z = 0) are

stable for π/2 < α < π. When considering two-cluster states, this implies that

both clusters should be equally populated and separated by a phase difference of

π. However, other two-cluster states may be solutions of the system (2.5), albeit

unstable. If we consider a distribution with two clusters, the first one with a fraction

p of the population and phase value ΦA, and the second one with the remaining 1−p

fraction of the elements and phase value ΦB, then the equations of motion in the

absence of noise would be

Φ̇A = p sin (ΦB − ΦA + α) + (1 − p) sin (α) ,

Φ̇B = (1 − p) sin (ΦA − ΦB + α) + p sin (α) . (2.28)

A stationary state exists if there is a solution with Φ̇A = Φ̇B. This implies the

relationship between the relative populations and the phase difference between the

clusters given by

p =
sin (α) − sin (∆ + α)

2 sin (α) − sin (∆ + α) − sin (−∆ + α)
, (2.29)

where ∆ ≡ ΦA − ΦB.

This relationship tells us that a given distribution of the population in two clus-

ters has a specific stationary phase distance between them. If the system is initialized



62 Globally coupled systems

in such a configuration, it will remain frozen for all times. The relationship between

these values is plotted in Fig. 2.21. Since p is restricted to the range [0, 1], only

values of ∆ that correspond to such values are meaningful.
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Figure 2.21: Relation between the relative populations of the clus-

ters and the phase difference between clusters. α = 0.6π

These states are frozen configurations, in that such clustered states persist for

all times. However, they are not stable against perturbations, and will never be

attained from random initial conditions. The same procedure applied in Refs. [33]

and [32] can be followed here to analyze the stability of these clustered states. For

these clustered states, the Jacobian matrix for the system (2.2) evaluated on the

states determined by condition (2.29) has four different eigenvalues:

λ0 =0 ,

λ1 =(p − 1) cos(−∆ + α) − p cos(α) ,

λ2 =(p − 1) cos(α) − p cos(∆ + α) ,

λ3 =(p − 1) cos(−∆ + α) − p cos(∆ + α) . (2.30)

λ0 corresponds to rigid rotations of the whole system, and is correspondingly 0 for

all configurations; λ1 has multiplicity pN − 1 and corresponds to perturbations to

the elements in cluster A; λ2 has multiplicity (1−p)N−1 and corresponds to pertur-

bations to cluster B; and λ3 has multiplicity 1 and is associated with perturbation

to the phase difference between the clusters. The values of the eigenvalues are only

meaningful for values of |∆| for which p is in the range [0, 1], as seen in Fig. 2.21.

We compute the three last of these eigenvalues as a function of the phase difference

between the clusters, which are shown in Fig. 2.22.

As can be seen in this figure, λ2 is positive for all cluster configurations,4 except

for that for which the phase difference between the clusters is π. According to

(2.29), this corresponds to the clustered state with two equally populated clusters.

4For the choice of range for ∆, cluster B corresponds is the bigger cluster (p ≤ 1/2).
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Figure 2.22: Eigenvalues of the Jacobian of the system evaluated on

clustered states determined by (2.28). α = 0.6π

This means that all configurations with uneven clusters are unstable, and only that

corresponding to two even clusters separated by a phase distance of π is neutrally

stable. For this reason, we can expect that this last state is the only one that can

become stabilized by the presence of noise of low intensity.

This analysis is restricted to the consideration that Z = 0 must be satisfied,

which is a valid approximation in the weak-noise limit. However, for any finite noise

intensities, the magnitude of the global order parameter is persistently maintained

away from zero, however close. For low noise intensities, the system reacts by

adopting a phase distance between the clusters consistent with this value of the

noise intensity. However, if the noise is of intermediate intensity (larger than 1/N),

this requirement may be satisfied by adopting different populations in each of the

two clusters. In fact, in Fig. 2.14 we have seen that for some noise intensities, this

actually occurs in simulations.

In Fig. 2.23 we show the relative difference between the populations of the two

clusters as a function of the noise intensity. The absolute value of the difference

between the populations is averaged over several realizations. As we have seen

before, in the limit of low noise and for a wide range of noise intensities in the

lower end, the two clusters are always equally populated. In the higher extreme,

only one of the clusters contains all elements. For intermediate values, however,

a fraction of the realizations result in an uneven population distribution between

the clusters. It is still possible that the range of noise intensities for which uneven

cluster distributions are attained in the infinite-time limit expands as the system

size is increased. In the infinite system limit, we could expect that a certain range

of inequality in the populations is stable for any finite noise intensity.
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Figure 2.23: Average relative difference in the populations of the two

clusters as a function of the noise intensity. The results are averaged

over 10 realizations for each point. The sharp increase near σ = 1

corresponds to an increasing number of realizations that result in full

synchronization. α = 0.6π, N = 100

2.4 Heterogenous natural frequencies

So far we have considered all elements to be identical, i.e., they have the same

natural frequency. However, in many real-world systems, in particular in biological

systems, this condition is rarely satisfied. Even when all oscillatory elements in the

system are of the same nature, some variation in their frequencies is to be expected.

We therefore want to know how robust the observed results are against structural

perturbations and, in particular, against variability in the natural frequencies.
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Figure 2.24: Average value of |Z| (black), |η| (red) and |ρ3| (green)

as a function of the variance in the natural frequencies δω. The initial

conditions for each point are random and uniform. α = 0.6π. N =

100, σ = 0.1.

If we assign different frequencies to each oscillator, then the synchronized state
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Figure 2.25: Average value of |Z| (black), |η| (red) and |ρ3| (green)

as a function of the variance in the natural frequencies δω. The initial

conditions for each point are random and uniform. α = 0.8π. N =

100, σ = 0.1.

might not be stable anymore for α < π/2 and the incoherent state might not be a

fixed point for α > π/2. Under these conditions, also the 2- and 3-cluster states

might be destroyed by heterogeneities in the oscillator population.

We run simulations on a system of N = 100 non-identical oscillators whose

equations of motion are

φ̇i = ωi +
1

2i

(
Zeiαe−iφi − c. c.

)
+

1

2i

(
ξ(t)e−iφi − c. c.

)
, (2.31)

where the natural frequencies ωi have a Gaussian distribution with a mean of 0 and

〈ω2
i 〉 = δω. In Fig. 2.24 we show the dependence of moduli of the first three order

parameters when increasing the variance of the distribution of natural frequencies

for α = 0.6π. For this we keep the noise intensity fixed at σ = 0.1. Here we see

that the 2-cluster state persists only until a variance in the natural frequencies of

the order of 10−5. For larger values, the oscillators cease to be entrained, with each

element performing persistent rotations with different frequencies.

We do the same calculation for α = 0.8π where the system shows a 3-cluster

stable state for δω. These results are shown in Fig. 2.25. We can see here that the

modulus of ρ3 remains high only for very small values of the variance in the natural

frequencies δω. When the variance is close to 10−7, the 3-cluster state seems to be

already destroyed. In this sense, the 2-cluster state is much more robust against

heterogeneity in the population than the 3-cluster state. These results, both for the

2-cluster and the 3-cluster states, are likely to depend on the noise intensity. The

syncronized state for strong noises is however very robust against heterogeneities of

the oscillators. In Fig. 2.26 we see that the system continues to synchronize for very

large variances.

The variations on the natural frequencies that destroy the clustered state are

quite small. However, it is important to stress that this critical value is still finite,

and therefore the formation of clusters is preserved up to a certain degree of variabil-
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Figure 2.26: Average value of |Z| (black), |η| (red) and |ρ3| (green)

as a function of the variance in the natural frequencies δω. The initial

conditions for each point are random and uniform. α = 0.6π. N =

100, σ = 10.

ity. This critical value may be different for systems of different size, with different

coupling constants, or oscillators of a different nature. Therefore, it is not to be

ruled out that many biological systems may be found to satisfy the conditions for

the behavior here described to be observed.

2.5 Final comments

In this chapter we have studied the stationary states of an ensemble of oscillators

coupled to a phase-shifted global signal. We have found that this system undergoes

a desynchronization transition, after which the final state may be any of an infinite

collection of asynchronous states with no coherent oscillations.

The action of a common noise on all elements has been shown to lead to clustered

states in such systems. Such clusters are perfectly defined, in that all elements in

each cluster have identical phases. In particular, weak common noise drives the

system to either a state with two clusters or a state with three clusters, for the

conditions used in our simulations.

This result may have important implications for practical applications. In many

real systems and experimental situations involving coupled oscillators, fluctuations

in common system parameters will always be present, such as variations in tem-

perature, illumination, atmospheric pressure, etc. According to our results, such

variations, however small, may over long periods of time induce clustering. Never-

theless, most often it is only the degree of synchronization, as measured by global

signals such as the global order parameter Z, that is monitored in experiments. In

such cases, the system may seem at first sight to be in a disordered or incoherent

state, while highly ordered clustered states may go undetected.

Although realistic fluctuations cannot be always described by Gaussian noise,

and some temporal correlations in them may be present, we have no reason to believe
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that such correlations would have an important effect. It is actually remarkable

that even uncorrelated isotropic fluctuations can induce the kind of order we have

observed.

The fact that the clusters are point-like in our system is directly related to the

fact that all oscillators are identical. However, in most experimental circumstances,

intrinsic variations between elements (or intrinsic noise in their dynamics) cannot

be eliminated.In general, heterogeneity in the population would cause the clusters

to spread out [85, 86]. Nevertheless, we have seen that the clustered states tolerate

a certain degree of heterogeneity in the frequencies of the elements. This tolerance

is small, and might be too small for many practical applications. But the robustness

of such clustered states would depend on the coupling intensity (which we held fixed

here and equal to 1), the noise intensity, the phase shift in the global coupling and

even the statistical properties of the noise. Therefore, other parameter values may

yield clustered states that are much more robust to variations in the oscillator popu-

lation. It is possible that this robustness might be high enough for these phenomena

to take place in natural and experimental systems.

In our studies we have only used a complex common noise. Furthermore, this

noise has been generated by drawing the modulus and the phase from independent

distributions. This particular choise of the noise might have an effect on the possible

final states, or the times necessary to attain them. Other choices for the noise may

lead to a different phase diagram.
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Chapter 3

Networks of oscillators with a

phase shift

In the previous chapter, we analyzed a system of oscillators in which each element

interacts with all other elements in a reciprocal and homogenous way. This type of

interaction is a suitable approximation for many systems [5, 56, 87]. However, one

often encounters the situation in which each element interacts with a given subset of

elements. Furthermore, this interaction is not necessarily reciprocal. Such is the case

for systems of such diverse nature as the synaptic network in the brain, telecom-

munication networks, transport between machinery in a factory, and networks of

streets and traffic lights in a city, and many others.

Self-organization has been extensively investigated in the context of chemical

reactions, such as the Belousov-Zhabotinsky reaction [88, 89, 90]. This reaction takes

place in an aqueous phase, and it involves several reaction steps. After producing

many intermediate chemical species, the initial reactants are produced again. As

a result, by supplying a constant influx of chemical reactants and removing excess

byproducts, the dynamics may be maintained in an oscillatory regime where the

concentrations of each species oscillates at a stable frequency.

Many other well-studied reactions have this kind of oscillatory dynamics. When

the spatial distribution of the reactant densities becomes a relevant factor, the inter-

play between the local reaction and the diffusion of the reactants may lead to very

complex dynamics. The general behavior of such oscillatory reaction-diffusion sys-

tems may be captured under quite general conditions (near the Hopf bifurcation) by

the complex Ginzburg-Landau equation, introduced in Sec. 1.6.1. This equation is a

general mathematical model describing the evolution of the amplitude and phase of

oscillations in time and space for a generic oscillatory reaction-diffusion system. Its

validity as a description of such systems has been widely corroborated [91, 77, 78].
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Uniform oscillations in a reaction-diffusion system are a stable solution when

diffusion happens very fast in comparison to the local dynamics (frequency) of the

reaction. In this case, the entire system oscillates with the same amplitude, fre-

quency and phase. But stability analysis shows that this uniform state becomes

unstable when the diffusion is slowed down, or the reaction accelerated. In this

regime, different kinds of chemical turbulence develop, where the phase and ampli-

tude at different points of the system exhibit spatio-temporal chaotic behavior. This

kind of turbulence is widely observed in experimental setups for different kinds of

oscillatory reaction-diffusion systems.

