Robert Schlögl Fritz-Haber-Institut der MPG

RUTHENIUM OXIDES AS CATALYSTS FOR CO OXIDATION RELATIONS BETWEEN PHASE AND REACTIVITY?

Challenge

- School 1: metal oxide is active (MvK mechanism) in at least one orientation and is not attacked by the reduction potential of substrate.
- School 2: metal forms a stable adsorbate (1x1) adlayer carrying the oxidation activity and is not converted to oxide.
- School 3: metal reacts with oxygen to adsorbate plus sub-surface and at high potentials to oxide; under reaction conditions the sub-surface (TSO) is at least present.

All have good evidences and theory support

A mature issue: Ru/O/CO

5

K. Reuter and M. Scheffler, Appl. Phys. A 78, 793 (2004).

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Energy transport in CO oxidation

Lattice constant of diluent BN as internal thermometer:

Massive macroscopic deviations in temperature

Nano X-tals

Surface analysis: one active phase?

Inhomogenity of Ru (0001) O adsorbate

Oscillatory dynamics

Only in oxidizing feed and after prolonged activation in stoichiomtric feed:

Under other combinations of conditions and at shorter times only ignition from a low-temperature weakly active state

Different "phases" for same reaction

Low-active metal – oxygen adsorbate: sites at defects Highly-active TSO in co-existence with metal/O or oxide De-activation by conversion of TSO into defect-poor oxide

In-situ bulk analysis and atmospheric reaction data

Performance at atmospheric pressure

١g

Isothermal reduction during TOS

Model: Avrami-Erofeev

14

Barely detectable amount of metal in oxide drives ignition

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Phase and function

In-situ XRD: active oxide or active metal

Ex oxide: 105 kJ/mole After reduction: 82 kJ/mole

Structure-function relation?

Nature of the active bulk "oxide"

Selective reduction to Ru (O)

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Defects in RuO₂ and in Ru (O)

The active site

- Requires two incompatible functions
 - Weakly delocalized metallic for weak CO adsorption
 - Strongly localized metallic for oxygen activation and binding.
- Local electronic contrast determines the efficiency of the site.
- High co-ordinative undersaturation and matrix isolation provide best sites:
 - Step edges
 - Phase boundaries.
- CO oxidation with no selectivity and ignition behaviour is unsuitable to probe sites (multiple scenarios).

The process

- Two types of defects:
 - From synthesis (low activity): insensitive to [µ O]
 - dynamical (ignition): sensitive to [µ O].
- [µ O] is feedback agent
 - Produces energy (reaction)
 - Prevents CO poisonning (TSO)
 - Blocks active sites (surface oxide)
 - Immobilizes surface dynamics (ordered oxide)
- [µ O] plus energy transport in catalyst determines kinetic response at "ambient" pressure.

Diagrams of state

Make things as simple as possible -But not simpler (A. Einstein)

Thank You

Coupling of slow active site formation with fast surface chemistry makes a simple reaction complex

MeOH oxidation: material dynamics

Ru3d: metallic "TSO" for both pre-catalysts at reaction conditions: Selectivity controlled by electrophilicity of O ad

Structure-function relation with Ru: MeOH oxidation

metallic pre-catalyst p_{CH3OH} / p_{O2}=1.5

Correlation between the formation of RuO_x transient surface oxide (TSO) and CH_2O production

Metastable catalyst surface: CO oxidation

64µ x 64µ XP microscopy, 550 K, 10⁻⁵ mbar Mixture of oxidation states of the active surface (single crystal(0001))

