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The spin-density wave �SDW� state of the uniform electron gas is investigated in the exact-exchange
approximation of noncollinear spin-density functional theory �DFT�. Unlike in Hartree-Fock theory, where the
uniform paramagnetic state of the electron gas is unstable against formation of the spin-density wave for all
densities, in exact-exchange spin DFT this instability occurs only for densities lower than a critical value. It is
also shown that, although in a suitable density range it is possible to find a noninteracting SDW ground-state
Slater determinant with energy lower than the corresponding paramagnetic state, this Slater determinant is not
a self-consistent solution of the optimized effective potential �OEP� integral equations of noncollinear spin
DFT. A self-consistent solution of the OEP equations which gives an even lower energy can be found using an
excited-state Slater determinant where only orbitals with single-particle energies in the lower of two bands are
occupied while orbitals in the second band remain unoccupied even if their energies are below the Fermi
energy.
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I. INTRODUCTION

The ab initio description of noncollinear magnetic phe-
nomena such as spin-density waves �SDWs� is typically
based on an extension1 of the original Kohn-Sham density
functional theory �DFT�.2 As always in DFT, its success cru-
cially relies on the accuracy of approximations for the
exchange-correlation energy. An important step for the appli-
cation of noncollinear DFT to real systems proved to be the
construction of a noncollinear version of the local spin-
density approximation �LSDA� by Kübler and co-workers.3

An alternative density functional formalism for the descrip-
tion of SDWs and antiferromagnetism was proposed by
Capelle and Oliveira.4,5 In their work the system is not de-
scribed in terms of its density and magnetization density as
in usual spin DFT �SDFT� but instead in terms of the density
and the so-called “staggered density” where the latter is a
nonlocal quantity introduced to capture the nonlocal physics
of SDWs and antiferromagnetic systems.

However, nonlocality may also be captured within the
framework of usual SDFT if one abandons the local approxi-
mation to the exchange-correlation energy. Orbital function-
als, i.e., functionals which explicitly depend on the single-
particle orbitals rather than on the density �or densities�, can
be highly nonlocal. In DFT �or SDFT�, the optimized effec-
tive potential �OEP� method6–8 provides a framework to treat
orbital functionals. This methodology has recently been gen-
eralized to the case of noncollinear magnetism.9

In the present work we use the noncollinear OEP method
to study a very simple model system, the uniform electron
gas. This model is of paramount importance in many-body
physics.10 Moreover, in his seminal work Overhauser11,12

showed analytically that this simple model, if treated within
the Hartree-Fock �HF� approximation, leads to an instability
of the paramagnetic phase with respect to formation of a
spin-density wave. In SDFT, the approximation analogous to

HF is the exact-exchange �EXX� approximation which is the
HF total-energy functional but evaluated with orbitals which
come from both a local single-particle potential as well as a
local magnetic field. Here we use the EXX approximation
for a numerical investigation of Overhauser’s SDW state in
the framework of SDFT. This is complementary to another
work13 where Overhauser’s SDW state is investigated nu-
merically within HF and reduced density-matrix functional
theory.

The paper is organized as follows: in Sec. II we briefly
review the formalism of noncollinear SDFT and the corre-
sponding OEP method. In Sec. III we minimize the EXX
total energy for a given ansatz of the SDW state. In Sec. IV
we investigate if the chosen ansatz is self-consistent in the
framework of noncollinear SDFT before we provide our con-
clusions in Sec. V.

II. NONCOLLINEAR SPIN-DENSITY FUNCTIONAL
THEORY

In noncollinear SDFT, a system of interacting electrons
with ground state ��0� moving in an external electrostatic
potential v0�r� �typically the electrostatic potential due to the
nuclei� and magnetic field B0�r� is described through its par-
ticle density

n�r� = ��0��̂†�r��̂�r���0� �1�

and its magnetization density

m�r� = − �B��0��̂†�r���̂�r���0� . �2�

Here, �̂�r� is the field operator for Pauli spinors, �B is the
Bohr magneton, and � is the vector of Pauli matrices �atomic
units are used throughout�. For given external potentials, the
total ground-state energy of such a system can be written as
a functional of these two densities
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Ev0,B0
�n,m� = Ts�n,m� +� d3rv0�r�n�r� −� d3rB0�r�m�r�

