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An exchange correlation energy functional involving fractional power of the one-body reduced
density matrix [Phys. Rev. B 78, 201103 (2008)] is applied to finite systems and to the homogeneous
electron gas. The performance of the functional is assessed for the correlation and atomization
energies of the molecules contained in the G2 set and for the correlation energy of the homogeneous
electron gas. High accuracy is found for these two very different types of systems.

For the past 40 years, density functional theory (DFT)
developed into one of the most successful theories in the
study of the electronic structure of atoms, molecules, and
periodic solids. At its heart lies the exchange-correlation
(xc) functional, for which many approximations have
been proposed. The simplest functionals, that depend
only on the density (the local density approximation –
LDA), or on the density and its gradients (the generalized
gradient approximation – GGA), give a very satisfactory
description of many ground-state properties. However,
they still fail to reach chemical accuracy for some impor-
tant quantities like reaction or atomization energies. To
remedy this situation hybrid functionals were introduced,
the first and most widely used example being the B3LYP
functional.1,2 This functional is able to reproduce experi-
mental atomization energies within about 10% error. Al-
though the atomization energies obtained using B3LYP
are in good agreement with experiments, the absolute
correlation energies, an accurate description of which can
be thought of as a test for the quality of any approximate
functional, exhibit a sizeable error (up to 400%).3 This
is not a surprise since experimentally one normally mea-
sures energy differences, and it is these quantities that
functionals like B3LYP are designed to reproduce. Ac-
curate correlation energies for finite systems can be ob-
tained by going beyond the DFT framework, for instance
by using Møller-Plesset second-order perturbation the-
ory (MP2) or the coupled cluster method with singles,
doubles and perturbative triples [CCSD(T)]. However,
these methods are computationally too expensive to be
applied to realistic systems of ever growing complexity:
bio-molecules, large clusters, nano-devices to name but a
few examples.

Recently, reduced density matrix functional theory
(RDMFT) has appeared as an alternative approach to
handle complex systems. It has shown great potential for
improving upon DFT results for finite systems. RDMFT
uses the one-body reduced density matrix (1-RDM), γ, as
the basic variable.4,5 This quantity, for the ground state,

is determined through the minimization of the total en-
ergy functional, under the constraint that γ is ensemble
N -representable. The total energy as a functional of γ
can be expressed as

Ev[γ] =

∫

d3r

∫

d3r′ δ(r − r
′)

[

−
∇2

2

]

γ(r, r′)

+

∫

d3r v(r)ρ(r) +
1

2

∫

d3r

∫

d3r′
ρ(r)ρ(r′)

|r − r
′|

+ Exc[γ] ,

(1)

where, ρ(r) —the electron density— is the diagonal of
the 1-RDM and v(r) is the external potential. The first
two terms in Eq. (1) are the kinetic and external poten-
tial energies. The electron-electron interaction can be
cast in the last two terms, the first being the Coulomb
repulsion energy and Exc the exchange-correlation (xc)
energy functional. In principle, Gilbert’s5 generalization
of the Hohenberg-Kohn theorem to the 1-RDM guaran-
tees the existence of a functional Ev[γ] whose minimum
yields the exact γ and the exact ground-state energy
of the systems characterized by the external potential
v(r). In practice, however, the xc energy is an unknown
functional of the 1-RDM and needs to be approximated.
In the last years, a plethora of approximate function-
als have been introduced.6,7,8,9,10,11,12,13,14,15 An assess-
ment of the relative performance of these functionals for
a large set of atoms and molecules reveals that the so
called BBC313 and PNOF014 functionals yield results for
molecular systems, with an accuracy comparable to the
MP2 method.3,14,16,17,18,19

The situation for extended systems is somewhat more
complicated. When applied to the simplest system,
the homogeneous electron gas, these functionals lead to
rather inaccurate correlation energies.11 Moreover, for
periodic solids, the aforementioned functionals fail to
reproduce the fundamental gaps for insulators20 (band
as well as Mott). A new functional was introduced by
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Sharma et al. to solve this problem.20 It reads

