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Abstract. We make a comment on the discrepancy between the numerical results for the
angular anisotropy parameterα2 for the L3M1M4,5 Auger transitions of Kr, Xe, Ba, and Hg
which have been obtained by Elizarov and Tupitsyn (2004Phys. Scr.70 139) and beforehand
by ourselves (Kleiman and Lohmann 2000J. Phys. B: At. Mol. Opt. Phys.33 2653). By
comparing the results obtained not only for the angular anisotropy parameterα2 but also for
the dynamic spin polarization parameterξ2, where the latter agree considerably better, it is
most likely that the discrepancies are mainly due to some of the phase differences because the
parameterα2 depends on the cosine of the phase differences whereas the parameterξ2 depends
on the sine.
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The study of angular distribution and spin polarization of Auger electrons, which in the
present comment are assumed to be ejected after creating a vacancy in an inner atomic
shell by photoionization (dipole approximation), nowadays is a major part of Auger electron
spectroscopy because of the complementary information it can provide on the inner atomic
structure and the dynamics of the underlying process as compared with conventional
investigations of Auger electron energies and intensitiesat a fixed angle. It is well known
that the prerequisite for anisotropic angular distribution and dynamic spin polarization of
Auger electrons is a photoionized atom showing an alignment[1, 2, 3]; the transferred
spin polarization will be disregarded here. Applying the conventional two-step description
of the Auger process [4] there are in all three quantities of interest that is the alignment
parameterA20 of the primary photoionization plus the angular anisotropyparameterα2 and
the dynamic spin polarization parameterξ2 of the secondary Auger decay. Expressions for the
angular distribution and the dynamic spin polarization of Auger electrons featuring the above
parameters can be checked in the literature (e.g. [5, 6]).

About ten years ago we came across large dynamic spin polarization parametersξ2 for
three of the four lines of the Kr L3M1M4,5 Auger spectrum which has been included in the
calculation of the Kr L3M4,5M4,5 Auger spectrum [7]. To ensure that our finding was not
pure chance we extended our investigation to cover all L3M1M4,5 Auger spectra of closed-
shell or closed-subshell atoms and found the same distinctive feature [5]. The calculations
have been performed by describing the Auger emission process in the context of scattering
theory (relativistic distorted wave approximation) wherethe Auger transition amplitudes
and scattering phases have been evaluated by applying a relaxed orbital method within a
multiconfiguration Dirac–Fock approach. For further reading we recommend [8, 9].

Some years later Elizarov and Tupitsyn have re-calculated the parametersα2 and ξ2‡

for the L3M1M4,5 Auger spectra of Kr, Xe, Ba [10, 11] and Hg [10, 11, 12] employing
the multiconfiguration Dirac–Fock method. Note that the chosen title of the paper [10] is
misleading since the Kr, Xe, Ba and Hg Auger transitions are not resonant but normal Auger
transitions. Elizarov and Tupitsyn have compared their results for the angular anisotropy
parameterα2 with ours and have come across significant discrepancies. Regardless of this
finding they have published their results in different journals without elaborating on possible
reasons for the discrepancies beforehand. In addition, we cannot see any reason why Elizarov
and Tupitsyn have not compared their results for the dynamicspin polarization parameterξ2

with ours. Here, the agreement is considerably better which, in our opinion, sheds a light
on what may cause the discrepancies between the two data setsobtained for the angular
anisotropy parameterα2.

Regarding the practical but missing comparison and due to a few misprints in the tables
[10, 11, 12], due to an Auger spectrum of Hg consisting of five lines instead of four [10, 11, 12]
and due to two columns, excluding the column headings, whichhave been mixed up in table I
of [10]§, we have re-arranged the parametersα2 and ξ2 together with the Auger energies,
which have been calculated by ourselves and by Elizarov and Tupitsyn, in table 1. The latter

‡ The dynamic spin polarization parameterξ2 was referred to asβ2 in the early publications, e.g. [8].
§ A corrected table I has been published at our special request[13].
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Table 1. Comparison of Auger energies, angular anisotropy (α2) and spin polarization (ξ2)
parameters for the L3M1M4,5 Auger spectra of Kr, Xe, Ba and Hg.