+ U�n� + Exc�n,m� + Eion, �3�

where Ts�n ,m� is the noninteracting kinetic energy

U�n� =
1

2
� d3r� d3r�

n�r�n�r��
�r − r��

�4�

is the classical electrostatic energy of the electrons and Eion
is the classical electrostatic energy of the ions. Exc�n ,m� is
the �unknown� exchange-correlation energy functional which
has to be approximated in practice. Once an approximation
for this functional is specified, the densities n�r� and m�r�
can be obtained as �ground-state� densities of a noninteract-
ing system whose orbitals are given by self-consistent solu-
tion of the Kohn-Sham �KS� equation

	−
�2

2
+ vs�r� + �B�Bs�r�
�i�r� = �i�i�r� , �5�

where the �i�r� are single-particle Pauli spinors. The effec-
tive potentials are given by

vs�r� = v0�r� +� d3r�
n�r��

�r − r��
+ vxc�r� �6�

and

Bs�r� = B0�r� + Bxc�r� �7�

with the exchange-correlation potentials

vxc�r� =
�Exc�n,m�

�n�r�
�8�

and

Bxc�r� = −
�Exc�n,m�

�m�r�
, �9�

respectively.
In this work we will use the EXX energy functional as an

approximation to the exchange-correlation energy which can
be expressed in terms of the single-particle spinors �i as

EEXX���l��

= −
1

2

i,j

occ � d3r� d3r�
��i

†�r� · � j�r���� j
†�r�� · �i�r���

�r − r��

�10�

Since the EXX functional explicitly depends on the �spinor�
orbitals but only implicitly on the densities, the calculation
of the exchange-correlation potentials Eqs. �8� and �9� has to
be performed by means of the OEP method.6–8 A formulation
of this technique for the case of noncollinear magnetism has
recently been given in Ref. 9. The coupled OEP integral
equations for the exchange-correlation potentials can be ob-
tained by applying the chain rule of functional derivatives

�Exc

�vs�r�
=� d3r�	vxc�r��

�n�r��
�vs�r�

− Bxc�r��
�m�r��
�vs�r�



= 


i

occ � d3r�	 �Exc

��i�r��
��i�r��
�vs�r�

+ H . c .
 , �11�

�Exc

�Bs�r�
=� d3r�	vxc�r��

�n�r��
�Bs�r�

− Bxc�r��
�m�r��
�Bs�r�



= 


i

occ � d3r�	 �Exc

��i�r��
��i�r��
�Bs�r�

+ H . c .
 �12�

The functional derivatives of the spinor orbitals and the den-
sities with respect to the potentials can be computed from
first-order perturbation theory and following the notation of
Ref. 14 the OEP equations can be written in compact form as



i

occ

��i
†�r��i�r� + H . c .� = 0 �13�

− �B

i

occ

��i
†�r���i�r� + H . c .� = 0 �14�

where we have defined the orbital shifts7,15,16

�i�r� = 

j

j�i

Dij� j�r�
�i − � j

�15�

with

Dij =� d3r�� j
†�r��

���vxc�r�� + �B�Bxc�r����i�r�� −
�Exc

��i
†�r��� .

�16�

Equations �5�–�10�, �13�, and �14� constitute our formal
framework to investigate the spin-density wave in the uni-
form electron gas in exact exchange.

III. UNIFORM ELECTRON GAS WITH SPIN-DENSITY
WAVE: DIRECT MINIMIZATION OF ENERGY

We study a uniform electron gas, i.e., a system of elec-
trons with spatially constant density moving in the electro-
static potential created by a neutralizing uniform density of
positive background charge. In the following, rather than cal-
culating the Kohn-Sham potentials self-consistently, we as-
sume that the Kohn-Sham electrostatic potential vs�r� is a
constant �which we set to zero� and that the Kohn-Sham
magnetic field Bs�r� forms a spiral with amplitude B and
wavevector q=qez where ez is a unit vector in z direction,
i.e., Bs�r�= �B cos�qz� ,B sin�qz� ,0�. Moreover, we also as-
sume that the Kohn-Sham magnetic field is entirely due to its
exchange-correlation part, i.e., we study the system without
external magnetic field. Of course, at some point we have to
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verify that our assumptions are consistent within the SDFT
framework. This question will be studied in Sec. IV.

