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Periodic forcing of chemical turbulence in the catalytic CO oxidation on Pt(110) can induce a period
doubling cascade to chaos. Using a forcing frequency near the second harmonic of the system’s natural
frequency, and carefully increasing the forcing amplitude, the system successively exhibits spiral wave
turbulence, resonant pattern formation, and chaotic oscillations. In the latter case, global coupling induces
strong spatial correlation. Experimental results are presented as well as numerical simulations using a
realistic model. Good agreement is found between experiment and theory. The results give further insight
into the complex nature of reaction-diffusion systems and are of high importance regarding control
strategies on such systems. The presented setup enhances the range of achievable dynamical states and

allows for new experimental investigations on the dynamics of extended oscillatory systems.
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Periodic forcing is a common method to synchronize
nonlinear oscillators. Entrainment or frequency locking
phenomena can be observed in many systems; well-known
examples encompass biological, chemical, and physical
systems [1-4]. At low forcing amplitudes a, entrainment
appears, where the forcing frequency v, is a rational
multiple of the oscillator’s natural frequency v. The fre-
quency range where entrainment is observed grows with
increasing forcing amplitude, as described by the re-
nowned Arnol’d tongues. For single oscillators, the en-
trainment regimes are regularly shaped at low forcing
amplitude a, but may get a complex structure at stronger
forcing, including period doubling, chaotic regimes, and
quasiperiodic behavior [5]. In extended oscillatory sys-
tems, the forcing scenario gets even more complex [6,7].
For chemical reaction-diffusion systems, where the system
can be described as an ensemble of diffusively coupled
identical oscillators, parts of the system may be in different
dynamical state. This leads to a rich variety of spatiotem-
poral patterns [8], where the unforced oscillation frequency
might be shifted [9,10]. A special case is chemical turbu-
lence, diffusion-induced spatiotemporal chaos, where syn-
chronous oscillations get unstable [11]. As a consequence,
there exists no longer a well-defined natural frequency v,
but a certain range of oscillation frequencies is observed.
Resonant pattern formation in reaction-diffusion systems
have been theoretically investigated covering a defined
range of v, and a [12-15]. Experimentally, in the light-
sensitive Belousov-Zhabotinsky (BZ) reaction, spiral wave
oscillations could be entrained [9,16], while in catalytic
CO oxidation on Pt(110) and electrodissolution of Ni in
sulfuric acid solution periodic forcing was used to control
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chemical turbulence [17-19]. In both experimental sys-
tems, period doubling could be observed within some
entrainment regimes [17,20]. Furthermore, numerical
simulations of CO oxidation on Pt(110) under 2:1 and
3:1 forcing, using the realistic Krischer-Eiswirth-Ertl
model (KEE), predict period doubling [21,22]. Period
doubling cascades to chaos are found numerically in the
single oscillator KEE model and in CO oxidation with a
porous catalyst [23,24]. But to date, no experiments have
given evidence for the observed period doubling being part
of a bifurcation cascade to chaotic oscillations, and neither
the published numerical simulations of the extended sys-
tem. In this Letter, we present the complete path of peri-
odically forced CO oxidation on Pt(110) from chemical
turbulence to entrainment, and further to chaotic oscilla-
tions via a period doubling cascade. Both experimental and
theoretical results are presented for 2:1 resonant forcing,
regarding periodicity, pattern formation, and spatial
correlation.

Experiments are performed in an ultrahigh vacuum
(UHV) chamber with a base pressure of 107! mbar. The
setup allows for control of the sample temperature and the
partial pressures of the reaction educts, either manually or
computer controlled using LABVIEW. Prior to the measure-
ment, the Pt surface is prepared by repeated cycles of argon
ion sputtering below 7' = 470 K, oxygen treatment at 7 =
570 K, and partial pressure of p,, = 10~® mbar, and sub-
sequent annealing up to 7 = 850 K. For CO oxidation,
dosing of the reactants is controlled by an automated gas
inlet system. The used reaction parameters are 7 = 546 K,
Po, = L.5 X 10~* mbar, and carbon monoxide base pres-
sure pco = 6.22 X 107> mbar. Adsorbate patterns were
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imaged on the sample surface using a photoemission elec-
tron microscope (PEEM) [25]. The PEEM yields spatially
resolved real-time images of the adsorbate-dependent local
work function that can be readily translated into coverage
patterns. According to the difference in work function
between CO- and O-covered Pt, CO-covered areas appear
bright in the PEEM image, whereas O-covered regions are
dark. Periodic forcing is applied to the system by a periodic
modulation of the carbon monoxide partial pressure pcq(7)

pco(t) = po(l + asinvft). (1)

The forcing is applied after full development of spiral
wave turbulence. The system’s temporal response is pre-
sented as the mean Fourier spectrum of 512 PEEM images
(t = 25 s), obtained at 2500 evenly distributed locations
on the observed surface region. The amplitudes of the
Fourier coefficients are normalized to the maximum
peak. The results for increasing forcing amplitudes a are
given in Fig. 1.