Auger energy (eV) α2 ξ2

Final
state a b c a b c a b c

Kr 1D2 1259.48 1274.95 1259.49 0.218 −0.081 −0.026 0.039 0.034 0.033

3D1 1266.93 1274.19 1266.95 −0.034 −0.337 −0.279 −0.229 −0.147 −0.156

3D2 1267.53 1273.60 1267.54 0.278 0.191 0.243 −0.188 −0.153 −0.160

3D3 1268.29 1266.14 1268.30 0.331 0.612 0.570 0.128 0.147 0.141

Xe 1D2 2900.95 2934.63 2900.88 0.228 −0.234 −0.191 0.127 0.077 0.080

3D1 2909.82 2929.64 2909.74 0.101 −0.422 −0.391 −0.289 −0.139 −0.147

3D2 2918.09 2921.36 2918.02 0.342 0.584 0.638 −0.210 −0.193 −0.201

3D3 2923.09 2912.49 2923.02 0.161 0.606 0.580 0.114 0.147 0.144

Ba 1D2 3099.05 3110.73 3098.95 0.235 −0.211 −0.211 0.133 0.076 0.076

3D1 3107.95 3119.62 3107.85 0.147 −0.380 −0.380 −0.299 −0.152 −0.152

3D2 3118.35 3130.03 3118.26 0.328 0.716 0.716 −0.193 −0.186 −0.186

3D3 3123.95 3135.64 3123.87 0.134 0.553 0.553 0.109 0.140 0.140

Hg 1D2 6265.45 6392.36 6263.43 0.344 0.025 0.393 0.112 0.073 0.073

3D1 6276.02 6379.84 6274.00 0.801 −0.080 0.034 −0.230 −0.240 −0.250

3D2 6356.95 6298.89 6354.96 0.068 0.406 0.402 0.003 0.015 0.017

3D3 6369.46 6288.32 6367.47 −0.162 0.133 0.112 0.020 0.057 0.053

a Theory: Our work [5].
b Theory: Elizarov and Tupitsyn [10] (calculation in the frozen-core approximation).
c Theory: Elizarov and Tupitsyn [10] (calculation with orbital relaxation).

have carried out one calculation in the frozen-core approximation and another calculation
which accounts for orbital relaxation in the course of the Auger decay, see [10, 11, 12] for
formulas and further details.

It is clear from table 1 that, for Kr, Xe and Hg, the frozen-core approximation results
in an inverted energy sequence of the four Auger lines. Here,the 1D2 line is positioned at
the highest energy whereas the3D3 line is energetically well separated from the others. This
is highly questionable especially for the medium weight Kr atom for which the Auger lines
may be taken as almost true singlet and triplet lines regarding LS coupling. Thus, the1D2

line should be positioned at the lowest energy and should be energetically well separated
from the3D1,2,3 lines which are expected to be positioned close to each other. In view of this
we do not comment in detail on the results for the parametersα2 and ξ2 which have been
obtained by Elizarov and Tupitsyn employing the frozen-core approximation. Just this, we
would expect the frozen-core approximation to work well fornormal Auger transitions in
which huge Auger energies are involved as the outgoing Augerelectron is such fast that it
does not feel the potential changing. This is what Elizarov and Tupitsyn [10, 11] believe they
have demonstrated for the angular anisotropy parameterα2 though their results do not really
support their opinion, see particularly the1D2 and3D1 lines of the L3M1M4,5 Auger spectrum
of Hg. In [12] Elizarov and Tupitsyn argue the converse. There, they have further considered
the N3O1O4,5 Auger transitions of Hg for which the Auger energies are of about 430 eV [6];
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unfortunately they did not give the Auger energies emergingfrom their calculations. Their
results for the parameterα2 obtained in the frozen-core approximation and by accounting
for orbital relaxation during the Auger decay are in agreement. We would like to add, that
for three of the four N3O1O4,5 Auger lines of Hg their angular anisotropy parameters agree
quite well with ours [6], the dynamic spin polarization parameterξ2 has not been tabulated
by Elizarov and Tupitsyn [12]. Contrary to what is said in [12] we have chosen intermediate
coupling for our numerical calculation [9].

It is further not clear why for the parametersα2 andξ2 of the L3M1M4,5 Auger spectrum
of Ba the two different calculations carried out by Elizarovand Tupitsyn [10] yield the same
values, at least for up to the three digits given, although the Auger energies obtained in the
frozen-core approximation and by accounting for orbital relaxation differ from each other. It
is unfortunate that Elizarov and Tupitsyn do not explain howthey have calculated the Auger
energies.