With the effective potentials given above, the Kohn-Sham
Eq. �5� can be solved analytically. A complete set of quantum
numbers is given by a band index b=1,2 and a wavevector
k. The corresponding single-particle eigenstates and eigenen-
ergies for the first band are given by

�k
�1��r� =

exp�ikr�
�V � cos �kz

sin �kz
exp�iqz� � , �17�

where V is the system volume �which tends to infinity� and

�k
�1� =

k�
2

2
+ ��

�1� �18�

where k� =�kx
2+ky

2, �=kz+ q
2 , and

��
�1� =

�2

2
+

q2

8
−�q2

4
�2 + �B

2B2. �19�

The angle �kz
is defined through the relation

tan 2�� = − 2	 �20�

with

	 =
�BB

q�
. �21�

For the second band the eigenstates and eigenenergies are

�k
�2��r� =

exp�ikr�
�V � − sin �kz

cos �kz
exp�iqz� � �22�

and

�k
�2� =

k�
2

2
+ ��

�2� �23�

with

��
�2� =

�2

2
+

q2

8
+�q2

4
�2 + �B

2B2. �24�

In order for the definition of �k
�1��r� and �k

�2��r� to be unique,
the angle �� has to be restricted to an interval of length 
 /2.
Assuming that B�0 and q�0, we find from Eq. �20� that
−
 /2
���0. Using a trigonometric identity we can trans-
form Eq. �20� to

tan �� =
1

2	
�1 − �1 + 4	2� �25�

From Eq. �20� we see that for finite B and �=0 the angle
��=0=− 


4 . In order for �� to be a continuous function of �
with values in the correct range we invert Eq. �25� as

�� = � arctan� 1

2	
�1 − �1 + 4	2�� for � � 0

−



2
+ arctan� 1

2	
�1 − �1 + 4	2�� for � 
 0� .

�26�

With the single-particle states fully defined we can write
down the uniform electronic �ground-state� density as

n = 

b

n�b� = 

b
� d3k

�2
�3���F − �k
�b��

=
1

4
2

b
� d����F − ��

�b����F − ��
�b�� , �27�

where n�b� is the density contribution of band b, ��x� is the
Heaviside step function and the trivial integrals have been
carried out in the last step. Using Eqs. �18� and �23�, the
integration limits can be determined analytically and the re-
maining integral can easily be solved in closed form but we
refrain from giving the explicit expression here.

Similarly, we can compute the magnetization density. We
obtain for the x and y components

mx�r� = m0 cos�qz� �28�

and

my�r� = m0 sin�qz� , �29�

where the amplitude of the spin-density wave is

m0 = −
�B

2
2

b

sign�b�

�� d����F − ��
�b����F − ��

�b��sin �� cos �� �30�

and we have defined

sign�b� = �+ 1 for b = 1

− 1 for b = 2
� . �31�

Using the symmetry relation �−�=− 

2 −�� �see Eq. �26��, the

z component of the magnetization density can be shown to
vanish identically

mz�r� = 0. �32�

We point out that the vector of the magnetization density
here is parallel to the Kohn-Sham magnetic field. This cer-
tainly is a consequence of the simplicity of the system under
study here. For more complicated systems it was shown in
Ref. 9 that these quantities need not be parallel in noncol-
linear SDFT in EXX. This is an important difference to the
noncollinear LSDA formulation of Ref. 3 where the magne-
tization density and the exchange-correlation magnetic field
are locally parallel by construction.

We now turn to the evaluation of the energy of Eq. �3� and
note that for an electrically neutral system with uniform ionic
and electronic densities the sum of the ionic energy Eion, the
electronic interaction with the ionic potential �d3rv0�r�n�r�

OVERHAUSER’s SPIN-DENSITY WAVE IN EXACT-… PHYSICAL REVIEW B 80, 125120 �2009�

125120-3



and the Hartree energy U�n� exactly cancels out. We study
the system at vanishing external magnetic field, B0�r��0,
and use the exact-exchange energy of Eq. �10� as an approxi-
mation to the exchange-correlation energy functional. It is
expected10,17 that inclusion of correlation leads to SDW
states higher in energy than the paramagnetic states.