Exc[γ] = −
1

2

∫

d3r

∫

d3r′
|γα(r, r′)|2

|r− r
′|

, (2)

where, γα indicates the power used in the operator sense
i.e.,

γα(r, r′) =
∑

j

(nj)
αφ∗

j (r
′)φj(r) (3)

Here φj(r) denote the natural orbitals and nj their occu-
pation numbers. The functional in Eq. (2) was shown to
perform very well for solids.20 As it involves the power
of the density matrix we refer to it as ”power func-
tional” in the following. The power α lies in the interval
1/2 ≤ α ≤ 1. In the limit α = 1, minimization of the to-
tal energy functional (1) yields the Hartree-Fock energy,
while the case α = 1/2 corresponds to the Müller func-
tional which tends to over correlate.3,11 Hence the power
α plays the similar role as the mixing parameter in the
hybrid functionals of the DFT.

The situation as it stands is that most of the existing
xc functionals of RDMFT are designed for finite systems
and perform quite poorly for solids and the HEG. The
power-functional, on the other hand, is designed for the
case of solids, but has not yet been applied to the HEG
or finite systems. The objective of the present work is
to fill this gap, in the pursuit of a functional form that
works equally well for both finite and extended systems.
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FIG. 1: (Color online) Correlation energy as a function of
the Wigner-Seitz radius for the homogeneous electron gas.
RDMFT results are obtained using various approximations
to the xc functional. Monte Carlo results are taken from
Ref. [21].

It is difficult to overstate the importance of the HEG
in the development of many-body theories. It is not only
used as a benchmark, but also acts as a reference system
for the design of xc functionals. Within DFT, the LDA
is perhaps the most successful example of this. Further-
more, results for the HEG give us valuable indications
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FIG. 2: (Color online) Percentage deviation of the correlation
energy, obtained using various 1-RDM functionals, from the
exact CCSD(T) results.

on how the theory will perform especially for metallic
systems.

With this in mind, we first compare the relative per-
formance of various RDMFT functionals in reproducing
the correlation energy of the HEG of various densities.
Fig. 1 is a plot of the correlation energy versus the den-
sity parameter rs for a variety of approximate function-
als compared to exact Monte-Carlo values.21 Clearly, the
Müller,22 CHF10 and CGA12 functionals perform poorly
over the whole range of rs. The BBC13 and PNOF14

functionals are more reasonable but still far from the
true result. Encouragingly, we find that for α between
0.55 and 0.58, the power-functional lies very close to the
Monte Carlo results and possesses a good low density
limit, making it one of the best 1-RDM functionals for
the HEG.

Since the power-functional performs well for the HEG
at small values of rs and for periodic solids,20 it is worth-
while to investigate its behavior for finite systems. First
we performed a free optimization of the parameter α us-
ing a set of 54 molecules and radicals. These molecules
form a subset of the G2 test set of molecules.23,24 For
this optimization two different basis sets are employed,
namely the 6-31G* and the cc-pVDZ. The optimal value
of α that minimizes the error in the correlation energy
for this set of molecules is 0.578. This value is essen-
tially the same for both kinds of basis set used in the
present work. It is interesting to note from Fig. 1 that
the value of α which best reproduces the Monte-Carlo
data for rs of interest for most atoms and molecules is
about 0.55. The optimal value obtained for the set of
molecules, α = 0.578, is quite close to this.

Having determined the optimal value for the parame-
ter α, we compare this approach with different RDMFT
functionals. Fig. 2 is the plot of relative error in the
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FIG. 3: (Color online) Atomization energies for the G2 set
of molecules calculated using the BBC3, PNOF0 and power-
functional vs the CCSD(T) reference atomization energies.

correlation energy (δ) given by

δ = 100

√

∑

[

(Ec − E
(ref)
c )/E

(ref)
c

]2

/Nmol . (4)

where Ec is the correlation energy obtained with the

method under consideration, E
(ref)
c the reference correla-

tion energy which is obtained with the CCSD(T) method,
and Nmol the number of systems included in the calcula-
tion. It is apparent from Fig. 2 that the power-functional
is very good in determining the correlation energy of fi-
nite systems. In fact, we find that this very simple func-
tional with α=0.578 (same value of α was used for the full
G2 set) is of similar quality as the BBC3 or the PNOF0
which are to-date the best RDMFT functionals as far as
finite systems are concerned.3,14,16,17,18,19

The accurate determination of atomization energies is
important for the calculation of the energetics of any
chemical reaction. Hence this important quantity also
acts as a test for the quality of an approximate functional.
In Fig. 3 we plot the atomization energies of molecules
of the entire G2 set obtained with various approximate
functionals within RDMFT versus the reference value de-
termined using the CCSD(T) method.