A natural way to derive an equation like the complex Ginzburg-Landau equation

is to consider a spatially-extended reaction-diffusion system as a set of individual

elements whose dynamics are given by the reaction, and place them in a lattice,

through which each element interacts with its immediate neighbors. The continuous

limit is therefore obtained by decreasing the separation between elements in the

lattice and increasing the number of elements while maintaining the dimensions of

the system fixed.

Lattices are a very simple way of representing the distribution of elements em-

bedded in euclidean space. However, as explained in Sec. 1.4, a lattice is a kind of

network, albeit a very restrictive kind. Indeed, in the set of all networks that can

be constructed with a given set of elements and a given number of edges, lattices

only represent a negligible fraction. The question arises of how the results obtained

for reaction-diffusion systems or for the complex Ginzburg-Landau equation can be

extended to situations where spatial embedding is not Euclidean.

Another condition that must be satisfied by solutions of the complex Ginzburg-

Landau equation is that they should be continuous functions of the space variable,

since singular behavior at a given point in space would have no physical meaning for

a chemical system. In the possible case of a singularity in the phase variable, it is

required that the amplitude of oscillations vanishes. If we were to imagine two very

close points with equal amplitude and opposite phase, then it would be only natural

that the amplitude be zero at a given point between them. This is what is know

as a phase slip or a “kink”, a phenomenon with interesting properties which plays

an important role in the development of turbulence [73, 74]. However, in a network

model it is unreasonable to think of a continuous limit, and we may dispense of this

restriction. Therefore, the use of phase oscillators may be a valid approximation,

since no requirements on the amplitude are necessary.

The system investigated in the previous Chapter may be considered as a limiting

case of such a situation, one in which all elements interact with each other identically.

In this chapter, we will consider a system of oscillators which interact through a

network, so that each element is connected to a random subset of the elements in

the entire system. Our emphasis will be placed on the dynamical behavior that

can be observed, and in trying to describe them in general terms as they occur in

networks with different properties.
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3.1 Oscillators in a network

That each element interacts with a certain fraction of the other elements means

that only a fraction of the terms will be retained in the summation in Eqs. (2.2).

These terms coincide with the corresponding non-zero elements in the adjacency

matrix representing the network of interactions. Therefore, to adapt the system

(2.2) to a network representation, it suffices to multiply each interaction term by the

corresponding element of the adjacency matrix T . For consistency, we additionally

modify the normalization factor by dividing by the connectivity or density of edges

in the network ρ. The equations of motion are thus

∂φi

∂t
=

1

Nρ

N∑

j=1

Tij sin(φj − φi + α) , (3.1)

where the matrix elements Tij are 1 if there is a directed edge connecting element

j to element i, and 0 otherwise. When each element is connected to all others, all

Tij = 1 (although Tii = 0 for all i). In this case ρ = 1, and we recuperate Eqs. 2.2.

As a choice for the structure of T , standard networks of the Erdös-Re̋nyi type

will be used. In such networks, (directed) links connecting two elements (i → j) are

chosen independently at random with some probability ρ. Explicitly, the elements

of matrix T are

Tij =





0 if i = j

1 with prob. p

0 with prob. 1 − p ,

(3.2)

where the first condition excludes loop edges. The network of interactions is therefore

an unweighted, directed random graph. In the limit of large networks we will have

p ≈ ρ ≡ 〈Tij〉 =

∑N
j=1 Tij

(N − 1)N
, (3.3)

and the mean degree of the network is 〈k〉 = ρN . The probability p is an expectation

value for the connectivity of the network ρ, and the two values coincide in the infinite-

size limit. In this Chapter, we will only consider realizations of the adjacency matrix

T for which the network is strongly connected, meaning that there exists at least

one directed path from each element to all others.

A state in which all phases are identical (which is a solution of the system (2.1)

in the previous chapter for all values of α) is no longer a solution of system (3.1) for

α 6= 0. Indeed, if all phases are identical, then each term in the sum of 3.1 will have

the same value sin α. In this case we get

φ̇j =
kin

j

Nρ
sinα , (3.4)

where kin
j is the incoming degree of node j. Since this degree is in principle different

for each element, this equation can only be satisfied when α = 0 or α = π, and

φ̇j = 0 for all j. Otherwise, each element would have different velocities φ̇i, and the

phase-synchronized state would rapidly disintegrate.
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However, there may still be solutions in which all elements have the same velocity,

that is φ̇i = Ω. In these cases, a frozen configuration would be reached in which

the phase-distances dij between all pairs of elements, as defined in Eq. (2.24), are

constant in time, and the system rotates with constant velocity as a rigid body. In

particular, for α = 0, the frozen configuration reached is one with dij = 0 for all

i, j for (almost) any kind of connected network [42, 62], and therefore, for all values

of ρ. This would be a phase- and velocity-synchronized state, and the global order

parameter would be |Z| = 1.

When α is slightly increased from zero, we can expect the distribution of the

phase values in the frozen configuration to spread, although velocities may remain

constant. Since this is the more general case, in the remainder of this thesis, we

will refer to such a velocity-synchronized state as simply synchronized, unless stated

otherwise. In this case, the magnitude of the global order parameter would be

reduced, yet still reach a constant finite value.

Nevertheless, the existence of such a stationary state cannot be so far guaran-

teed, and persistent dynamics may develop in the system. The configuration of the

elements would therefore no longer be frozen, and the velocities of the elements

would not be constant in time. A possible scenario is that the system is locked

into a periodic attractor. This terminology does not refer to the periodicity of the

elements themselves, but to a periodic change in the configuration, that is, the phase-

distances dij between the pairs of elements. In fact, the dynamics of the attractor in

the absence of a stationary synchronized state could also be quasiperiodic, or even

chaotic. In such cases, it is still useful to consider the time-averaged value of the

order parameter as a measurement of overall coherence in the system.

In Fig. 3.1 we plot the long-term time averaged magnitude of the global order

parameter, defined as

W =

∫ T+∆T

T

|Z(t)|dt

= 〈|Z(t)|〉 , (3.5)

where T and ∆T are both as large as possible.

As can be seen in Fig. 3.1, a transition to an incoherent stationary dynamics

takes place at a certain value of α, which becomes smaller as the connectivity of

the network is decreased. This transition, however, becomes less abrupt for smaller

connectivity values, allowing for intermediate states in which the system remains in a

partially coherent state with non-vanishing |Z| < 1. As we shall see, the smoothness

of this transition for connectivity values ρ < 1 is due to the appearance of dynamic

states.

3.2 Local signals vs global signals

The introduction of network interactions means that each element is no longer cou-

pled to a global field. Instead, each element interacts with the elements with which

it is connected in the network. This means that it will still be effectively coupled to

a field that is local to its position in the network.
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Figure 3.1: Average magnitude of the global order parameter as a

function of the phase shift value α for different values of the network

connectivity ρ. N = 200.

In addition to the global order parameter Z defined in Eq. (1.36), it is convenient

to introduce the following local order parameters

zi =
1

N

N∑

j=1

Tije
iφj , (3.6)

which measure the coherence of the signal received by each element through its

incoming connections [62]. With these quantities, the Eqs. (3.1) may be expressed

in a complex form similar to 2.5 as

φ̇i =
1

2i

(
zie

iαe−iφi − c.c.
)

, (3.7)

where it is clear that each element is coupled to its own individual field, generated

by its neighbors in the network. In the limit of ρ = 1, all local signals zi reduce to

the global signal Z, and Eqs. (3.7) reduce to 2.5.

If we calculate the mean value of the local signals over all elements we get

〈zi〉 ≡ 1

N2

N∑

j=1

N∑

i=1

Tije
iφi

=
1

N

N∑

j=1

kout
j

N
eiφj , (3.8)

where kout
j is the outdegree of the j-th node. The mean value of the local signal

has the same form of the global signal, in which each element is weighted by its

number of outgoing connections. With this in mind we may define a set of auxiliary

quantities

z̃i ≡ Z − zi

=
1

N

N∑

j=1

(1 − Tij)e
iφj . (3.9)
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The matrix whose elements are (1−Tij) has the interesting property of being the

adjacency matrix of a network consisting of the matrix elements that are “missing”

in T . Using these quantities we can write the evolution Eqs. (3.7) in yet another

form as

φ̇i =
1

2i

(
Zeiαe−iφi − c.c.

)
− 1

2i

(
z̃ie

iαe−iφi − c.c.
)

. (3.10)

The first term coincides with the globally coupled system studied in the previous

chapter. The second term corresponds to a coupling with a local field that takes

into account the edges that need to be removed from the globally coupled case to

obtain the network represented by T . In the case of high connectivity, that is ρ . 1,

we can understand Eq. 3.10 to express the dynamics of the system explicitly as a

perturbation of the globally coupled case, where the interaction between a few pairs

of elements has been “knocked out”. Just as we did with zi, we may calculate the

mean value of z̃i as

〈z̃i〉 ≡ 1

N2

N∑

j=1

N∑

i=1

(1 − Tij)e
iφi

=
1

N

N∑

j=1

(
1 −

ko
j

N

)
eiφj . (3.11)

The average value of the local signals 〈z̃i〉 are of order (1 − ρ). We therefore can

interpret Eq. 3.10 to represent a system of the form

NETWORK = GLOBAL COUPLING − (1 − ρ) × MISSING LINKS . (3.12)
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Figure 3.2: Hysteresis plot for the average magnitude of the global

order parameter as α is both decreased and increased around the

transition.

The presence of a perturbation term in the globally coupled equations will affect

the transition between the attractors that would otherwise be present. Such a term
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may act by breaking the degeneracy in the system, and thus the destabilization of

the attractors would take place through different mechanisms. In this case, we may

expect that a transition region will be present between the synchronous and the

incoherence attractor, in which the sharpness of the transition may be smoothed

out, and hysteresis may occur.

In Fig. 3.2 we show the time-averaged magnitude of the global order parameter

Z in the transition region for different values of the network connectivity ρ, both

when α is increased and decreased. As can be appreciated, there is a hysteresis

region which grows wider as the connectivity of the network is reduced.

As was done for the global order parameter in Eq. (3.5), we can define a long-

term average local signal for each node as

wi =

∫ T+∆T

T

|zi(t)|dt , (3.13)

where T and ∆T are both as large as possible.

An important aspect of the desynchronization transition in system (2.5) as out-

lined in the previous chapter is that, since the global field acting on all elements is

zero for values of α > π/2, interactions between elements essentially vanish. This is

not the case in the system (3.7). As can be observed in Fig. 3.3, the mean value of

the average local signals, given by

w =
1

N

N∑

i=1

wi , (3.14)

does not vanish for any value of α when the connectivity ρ < 1. Therefore, it is

natural to expect that complex dynamics take place in replacement of the desyn-

chronized state when a network is introduced. Indeed, that the desynchronized state

in the globally coupled system is neutrally stable is due to the high degeneracy. In-

troducing network interactions breaks this degeneracy (as also could, for example,

heterogeneities in the natural frequencies of oscillators), and dynamic states appear.

3.3 Lyapunov exponents

Since the phase space of the system is N -dimensional, there will be N Lyapunov

exponents describing the dynamics of the system within a given attractor. However,

it is clear that the dynamics of system (3.1) are invariant if we shift the phases of

all elements by a the same value, that is φi → φi + const for all i. This means that

if we compare the dynamics of the system in a given attractor for a given trajectory

and a trajectory for which the phases of all elements have been shifted by a common

value, then these trajectories will remain at a constant distance, and the Lyapunov

exponent associated with this translation will be zero.

This zero Lyapunov exponent will always be present. Since it conveys no in-

formation on the properties of the attractor or the dynamics of the system, we

will ignore it, and concentrate only on the remaining N − 1 exponents. Therefore,

throughout this work, when we refer to the maximal Lyapunov exponent, we mean

the maximum of the N − 1 Lypaunov exponents that do not correspond to rigid
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Figure 3.3: Mean value of the local signals, average over all elements,

as a function of the phase shift for different values of the network

connectivity ρ. N = 200.

translations. For all practical purposes, this amounts to discarding the first zero

exponent.

The transition leading to the destabilization of the synchronous state can be

visualized by tracking the value of the maximal Lyapunov exponent (MLE). In Fig.

3.4 this exponent is plotted as a function of the phase shift for different values of the

network connectivity ρ. This plot is obtained by varying α in increasing direction.

However, as shown in Fig. 3.2, hysteresis is only present in very narrow intervals,

and the behavior would not be significantly different if α were varied in the opposite

direction.
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Figure 3.4: Maximum Lyapunov exponent as a function of the phase

shift value for different values of the network connectivity ρ. The

curves are obtained by increasing α from 0 to π. N = 200.