In our case the total energy per unit volume only consists
of a kinetic and an exchange contribution, i.e.,

ẽtot = t̃s + ẽEXX. �33�

The kinetic energy per unit volume has contributions from
the two bands

t̃s =
Ts

V
= 


b

t̃s
�b�, �34�

where the contribution of the first band is given by

t̃s
�1� =

1

8
2� d����F − ��
�1����F − ��

�1��

�	�F − ��
�1� + �2 +

q2

4
+ 2q� sin2 ��
 �35�

while the contribution of the second band is

t̃s
�2� =

1

8
2� d����F − ��
�2����F − ��

�2��

�	�F − ��
�2� + �2 +

q2

4
+ 2q� cos2 ��
 . �36�

Inserting the orbitals �17� and �22� into Eq. �10�, the ex-
change energy per unit volume, ẽEXX, can also be expressed
as sum of two terms

ẽEXX = ẽEXX
�1� + ẽEXX

�2� . �37�

The first term which describes intraband exchange is, after
carrying out the angular integrals, given by

ẽEXX
�1� = −

1

32
3

b
� d����F − ��

�b��� d�����F − ���
�b��

�cos2��� − ����I�y
�b����,y�b�����,�� − ���2� �38�

while the second term, describing interband exchange, reads

ẽEXX
�2� = −

1

16
3� d����F − ��
�1��� d�����F − ���

�2��

�sin2��� − ����I�y
�1����,y�2�����,�� − ���2� .

�39�

where we have defined

y�b���� = 2��F − ��
�b�� . �40�

In Eqs. �38� and �39� we also have used the integral

I�y1,y2,a� = �
0

y1

dy�
0

y2

dy�
1

��y − y��2 + 2�y + y��a + a2

�41�

which can be solved in closed form by transforming to new
integration variables z=y−y� and z�= �y+y�� /2 and chang-
ing the integration limits accordingly. Therefore the calcula-
tion of the total energy only requires the numerical calcula-
tion of a two-dimensional integral.

We have calculated the total energy per particle

etot =
ẽtot

n
�42�

in the following way: we start by numerically calculating the
Fermi energy for a given value n of the density or, equiva-
lently, the Wigner-Seitz radius

rs = 	 3

4
n

1/3

�43�

and given values of the parameters B and q from Eq. �27�.
The Fermi energy thus becomes a function of these three
parameters

�F = �F�rs,q,B� , �44�

which is then used to evaluate the total energy per particle
for these parameter values. We then have, for fixed rs, mini-
mized etot as a function of the parameters q and B numeri-
cally.

In Fig. 1 we show the total energy per electron at rs
=5.4 for a few values of B as function of q /kF where

kF = 	9


4

1/3 1

rs
�45�

is the Fermi wave number of the uniform electron gas in the
paramagnetic state. The value rs=5.4 was chosen because
then �i� the SDW phase is lower in energy than both the
paramagnetic and ferromagnetic phases and �ii� the ampli-
tude of the SDW �or the KS magnetic field� is relatively high
such that the resulting energy differences can easily be re-
solved numerically. We clearly see that for the given values

0 0.5 1 1.5 2
q / kF

-0.047

-0.0469

-0.0468

-0.0467

-0.0466

e to
t
(a

.u
.)

µB B = 0.010 a.u.

µB B = 0.011 a.u.

µB B = 0.012 a.u.

paramagnetic

1.6 1.65 1.7 1.75
q / kF

-0.046976

-0.046972

-0.046968

e to
t
(a

.u
.)

FIG. 1. �Color online� Total energy per particle in EXX for the
electron gas at rs=5.4 with spin-density wave as function of q /kF

and different values of the amplitude B of the Kohn-Sham magnetic
field. The straight line corresponds to the total energy per particle of
the paramagnetic state at this density. The inset shows a magnifica-
tion close to the minimum.
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of B for wave numbers between q /kF�1.5 and q /kF�1.75
the energy of the SDW state is lower than the energy of the
paramagnetic state. The lowest energy for this value of rs is
achieved for the parameters �BB=0.011 a.u. and q /kF
=1.68.

In Fig. 2 we show the KS single-particle dispersions of
Eqs. �18� and �23� as well as the HF single-particle disper-
sions. To obtain the latter ones we first calculate the HF
self-energy �which is a 2�2 matrix in spin space� as

�HF�r,r�� = − 

b



k

���F − �k
�b��

�k
�b��r� � �k

�b�†�r��
�r − r��

�46�

and then diagonalize the resulting HF Hamiltonian

ĥHF = −
�2

2
+� d3r��HF�r,r�� . . . , �47�

where the second term is a to be read as an integral operator.
We would like to emphasize that we use the KS orbitals and
orbital energies to evaluate the HF self energy, i.e., we do not
perform a self-consistent HF calculation here.