It is clear from Ref.3 and Fig. 2 that BBC3, PNOF0
and the power-functional are the the most accurate
among the xc functionals we considered, hence in Fig.
3, we only compare these three functionals. It is clearly
visible that the power-functional is comparable in accu-
racy to the BBC3 functional, while PNOF0 is slightly
better than the two.

The successful prediction of properties of molecules at
equilibrium does not necessarily imply a good perfor-
mance for strongly distorted molecules, the dissociation
limit being one such example. For a stretched molecule,
not only the total energy has to be equal to the sum of
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FIG. 4: (Color online) Total energy of the H2 molecule (in
a.u.) vs the distance (in Å) between the two hydrogen atoms.
RDMFT results are obtained using various approximations to
the xc functional. For reference the configuration interaction
results are also presented (black line).

the energies of the fragments but also the occupations
of the natural orbitals have to be correct. The simplest
example is perhaps the H2 molecule. If we take the hy-
drogen atoms far apart, the total energy should go to -1
a.u. and the four occupied spin-orbitals made from the
Hydrogen 1s states, have to be occupied by half an elec-
tron each. Many DFT and RDMFT functionals fail to
reproduce the correct dissociation of this system.25,26

In Fig. 4, we plot the H2 dissociation curve obtained us-
ing various 1-RDM functionals, together with the exact
curve obtained through a full configuration-interaction
calculation. The BBC3 functional is designed with the
dissociation limit in mind and it yields the most accurate
results for the H2 dissociation. The failure of PNOF0
and GU functionals is two fold; as the distance between
the two H atoms increases, the energy deviates strongly
from the exact value. Second, at a sufficiently large dis-
tance between the two H atom (6 Å) two of the bond-
ing orbitals still have occupancy 0.86 and the other two
0.14. Both the Müller and the power-functional with
α = 0.578 give the correct occupancy of ∼0.5 for all four
bonding spin-orbitals, but the dissociation energy is un-
derestimated by the former of these functionals and over-
estimated by the later. If, on the other hand, the value
of α is changed to 0.525 the power-functional describes
the H2 dissociation curve accurately, with an accuracy
comparable to the BBC3 functional.

In all the examples studied, it is clear that the sim-
ple form of the power-functional suffices to obtain very
good electronic properties. However, we are faced with a
problem: the optimal value for α varies from one kind of
system to another. In fact, we find α = 0.65 for solids,
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α = 0.55 for the HEG, α = 0.578 for molecules at equilib-
rium, and α = 0.525 for stretched H2. Although one can
use different values of α for different materials, it would
be desirable to have a unique method to determine the
system dependent value of α. In this regard, one could
make α itself a functional of the 1-RDM and optimize it
in as ab-initio manner for each system. Many other im-
provements of the power-functional are also conceivable;
for example it could be a basis for sophisticated correc-
tions like those of Gristenko et. al

13 and/or removal of
self-interaction terms. How these modifications affect the
quality of the power-functional will be the subject of fu-
ture studies.

In summary, we have used the recently proposed
power-functional to calculate the correlation energy of
the HEG, G2 test set of molecules, and stretched H2. For

the case of molecules, we also determined atomization en-
ergies. Our results show that the power-functional, orig-
inally proposed for solids, also performs very well for the
HEG and finite systems. However, the optimal value of
α for all three cases is different. The encouraging results
of the present work point to the fact that this family of
approximations is an interesting path for the future de-
velopment of approaches, within RDMFT, to accurately
describe electronic correlations.
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