For the remainder of the comment we will leave any data obtained in the frozen-core
approximation out and focus on Elizarov and Tupitsyn’s realization that there is a huge
discrepancy between their [10, 11] and our [5] results for the angular anisotropy parameterα2

for the L3M1M4,5 Auger transitions of Kr, Xe, Ba, and Hg, see columns a and c of table 1.
Again, these two data sets have been obtained by accounting for orbital relaxation during the
Auger decay. Elizarov and Tupitsyn did not investigate thisdiscrepancy any further [10], they
only suggested that the discrepancy may have something to dowith the phase differences
which are ‘not the same as those presented in table 2’ of our work [5]. They neither give any
values for their phase differences nor do they give any information on how much their phase
differences deviate from ours. There are, however, reasonsfor the assumption that Elizarov
and Tupitsyn have obtained a phase difference which is closeto an odd integer multiple ofπ

2

because, as has been discussed in full in [5], such a phase difference can be seen as one of the
prerequisites for a large dynamic spin polarization parameter ξ2. It is clear from table 1 that
their calculation supports our previous finding that the normal L3M1M4,5 Auger transitions
of various elements do have comparatively large dynamic spin polarization parametersξ2 [5].
The agreement between their and our results is in general much better as compared to the
angular anisotropy parameterα2.

At this point it is necessary to investigate the formulas forbothα2 andξ2 in more detail.
According to [8, 9] the angular anisotropy parameter may be written as
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whereas the dynamic spin polarization parameter is as follows:
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Table 2. The phase differencesσj
l − σ

j′

l′ of the interfering partial waves necessary to calculate
the parametersα2 andξ2 for theL3M1M4,5 Auger transitions of Kr and Xe. Zeros have been
included in order to demonstrate the maximum number of contributing phase differences.

Final states (Kr) Final states (Xe)
Phase
difference 1D2

3D1
3D2

3D3
1D2

3D1
3D2

3D3

σ
1/2

1
− σ

3/2

1
0.053 0.053 0.053 − 0.114 0.114 0.114 −

σ
3/2

1
− σ

3/2

1
0 0 0 0 0 0 0 0

σ
1/2

1
− σ

5/2

3
2.343 2.338 2.337 − 2.270 2.268 2.266 −

σ
3/2

1
− σ

5/2

3
2.290 2.285 2.284 2.284 2.157 2.154 2.152 2.151

σ
3/2

1
− σ

7/2

3
2.294 − 2.288 2.288 2.169 − 2.164 2.163

σ
5/2

3
− σ

5/2

3
0 0 0 0 0 0 0 0

σ
5/2

3
− σ

7/2

3
0.004 − 0.004 0.004 0.012 − 0.012 0.012

σ
7/2

3
− σ

7/2

3
0 − 0 0 0 − 0 0
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Here,J andJf denote the total angular momenta of the intermediate state and the final ionic
state, respectively.l andj are the orbital and total angular momenta of the Auger electron
obtained by expanding the Auger electron momentum into partial waves, that is the triangle
condition∆(l 1

2
j) applies. The accompanying scattering phases are denoted byσj

l . V stands
for the Coulomb operator and the brackets(. . .) and{. . .} are the Wigner 3–j and 6–j symbols
[14]. In equations (1) and (2) the sum over the two pairs of quantum numbersl, j and l′,
j′ is limited by the triangle conditions of the 3–j and 6–j symbols as well as by parity. The
parity of the intermediate state and the final ionic state is odd and even, respectively. As the
Coulomb operator conserves parity, the parity of the Auger electron and thusl and l′ must
be odd (for further explanation see [5]). Moreover, the numerator of equations (1) and (2) is
invariant to the interchange of the two pairs of quantum numbersl, j andl′, j′ which can be
used to simplify the analysis ofα2 andξ2. For instance, the number of non-vanishing terms
appearing in the numerator of the parameterξ2 can be halved.

The most important difference between the parametersα2 andξ2 is their dependence on
the phase difference of two interfering partial waves. The angular anisotropy parameterα2

depends on the cosine of the phase difference whereasξ2 depends on the sine of the phase
difference. In tables 2 and 3 we show all those phase differences which are essential for the
calculation ofα2 andξ2. The numerical values have been taken from our original work[5]
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Table 3. The phase differencesσj
l − σ

j′

l′ of the interfering partial waves necessary to calculate
the parametersα2 andξ2 for theL3M1M4,5 Auger transitions of Ba and Hg. Zeros have been
included in order to demonstrate the maximum number of contributing phase differences.

