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A systematic density functional theory (DFT) study of strain effects on the electronic band struc-
ture of the group-III nitrides (AlN, GaN and InN) is presented. To overcome the deficiencies of the
local-density and generalized gradient approximations (LDA and GGA) the Heyd-Scuseria-Ernzerhof
hybrid functional (HSE) is used. Cross-checks for GaN demonstrate good agreement between HSE
and exact-exchange based G0W0 calculations. We observe a pronounced nonlinear dependence of
band-energy differences on strain. For realistic strain conditions in the linear regime around the
experimental equilibrium volume a consistent and complete set of deformation potentials is derived.
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The group-III nitride compounds and their alloys have
recently received considerable attention as a versatile ma-
terials class. AlN, GaN and InN all crystallize in the
wurtzite structure, but have vastly different band gaps
ranging from 6.0 eV for AlN down to 0.7 eV for InN. For
light emitting diodes (LEDs)1 and laser diodes (LDs)2,3

the group-III-nitrides are currently the only commercially
available materials class for the green to the deep ul-
traviolet part of the spectrum, and future applications
as chemical sensors,4 in quantum cryptography5 or in
photocatalysis6 are being explored. Applications in solid
state lighting, however, are currently limited by loss
mechanisms7,8 and a deeper understanding of the fun-
damental materials properties is required. One crucial
factor is the effect of strain.

Due to the large differences in lattice parameters and
thermal expansion coefficients between the substrate and
the nitride overlayers, and between nitride layers with
different alloy compositions, strain is always present in
group-III-nitride based devices. Strain influences the op-
tical properties,9–11 in particular the energy of optical
transitions, and for nonpolar or semipolar devices the po-
larization of the emitted light.12 The effects of strain are
characterized by the change of a transition energy (energy
difference) upon application of strain, and the linear coef-
ficient is defined as deformation potential. Together with
the Luttinger (band) parameters, the deformation poten-
tials constitute essential input for device modeling.13

The experimental determination of deformation poten-
tials is quite difficult, and aggravated by the fact that not
all strain components can be determined accurately or
without further approximations and that the deformation
potentials cannot be isolated from each other, because
uniaxial and biaxial strain cannot be applied separately.
As a result the experimental data for GaN are scattered
over a very large range.10,11,14–17 For AlN and InN no ex-
perimental data are available, except for the hydrostatic
deformation potential of the band gap in InN.18

Previous theoretical studies have also produced
widely differing values, resulting in a large uncertainty
range.19–21 The error bars can, in part, be attributed to
the band-gap problem of density functional theory (DFT)
in the local-density or generalized gradient approxima-
tions (LDA and GGA). Moreover, not all previous stud-
ies include a relaxation of the internal displacement pa-
rameter u, which sensitively affects the crystal-field split-

TABLE I: Equilibrium lattice parameters (a and c) and band
gaps (Eg) obtained with LDA, GGA, and HSE. Experimental
lattice parameters at T = 300 K and band gap values are
taken from Refs.26 and13.

Method a (Å) c (Å) u Eg (eV)
AlN LDA 3.092 4.950 0.3818 4.40

GGA 3.127 5.021 0.3812 4.10
HSE 3.102 4.971 0.3819 5.64
Exp. 3.112 4.982 - 6.25

GaN LDA 3.155 5.145 0.3764 2.12
GGA 3.215 5.240 0.3766 1.74
HSE 3.182 5.173 0.3772 3.24
Exp. 3.190 5.189 - 3.51

InN LDA 3.504 5.670 0.3784 < 0
GGA 3.573 5.762 0.3792 < 0
HSE 3.548 5.751 0.3796 0.68
Exp. 3.540 5.706 - 0.78

ting. The equilibrium lattice parameters around which
the linear expansion is performed also play a role, as we
will demonstrate, due to pronounced nonlinearities. In
this work we use the Heyd-Scuseria-Ernzerhof (HSE)22,23

DFT hybrid functional, which produces band gaps and
equilibrium lattice parameters in much better agreement
with experiment than LDA and GGA.