In Fig. 2 we show the KS and HF dispersions only for the
� coordinate, i.e., we set k� =0. As expected, close to � /kF
=0 a direct gap opens up in the KS single-particle disper-
sions due to the presence of the spin-density wave. The po-
sition of the Fermi energy is such that not only states of the
lower �b=1� band but also states of the second �b=2� KS
band are occupied in the ground state.

The HF bands in Fig. 2 have been rigidly shifted by a
constant such that the lower HF band �b=1� and the lower
KS band equal the Fermi energy for the same value of � /kF.

It is evident that, as expected, the HF single-particle direct
band gap at � /kF=0 is much larger than the corresponding
KS gap. Moreover, the position of the second HF band indi-
cates that also in the HF case there will be occupied states in
the second band. While here we have calculated the HF
bands using the DFT orbitals and orbital energies, we have
confirmed13 that the above statement is true also for a HF
energy minimization and the resulting HF bands are very
close to the ones presented here.

The occupation of states in both single-particle bands is
sometimes excluded in works on the SDW in the Hartree-
Fock approximation10,12 and also in a numerical
investigation13 we have found that for the global energy
minimum in Hartree Fock only the lowest single-particle
band is occupied. This has motivated us to do the minimiza-
tion of the total energy in EXX also under the additional
constraint that only states of the lowest subband are occu-
pied.

Similar to Fig. 1, in Fig. 3 we show the total energy per
electron at rs=5.4 for a few values of B as function of q /kF.
Of course, the constrained minimization leads, for a given
value of rs, to different optimized parameter values. Surpris-
ingly, however, we found that the minimization constraining
the occupation to the lower subband leads to lower total
energies than the ones obtained with a two-band minimiza-
tion. Moreover, this lower total energy is achieved with a
Slater determinant which has empty states below the Fermi
level.

This can be seen in Fig. 4 where we show the KS and HF
energy bands at rs=5.4 for this “one-band” minimization for
the optimized parameter values of �BB=0.020 a.u. and
q /kF=1.33. We see that there are states in the second KS
band below the Fermi energy which, due to the constraint in
the minimization, remain unoccupied. We also note that for
the one-band case the amplitude of the minimizing Kohn-
Sham magnetic field, and therefore also the “gap” between
the two KS bands at � /kF=0, is almost twice as large as in
the two-band case. Compared to Fig. 2, the intersection of
the Fermi energy with the bands ��b���� is shifted to a lower
value of ���.

-2 -1 0 1 2
κ / kF

-0.1

0

0.1

0.2

0.3

0.4

0.5

ε(b
) (κ

)
(a

.u
.)

KS band b=1
KS band b=2
HF band b=1
HF band b=2
Fermi energy

FIG. 2. �Color online� Single-particle KS and HF bands at k�

=0 for the optimized parameter values ��BB=0.011 a.u. and
q /kF=1.68 at rs=5.4� minimizing the EXX total energy per particle
in Fig. 1. The straight line indicates the Fermi energy and shows
that close to � /kF=0 states of the second KS band �dashed �green�
line� are occupied in the ground state. The KS orbitals have been
used to compute the HF Hamiltonian and the resulting HF bands
have been shifted rigidly such that the lower HF and KS bands
equal �F at the same value of �� /kF�. The relative position of the
second HF band �dash-dash-dotted �purple� line� indicates that also
in HF states in both bands will be occupied.

0 0.5 1 1.5 2
q / kF

-0.047

-0.0465

-0.046

-0.0455

e to
t
(a

.u
.)

µB B = 0.019 a.u.

µB B = 0.020 a.u.

µB B = 0.021 a.u.

paramagnetic

1.25 1.3 1.35 1.4
q / kF

-0.04714

-0.047136

-0.047132

e to
t
(a

.u
.)