Figure 1(a) shows the frequency spectrum of the un-
forced turbulent system. The natural frequency, defined as
the most prominent line, is found to be v, = (0.59 =
0.03) Hz. The forcing frequency is set to v, = 1.27 Hz,
which is slightly higher than twice the calculated natural
frequency. At weak forcing, a = 0.014, the system oscil-
lates with half of the forcing frequency; the system is
frequency locked in 2:1 entrainment [see Fig. 1(b)]. The
narrowed frequency peak indicates a decreased degree of
disorder compared to the unforced, turbulent state. At
stronger forcing a = 0.064, the system’s oscillation is
period doubled, indicated by the appearance of the sub-
harmonic line » = v/4 and its rational multiples, given in
Fig. 1(c). Another increase of the amplitude, a = 0.079,
leads to a further bifurcation within the period doubling
cascade. The system shows 8:1 entrainment, locking to a
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FIG. 1. Mean Fourier spectra at different forcing amplitudes a:
(a) 0, (b) 0.014, (c) 0.064, (d) 0.079, (e) 0.093.

frequency of v = v,/8 [see Fig. 1(d)]. Finally, applying a
slightly higher forcing amplitude of a = 0.093, the oscil-
lation is no longer entrained. The Fourier spectrum, given
in Fig. 1(e), shows the absence of the subharmonic line at
v,/8. Lines at v;/4, v;/2, and v are still present, but
additional frequency components appear in the subhar-
monic regime. The strong peak between v,/4 and v;/2
might be related to 3/8», within the frequency resolution,
but the peak slightly above »,/2 (determined to be at v =
(0.73 = 0.03) Hz) cannot be assigned to a rational multiple
of the forcing frequency. Therefore, we state a chaotic
response of the system at sufficiently high forcing ampli-
tude. Regarding the spatial dynamics, the entrainment of
the system is accompanied by suppression of chemical
turbulence and cluster formation. At weak forcing, two-
phase amplitude clusters are formed along with the 2:1
entrainment of the system. The cluster states are preserved
during the period doubling cascade and can still be ob-
served in the 8:1 entrained state. In Fig. 2, the spatial
amplitude and phase distribution as well as the phase
portrait and the phase histogram are shown, obtained for
the Fourier coefficients of Vf/ 8. Figure 2(a) shows the
phase pattern, where mainly two-phase states are observed.
They appear in clusters, which are separated by low am-
plitude boundaries, as can be seen from the amplitude pat-
tern in Fig. 2(b). The phase portrait, given in Fig. 2(c), is
mainly line shaped, with two accumulation points with
opposite phase. The clustering into two-phase states can
clearly be seen in the phase histogram, given in Fig. 2(d).

The conservation of the two-phase cluster pattern is not
self-evident. In subharmonic n:1 entrainment, up to n
phase states are expected to appear in the extended system.
In contrast to a pure homogeneous oscillation, where the
diffusion between the surface elements vanish, phase clus-
ter states have strong gradients at the cluster boundaries.
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FIG. 2. Two-phase cluster pattern at 8:1 entrainment. (a) Phase
pattern, (b) amplitude pattern, (c) phase portrait, (d) phase
histogram.
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They may serve as initial locations for the creation of
further phase states, for example, obtained numerically
for 4:1 forcing [26]. Even in the chaotic regime, the cluster
pattern is still observable, indicating that the obtained
spatial synchronization is not destroyed by the loss of
entrainment.

Numerical simulations have been performed for com-
parison to the experiments. The used KEE model takes
adsorption of CO and oxygen molecules, reaction rates,
desorption of CO molecules, the structural phase transition
of the Pt(110) surface, surface diffusion of adsorbed CO
molecules, into account. Surface faceting, formation of
subsurface oxygen, and the effects of internal gas-phase
coupling are not considered. The state of the system is
determined by u(r), v(r), w(r), describing the surface
coverage of CO, O and the fraction of the nonreconstructed
1 X 1 surface, respectively. The time evolution of these
fields are given by

u, = kyscopco(l — u?) — kyu — kyuv + DV?u

v, = kypo,[so1x1w T so.1x2(1 = w)I(1 — v)* — ksuv

1
Wi = k5<1 e —r W)' @

A second-order finite difference scheme is taken for the
spatial discretization with a grid resolution of dx = 4 pm.
For integration, an explicit Euler scheme with a fixed time
steps dt = 0.001 s is used. The system size is 400 X
400 pm?, and no-flux boundary conditions are used.
Periodic forcing is applied to the system according to
Eq. (1). The initial parameters of the partial pressures are
chosen such that the unforced system oscillates and exhib-
its spontaneously spiral wave turbulence. The model pa-
rameters are given in Table I. We have chosen the forcing
frequency v, = 0.98 Hz to be near the second harmonic of
the most prominent frequency in the extended system in
fully developed turbulence (¥ = 0.51 Hz), rather than
twice the single oscillator’s natural frequency (Vg single =
0.42 Hz). The unforced system shows a peak near v =
0.51 Hz. Increasing the forcing amplitude, frequency
locked 2:1 entrainment is obtained at @ = 0.0078. Period