Although changing the connectivity of the network produces different results, all

the curves have a common behavior. The maximal Lyapunov exponent is negative

for small values of α, which could have been expected from the fact that α = 0 only



3.3 Lyapunov exponents 77

has a synchronous attractor [42]. In the vicinity, the maximal Lyapunov exponent

increases steadily, reaching zero for a certain critical value α = αc, which decreases

as the connectivity is diminished. In this range, the negative maximal Lyapunov

exponent indicates the convergence of the system towards a stable stationary state.

Above the critical point, a plateau follows where the maximal Lyapunov exponent

remains equal to zero, and soon grows positive as α is further increased.

The MLE remains positive for all further values of α, reaching a maximum at

α = αmax. This maximum moves to the left as the connectivity is decreased, and

the height of the peak increases. As α is further increased, the maximum Lyapunov

exponent settles around an approximately steady value, which is also higher for

lower connectivity values.

All other Lyapunov exponents λj can be computed for each attractor. In the

following we do this for different values of ρ at α = π. To obtain smoother curves,

for a single value of α = π we perform this calculation for a system of N = 1000

elements. This is shown in Fig. 3.5, where histograms of all N = 1000 Lyapunov

exponents are shown for different values of ρ. All exponents are zero for ρ = 1, and a

single peak is registered (out of visualization scale in the plot). As the connectivity

is lowered, the exponents spread apart in a bell-shaped distribution, and the mean

value moves to the left. However, a significant portion of the exponents remain to

the right of 0. In fact, this portion is approximately the same for all curves (except,

of course, ρ = 1).
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Figure 3.5: Distributions of all Lyapunov exponents for different

values of the network connectivity for α = π. The curve for ρ = 1 is

a single peak at zero with height 1, and has been cut for illustrative

purposes. N = 1000.

In fact, if we look at the curves of the values of the exponents in decreasing

order, as shown in Fig. 3.6 for the different values of the network connectivity, we

see that the shape of the curves is conserved. Furthermore, they cross the zero-

axis at almost exactly the same point. This suggests that there is a certain scale

invariance between all curves.
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Figure 3.6: Curves for the values of the ordered Lyapunov exponents

for α = π. All exponents are set in decreasing order so that their value

is plotted against their rank. N = 1000.

Keeping in mind the idea expressed in (3.12), it seems natural to assume that

the scaling between curves will be proportional to a function of 1 − ρ. In Fig. 3.7

the distributions have been scaled by

λ′
i =

λi√
1 − ρ

. (3.15)

In this figure it can be seen that the distribution of the scaled exponents for higher

values of the connectivity are very similar, indicating that the scaling of the dynamics

may indeed follow this law, at least approximately. As the connectivity is further

reduced (ρ ≤ 0.6 in Fig. 3.7), this scaling breaks down and the distributions become

wider.
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Figure 3.7: Distributions of all the Lyapunov exponents after rescal-

ing as indicated by Eq. (3.15). α = π, N = 1000.
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3.4 Kaplan-Yorke dimension

Another interesting quantity to calculate is the Kaplan-Yorke dimension. In Fig.

3.8 we see this dimension as a function of α for different connectivity values. The

dependence of this dimension is non-monotonous, typically having a maximum for an

intermediate value of α along the transition. This value coincides with αmax at which

a maximum is found for the MLE. The maximum dimension reached decreases as

the connectivity is decreased, while the location of this maximum moves towards the

left. For values close to unity, the maximum value of the Kaplan-Yorke dimension in

this peak can be quite large, comparable to the value of the dimension of the system

N , and the location of this peak approaches α = π/2. As seen in the previous

chapter, for the singular case in which ρ = 1, an abrupt transition at this point

occurs when the dimension jumps to DKY = N .
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Figure 3.8: Kaplan-Yorke dimension of the attractor as a function

of the phase shift value for different network connectivities. N = 200.

Beyond this peak there is an abrupt transition to an attractor whose dimension

is still quite high, but its value presents no significant changes as the value of α

is further increased. Interestingly, the value of the dimension of the attractor in

this region of the transition landscape shows no appreciable dependence on the

connectivity.

The fact that the dimension of the attractor above a critical value of α does not

change when changing α or ρ could have been expected from the curves shown in

Fig. 3.6. Nevertheless, it is still remarkable that the dimension of the attractors

is approximately independent of the connectivity of the network and the phase

shift value (in the range α > αmax), since they are the only parameters of the

system, other than its size. This means that there exists a dynamic regime of high-

dimensional chaos in which the dimensionality of the attractor is determined by the

size of the system. The characteristics of this attractor are robust to major changes

in the functions determining the interactions between elements.

In Fig. 3.9 we show the ratio of the calculated Kaplan-Yorke dimension of the

attractor to the size of the system for a value α = π as the system size is increased.

These values have been found by averaging over five different realizations of the
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Figure 3.9: Ratio of the Kaplan-York dimension of the attractor at

α = π to the size of the system, as a function of the size. Each point is

the result of an average over 5 realizations of the network (except for

N = 1600 and N = 3200, which are obtained from single realization

for each curve).

network for each system size (except for the two largest values, where only one

realization is used for each). As can be seen, as the size of the system is increased,

an approximately stationary value is reached, meaning that the dimension of the

attractor is roughly proportional to the system size. Furthermore, this value seems

to not have a strong dependence on the connectivity of the system.

This extensive quality of the chaotic behavior allows us to draw a parallel be-

tween the dynamics of the system and the turbulent behavior in spatially distributed

oscillator systems. As is known for oscillatory media and reaction-diffusion systems

of oscillatory nature, a transition to turbulence can be found as a function of the

parameters. The extensive nature of the embedding dimension of the attractor is a

well-know property of turbulent systems [92, 93, 94]. In this sense, we can under-

stand that the kind of high-dimensional chaos that our system exhibits is analogous

to the phase turbulence observed in oscillatory media. Of course, since our system

has no defined spatial extension, the idea of spatio-temporal chaos is not applicable.

Instead, the role of distance must be played by the length of a path that connects

different elements.

3.5 Velocity-synchronized states

As seen in Fig. 3.4, the maximal Lyapunov exponent is negative for a certain range

of values of α at all connectivity values. This implies the existence of an attracting

configuration that is frozen in time. Such a state is only possible if the velocities of

all elements are equal, and the system may rotate with a fixed velocity.

Such a state exists up to a critical value of alpha, at which the first Lyapunov

exponent reaches zero. In Figs. 3.4 and 3.8 we have seen that this critical value

becomes smaller as the value of the connectivity is reduced. In Fig. 3.10 we calculate

this critical value αc as a function of the connectivity. The critical value of α grows
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with the connectivity ρ, reaching π/2 when the connectivity is 1, as was found

in the previous chapter. In the other extreme, it appears to approach 0 when

the connectivity does. Of course, the connectivity cannot be zero for a connected

network, and this extrapolation is only meaningful in the limit of infinite system

size.
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Figure 3.10: Critical value of α for which the velocity-synchronized

state ceases to exist, as a function of the connectivity of the network

ρ. The ordinate axis is plotted on a logarithmic scale, and each point

is averaged over 5 different network realizations.

Below the critical value αc for each connectivity value, a stable state is attained

by the system. This means that a frozen configuration is reached, and that pertur-

bations from this configuration are damped as the system relaxes back to it. The

properties of this stable configuration may change as the parameters are changed.

As a way to characterize the distribution of phases in the stable configuration,

we measure the average value of the distance dij defined in (2.24), over all pairs of

elements in the long-time limit. Thus parameter d is defined as

d ≡ lim
t→∞

〈|dij(t)|〉 = lim
t→∞

1

2N(N − 1)

N∑

i=1

N∑

j=1

|dij(t)| . (3.16)

This quantity is plotted in Fig. 3.11 as it depends on the value of parameter α

in the velocity-synchronized state for different values of the network connectivity.

As can be seen, increasing the value of the phase shift causes the distribution of

phases to spread. This becomes more accentuated as the connectivity is diminished.

Coherence is therefore diminished, and the modulus of Z in the synchronized state

decreases, as seen in Fig. 3.3.

In this partially coherent synchronized states all velocities are identical. This

means that there is a solution of the form

Ω =
1

Nρ

N∑

j=1

Tij sin(φj − φi + α) , (3.17)
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Figure 3.11: Average phase-distance d in the velocity-synchronized

state for values of α < αc for different values of the connectivity ρ.

N = 1000.

where all terms inside the sin function are constant. Ω is therefore approximately the

expectation value of sin(φj − φi + α). If we assume that the stationary distribution

of phases in the synchronized state is symmetric and narrow, we get

Ω ≈ 〈sin(φj − φi + α)〉 ≈ sin α , (3.18)

In Fig. velocitysynchronizedstates we plot the velocities of the synchronized states

as a function of α in the range α < αc. This is shown for different values of the

network connectivity, although all curves almost coincide.
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Figure 3.12: Velocity of the synchronized states as a function of α

for α < αc. the function sinα is plotted in dashed lines. N = 1000.

3.6 Dynamical states

In the previous chapter, the presence of a number of zero Lyapunov exponents was

said to denote the neutral stability of the attractor. This is because the attractor
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is a fixed point, where the dynamics are frozen. Thus, perturbations along the zero

Lyapunov exponents are not damped, nor do they grow. In the present case, since

there is no fixed point solutions to the equation of motion, any possible attractor is

necessarily dynamic. Therefore, the fact that the largest Lyapunov exponent reaches

zero at α = αc indicates the presence of a limit cycle.

A limit cycle corresponds to an attractor in which the configuration of the system

changes periodically. However, as α is increased beyond αc, the maximal Lyapunov

exponent remains equal to zero, whereas the dimension of the system increases. This

implies that several Lyapunov exponents are zero. In such a case, quasi-periodic

dynamics take place.

Since all elements are identical, and their interactions are mediated by the same

phase shift, all heterogeneity in the system is given by the network interactions.

In this sense, the dynamics of each element is entirely determined by the network

architecture. Furthermore, since each element can only be affected by the elements

with which it is connected, the aspects of the network that decide the dynamics

of each elements are mostly local. Of course, an element i connected to element j

will affect its dynamics, and if j is connected to k, a certain degree of transitivity

between i and k is in principle present. However, since the connectivity between

different pairs of nodes is uncorrelated, these sort of “long range” interactions seem

to be too weak in this system to be relevant.

3.6.1 Very low connectivity

We examine the particular case of the dynamics for αc < α < αmax for very low

connectivity values. In Fig. 3.13, the long term average velocities νi of all ele-

ments are plotted against their in-degree in the network, i.e., how many incoming

connections they have, for the case of ρ = 0.007 and α = 0.07π. It is remarkable

that all elements with more than one incoming connection have the same velocity,

whereas all elements with one single incoming connection (there is 7 of them for in

this network) rotate with a different velocity. It is clear then that the dynamical

properties of these elements with one connection are entirely determined by this

defining topological feature.

This is not very surprising when one takes a look at the evolution of Eqs. (3.1).

Elements with only one incoming connection will have only one term in their equa-

tions of motion. For values of α before the destabilization of the velocity- synchro-

nized state, that is α . αc, a stationary state with φi = Ω exists for all i. This

value of Ω is determined by all elements and all interactions between them, and

is therefore a global property. Nevertheless, as the value of α is increased towards

the critical value αc and Ω grows beyond a given value1, those elements for which

their evolution equation has only one term will not be able to reach this velocity.

These elements will therefore fall out of synchrony, and begin to orbit with a given

velocity. Furthermore, this will happen simultaneously for all elements with one

1The critical velocity should be approximately of order (ρN)−1 for very low connectivities. This

is due to the presence of elements with only one incoming connection, so that the approximations

in (3.18) are not valid.
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Figure 3.13: Long-term average velocities of each element as a func-

tion of its number of incoming connections. α = 0.07π, ρ = 0.007,

N = 1000.

incoming connection, and their velocities will therefore be approximately the same.

This means that all the elements with one incoming connection become disengaged

or disentrained from the rest of the system simultaneously, and form a dynamical

block by themselves.
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Figure 3.14: Long-term average velocities of each element as a func-

tion of its number of incoming connections. α = 0.33π, ρ = 0.007,

N = 1000.