We present a complete set of deformation potentials
(acz − D1, act − D2, D3, D4, and D5) for the wurtzite
phases of AlN, GaN and InN. Our first-principles cal-
culations are performed using the plane-wave projector
augmented wave (PAW) and hybrid functional method
as implemented in the VASP code.24 The screening pa-
rameter µ in HSE was fixed at a value of 0.2 (HSE06)
and the mixing parameter α was set as 0.25. LDA and
GGA-PBE25 calculations are performed for comparison.
The semi-core d-electrons of Ga and In are treated as va-
lence electrons. We use 6×6×4 Γ-point centered k-point
mesh and a plane-wave cutoff of 600 eV. Such a large
plane-wave cutoff was found necessary to determine the
internal displacement parameter u accurately, which sen-
sitively affects the valence band structure, most notably
the crystal-field splitting.

Table I demonstrates that LDA underestimates and
GGA overestimates the equilibrium lattice parameters of
AlN, GaN and InN, while HSE provides the best agree-
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ment with the experimental values. Band gaps are un-
derestimated severely in LDA and GGA, which for InN
even results in a negative gap (metallic state). HSE
again shows a considerable improvement and produces
gaps that are close to those obtained from exact-exchange
based G0W0 calculations (to within 0.1 eV for GaN and
InN)26 and only slightly underestimate the experimental
values.

The strain-induced band-structure modifications in the
vicinity of the Γ-point have been derived from the k ·p
approach by Bir and Pikus.27 Solving the unstrained 6×6
Hamiltonian for the valence bands yields three eigen-
states corresponding to the heavy hole (HH), light hole
(LH), and crystal-field split-off band (CH). The transi-
tion energies to the conduction band are denoted as EA,
EB, and EC , respectively. Here we do not consider the
spin-orbit interaction (∆2 = ∆3 = 0) so that for the un-
strained system the HH and LH bands become doubly
degenerate (Γ6) and the CH band (Γ1) is split off by the
crystal-field splitting. For the special case that εxx = εyy

(which preserves the symmetry in the c plane), adding
strain to the Hamiltonian changes the transition energies
in the following way:

EA/B = EA/B(0) + (acz − D1)εzz + (act − D2)ε⊥
−(D3εzz + D4ε⊥)

EC = EC(0) + (acz − D1)εzz + (act − D2)ε⊥
(1)

Here ε⊥ = εxx + εyy and εzz are the strain compo-
nents in and perpendicular to the c plane. Note that the
valence-band deformation potentials D1 (D2) are com-
bined with the conduction-band deformation potentials
acz (act). Uniaxial strain in the c plane (εyy = εzz = 0,
εxx 6= 0) changes the crystal symmetry from C6v to C2v.
This lifts the degeneracy of the Γ6 state and leads to the
following splitting between the HH and LH bands:

∆E = |EHH − ECH | = 2 |D5(εxx − εyy)| (2)

From the slopes of the transition energies under biaxial
(εxx = εyy 6= 0, εzz = 0) or uniaxial strain (εxx = εyy =
0, εzz 6= 0)) the deformation potentials acz−D1, act−D2,
D3 and D4 can be obtained, whereas uniaxial strain in
the c plane yields D5.

We calculate the dependence of the transition ener-
gies on strain by computing the band structure using
HSE for three different strain conditions. The internal
displacement parameter u is fully relaxed in every case.
Figure 1 shows the crystal-field splitting (∆cr) of GaN
under biaxial strain in the c plane for the strain range
±3%. One might have expected the dependence to be lin-
ear, but instead a clearly nonlinear behavior is observed,
which can be well described by a quadratic dependence
as demonstrated by the fitted curve. It implies that the
slope (needed to determine the deformation potentials)
differs for different lattice parameters. Panels (b) and
(c) show that D3 and D4 vary by more than 40% in the
strain range ±3%. Similar nonlinearities are observed for
AlN and InN. For systems with large internal strain com-
ponents, such as InGaN alloys grown on GaN substrates,
these nonlinearities should be taken into account.

By constraining the strain to realistic strain conditions
in the linear regime around the experimental lattice pa-
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FIG. 1: (color online) (a) Calculated crystal-field splitting
∆cr of wurtzite GaN under biaxial strain in the c plane.
(b) The energy difference of crystal-field splitting between
strained (∆cr) and unstrained case (∆cr,0) of wurzite AlN,
GaN, and InN under biaxial strain in the c plane. The lower
panels show the calculated deformation potentials D3 (c) and
D4 (d) of GaN as a function of lattice parameter a. The fitted
curves are quadratic in (a) and (b) and linear in (c) and (d).