FIG. 3. �Color online� Same as Fig. 1 except that now only
states in the lower band are allowed to be occupied. The total en-
ergy per particle at the minimum is lower than when states in both
bands are allowed to be occupied.
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The HF bands again have rigidly been shifted such that
the lower HF and KS bands intersect the Fermi energy at the
same �. Again, the direct HF gap at � /kF=0 is significantly
larger than the KS gap. In contrast to the two-band case, the
second HF band now is energetically higher than the Fermi
energy and the corresponding HF state would, unlike the
EXX state, have no unoccupied single-particle states below
�F. Again here we have done only a post-hoc evaluation of
the HF bands but we have checked that the statement re-
mains valid for a self-consistent HF calculation as well.13

We have optimized the EXX total energy per particle for a
range of rs values once for single-particle occupations in
both energy bands and once for occupations restricted to the
lower band. In Fig. 5 we show the resulting phase diagram in
the relevant density range. When allowing occupations in
both bands, the SDW state �which is then a ground-state
Slater determinant� is lower in energy than both the para-
magnetic and the ferromagnetic phase for rs in the range
5.0�rs�5.46. In this case the energies are very close to the
energies of the paramagnetic phase �energy differences of
less than 4�10−5 a.u., see lower panel of Fig. 5� and there-
fore the transition to the ferromagnetic phase occurs at an
value of rs only slightly higher than the rs value where para-
magnetic and ferromagnetic phases are degenerate.

On the other hand, restricting the single-particle occupa-
tion to the lowest band, the SDW state is more stable than
paramagnetic and ferromagnetic state for 4.78�rs�5.54. In
this case the energy differences between the paramagnetic
and the SDW phase range to almost 4�10−4 a.u. �lower
panel of Fig. 5�, almost an order of magnitude larger than in

the two-band case. However, for all rs values in the stability
range of the SDW phase, the minimizing Slater determinant
in the one-band case is not a ground state of the Kohn-Sham
problem.

Both the one- and two-band cases in EXX have in com-
mon that they predict the SDW phase to be lower in energy
than the paramagnetic phase only for a restricted range of rs
values. This is different from the Hartree-Fock case10,12

where the SDW phase is more stable than the paramagnetic
phase for all values of rs. This is not completely surprising
since due to the additional constraint of local Kohn-Sham
potentials vs and Bs in the EXX minimization, the resulting
energies have to be higher than the Hartree-Fock total ener-
gies. Since for small values of rs the SDW total energies in
HF are extremely close to the total energies of the paramag-
netic phase,13 the higher EXX total energies can easily lead
to a more stable paramagnetic phase.

In Fig. 6 we show the SDW parameters q �upper panel�
and B �middle panel� for which the EXX total energy per
particle is minimized in the one- and two-band cases for
those rs values for which the SDW phase is more stable than
both paramagnetic and ferromagnetic phases. For the one-
band case, the wave number q of the spin-density wave cov-
ers almost the whole range between kF and 2kF while for the
two-band case this range is much narrower. The amplitudes
B and m0 of the Kohn-Sham magnetic field �middle panel�
and the magnetization density �lower panel� of the SDW are
significantly smaller in the two-band case as for the case with
occupied single-particle states in one band only. It is some-
times assumed10 that the wave number of the SDW is close
to 2kF. Our results show that this need not be the case, as in
the one-band case q approaches kF for densities at the lower
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FIG. 4. �Color online� Same as Fig. 2 except that the optimized
parameters are used which result from a minimization with occu-
pied states in the lower KS band only. For rs=5.4 these values are
�BB=0.020 a.u. and q /kF=1.33. Again, the straight line indicates
the Fermi energy. Note that the states of the second KS band
�dashed �green� line� remain unoccupied in this calculation, even if
their single-particle energies are below the Fermi level, i.e., the
resulting Slater determinant is not a ground state of the Kohn-Sham
problem. On the other hand, the post-hoc evaluation of the HF
bands �for details see caption of Fig. 2 and the main text� indicates
that the second HF band �dash-dash-dotted �purple� line� will re-
main unoccupied and the resulting HF wave function will be a
ground-state Slater determinant.
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FIG. 5. �Color online� Upper panel: total energy per particle in
EXX for different phases of the uniform electron gas as function of
Wigner-Seitz radius rs. In the SDW phase, in one case the occupa-
tion of single-particle states in both bands is allowed while in the
other case the occupied states are restricted to the lower band.
Lower panel: energy difference between the total energies per par-
ticle of the paramagnetic phase and the SDW phase for SDWs with
occupied states in one and two bands. For the two-band case, the
SDW phase is lower in energy than both the paramagnetic and the
ferromagnetic phase for 5.0�rs�5.46. For the one-band case the
range of stability of the SDW phase is 4.78�rs�5.54.
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end of the stability range of the SDW phase. However, nei-
ther in EXX nor in HF �Ref. 13� have we ever found a stable
SDW state with wave number lower than kF.