In Fig. 3.14 we make a similar plot for the same network as in Fig. 3.13,

this time for a value of α = 0.33π, slightly smaller than αmax for this value of

the connectivity. The spread in velocities is much larger here, and essentially all

elements are disentrained. Nevertheless, a clear correlation between velocity and

degree can be seen in this figure, where elements with more incoming connections

have a larger velocity. This reinforces the results observed in Fig. 3.13 near the
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destabilization of the synchronized state.

In stark contrast, the situation is very different when α > αmax. A plot of the

velocities off all elements as a function of their degree is shown in Fig. 3.15 for a

value of α = 0.34π. In this case, all correlation between the velocity and the degree

is lost, and the long-term average velocities are distributed in a seemingly random

manner around zero.
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Figure 3.15: Long-term average velocities of each element as a func-

tion of its number of incoming connections. α = 0.34π, ρ = 0.007,

N = 1000.

3.7 Heterogeneous phase shifts

So far we have analyzed the case in which all interactions between connected pairs

of elements are equal, specifically, they have the same associated phase shift. In

many systems of interest, the interactions do not show this homogeneity. In par-

ticular, for cases where the interaction is restricted by a given spacial distribution

of the elements, or affected by a given distance, the interactions may have a given

transmission delay, which may be very different between different pairs of elements,

not only because of their distance, but also due to the transmission mechanisms.

In many systems, e.g., in a factory, the pattern of interactions between elements

may be unalterable without breaking down the functioning of the entire system. In

such a case, the structure of the interaction network may be a fixed condition of

the system. However, the transmission delays and transport velocities may still be

something that can be adjusted to affect and still sustain operation.

In our model, such a delay would be represented by a specific phase shift in the

interaction between two elements. In this section, in an attempt to make the model

more general, we consider the case in which each connection in the network has its

own associated phase shift. In order to avoid making unnecessary assumptions and

minimize the number of free parameters, we choose to determine these phase shifts

randomly and with no correlation to the network structure.
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The evolution equations are thus transformed to

φ̇i =
1

Nρ

N∑

j=1

Tij sin(φj − φi + Aij) , (3.19)

where Aij = α + aij × δ. The individual elements of the matrix aij are randomly

drawn from a uniform distribution in the range [0, 1]. The case of δ = 0 reduces to

the Eq. (3.1), whereas the case α = 0 represents a system where all the phase shifts

are randomly chosen, and control parameter δ determines their magnitudes.

Interestingly enough, the main characteristics of the transition landscape of the

system do not change significantly by replacing the uniform phase shift with ran-

domly chosen ones. In Fig. 3.16, we show the mean, maximum and minimum of the

long-term average velocities νi as a function of the magnitude of the phase shifts.

The case of homogeneous phase shifts is compared to the case of α = 0 with varying

δ, in both cases for the same network. The curves are quite similar if we compare

the parameters α and 〈aij〉 × δ. It seems therefore that the important quantity to

determine the global dynamics of the system for a given network is the mean value

of the phase shifts involved.
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Figure 3.16: Comparison of the dynamics for heterogeneous and

homogenous phase shifts. We can see that the mean value of the

phase shifts is the relevant quantity.

The fact that each connection has a different associated phase shift generally

implies that the equilibrium configuration of the synchronous state is different to

that in the case of a homogeneous phase shift for the same network. It would

therefore be natural to assume that the destabilization of this configuration occurs

differently as well. However, this heterogeneity seems not to affect the general

correlations between the local network properties of an element and its dynamics.

In Fig. 3.17 we show the velocities νi of all elements as a function of their degree in

the network for phase shifts such that α and 〈aij〉× δ are approximately of the same

value in respective plots. Here we can see that the distribution of velocities in terms

of the local degree of incoming connections seems to be preserved when introducing

heterogeneity in the phase shifts. The velocity values in both situations depicted in
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Fig. comparisondeltaalpha are also of the same order. Equivalent behavior has also

been found for other values of α and δ.

3.8 Final comments

In this chapter we have studied a model for oscillators in a network, and the different

dynamics that develop as the value of a phase shift in the interactions is varied. This

model emerges naturally when extending the model in the previous chapter to the

network case. This modification to the model seems to break the degeneracy of

the globally coupled case, thereby replacing the stationary incoherent states with

regimes of persistent dynamics.

The transition between the fully synchronized states and the incoherent state

occurs less abruptly with the appearance of intermediate, partially coherent station-

ary state. The phase-synchronized state is replaced by a velocity-synchronized state

in which the phases of the elements are distributed in a range that becomes larger

as the value of the phase shift is increased and the connectivity decreased.
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Figure 3.17: Long-term average velocities of each element as a func-

tion of its number of incoming connections for (left) α = 0, δ = 0.65π;

and (right) α = 0.33π, δ = 0. ρ = 0.007, N = 1000.

Large values of the phase shift lead to chaotic dynamics in which the embedding

dimension of the attractor is very large. An important property of the considered

model is that individual elements are not chaotic. Instead, chaos emerges as a result

of the coupling between them. The dynamics of individual elements is extremely sim-

ple, and it is the pattern of interactions that induces complex dynamics. However, a

chaotic regime is present in which the embedding dimension becomes approximately

independent of the specific properties of the pattern of interactions.

The presence of network interactions can be effectively considered as a structural

perturbation to the limiting case of globally coupled elements. In these terms,

the perturbation is the elimination of individual interactions between certain pairs

of elements from the globally coupled case. This allows us to find approximate

scaling laws for the dynamics in terms of the connectivity of the network. In the

particular case of the high-dimensional chaotic attractor, these perturbations seem
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to only affect the temporal scales of the dynamics, whereas qualitative aspects of

the attractors remain unchanged. The embedding dimension of the high-dimensional

chaotic attractor seems to be independent of these perturbations.

The fact that this dimension does not depend on the parameters of the system

indicates that an extensive kind of high-dimensional chaos is present, in which the

dimension is a function of the size of the system. In our system we have measured

that this dependence is approximately linear when the size is large enough.

Because of these reasons, an analogy can be made to the turbulent regime ob-

served in oscillatory reaction-diffusion systems, where the phase value in all points

of the system behaves chaotically in space and time. It is a well known fact that

the embedding dimension of the attractor in turbulent chemical systems (as well as

hydrodynamic) scales proportionally to the size of the system. This can be proven

for simple systems and has been corroborated by numerical computations [94, 95].

While our investigations have been performed for a particular model, we con-

jecture that the results should be general, and similar behavior will be found in

other network-organized systems of various origins. Indeed, it can be shown that

the considered model is closely related to the generic phase network model obtained

by phase reduction of amplitude oscillator dynamics on networks in the vicinity of

the supercritical Hopf bifurcation. The instability leading to the network turbulence

in the model is the analog of the Benjamin-Feir instability of uniform oscillations in

the complex Ginzburg-Landau equation.



Chapter 4

Global feedback control

In the previous chapter we have studied a system of oscillators interacting

through a network where interactions are mediated by phase shifts. In this sys-

tem, we have found that high dimensional chaos can develop when the phase shift

values are large enough.

At the beginning of the previous chapter, we made a comparison between a

network of interacting oscillators and extended oscillatory systems. Indeed, models

for oscillatory media are usually built upon the premise that a continuous system

of oscillatory nature can be described as a lattice of single oscillatory elements with

neighbor-to-neighbor coupling. In light of this, the use of a network as a pattern of

interactions could be regarded as a generalization of systems embedded in Euclidean

space to more complex topologies.

A lot of progress has been made in the last decades in the direction of control of

turbulence in oscillatory media. Particularly interesting results have been found for

the use of a global feedback control as a method to suppress turbulence, as discussed

in Sec. 1.6.2. Global feedback is a convenient kind of control, given that it is very

simple, it has few parameters and can be easily implemented in experimental setups.

But the most appealing aspect of it is that the control signal is generated by the

system itself. In this manner, the dynamics can self-organize and adapt without any

need of supervision or interference.

Such a mechanism is easily capable of restoring uniform oscillations in an other-

wise turbulent system. However, the most interesting aspect of global feedback as a

method to control turbulence is that not only uniform oscillations can be restored,

but also a rich variety of complex patterns and coherent structures can be found

when exploring the parameter space. By manipulating a very small number of pa-

rameters (intensity, time delay or a phase shift in the application of the feedback)

a great variety of self-organized structures can be induced, such as standing waves,

spirals, phase clusters, intermittent turbulence, target patterns, etc.
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The formation of patterns in the transition between order and chaos is not a

property exclusive to chemical systems. Many prominent scientists have advocated

that the emergence of dynamical order in the form of coherent complex structures

may be a general phenomenon at the edge of chaos. In this context, the use of a

global feedback is a very convenient way to tune the system to this region and keep

it there.

In this chapter we will consider the effects of a global feedback as a mechanism

to control the network turbulence observed in the previous chapter. In analogy to

extended oscillatory systems, we want to find whether a similar transition between

turbulence and synchronization can be observed in network systems. And if so, what

would be the network analogous of the coherent structures observed in the spatially

extended counterparts?

The focus of this chapter will be set on the dynamic properties of the system

at different stages of the transition and their relationship to structural properties of

the network. For this, we will consider a single realization of the interaction network

and its associated phase shifts, and concentrate on what kind of dynamics we can

observe in the system when we introduce a global feedback. As such, the character of

this chapter will be exploratory rather than explanatory, and it should not be taken

as an exhaustive study of the possible kinds of behavior of networks synchronization

and chaos.

4.1 Global feedback control

We have seen that system (3.19) may exhibit high dimensional chaos under very

general conditions for matrices T and A. However, we are interested in seeing

how chaos can be suppressed or controlled, and what complex dynamics we may

encounter in the process. For this reason, we will from here on consider only a single

realization of T and A which will remain fixed for the rest of this chapter. The values

of ρ and δ will therefore also remain fixed at ρ = 0.006 and δ = 0.8π, and α will be

assumed zero throughout. tThe number of elements will be fixed at N = 1000.

ρ = 0.006 is one of the lowest connectivity values that one can set for a network

of the Erdös-Re̋nyi type with 1000 nodes and still have it be strongly connected.1

We thus choose a network T that satisfies this condition, and determine that a

magnitude δ = 0.8π for the spread in the values of the phase shifts is sufficient to

observe turbulent behavior as discussed in Sec. 3.4. For these values, the dynamics

is chaotic and the attractor has a Kaplan-Yorke dimension of D ≈ 137.

We introduce now a global feedback term that will act on all elements, in addition

to the interactions that take place through the network. We may reinterpret the

global order parameter Z to be a global signal, conformed by the addition of the

signals from all individual elements. As such, this signal may be applied back to the

system with a regulated intensity as external forcing.

1See Sec. 1.4.1.
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The equations of motions are then written in the form

φ̇i =
1

ρN

N∑

j=1,j 6=i

Tij sin(φj − φi + aij × δ) +
µ

2i
(Ze−iφi − c. c.) , (4.1)

where µ is the parameter that specifies feedback intensity. For the remains of this

chapter, µ will be the only parameter to be manipulated, except when explicitly

stated.

By construction, the system exhibits high-dimensional chaos at µ = 0. On the

other hand, the second term coincides with the global coupling term as studied in

Chapter 2 (α = 0). If this were the only present interaction, it would bring the

system to synchronization. Therefore, we also expect this for system (4.1) for large

values of µ. It is thus clear that global feedback is an effective way to restore uniform

oscillations in a disordered system as 3.19.

4.2 Lyapunov exponents and Kaplan-Yorke dimension

In this chapter we will concern ourselves with the transition scenario between these

two extreme cases. As we have done in the previous chapter, we use the Lyapunov

exponents to describe the dynamics of the system in a concise way. As such, we will

study the dependence of these exponents, and in particular the largest of them, as

they change in function of our control parameter µ. As in the previous chapter, we

will ignore the first zero Lyapunov exponent (which corresponds to uniform shifts

in all phases) and consider only the remaining N − 1 Lyapunov exponents.

We also consider the Kaplan-Yorke dimension as a way to characterize the prop-

erties of the attractor as it changes with the control parameter. In Figs. 4.1 and 4.2

we plot the dependence of the maximal Lyapunov exponent and the Kaplan-Yorke

dimension on the the global feedback intensity µ
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Figure 4.1: Dependence of the maximal Lyapunov exponent on the

control parameter µ. δ = 0.8π, N = 1000.

In these figures we can see that the transition from synchronization to chaos

can be divided in different stages. For large values of the global feedback intensity
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Figure 4.2: Dependence of the Kaplan-Yorke embedding dimension

on the control parameter µ. δ = 0.8π, N = 1000.