TABLE II: Deformation potentials (eV) of wurtzite AlN, GaN
and InN. For GaN the range of experimentally determined
deformation potentials and the recommended values by Vur-
gaftman and Meyer (VM) (Ref.13) are also shown.

AlN GaN InN
HSE exp (range) VM HSE G0W0 HSE

acz − D1 −4.31 -9.6. . . -3.1 −4.90 −5.81 −5.33 −3.62
act − D2 −12.11 -11.8. . . -8.1 −11.30 −8.92 −8.84 −4.60

D3 9.12 1.4. . . 8.2 8.20 5.47 5.80 2.68
D4 −3.79 -4.1. . . -0.7 −4.10 −2.98 −3.09 −1.74
D5 −3.23 -4.7. . . -3.3 −4.60 −2.82 − −2.07

rameters we derive a consistent and complete set of defor-
mation potentials from the HSE calculations which are
listed in Table II. With the exception of acz − D1 the
deformation potentials decrease in absolute value from
AlN to InN. Due to the appreciable scatter in the ex-
perimentally determined deformation potentials for GaN
we only report the range of measured values in Table II.
Apart from D5, which is slightly larger than the largest
experimental value, the HSE values all fall within the
experimental range. No experimental results are avail-
able for AlN or InN so far. Cross-checks for GaN show
that the HSE values are in good agreement with those
obtained from G0W0 calculations28 – currently the band
structure method of choice for solids – which validates
the suitability of the HSE method for studying the strain
effects for group-III-nitrides. This also makes our set of
deformation potentials consistent with the Luttinger pa-
rameters of Rinke et al.26

Combining available theoretical and experimental data
Vurgaftman and Meyer suggested a set of recommended
deformation potentials for AlN, GaN and InN in 2003.13
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In Table II we list their values for GaN. With the excep-
tion of acz − D1 our HSE values give smaller absolute
values. Vurgaftman and Meyer’s recommended values
for AlN were taken from LDA calculations by Shimada
et al.

29 These values are in good agreement with our
HSE calculations except that HSE gives an absolutely
larger acz − D1 value. This is consistent with our own
LDA calculations and illustrates that the band-gap re-
lated deformation potentials (such as acz −D1) are most
sensitive to exchange-correlation and require a band-gap
corrected approach, while the deformation potentials de-
pendent only on valence-band energy differences (D3, D4,
and D5) are less sensitive.30 In the absence of any com-
putational or experimental values for InN, Vurgaftman
and Meyer recommended to use the same deformation
potentials as for GaN. Our HSE values show that this is
not a good approximation, with differences in magnitude
as large as several eV.

Our first-principles calculations also allow us to as-
sess the accuracy of the quasicubic approximation, which
assumes that the similarity of local atomic coordina-
tion between wurtzite and zinc-blende structures leads
to a correlation of the physical properties of the wurtzite
structure with those of the zinc-blende structure along
the <111> direction. In the quasicubic approxima-
tion, the deformation potentials are related as follows:
D3 = −2D4, D1 +D3 = D2 and D3 +4D5 =

√
2D6. The

quasicubic approximation is often made in experimental

studies, because it eliminates the explicit dependence on
three of the deformation potentials. As a test, we checked
the value of D3 + 2D4 (which should be zero in the qu-
uasicubic approximation), finding 1.43 eV for AlN, -0.52
for GaN and -0.88 eV for InN. Omitting the anisotropy of
the wurtzite phase by invoking the quasicubic approxima-
tion clearly introduces inaccuracies in the determination
of deformation potentials.

In conclusion, the effects of strain on the band struc-
ture of wurtzite AlN, GaN, and InN have been studied us-
ing a first-principles approach based on hybrid-functional
DFT. We observe nonlinearities in the strain dependence
that should be taken into account in highly strained ni-
tride materials and alloys. For the linear regime around
the experimental lattice parameters, we present a com-
plete and consistent set of deformation potentials. This
set of parameters constitutes important input for nitride
heterostructure device modeling and facilitates the pre-
diction of band positions under realistic strain conditions.
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