TABLE I. Model parameters of the KEE model.
ky 3.14 X 103 s~ mbar™! Impingement rate of CO
ky 10.23 57! CO desorption rate
ks 283.8 57! Reaction rate
ky 5.86 X 10° s~ ! mbar™! Impingement rate of O,
ks 1.610 s7! Phase transition rate
Sco 1.0 CO sticking coefficient
S0,1%1 0.6 O, sticking coeff. 1 X 1 phase
50,1x2 0.4 O, sticking coeff. 1 X 2 phase
Uy, Ou 0.35, 0.05 Phase transition parameters
D 40 pm?s~! CO diffusion coefficient
Po2 12.0 X 1073 mbar O, partial pressure
Po 4.6219548 X 10~° mbar Base CO partial pressure

doubling to 4:1 entrainment takes place at a = 0.0102. A
further period doubling to 8:1 entrainment could be found
at a = 0.0108, leading then to chaotic oscillations, similar
to the experimental results. The Fourier spectrum gets
“noisy,” and additional lines appear. At higher forcing
near a = 0.06, the chaotic regime is confined by an inverse
period doubling cascade to final 1:1 entrainment. See
Ref. [27] for supplementary figures.

Resonant pattern formation is found for all forcing
amplitudes. For 2:1 and 4:1 entrainment, two-phase cluster
patterns appear, see Fig. 3(b). In contrast to the experi-
ments, we find phase clusters rather than amplitude clus-
ters. Interestingly, we always find a labyrinthine pattern at
8:1 entrainment. An example is given in Fig. 3(c). The
transition between two-phase cluster states and the laby-
rinthine pattern is induced by phase instabilities within the
cluster boundary, as mentioned before. However, transition
times are longer than 300 s and might not be fully covered
within the experiment. In the chaotic regime, where the
oscillation is not entrained to the forcing signal, chemical
turbulence continues to be suppressed. Global coupling,
induced by the forcing, is assumed to lead to low-
dimensional chaos, where the system is spatially corre-
lated. We observe cluster formation similar to 4:1 entrain-
ment [see Fig. 3(b)] although phase fluctuation within the
clusters are observed [see Fig. 3(d)]. The spatial correlation
C is determined by the cross correlation & of the dynamics
at 100 evenly distributed surface locations x, averaged over
their distance d

FIG. 3. Simulated CO coverage for different entrainment
states: (a) unforced, turbulent, (b) 4:1 entrainment, (c) 8:1 en-
trainment, (d) chaotic. Dark gray denotes low, light gray denotes
high CO coverage.
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FIG. 4. Mean spatial cross correlation of unforced turbulence
and forced chaotic oscillations. Results are given for experimen-
tal and numerical data.

C(d) = C(xi, x,) V i, j(|x,~, XJI E]d - 5, d + 5]),
C(xi’ xj) = max(lk(xi’ xj: T)l)/k(xi! Xi, O);

N-1
k(x;, x;, 7) = Z x;(Ox;(t + 1), 3)
=0

where 7= N/2,N/2—1,...,N/2andi, j=0,1,...,99.
The results for unforced and forced spatiotemporal chaos
in both the experimental and the simulated system are
given in Fig. 4. The cross correlation is normalized to the
mean autocorrelation of the sample points. While the cross
correlation of the forced experimental system is nearly
independent on the distance, it decreases strongly with
distance in the unforced turbulent state. The numerical
results show the same qualitative behavior, but the differ-
ence between the two states is less pronounced. The shorter
correlation length in the unforced experiment compared
with the simulation can be explained by noise. On the other
hand, the higher correlation of the forced experiment might
be induced by stronger forcing, as the numerical result is
obtained near the lower amplitude boundary of the chaotic
regime.

We have demonstrated that attempts to control chemical
turbulence by periodic forcing may suppress spatial turbu-
lence, but could lead to chaotic response of the system. The
path to chaos is given by a period doubling cascade, which
could be experimentally followed by subsequent increase
of the forcing amplitude. Numerical simulations support
these findings and give further insight into the nature of
catalytic CO oxidation. On one side, the presented results
limit the practical use of periodic forcing in order to control
chemical turbulence, as chaotic oscillations—even if tur-
bulence is suppressed—is generally not a desired state. On
the other hand, once again catalytic CO oxidation turns out

to be one of the most powerful nonlinear systems, where
many effects predicted by nonlinear theory can be ob-
served experimentally and reproduced numerically. The
system allows for switching between distinct spatiotempo-
ral chaotic states by tuning an easily accessible experimen-
tal parameter. Investigation of the complex nature of
reaction-diffusion systems—as this work is a part of—
may lead to improved strategies for control of extended
nonlinear systems.
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