(and for all values outside of these figures), the maximal Lyapunov exponent is

negative, signaling that the system goes to a stable attractor in which the phase

distances between all pairs of elements remain constant. Such a state is identified as

synchronous, in that all elements are entrained in global rotations with a constant

frequency. Correspondingly, the dimension of the attractor is zero2. When we

decrease the intensity of the global feedback, the synchronous state becomes unstable

at a value µ1 ≈ 0.92, when the maximal Lyapunov exponent reaches zero.

Below this value there is a plateau, and the maximal Lyapunov exponent re-

mains constant and equal to zero for a certain range of values. This indicates that

the stable synchronous attractor has been replaced by a periodic or quasi-periodic

attractor. However, the dimension of the attractor begins to grow in this range al-

ready, indicating that a number of Lyapunov exponents that were negative for higher

values of µ become zero in this range. Indeed, from the definition of the Kaplan-

Yorke dimension (1.18), it follows that if the k highest Lyapunov exponents are zero,

then the dimension is equal to k. As we shall see later, this takes place through a

sequence of saddle-node bifurcations, associated with an increasing number of ele-

ments incurring in phase-slips, or fast excursions in the phase space between almost

synchronous configurations.

When reaching a value µ2 ≈ 0.77 the largest exponent becomes positive, marking

the onset of chaos. Decreasing the value of µ further increases the magnitude of the

largest exponent and the Kaplan-Yorke dimension. This increase is monotonous in

the range 0.27 < µ < 0.77, and in the lowest extreme the dimension may reach

values as high as D = 244.8, significantly higher than that in absence of the global

feedback.

In the last stage of this transition, there is an abrupt change in the attractor,

and both the largest exponent and the Kaplan-Yorke dimension drop to the values

2This is a result of ignoring the first zero Lyapunov exponent. Any configuration is equivalent

to that obtained by any homogeneous displacement of all phases, and therefore any state defines a

straight line of equivalent configurations in the phase space.
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expected in the absence of feedback for the turbulent regime, as seen in Sec. 3.4.

Remarkably, this occurs for a non-zero critical value of the global feedback intensity,

and further changes in the value of µ seem to have no effect in this macroscopic

variables. This suggests that this sudden drop is associated with a breakdown of

the global feedback as a control mechanism.
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Figure 4.3: Histograms of Lyapunov exponents for different values

of the control parameter µ. δ = 0.8π, N = 1000.

Additionally, four histograms of the distributions of all N−1 Lyapunov exponents

are shown in Fig. 4.3 for different values of µ. For large values of the global

feedback intensity (µ > µ1) the distribution of Lyapunov exponents is approximately

symmetric. At µ = 1.0 it is roughly centered at −1.3 (Fig. 4.3a). In the region

µ2 < µ < µ1 we can see the presence of degenerate zero Lyapunov exponents, as

demonstrated in panel 4.3b for µ = 0.8, where a small but clear peak is present at

0. As we move into the chaotic region, the distribution of exponents moves towards

the right and, as seen in Fig. 4.3c, a large number of Lyapunov exponents are

then positive (approximately 10% of them). The distribution also becomes clearly

asymmetric. In the final stage, for values below µ3 (panel 4.3d) the distribution of

Lyapunov exponents becomes more narrow, and the fraction of positive exponents

is reduced to approximately 6%.

This last type of distribution corresponds to the ones showed in Fig. 3.5. Al-

though in this figure, the proportion of positive Lyapunov exponents is slightly

bigger (arround 7.5%), it can be noted that this proportion is diminished as the

connectivity of the network is reduced. In our present case, the connectivity is or-

ders of magnitude smaller than the smallest value in Fig. 3.5, and therefore, this

discrepancy is accounted for. Nevertheless, it is remarkable that for such disparate

connectivity values and regardless of a finite global feedback intensity, this propor-

tion is maintained to a large degree.

The results displayed in these figures indicate that there are several interesting

aspects of the transition from synchronization to chaos. Below we study this transi-

tion using different statistical tools to better describe and understand the complex
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behavior observed in networks at the edge of chaos.

4.3 Velocity distributions and dynamical regimes

The action of the global feedback on the system is to drive it towards synchroniza-

tion. Indeed, as we have seen in chapter 2, if only this type of global coupling were

present, the system would undergo complete phase synchronization with |Z| = 1

and constant velocity (and equal to zero in the present case). This would happen

with no threshold on the feedback strength.

When network interactions are present, the completely synchronized state is only

possible in the limit of infinite µ, due to the presence of phase shifts that introduce

a level of frustration in the system [27, 28]. Instead, for large but finite values of the

global feedback intensity, a dynamical state can be reached in which all elements

are entrained in global oscillations with the same non-zero velocity. This means

that φ̇i = Ω = const for all i, but phases are distributed in a certain region of the

circle. If this state is stable, then perturbations from it are damped. Thus, it will be

characterized by negative maximal Lyapunov exponents. As follows from Fig. 4.1

and 4.3a, frequency synchronization takes place if global feedback is strong enough,

i.e. if µ > µ1.

If this state is not stable, then the velocities of all or some elements will not satisfy

φ̇i = const, meaning that dynamic activity will persist in the system indefinitely.

We thus monitor the behavior of the long-term average velocities νi of each element,

defined as

νi =
1

∆T

∫ T+∆T

T

φ̇i(t)dt =
1

∆T
[φi(T + ∆T ) − φi(T )] , (4.2)

where T and the integration interval ∆T are as large as possible.
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Figure 4.4: Mean time-averaged velocity of the network (dots) as

function of the feedback intensity µ. Thin lines show the maximum

and minimum velocity values. δ = 0.8π, N = 1000.

In Fig. 4.4 we have computed the long-term average velocities νi of all elements,

and plotted the mean, the maximum and the minimum as functions of the global
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Figure 4.5: Temporal evolution of all individual phase values for

different values of the global feedback intensity µ. δ = 0.8π, N =

1000.

feedback intensity µ. As expected, for large values all three of them coincide, mean-

ing that the system is in a state of synchronization in which all elements have the

same velocity, and rotate like a rigid body in a fixed configuration with constant

velocity. A characteristic realization of these dynamics can be seen in the rightmost

panel of Fig. 4.5.

On the other extreme, when µ < µ3, the mean velocity is close to zero, and

dispersion is small. A realization of the dynamics for parameter values in this range

is shown in the leftmost panel of Fig. 4.5, where the phases of all elements appear

to diffuse with no regularity.

In the transition region between these regimes, in the range µ3 < µ < µ1, the

velocities of individual oscillators are spread broadly. However, as can be seen in

the middle panel of Fig. 4.5 for a typical realization in this regime, the average

velocities of all elements are well-defined, and do not change in time. For values

of µ closer to µ3, the spread in velocities is increased, but the behavior remains

qualitatively the same. This seems to be a sort of “ordered disorder”: in contrast to

the regime µ > µ1, dynamical properties are highly heterogenous; but, in contrast

to the region µ < µ3, a dynamical order is persistent. Recalling Fig.s 4.1 and 4.2, it

is interestig to note that it is in this region where the maximal Lyapunov exponent

and the dimension maximize.

Clearly, the dynamics in this transition region are far from being a simple super-

position of the dynamics in both extremes. Instead, we observe that the interplay

between network and global interactions gives rise to a new kind of dynamics. In the

following, we present different methods to shed light on on some interesting aspects

of the dynamics in this transition region.

4.4 Transition region

In previous sections we have identified the different stages along the transition from

synchronization to chaos. In the following, we present some tools to describe and

characterize different aspects of this transition.
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4.4.1 Active and synchronous elements

The dynamics of the system in the range µ3 < µ < µ1 is such that each element has

a well defined average velocity. As an initial step, we investigate the distribution of

such velocities. This is done in Fig. 4.6, where different histograms of velocities νi

are plotted for different values of µ in the long-time regime. It is important to note

that these histograms are independent of initial conditions, and only a function of

the parameters.
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Figure 4.6: Distributions of time-averaged velocities of all network

elements for three selected values of feedback intensity µ. δ = 0.8π,

N = 1000.

A notable aspect about these histograms is that, although the overall spread

in velocities is large, most elements have the same long-term average velocity. As

seen in the rightmost histogram in Fig. 4.6 for values of µ close to µ1, almost all

elements have velocities falling in a single peak in the distribution, while only a very

small number of elements fall outside of it. This means that most of the elements

remain in a fixed configuration, rotating almost like a rigid body. The system is

essentially in the same synchronous configuration as it would be for values µ & µ1,

only some elements have become disentrained, and rotate with their own velocities

with respect to those still entrained.

If we were to look at the dynamics of the system in a rotating frame of ref-

erence with velocity equal to the value at which the peak in the histogram is, we

would see that the elements whose velocity is in the peak remain frozen, or at most

vibrate around a well-defined fixed position, whereas elements with a different ve-

locity perform persistent rotations around the circle with different frequencies. For

this reason, we classify elements whose velocity is in the peak as conforming a syn-

chronous condensate, while elements with distinct velocities will be referred to as

active.

This nomenclature is valid as long as a well defined peak can be identified in the
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distribution of velocities, which, as can be seen in the last histogram, is the case

for the largest part of the transition region, for values even lower than µ ≈ 0.4.

Therefore, this is an appropriate way to describe the dynamic roles of the elements

in this transition region.

This classification is further clarified if we look at the instantaneous dynamics of

active and synchronous elements. The time-dependence of the phases of all elements

is plotted in Fig. 4.7 with high time resolution for a value of µ ≤ µ1. Here it is

clear that the phases of elements in the synchronous condensate increase steadily

at constant velocity and almost unperturbed. Active elements follow this behavior

closely, but repeatedly undergo rapid phase slips, performing a 2π rotation and

returning to their point of “almost equilibrium”. Each active element undergoes

phase slips with a different frequency, giving rise to different long-term average

velocities, as seen in Fig. 4.6

The fact that active elements perform such rapid phase slips means that the

instantaneous velocity φ̇i(t) of these elements will have very high variations. As

seen in Fig. 4.8, all elements in the synchronous condensate exhibit only weak

temporary deviations from the common velocity. In contrast to this, each active

element is characterized by repeated velocity pulses, ocurring at regular intervals

with different frequency. Each of such pulses corresponds to a full 2π phase rotation,

i.e. a phase slip with respect to the condensate. Phase slips imply a strong variation

in the signals produced by active elements on elements connected to them. In this

sense, large variations in the velocities of active elements are reminiscent of the

spiking behavior in neural models [103].
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Figure 4.7: Temporal-evolution of all individual phase values for

µ = 0.87. δ = 0.8π, N = 1000.

To elaborate on the distinction between active and synchronous elements, it is

useful to study how the destruction of the synchronized takes place. For this, we

note that we may rewrite Eqs. (4.1) in the form

φ̇i =
1

2i

[
(zi + µZ)e−iφi − c. c.

]
, (4.3)

where the local signal zi is the signal perceived by element i through its incoming

network connections. Due to the heterogeneity in the phase shifts, we need to
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Figure 4.8: Instantaneous velocities of all elements for µ = 0.87.

δ = 0.8π, N = 1000.

reformulate the definition of the local signal with respect to that given in (3.6) as

zi =
1

ρN

N∑

j=1,j 6=i

Tije
i(φj+aij×δ) . (4.4)

zi is equivalent to the sum in the first term of Eq. (4.1) corresponding to the i-th

element.

When moving to a frame of reference that co-rotates with the synchronous con-

densate, we introduce the relative phases of elements in the form

ψi = φi − Φ , (4.5)

where Φ is the phase of the global signal Z = R exp(iΦ). With this change of

variables, Eqs. (4.3) become

ψ̇i = −Φ̇ +
1

2i

[
(z̃i + µR)e−iψi − c. c.

]
, (4.6)

where the transformed local signals z̃i are defined as

z̃i =
1

ρN

N∑

j=1,j 6=i

Tije
i(ψj+aij×δ) . (4.7)

Φ̇ is constant only in the synchronized state, i.e., for µ > µ1. However, when µ . µ1

there is only a few elements that are active, while the majority of elements remain

in an almost frozen configuration. Therefore, variations in Φ̇ are expected to be

very small, and we can approximate it as a constant Φ̇(t) ≈ Ω. Furthermore, when

a synchronized state is reached, all z̃i are also constant. We can introduce a new set

of local variables as

Ri exp(Ψi) ≡
z̃i

µ
+ R . (4.8)

With this definition, Eq. (4.6) takes the form

ψ̇i = −Ω + µRi sin(Ψi − ψi) . (4.9)
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A solution to this equation, and therefore the existence of a synchronized state, is

only possible if µRi ≥ Ω. This is always the case when the global feedback intensity

is very strong (µ → ∞), as the network interactions become negligible3. However,

as the intensity of the global feedback is decreased, this condition will eventually not

be fulfilled by a certain element. This element can no longer be entrained and will

begin to orbit around the condensate. The quantity Ri can therefore be associated

with a threshold value for each element, determining its dynamic characteristics.