Final states (Ba) Final states (Hg)
Phase
difference 1D2

3D1
3D2

3D3
1D2

3D1
3D2

3D3

σ
1/2

1
− σ

3/2

1
0.123 0.123 0.123 − 0.223 0.223 0.224 −

σ
3/2

1
− σ

3/2

1
0 0 0 0 0 0 0 0

σ
1/2

1
− σ

5/2

3
−0.876 −0.879 −0.881 − −0.977 −0.979 −0.990 −

σ
3/2

1
− σ

5/2

3
−0.999 −1.001 −1.004 −1.005 −1.201 −1.202 −1.214 −1.216

σ
3/2

1
− σ

7/2

3
−0.986 − −0.991 −0.992 −1.171 − −1.184 −1.186

σ
5/2

3
− σ

5/2

3
0 0 0 0 0 0 0 0

σ
5/2

3
− σ

7/2

3
0.013 − 0.013 0.013 0.030 − 0.030 0.030

σ
7/2

3
− σ

7/2

3
0 − 0 0 0 − 0 0

and refer to the L3M1M4,5 Auger transitions of Kr, Xe, Ba and Hg. Though theεh9/2 partial
wave occurs in principle in equations (1) and (2) provided the Auger transition is to the final
state3D3 it is not necessary to consider this partial wave because theaccompanying reduced
Coulomb matrix element turns out to be zero in consequence offurther selection rules arising
from the angular part of the direct and exchange terms [8, 9].Tables 2 and 3 show that the
phase differences between the partial waves with differentorbital angular momental and l′

are large whereas the phase differences between the partialwaves with the samel are, without
exception, considerably smaller. The latter can in generalbe expected for light and medium
weigth atoms for which the spin-orbit interaction is weak. That is why the phase differences
σ

1/2

1 −σ
3/2

1 andσ
5/2

3 −σ
7/2

3 increase when going from Kr via Xe and Ba to Hg. By the way,
for Kr and Xe all the phase differences are positive and considerably larger in magnitude than
those for Ba and Hg where we find negative phase differences for interfering partial waves
with different orbital angular momenta.

To preclude misconceptions we remind the reader that the scattering phaseσj
l is the

sum of the Coulomb phaseσC
l , which for non-relativistic as well as relativistic calculations

depends only on the orbital angular momentuml of the partial waves of the Auger electron,
and the asymptotic phase shift or scattering phase shiftδj

l . When calculated relativistically,
such as in our work, the latter depends on bothl andj. We thus have

σj
l = σC

l + δj
l . (3)

For the L3M1M4,5 Auger transitions of Kr, Xe, Ba and Hg we find our Coulomb phases to be
considerably smaller in magnitude than the scattering phase shifts.

To address the still open question why the numerical resultsobtained by Elizarov and
Tupitsyn and by ourselves are such different only for the angular anisotropy parameterα2 but
not for the dynamic spin polarization parameterξ2, we choose the final state3D3 of the Xe
L3M1M4,5 Auger transitions for illustration and simplicity. It follows from table 2 that the
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magnitude ofξ2 is determined by those two terms for which the phase differences are large,
that is2.151 and2.163‖. As the parameterξ2 depends on the sine of the phase differences
and the sine function is symmetric aboutπ

2
, not only the phase differences2.151 and2.163,

which we have obtained, but, for instance, also the phase differences0.991 and0.979 would
yield the same value for the parameterξ2. We thus believe that Elizarov and Tupitsyn may
have obtained phase differences such as these. They are not the same as ours [10] but result
in similar values for the dynamic spin polarization parameter ξ2. However, the parameterα2

depends on the cosine of the phase differences and thus, using the phase differences0.991 and
0.979 instead of2.151 and2.163 would cause the respective two terms to change sign. As the
magnitude of the cosine of these phase differences is about0.55, all in all six terms contribute
to the numerator of equation (1). Supposing that two of the six terms are of opposite sign
in Elizarov and Tupitsyn’s and in our calculations this may explain why the results for the
parameterα2 (considerably) differ from each other.