IV. SELF-CONSISTENCY

In the previous Section we have used an ansatz for the
Kohn-Sham orbitals in the SDW phase which depends on
two parameters and then minimized the EXX total energy
per particle with respect to these parameters. We have done
this minimization once allowing single-particle states in both
bands to be occupied and once for occupations only in the
lower band. This is different from the usual way of applying
DFT where one calculates the exchange-correlation poten-
tials and solves the Kohn-Sham equation self-consistently. In
our case, the calculation of the EXX potentials requires so-
lution of the OEP Eqs. �13� and �14�. In the present Section
we still use our ansatz for the Kohn-Sham orbitals and in-
vestigate if it is consistent with the OEP equations.

We start by calculating the orbital shifts of Eq. �15� in the
EXX approximation. Inserting our ansatz after some straight-
forward algebra we obtain for the orbital shift of the first
band

�k
�1��r� =

G�k�
��

�1� − ��
�2��k

�2��r� �48�

while the shift for the second band reads

�k
�2��r� = −

G�k�
��

�1� − ��
�2��k

�1��r� , �49�

where we have defined

G�k� = − q� sin �� cos �� + F�k� �50�

as well as

F�k� = 

b

sign�b�� d3k1

�2
�3���F − �k1

�b��

�
4


�k − k1�2
sin���1

− ���cos���1
− ��� . �51�

Inserting the orbital shifts �Eqs. �48� and �49�� as well as the
orbitals �Eqs. �17� and �22�� it is straightforward to see that
the first OEP Eq. �13� is satisfied by our ansatz, i.e.,



b



k

���F − �k
�b����k

�b�†�r��k
�b��r� + c.c.� = 0. �52�

This can easily be understood from the physical content of
the OEP equations: if we start from the KS Hamiltonian as
noninteracting reference and perform a perturbation expan-

sion of the interacting density in the perturbation ŴClb− V̂xc

−�B�B̂xc, where ŴClb is the operator of the electron-electron

interaction and V̂xc+�B�B̂xc is the operator of the KS
exchange-correlation potentials, then the OEP equation in
EXX simply says that the density remains unchanged to first
order. In our case we keep the density fixed and therefore the
OEP Eq. �13� holds.

A similar argument can be used for the z component of
the OEP Eq. �14� which says that the z component m�r� of
the magnetization density remains unchanged under the same
perturbation to first order. This equation reads explicitly



b



k

���F − �k
�b����k

�b�†�r��z�k
�b��r� + c.c.�

= − 2

b

sign�b�� d3k

�2
�3���F − �k
�b��

sin �� cos ��G�k�
��

�1� − ��
�2�

= 0, �53�

where the last equality can most easily be seen by noting that
the integrand is an odd function under the transformation �
→−� and all the integrals are over a symmetric range around
�=0.

For the x and y component of Eq. �14� we obtain



b



k

���F − �k
�b����k

�b�†�r��x�k
�b��r� + c.c.�

= J��F,q,B�cos�qz� = 0 �54�

and



b



k

���F − �k
�b����k

�b�†�r��x�k
�b��r� + c.c.�

= J��F,q,B�sin�qz� = 0, �55�

where

J��F,q,B� = 2

b

sign�b�� d3k

�2
�3���F − �k
�b��

�
�cos2 �� − sin2 ���G�k�

��
�1� − ��

�2� . �56�

Since Eqs. �54� and �55� have to be satisfied for all values of
z, we obtain only the condition
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FIG. 6. �Color online� Optimized values for the parameters q
�upper panel� and B �middle panel� for which the EXX total energy
per particle of the SDW phase is minimized. The results are shown
over the range of rs values for which the SDW phase is lower in
energy than both the paramagnetic and the ferromagnetic phases for
the cases when both bands or only one band are occupied. Lower
panel: amplitude of the SDW �Eq. �30�� for the one- and two-band
case.
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J��F,q,B� = 0, �57�

i.e., the two OEP equations are not independent.
In Fig. 7 we show J of Eq. �56� for rs=5.4 as function of

q /kF for different values of B both for the case of occupa-
tions in both bands �upper panel� as well as for occupations
restricted to the lower band �lower panel�. Note that for the
latter case the sum over bands b both in Eq. �56� as well as in
Eq. �51� only extends over the lower band, b=1.