The validity of Eq. (4.9) relies on Φ̇ and z̃i being constant. However, since near

this critical point only one or a few elements are not entrained, the variations in these

quantities will be small (of order N−1). Eqs. (4.9) may thus be approximately valid

for the majority of the elements, even if the synchronized state is not attainable.

The above analogy with spiking neurons is not far-fetched. The transition to

orbiting in Eq. (4.9) has the normal form of the saddle-node bifurcation on the

invariant cycle, which is characteristic for Hodgkin’s Class I excitable neuron models

[97, 98]. Non-entrained elements can pertain to two different classes: elements

that are supra-threshold, which perform rotations periodically, generating spikes

repeatedly and acting as pacemakers on the rest of the system; and elements that

are close to their threshold and are effectively excitable, performing rotations when a

strong perturbation arrives. Elements in the synchronous condensate are therefore

sub-threshold, and perturbations coming from active elements are not enough to

trigger a phase-slip.

It is important to note that whether element i satisfies µRi ≥ Ω depends not

only on its connections and their respective phase shifts, but also on Ω, which is a

macroscopic quantity determined by all elements in the system and their interac-

tions. Moreover, the specific value of each of the z̃i depends on the synchronized

configurations of each node’s neighbors, which is determined as a global equilibrium

point. In this sense, it is clear that the orbiting of certain elements is an emergent

property, not determined by local network topology but through interactions that

involve all elements in the system.

Spontaneous spiking is periodic for µ2 < µ < µ1, as evidenced by the fact that the

maximal Lyapunov exponent is zero (λ1 = 0) inside this interval. Actually, as seen

in Fig. 3b, several Lyapunov exponents can be zero inside this interval, indicating

that active elements are orbiting independently, and the attractor is quasi-periodic.

For each spontaneously spiking element there is a zero Lyapunov exponent, so that

the Kaplan-Yorke dimension is equal to the number of spontaneously spiking, supra-

threshold elements. For lower feedback intensities, collective dynamics of the system

becomes chaotic, and this association may no longer valid.

4.4.2 Active subnetworks

Since elements in the synchronous condensate are in a fixed configuration, the signals

they exchange present little variation. The action of elements in the synchronous

condensate on a given element amounts to a local field of almost constant magnitude

which rotates with almost constant frequency. In contrast, the action of an active

3It is clear from Eq. (4.1) that Ω is finite.
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element on another element connected to it presents very high variations as it goes

around the circle every time it performs a 2π phase-slip. Hence, elements in the

synchronous condensate can be thought of as generating a background signal on

which active elements interact. Active elements are thus responsible for most of the

dynamics of the system.

In Fig. 4.9 we can see how the number of active elements depends on the global

feedback intensity µ. The growth in the number of active elements is monotonous

as the value of the global feedback is decreased. When we get closer to the left end

of the transition region, i.e., when µ is close to µ3, the number of active elements

approaches the total number of elements in the system. Here, distinguishing a peak

in the distribution of velocities may not be possible, and our classification breaks

down. Nevertheless, this only happens very close to µ3, and this framework is

suitable for the largest portion of the transition region. Thus, the transition from

synchronization to chaos takes place gradually through the progressive emergence

of individual active elements, which eventually takes over the entire system.
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Figure 4.9: Number of active elements as a function of µ. For val-

ues below µ = 0.3, the distinction between active and synchronous

elements may no be clearly drawn. δ = 0.8π, N = 1000

Active elements are distinguished from elements pertaining to the synchronous

condensate by their dynamical properties. There remains the question of the topo-

logical properties of the nodes they occupy in the underlying network, and how they

interact with each other through it. Given that the number of active elements in-

creases as the global feedback intensity is decreased, it is inevitable that some active

elements eventually be connected to each other. Since the signals received from an

active element are strong and have much larger variations that signals coming from

the synchronous condensate, this direct interaction of active elements may lead to

interesting dynamics and the formation of active substructures in the network. We

may therefore consider the activation of a given set of elements as the emergence of

an active subnetwork. The properties of these active subnetworks may in turn be

controlled by the global feedback intensity.

To construct the subnetwork of active elements, it suffices to disregard elements
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in the synchronous condensate and their connections. For this, we let the system

evolve for a long time for a given value of the global feedback intensity µ, and we

identify the non-entrained active elements in the system. By retaining only the active

elements and the connections between them in the underlying network, we obtain

a new subnetwork corresponding only to the active elements. This subnetwork

may not be connected, it may posses some isolated elements, or may show some

localized structures of different sizes. By repeating this process for different values

of the global feedback intensity we can investigate how the structure of the active

subnetworks change.

This is what is seen in Fig. 4.10, where each one of the panels represents a

different long-time realization for different values of µ. Initially, for values of µ

close to µ1, the active elements are isolated and scattered over the system. As the

value of µ is decreased, more elements aggregate to this network, and eventually

form connected substructures4. Continuing to increase µ leads these structures to

grow and merge, and eventually one giant component emerges which groups the

majority of active elements. In this sense, by manipulating the intensity of the

global feedback, we can control the size and number of such active structures.

µ=0.90
µ=0.80 µ=0.75 µ=0.70

µ=0.55 µ=0.60 µ=0.65

Figure 4.10: The sequence of active subnetworks observed under

gradual decrease of the feedback intensity µ. δ = 0.8π, N = 1000.

4By connected, we mean here weakly connected, i.e., all elements interact with some other ele-

ments in the component. In other words, the corresponding undirected structure is connected.
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Figure 4.11: Size of largest cluster (red) and number of clusters

(green) in the subnetworks of active elements as a function of the

global feedback intensity.δ = 0.8π, N = 1000.

Except in the last panel, the relative spatial location of the nodes from panel to

panel is preserved. As was seen in Fig. 4.9, the number of active elements increases

monotonically as the global feedback is decreased. Fig. 4.10 also indicates that

this growth takes place through aggregation of nodes to the subnetwork of active

elements. In the process of decreasing µ, an increasing number of nodes become

active, but no active elements return to the synchronous condensate. Aggregating

elements will eventually form connected components or clusters,5 which can only

grow.

In Fig. 4.11, we plot the number of such connected clusters and the size of the

largest of them as compared to the number of active elements when the feedback

intensity is reduced. It can be seen that initially, and for a certain range of the

parameter, the number of clusters is equal to the number of active nodes. Therefore,

only isolated active elements are present in the system. Below a value of µ ≈ µ2, the

largest connected component begins to grow, and the number of clusters eventually

decreases, indicating that the clusters merge with one another. For values of µ below

µ ≈ 0.5, essentially all active elements belong to a certain cluster, and only a small

number of clusters with one or a few elements can be found. This can already be

seen in the last panel of Fig. 4.10.

Apart from the size and number of connected components in the active subnet-

work, the topological properties of such subnetworks may be affected by the intensity

of the global feedback. In the following we calculate the diameter of the subnetwork

for each value of µ. The diameter requires a specific definition for disconnected net-

works. For each pair of elements in the active subnetwork, the minimal directed path

between them is computed if it exists. The diameter is taken to be the maximum

of these minimal paths amongst all pair of elements. This represents the maximum

diameter amongst the diameters of each individual connected component.

5This use of the term “cluster” is unrelated to the concept used in Chapter 2, and is standard

in the network literature [42].



4.4 Transition region 103

In Fig. 4.12 we plot this quantity for each subnetwork of active elements as a

function of the global feedback intensity. The diameter grows as the number of active

elements increases until reaching a maximum, and then decreases to a value of 8,

which is the diameter of the full network. It is remarkable that this quantity reaches

very high values for intermediate values of µ. The diameter is larger for active

subnetworks than it is for comparable standard random networks. For example, at

µ = 0.49 the subnetwork of active elements has a diameter of 29, it has 293 elements

and 494 links, and its mean degree is 3.37. The subnetwork formed by a subset of

293 elements randomly chosen from the full network has an expected diameter of

approximately 23.

Subnetworks of active elements attain particularly long paths with fewer edges

than would be expected for randomly chosen elements. This means that, even though

the underlying network has a random structure, and the phase shifts involved in

the interactions are randomly distributed the subnetwork of active elements is not

random in the Erdös-Re̋nyi sense. Instead, even though active elements are part of

the underlying network, and are therefore restricted in the topological properties that

any subset of them may have, a process takes place that selects for the occurrence

of long paths in the active subnetworks, thus resulting in subnetworks with special

properties.
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Figure 4.12: The largest diameter of active subnetworks as function

of the feedback intensity µ. δ = 0.8π, N = 1000

The activation of a given node is not an uncorrelated process. It is determined by

the underlying network of interactions and the phase shifts associated with each edge

in the network, inasmuch as they determine the configuration of the synchronous

condensate. One could imagine that the local topological properties of a given node

in the network would be a determining factor in the dynamics of the node. However,

the interdependence between the properties of the whole network and the given set

of phase shifts makes no clear factors to determine the activation of a given node.

Indeed, for a given underlying network of interactions, the topological properties of

the active subnetworks show a great dependence on the specific values of the phase

shifts.
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As a small digression, we present in Fig. 4.13 the calculated average path length

of the subnetwork of active elements for different values of magnitude of the phase

shifts δ as a function of the number of elements in the active subnetworks, which are

obtained by varying the value of µ for each value of δ. For comparison, the expected

average path length of a subnetwork with the corresponding number of nodes which

are chosen randomly is also presented. As we see, not only the values of the path

lengths are quite different from those of a randomly chosen subnetworks, but there

is also a clearly systematic dependence on the values of the phase shifts. That active

subnetworks with the same number of elements and drawn from the same underlying

network of interactions may have very different average path lengths for different

values of δ is a confirmation that the factors that decide the activation of each

element are not only topological. Indeed, any topological measurement intending to

determine the causes for the activation of different elements will fail to explain the

behavior observed in Fig. 4.13.
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Figure 4.13: Average path length of the within connected compo-

nents of the active subnetwork as a function of the number of active

elements for different values of parameter δ. N = 1000

The transition scenario depicted Fig. 4.4 has common aspects with the one

presented in Fig. 3.16. By construction, the case of µ = 0 coincides with the regime

of large δ presented in the previous Chapter. In the other extreme, large µ yields

synchronization, which is what is seen in Fig. 3.16 for small δ and α. This may

indicate that the transition from synchronization to chaos seen by decreasing the

global feedback intensity might be qualitatively the same as the one seen in the

absence of noise by increasing the values of the phase shifts.

Nevertheless, an important difference between these cases is that the role played

by the phase shifts is different. As seen in Fig. 4.13, changing the value of the phase

shifts may lead to very different active subnetworks. To illustrate this, we may

construct plots similar to the ones shown in Figs. 3.13, 3.14 and 3.17 for different

values of µ and δ. In Fig. 4.14, the long-term average velocities of each element is

plotted against its number of incoming connections in the network for two different

values of δ, and for values of µ such that there is only one active element in the
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system in respective cases. As can be seen, the first elements to become active have

different topological properties in the network for different values of δ.
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Figure 4.14: Long-term average velocities of each element as a func-

tion of its number of incoming connections. Left: µ = 0.92 and

δ = 0.8π; Right: µ = 1.4 and δ = 1.2π. For both panels, ρ = 0.007,

N = 1000.

Finally, it is worth noting that, as can be seen in Fig. 4.12, the diameter of the

largest component only becomes bigger than 0 at approximately µ = µ2, when the

maximal Lyapunov exponent becomes larger than zero. This indicates the presence

of the first connected components of active elements, meaning that active elements

begin to interact with one another directly. The fact that this occurs at approxi-

mately the onset of chaos in the system suggests that small connected substructures

of active elements can already display complex dynamics. Understanding the nature

of these dynamics is the object of the following section.

Dynamics and wave propagation

Active subnetworks are also dynamical structures. As we have seen, active elements

perform repeated rotations with respect to the synchronous condensate at different

intervals and different frequencies, emitting velocity spikes to their neighbors in

the network. It is to be suspected that certain correlations may exist between

the frequencies and the way elements are connected to each other in the active

subnetwork.