In connection with the phase differences there is another aspect which, in our opinion,
deserves attention. Though the multiconfiguration Dirac–Fock method has been employed
by Elizarov and Tupitsyn to obtain the reduced Coulomb matrix elements as well as the
continuum wavefunction [12], strangely enough the scattering phases and thus the phase
differences, which enter the formulas forα2 and ξ2, depend only on the orbital angular
momentuml but are independent of the total angular momentumj. That is they have replaced
the phase differences in equations (1) and (2) simply byσl−σl′ and have not taken into accout
the spin-orbit interaction in the continuum. This is undoubtedly an inconsistent alteration
of the formulas originally published in [8] and later used byElizarov and Tupitsyn for their
calculations [10, 11]. By just using the phase differencesσ1−σ1, σ1−σ3 andσ3 −σ3, of
which the first and the third are equal to zero, the weighting of the terms in the numerator of
equations (1) and (2) is changed. Inspecting our phase differences displayed in tables 2 and
3 it is clear that the method applied by Elizarov and Tupitsynis, in many cases, less accurate
than our calculational method. For instance, the parameterξ2 for the Auger transitions to the
final states3D1 and3D3 depends on two terms in Elizarov and Tupitsyn’s calculationinstead
of originally three terms in our calculation. In particular, considering the3D1 lines of Xe, Ba
and Hg, the phase differenceσ1/2

1 − σ
3/2

1 is far from being zero. Here, the agreement among
the two data sets forξ2 is less good. However, for the3D3 lines the phase differenceσ5/2

3 −σ
7/2

3

is quite close to zero and the agreement is much better.
In conclusion, despite the missing of almost any discussionin the work by Elizarov and

Tupitsyn [10], we have tried to find out what may be the reasonsfor the huge discrepancies
between the results for the angular anisotropy parameterα2 obtained by Elizarov and Tupitsyn
and earlier by ourselves. As Elizarov and Tupitsyn have alsoobtained large values for the
parameterξ2, which, in addition, agree quite well with our results, we are more or less certain
that their phase differences are close to an odd interger multiple of π

2
, too. As discussed in

[5], such phase differences are necessary (but not sufficient) for getting large dynamic spin

‖ Phase diffences of aboutπ
2

are necessary but not sufficient for obtaining a largeξ2 because one has also to
take into account the reduced Coulomb matrix elements as well as the 3–j and 6–j symbols. The different terms
in the numerator of equation (2) may also cancel each other, see [5] for details.
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polarization parameters. When these phase differences enter the argument of a sine function,
which is the case forξ2, it does not matter whether the phase differences are somewhat smaller
or, to the same extent, larger thanπ

2
. This is different forα2 because this parameter depends

on the cosine of the phase differences of two interfering partial waves. Here some of the
terms in the numerator of equation (1) would change sign. Furthermore, though Elizarov
and Tupitsyn perform a relativistic calculation, the incomprehensible independence of their
scattering phases from the total angular momentumj in a way contributes to the discrepancies
found.

References

[1] Mehlhorn W 1968Phys. Lett.26A 166–8
[2] Klar H 1980J. Phys. B: At. Mol. Phys.13 4741–9
[3] Kabachnik N M 1981J. Phys. B: At. Mol. Phys.14 L337–41
[4] Schmidt V 1994Nucl. Instrum. MethodsB 87 241–6
[5] Kleiman U and Lohmann B 2000J. Phys. B: At. Mol. Opt. Phys.33 2653–63
[6] Kleiman U and Lohmann B 2000J. Phys. B: At. Mol. Opt. Phys.33 L641–7
[7] Kleiman U, Paripás B, Lohmann B, Vı́kor Gy and Ricz S 1999J. Phys. B: At. Mol. Opt. Phys.32 4781–92
[8] Lohmann B 1990J. Phys. B: At. Mol. Opt. Phys.23 3147–65
[9] Lohmann B 2009Angle and Spin Resolved Auger Emission(Berlin: Springer)

[10] Elizarov A Yu and Tupitsyn I I 2004Phys. Scr.70 139–41
[11] Elizarov A Yu and Tupitsyn I I 2004Sov. Phys.–Tech. Phys.49 1398–403
[12] Elizarov A Yu and Tupitsyn I I 2004Opt. Spectrosc.96 486–91
[13] Elizarov A Yu and Tupitsyn I I 2008Phys. Scr.77 059801 (Corrigendum)
[14] Zare R N 1988Angular Momentum(New York: Wiley)