In the upper panel of Fig. 7 we choose the same values for
the parameter B as used in Fig. 1 which all had local minima
for some value of q
2kF. For these values of B, however,
Eq. �57� is not satisfied for any value of q in that range. We
therefore have to conclude that in the two-band case the en-
ergy minimization is not consistent with the OEP equations.

In the lower panel of Fig. 7 where only single-particle
states of the lower band are occupied we choose the param-
eters as in Fig. 3. In this case, J not only crosses zero but also
does so exactly for those values of q /kF for which we found
local minima in the total energy per particle in Fig. 7 �see
inset for a magnification of the region where J crosses zero�.
We therefore conclude that in the one-band case the minimi-
zation of the total energy is consistent with the OEP equa-
tion, i.e., our ansatz is self-consistent in this case. Again we
emphasize that the resulting Slater determinant is not the
ground state of the KS system.

It has been shown18 that in unrestricted HF theory all the
single-particle levels are fully occupied up to the Fermi en-
ergy. To the best of our knowledge, a similar statement has
not been proven for DFT �even in EXX approximation� and
our results indicate that it might not be true in EXX. On the
other hand, the proof of Ref. 18 holds for the true, unre-
stricted HF ground state while in our case we have restricted
the symmetry of our problem to the SDW symmetry. It is
quite conceivable that the fact that we find an excited-state
Slater determinant as energy-minimizing wave-function hints
toward an instability of the SDW phase against further re-
duction in the symmetry.

V. SUMMARY AND CONCLUSIONS

We have investigated the SDW state of the uniform elec-
tron gas within the EXX approximation of noncollinear
SDFT. While in the Hartree-Fock approximation the SDW
state is energetically more stable than the paramagnetic state
for all values of rs, in EXX this is only true for values of rs
larger than a critical value. Using an explicit ansatz for the
spinor orbitals in the SDW state, we have performed the
energy minimization of the EXX total energy in two ways:
�i� in the first case we used as noninteracting reference wave
function a ground-state Slater determinant with occupied
single-particle orbitals belonging to both single-particle en-
ergy bands, as long as their energy is below the Fermi en-
ergy. Then the SDW phase is more stable than both paramag-
netic and ferromagnetic phases for 5.0�rs�5.46. �ii� In the
second case we required all the occupied single-particle or-
bitals in the Slater determinant to belong to the lower band.
The minimizing Slater determinant in this case turns out to
be an excited state since orbitals with orbital energies below
the Fermi energy belonging to the second band remain un-
occupied. Nevertheless, for a given rs the total energies of
the minimizing SDW states are significantly lower than in
case �i�. The range of stability of the SDW phase with re-
spect to both paramagnetic and ferromagnetic phases is ex-
tended to 4.78�rs�5.54.

We then have investigated if the self-consistency condi-
tions provided by the OEP equations for noncollinear SDFT
are satisfied with our ansatz for the single-particle orbitals.
We have found that for case �i� the parameter values mini-
mizing the EXX total energy are not consistent with a solu-
tion of the OEP equations. In case �ii�, on the other hand, for
the same parameter values for which the EXX total energy is
minimized also the OEP equations are satisfied. In this case,
the solution we found is therefore self-consistent.

ACKNOWLEDGMENTS

We would like to acknowledge useful discussions with
Ilya Tokatly, Giovanni Vignale, and Nicole Helbig. We
acknowledge funding by the “Grupos Consolidados UPV/
EHU del Gobierno Vasco” �Grant No. IT-319-07�.

-2.5

-2

-1.5

-1

-0.5

0

J
(1

0-5
a.

u.
)

µB B = 0.010 a.u.
µB B = 0.011 a.u.
µB B = 0.012 a.u.

1.25 1.3 1.35 1.4
q / kF

-0.5

0

0.5

J
(1

0-5
a.

u.
)

0 0.5 1 1.5 2
q / kF

-2.5

0

2.5

5

7.5

J
(1

0-5
a.

u.
)

µB B = 0.019 a.u.
µB B = 0.020 a.u.
µB B = 0.021 a.u.
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