As we have shown before, for high values of the global feedback close to µ1, only a

few elements are active, and they are isolated from each other. In terms of Eq. (4.9),

these elements can be considered as being in a supra-threshold periodic state. In

this sense, each one of these elements will act as a pacemaker, sending signals down

their connections. Since these active elements are isolated, their connections lead

to elements that are entrained in the condensate. However, a synchronous element

connected to an active element may be very close to its threshold in the sense of Eq.

(4.9). Since the signals it receives directly from active elements have great variability,

a small reduction in the feedback intensity may be sufficient for these perturbations
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Figure 4.15: Space-time diagram showing the dynamical activity

pattern in the chain of 29 elements belonging to the active subnetwork.

µ = 0.49, δ = 0.8π, N = 1000

to temporarily bring the element over its threshold. This element would therefore

be in an excitable state, performing rotations with respect to the condensate when

a strong enough perturbation reaches it through its incoming connections.

Through this process, an active element may trigger a cascade of phase slips that

propagates along the edges of the active networks. This kind of waves of excitation

would be the process responsible for the specific topological properties of the active

networks. Such a mechanism would effectively work as a selection process for active

subnetworks with long paths.

This effect has been shown in Fig. 4.12, where one can see that for a feedback

intensity of µ = 0.49, there is a given pair of elements for which the minimal path

that connects them is as long as 29 edges. This pair of elements thus determines

a chain of nodes such that the minimal path between any (properly ordered) pair

of them is also contained in this chain. We can therefore consider this chain as a

unidimensional array of active elements, and study the dynamics along it. This is

what is shown in the raster plot in Fig. 4.15, where the activity of each element in

the chain is shown as a function of time. Here, the absolute value of the velocity of

each element with respect to the synchronous condensate is displayed in grayscale,

with darker colors representing higher values. The occurrence of a black dot can be

readily identified with a “velocity spike” or phase slip of active elements, as those

seen in Fig. 4.8.

In different parts of the chain, clear signs of wave propagation can be observed,

where persistent cascades of phase slips travel along the direction of the edges in the

chain. This propagation seems to be quite robust, even though the dynamics are

irregular. The interruption of such propagation is to be expected, since the elements

in the chain are very heterogenous: each one of them is connected to different

numbers of both active elements and elements in the condensate and receives signals

from them. In other parts of the chain, no correlation can be perceived between

neighboring elements.

This plot corresponds only to a chain of 29 elements, a subset from 293 nodes

that form the subnetwork of active elements at µ = 0.49. The full activity pattern

is very complex, and cannot be easily visualized. However, we see here that the



4.5 Breakdown of global feedback 107

presence of coherent patterns of activity can be observed at different scales, with

different characteristic lengths. It is to be inferred that such behavior could be found

for a much larger subset of active elements.

Inside an interval of feedback intensities preceding the final feedback breakdown,

the considered system can generate a variety of dynamical networks whose sizes and

dynamical properties can be controlled by the feedback intensity. These networks

are effectively built from oscillatory and excitable elements. They are strongly het-

erogenous in terms of the oscillation frequencies and excitation thresholds of their

elements. As the feedback intensity µ is decreased, the number of active, non-

entrained elements grows and they begin to dominate the dynamics of the system.

In the next section we analyze the transition corresponding to the final loss of co-

herence.

4.5 Breakdown of global feedback

In Figs. 4.1 and 4.2 we have seen the presence of a discontinuity in both the maximal

Lyapunov exponent and the embedding dimension of the attractor at µ3 ≈ 0.26. The

dynamical properties of the system also change sharply, as seen in Fig. 4.4. Below

this point, the properties of the system show no significant variation with respect

to the global feedback intensity. The global feedback becomes thus ineffective as a

control mechanism, in that it is unable to affect the dynamics. Below we provide

further analysis of this feedback breakdown transition and the dynamical properties

of the network in its vicinity.
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Figure 4.16: Time-averaged magnitude of the global signal (solid

line) and mean time-averaged magnitude of local signals (dash line)

as functions of the feedback intensity µ. δ = 0.8π, N = 1000

A breakdown in the global feedback means a breakdown in the global signal

Z. The solid black line in Fig. 4.16 shows the dependence of the time-averaged

modulus of the global signal W , as defined in (3.5) Indeed, a sharp drop to almost

vanishing values can be seen at the critical point µ = µ3, below which it remains

very small. It can be presumed that this level would be zero if the size of the system



108 Global feedback control

were infinite. Since the modulus of the global signal Z coincides with the Kuramoto

order parameter, its vanishing indicates a loss of phase coherence.

Also in Fig. 4.16 the computed dependence of the mean value of the time-

averaged local signals wi as a function of the global feedback intensity µ is plotted

in dashes lines. This quantity is calculated as

w =
1

N

N∑

i=1

〈|zi(t)|〉 =
1

N

N∑

i=1

wi , (4.10)

with zi(t) given by Eq. (4.4). In this figure we can see that mean local signal

decreases together with the global signal as the feedback intensity is decreased ap-

proaching the critical point µ = µ3. However, its magnitude does not vanish, but it

remains strong for all values of µ.

Since our control parameter determines the coupling strength of a global inter-

action, an important distinction should be made here between this transition and

that usually observed in globally coupled systems. In oscillator populations with

global, all-to-all coupling, vanishing of the Kuramoto order parameter leads to the

loss of interactions between elements. They become almost independent, with the

rest interactions of order N−1 and vanishing in the limit N → ∞.

In the system we are studying, in contrast, the interactions between elements

through the network never vanish. Instead, the feedback breakdown leads the system

to the high-dimensional chaotic state of network turbulence. Previously, analogous

global feedback transitions have been investigated by Y. Kawamura and Y. Ku-

ramoto [99] for continuous active media described by the complex Ginzburg-Landau

equation. It is remarkable that, as seen in Figs. 4.1 and 4.2, the maximal Lyapunov

exponent and the embedding dimension increase as the critical point µ = µ3 is

approached and abruptly drop below it.

Time-dependent spectra

The transition observed at µ = µ3 is characterized by an abrupt change in the

magnitude of the interaction and by a discontinuity in the dynamical properties of

the attractor. To compare the dynamics observed at both sides of the transition we

resort to the construction of time-dependent spectrum plots.

To confect such plots we first calculate the autocorrelation function S(τ, t) of the

global signal is calculated within a sliding time window of width T ,

S(τ, t) =
1

T

∫ t+T

t

Z(t′)Z∗(t′ + τ)dt′ , (4.11)

After that, the time-dependent spectral density S(ω, t) of the global signal is deter-

mined by the Fourier transform,

S(ω, t) =

∣∣∣∣
1

T

∫ T

0
S(τ, t)e−iωτdτ

∣∣∣∣ .

With this procedure we may calculate the spectrum of the signal at different times

and observe its variation. The power spectrum S(w, t) is displayed in a grayscale
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plot, such that vertical lines represent the spectrum at each location of the time win-

dow. This type of methods is widely used in the analysis of electro-encephalographic

data to identify the presence of coherent activity in the brain [100, 101].

In our investigations we use a sliding window of width T = 110, which is chosen

arbitrarily to provide most illustrative results. Using smaller window size leads to

noisy results, and larger window sizes result in excessive averaging. In Fig. 4.17 we

display spectral density plots for the global signal at several selected values of the

global feedback intensity, both above and below the transition.
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Figure 4.17: Time-dependent spectral densities of the global signal

at different feedback intensities µ. The absolute magnitude of the

signal is much larger at µ = 0.266, than in other plots shown.

Above the transition (µ = 0.266, first panel) a peak in the spectrum persists in

time for a well-determined characteristic frequency. This indicates the occurrence

of coherent rotations in the system at a constant frequency.

Immediately below the transition point (second panel, µ = 0.265) such a persis-

tent peak is absent. Nevertheless, irregular occurrences of repeated peaks within a

defined range of frequencies in the spectrum can be observed. Such peaks indicate

the occurrence of transient regimes of coherence, in which global rotations happen
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sporadically but persistently. This sort of intermittent behavior also occurs at a

similar frequency as that characteristic above the transition.

The above described intermittency is retained well below the transition, as can

be seen in the third and fourth panel of Fig. 4.17. However, as the feedback intensity

is gradually decreased, bursts of coherence become more rare and their characteristic

duration decreases. In the absence of feedback, as illustrated in the last panel for

µ = 0, the transients of coherence disappear.

The gray scale used in these plots is such that pure black is assigned to the

maximum value of the power spectrum for a given plot, and pure white to the

minimum. This means that the scale is not the same for all panels. As was seen in

Fig. 4.16, the magnitude of the global signal is much stronger on the right side of

the transition than it is on the left, and therefore, the magnitude of the peaks in the

power spectra is also different. Nevertheless, the fact that a well-defined frequency

is identifiable indicates that coherence is present in both cases, which would not

happen in the case of simple fluctuations.
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Figure 4.18: Time-dependent spectral density of a single oscillator

si(ω, t) above the feedback breakdown transition (µ = 0.266). The

spectrum of the global signal is shown in the lower panel as a com-

parison.

Since the global signal is finite on the right side of the transition, its influence

on each element is significant. This influence may be put in evidence by looking at

the spectral density of a single element, defined for element j as

si(ω, t) =

∣∣∣∣
1

T

∫ T

0
si(τ, t)e

−iωτdτ

∣∣∣∣ , (4.12)

where

si(τ, t) =
1

T

∫ t+T

t

ei(φi(t
′)−φi(t

′+τ))dt′ . (4.13)

In Fig. 4.18 the spectral density for a single randomly chosen element on the right

side of the transition (µ = 0.256) is compared to the spectrum of the global signal.
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Here we can see that the spectrum of the global signal is clearly imprinted in the

spectrum of each element. This means that the dynamics of all elements are governed

by the global dynamics. This should indeed be expected if we take into account that

all oscillators effectively experience external forcing generated by the global feedback,

and their spectra therefore reflect the presence of such forcing.
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Figure 4.19: Time-dependent spectral density of a single oscillator

si(ω, t) below the feedback breakdown transition (µ = 0.265). The

spectrum of the global signal is shown in the lower panel as a com-

parison.

The case below the critical point is rather different. As can be seen in Fig. 4.19,

the spectrum of the same element as in Fig. 4.18 holds no similarity with that

of the global signal any more. This means that the occurrence of transient burst

of coherence is a truly emergent property, in the sense that it is the result of the

constructive interaction of many incoherent elements, only observable when looking

at the system as a whole.

This aspect of the dynamics below the transition indicates that coherence

emerges as a collective phenomenon. There remains however the question of whether

some elements have more responsibility in the formation of such events. If this were

the case, a possible scenario would be that a certain element or group of elements

may act as a pacemakers, which temporarily entrain a number of other elements,

giving rise to small periods of synchronicity.

However, inspection of the spectra of all individual elements reveals no reasons

to believe that any given element may be more responsible for the occurrence of

such synchronous episodes. In fact, a more plausible scenario is that sporadic co-

herence occurs as a mesoscopic phenomenon, only perceivable when a large number

of elements is taken into account.

To shed light on this issue, we have analyzed two different burst of coherence

in the spectrum of the global signal at µ = 0.255 shown in Fig. 4.20. For the two

instants t = t1 and t = t2 marked with arrows, we have computed the power spectra
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Figure 4.20: (Time-dependent spectrum plot of (above) the global

signal and (below) collective signals of two specially selected groups

of oscillators. µ = 0.265.

si(ω, t1) and si(ω, t2) for all individual elements. From all these spectra and for

each instant we have chosen the 50 elements whose spectra are the most similar the

spectrum of the global signal. This similarity has been quantified by means of an

overlap function of the form

hi(t) =

∫
si(ω, t)S(ω, t)dω∫

si(ω, t)dω
∫

S(ω, t)dω
. (4.14)

Two groups Γ1 and Γ2 are considered, containing the 50 elements for which hi(t1)

and hi(t2) are maximum respectively. For the elements in these two groups, a joined

signal is computed as

ZΓk
(t) =

1

50

∑

i∈Γk

eiφi(t) , (4.15)

and the spectra SΓk
(ω, t)of these signals are determined in the same way as the

spectrum of the global signal, that is

SΓk
(ω, t) =

∣∣∣∣
1

T

∫ T

0
ZΓk

(t + τ)e−iωτdτ

∣∣∣∣
2

. (4.16)

The results for this procedure are shown in Fig. 4.20, where we show the spectra

of the joint signals for two groups, Γ1 and Γ2, which are chosen at t1 = 822 and

t2 = 1384 respectively. In both cases, coherent activity can be seen to emerge in

transient bursts for both groups already at the group level. More importantly, the

spectrum of the global signal is partially reproduced by both groups. Nevertheless,

this spectrum is reproduced by the joint signal much more strongly around the time

in which the elements of each group have been selected, whereas for other times,
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the spectrum of the global signal is only slightly present or not at all. This suggests

that it is likely that only a subset of elements is involved in the generation of each

coherent event.

Analyzing composition of the two groups, corresponding to synchronization

bursts at t1 = 822 and t2 = 1384, we find that they have only two common ele-

ments. Thus, the subset of partially synchronized elements is indeed different in

different bursts in the intermittent turbulence regime. The elements of a group

represent nodes in the considered network and there are links connecting them.

Essentially, each group defines a certain subnetwork which temporally undergoes

partial synchronization. Therefore, chaotic intermittency in the considered system

can be understood as generating an irregular sequence of synchronization events

imposing partial synchronization on different subnetworks. A synchronized subnet-

work emerges, persists for some time, dissolves and, after a pause, is replaced by a

different synchronized subnetwork.

We have chosen to consider groups of 50 elements, which is a completely arbitrary

number. What has been observed for these two groups of elements may be more

pronounced for groups of different sizes, and there is no reason to assume that

the same number of elements will be optimal for groups selected at different times.

Nevertheless, it is important to note that the groups Γ1 and Γ2 have 32 and 20 edges

connecting elements within the groups, respectively, while the average number of

links for a group of 50 randomly chosen elements is 15.75 ± 3.78. This means that

the emergence of a coherent burst is indeed induced by groups that are strongly

connected.

4.6 Final comments

In this chapter we have analyzed the possibility of controlling turbulence in a model

of coupled phase oscillators through a global feedback mechanism. Our attention has

been focused on the properties of dynamical patterns and intermittent turbulence

characteristic for the transition region.

The results obtained in this Chapter for our system are very much consistent with

some of the behavior found in the general model of the complex Ginzburg-Landau

equation [76, 75] and in experimental and theoretical studies of the catalytic CO

oxidation reaction [77, 78, 102], as discussed at the beginning of this Chapter. In our

system, the role of emerging coherent structures is played by active subnetworks.

Elements in the active subnetworks spontaneously undergo repeated phase slips,

which may induce further phase slips on their neighbors in the network. Therefore,

traveling waves of phase slips repeatedly develop and propagate over a subnetwork,

spreading from several emergent pacemaker centers.

These traveling waves correspond to the cascades of phase defects in continuous

media. In fact, the dynamics described in Fig. 4.15 have an interesting similitude

to with the phenomena in Fig. 1.12. Of course, since in our system the interactions

between elements are directed, propagation can only take place in one direction.
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While each next cascade in the continuous case is typically originating at a

different spatial location and involves a different set of the elements of a medium,

active networks are permanent in the considered network model. Although the

patterns of wave activity in a subnetwork may be quite complex and chaotic, the

subnetwork itself remains fixed.

This difference is due to the fact that the considered oscillator networks are

strongly heterogeneous, with the heterogeneity imposed both by the structure of

the network of connections and the phase shifts in interactions between individual

elements. As a result, some elements become easily excitable and others turn into

pacemakers. Together, such connected elements form permanent active subnetworks.

When wave patterns in active subnetworks are observed, the rest elements, repre-

senting the majority of a network, are in a synchronous state and form a condensate.

As the feedback intensity is decreased, the number of active subnetworks increases

and each network typically grows in size. In a percolation transition, individual sub-

networks merge to form a giant active component, already comprising a substantial

fraction of all network elements.

As the feedback intensity is further decreased and approaches the critical point,

the Kuramoto order parameter (almost) vanishes, indicating the loss of persistent

synchronization. Since this order parameter yields at the same time the magnitude

of the global signal, we conclude that breakdown of the feedback control takes place.

Analogous feedback-breakdown transitions have been previously studied for contin-

uous oscillatory media under global feedback control [99]. In contrast to the global

signal, local signals corresponding to network interactions do not vanish after the

transition. Therefore, it is different from the desynchronization transition in globally

coupled systems where, after the transition, interactions between elements almost

vanish and the oscillators become effectively independent.

The time-dependent spectral analysis of the global signal has shown that, after

its breakdown, the feedback is able to induce sporadic bursts of synchronization in

the system. This behavior is reminiscent of what has previously been seen in the

oscillatory systems comprising global and nonlocal coupling [96]. Our analysis sug-

gest that different groups of elements are responsible for each next synchronization

burst. Taking into account their connections, this means that different subnetworks

of the entire network are spontaneously exhibiting (partial) synchronization. Each

synchronization episode involves a different subnetwork and such episodes are alter-

nating with complex asynchronous states.

This looks similar to the behavior characteristic for the developed hydrodynamic

turbulence, where different coherent structures are built and replace one another in

an irregular sequence. In networks, spatial ordering is absent and therefore spa-

tiotemporal patterns cannot develop. Instead, coherent structures represent various

dynamical subnetworks which get accentuated. The simplest form of coherence is

partial synchronization, but other, more complicated kinds of coherent dynamics in

the emerging networks are also possible.



Chapter 5

Conclusions

The most attractive feature of phase oscillator models is their simplicity. This

is not only convenient because of their tractability, but also because it allows us to

represent large classes of systems with very few assumptions and parameters. By

sparing ourselves the complications introduced by particular details of a given sys-

tem, we also avoid obtaining spurious or circumstantial results that may be artifacts

of the specific characteristics of the chosen model. For this reason, the simplicity

of phase oscillator models is often interpreted as their potential for describing gen-

eral classes of systems, rather than as a capitulation to the intractability of more

complicated systems [5, 59]

Throughout this Thesis we have studied a few systems of identical interacting

oscillators. Our intention has been to examine the different kinds of behavior that

are present between order and disorder. We have done this with the hope that the

choice of simple elements may account for more general results, rather than just

simpler ones. For this reason, we do not interpret our results as specific to the

particular systems we studied, but as phenomena that may be common to a larger

class of systems of oscillatory nature.

In Chapter 2 we have studied a system of globally coupled elements for which a

desynchronization transition could be induced. Under these circumstances we have

observed that the presence of external noise acting on all elements simultaneously

may induce the formation of highly coherent clusters. For this system we have

chosen to use the most general kind of noise possible: uncorrelated isotropic gaussian

noise. For such general assumptions, we already see that the noise is very effective

in inducing order in the system. Even when this kind of noise is not appropriate

for modeling various situations encountered in the physical and chemical world, we

would expect that the presence of correlations and anisotropy, except in pathological

cases, would further accentuate this phenomenon.

The scope of this model would therefore not be restricted to systems under the

action of exogenous random forcing, but systems for which parameters fluctuate in
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time might also be considered within this category. The presence of a noise term

like the one considered could be interpreted as the variability of a global parameter,

like temperature, lighting conditions, etc., which would affect the instantaneous

frequency of each element differently, depending on the stage of the cycle in which

they are in. This means that the spontaneous appearance of coherent dynamics

could be observed in a variety of systems in the presence of fluctuations.

The system here studied is completely degenerate, in that all elements are iden-

tical and so are their interactions. Nevertheless, this kind of dynamics has shown a

certain degree of robustness to variability in the population of oscillators. This vari-

ability has been chosen here to be represented by heterogeneities in the individual

frequencies of each element, but could also be introduced as a noise in the individ-

ual dynamics of each element, or as a small variability in the pair-wise interactions

[86]. All of these kinds of alterations have qualitatively similar results. This means

that the formation of such ordered states is not a result of degeneracy, and could in

principle be observed in experimental or even natural systems.

High heterogeneities in the interactions would however destroy such forms of

order [62, 65]. As it was shown in Chapter 3, the introduction of network interactions

leads to the appearance of an incoherent state in which no macroscopic rotation

occurs, but dynamics are highly chaotic. In network systems, contrary to the globally

coupled case, the forces perceived by each element do not cancel out, and remain

strong and highly variable even when the system becomes completely incoherent.

This type of interaction leads the system to a special kind of chaotic dynamics

that we have chosen to call network turbulence because of analogous aspects with

hydrodynamic and chemical turbulence. Some dynamical properties of such network

turbulence have proven to be independent of the specific interaction network and

the parameter values, indicating that it is a universal behavior that only depends

on the size of the system.

The transition between synchronization and turbulence has been explored by use

of a global feedback, whose intensity we can manipulate to tune the system between

different dynamical states. In this exploration we have seen that the transition

takes place gradually, through the progressive emergence of active elements which

perform rotations against a background of uniform oscillations. These elements

initially act as isolated pacemakers which interact with the background and knock

other elements out of synchrony. This is a dynamical selection process which gives

rise to the emergence of self-organized active substructures in the network whose

dynamics may be very complex. The resulting subnetworks are localized structures,

within which the propagation of waves takes place and can be controlled by the

global feedback. These emergent active subnetworks are therefore analogous to the

coherent structures that are observed in oscillatory media in the interface between

turbulence and synchrony.

In the turbulent regime, the presence of intermittency has been found as sub-

sets of coherent elements sporadically emerge, resulting in transient bursts of syn-

chronization. These bursts involve different groups of elements in each occurrence,

which are formed by highly interconnected elements. This situation is reminiscent
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of neuronal dynamics in the brain, where electro-encephalographic data reveals that

transient coherent activity takes place in different areas of the cortex when a given

task is performed [101, 103]. Bursts of localized coherence in the brain are directly

related to the processing of information and cognitive functions. It is believed that

the functionality of the brain is in a sense codified in the temporal and spacial

structure of these bursts [104, 103]

Our results show that such dynamics already occur in random networks of ex-

tremely simple elements. It is conceivable that evolution may have led to the devel-

opment of specific neural networks that make use of this intermittency, making the

occurrence of such synchronous episodes efficient and robust.

For this reason, an interesting way in which our work could be extended would

be to implement an evolutionary algorithm to engineer networks for which such syn-

chronous episodes are fostered, perhaps even trying to reproduce target dynamical

patterns of coherent activity. For this, a measurement of coherence between elements

should be devised, such that the success or failure of a given network in attaining a

desired functionality may be quantified. We have made a attempts in this direction

with no substantial success, but research in this direction shall be continued.

Another relevant extension to our work would be that of including a phase shift

for the feedback term, or even a real time delay. This should provide a second control

parameter that would allow not only the size and number of active subnetworks to be

selected, but also their dynamics and structure. Both theoretical and experimental

studies on oscillatory media have proven this to be a successful control method

[77, 78, 72], and preliminary simulations have indicated that it is a promising strategy

for our system as well.
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Mod. Phys. 77, 137 (2005).

[30] F. C. Hoppensteadt & E.M. Izhikevich, “Weakly Connected Neural Networks”

(Springer-Verlag, New York, 1997).

[31] E. M. Izhikevich, Phys. Rev. E 58, 905 (1998).

[32] D. Hansel, G. Mato, & C. Meunier, Phys. Rev. E 48, 3470 (1993).

[33] H. Kori & Y. Kuramoto, Phys. Rev. E 63, 046214 (2001).

[34] H. Kori, Doctoral dissertation, Kyoto University (2003).

[35] P. Tass, Phys. Rev. E 56, 2043 (1997).

[36] D. Golomb, D. Hansel, B. Shraiman & H. Sompolinsky, Phys Rev. A 45, 3530

(1992).

[37] M. D. Fricker, J. A. Lee, L. Boddy & D. P. Bebber, Topologica 1 004 (2008).

[38] J. M. A. Tanchoco (ed.), “Material flow systems in manufacturing” (Springer-

Verlag, New York, 1994).

[39] D. Helbing (ed.), “Managing Complexity: Insights, concepts and applications”

(Springer, Berlin, 2008).

[40] D. J. Watts, “Small Worlds: The Dynamics of Networks between Order and

Randomness” (Princeton University Press, Princeton 2003).



BIBLIOGRAPHY 121

[41] T. A. B. Snijders, Jour. Math. Soc. 21, 149-172 (1996).

[42] A. Arenas, A. Daz-Guilera, J. Kurths, Y. Moreno & C. Zhoug, Phys. Rep. 469

93-153 (2008).

[43] R. Albert, A.-L. Barabási, it Rev. Mod. Phys. 74, 47-97 (2002)

[44] M. E. J. Newman, SIAM Rev. 45 167-256 (2003).
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