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The f -electron challenge: localized and itinerant states in lanthanide oxides united by GW@LDA+U
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Many-body perturbation theory in theGW approach is applied to lanthanide oxides, using the local-density
approximation plus a HubbardU correction (LDA+U ) as the starting point. Good agreement between theG0W0

density of states and experimental spectra is observed for CeO2 and Ce2O3. Unlike the LDA+U methodG0W0

exhibits only a weak dependence onU in a physically meaningful range ofU values. For the whole lanthanide
sesquioxide (Ln2O3) seriesG0W0@LDA+U reproduces the main features found for the optical experimental
band gaps. The relative positions of the occupied and unoccupied f -states predicted byG0W0 confirm the
experimental conjecture derived from phenomenological arguments.

PACS numbers: 71.10.-w,71.15.-m,71.20.-b,71.27.+a

The accurate first-principles description of the electronic
structure off -electron systems, i.e. materials containing lan-
thanide or actinide elements, is currently regarded as one of
the great challenges in condensed matter physics.f -electron
systems are characterized by the simultaneous presence of
itinerant (delocalized) and highly localizedf -states and in-
teractions between them. Most computational methods are
suited only to one type. Density-functional theory (DFT) –
currently the standard approach for electronic structure calcu-
lations of extended systems – proves to be inadequate forf -
electron systems in the most commonly applied local-density
or generalized gradient approximation (LDA or GGA, respec-
tively). One of the major deficiencies of LDA and GGA is the
delocalization (or self-interaction) error [1], which is particu-
larly severe for systems with partially occupiedd or f -states
and can even lead to qualitatively incorrect metallic ground
states for many insulating systems. Hybrid functionals [2], on
the other hand, partly correct the self-interaction error by in-
corporating a certain portion of exact exchange, which signif-
icantly improves the descriptions ofd- or f -electron systems
[3, 4]. The dependence on adjustable parameters, however,
remains a concern. Conversely, correlation effects that govern
the physics of localizedf -electrons can in principle be treated
systematically by dynamical mean field theory (DMFT) [5].
In practice these many-body corrections are only applied lo-
cally to an atomic site (e.g. the Anderson impurity model)
and the impurity solvers require input parameters (such as the
HubbardU ) for the interaction strength. Moreover, most ex-
isting DMFT schemes are coupled (non self-consistently) to
local or semilocal DFT calculations and the description of the
itinerant electrons therefore remains on the level of LDA and
GGA.

As a first step towards a systematicab initio understand-
ing of f -electron systems, we apply many-body perturbation
theory (MBPT) in theGW approach to a selected set of lan-
thanide oxides (CeO2 and Ln2O3 (Ln=lanthanide series)) [6]
in this Letter. These compounds have important technolog-
ical applications [7, 8, 9, 10, 11, 12], in particular in catal-
ysis, where CeO2-based compounds have attracted consider-
able interest from both experiment and theory [3, 13, 14, 15,

16, 17, 18, 19, 20]. Unlike in most previous studies, theGW

calculations in this work are based on LDA ground state cal-
culations including a HubbardU correction (henceforth de-
notedG0W0@LDA+U ). OurG0W0@LDA+U calculations
provide a qualitative understanding of the general trend ob-
served for the band gaps of the Ln2O3 series and reproduce
the characteristic features of the series, in particular the four
dips observed in the experimental curve.

TheGW approach corresponds to the first order term of
a systematic expansion in MBPT [21] and has become the
method of choice for the description of quasiparticle band
structures in weakly correlated solids [22]. Through the
screened Coulomb interactionW it captures the screening
among itinerant electrons while at the same time treating ex-
change at the exact exchange level (given by the Hartree-Fock
expression). The latter should account for a large part of the
many-body interactions among localizedd or f -electrons, as
demonstrated recently for Cu2O and VO2 [23]. In this Let-
ter we challenge the conventional view that regards many
f -electron systems asstrongly correlated electron systems
for which band theory is inadequate [24]. In the hierarchy
of many-body perturbation theory, strong correlation denotes
correlation effects that go beyond exact exchange and the
weak correlation regime ofGW . The good agreement be-
tween ourGW calculations and available experimental data
demonstrates that theGW method can treat both itinerantspd
bands and localizedf -bands accurately for the materials we
have considered. Since the screened exchange picture of the
GW approach captures the essential physics we challenge the
classification of these materials asstrongly correlated.

TheGW method is typically applied in a perturbative man-
ner (henceforth denotedG0W0) in which the quasiparticle
(QP) energiesǫQP

nk
are calculated as a first-order correction

to the eigenenergiesǫnk and eigenvectorsψnk of a reference
single particle Hamiltonian̂H0

ǫ
QP
nk

= ǫnk + ℜ 〈ψnk|Σ
xc(ǫQP

nk
) − V xc |ψnk〉 (1)

HereΣxc is theG0W0 self-energy calculated from the one-
particle Green’s functionG0 and screened Coulomb interac-
tion W0, both evaluated usingǫnk andψnk, andV xc is the
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FIG. 1: (Color online) The DOS of CeO2 (left) and Ce2O3 (right) from LDA, LDA+U andG0W0@LDA+U with U=5.4 eV are compared to
experimental data(XPS+BIS and XPS+XAS) [25]. The LDA and LDA+U curves have been offset vertically for clarity.

exchange-correlation potential included in̂H0. For most of
the sesquioxides considered in this work LDA and GGA in-
correctly predict a metallic ground state. In these cases first
order perturbation theory based on LDA or GGA is not ap-
plicable and alternative referencêH0 have to be employed
[26, 27, 28, 29]. In this work we use the LDA+U method [30]
as the starting point forG0W0. By adding a site- and orbital-
dependent correctionδV̂ U to the standard LDA single-particle
Hamiltonian, LDA+U significantly improves the description
of highly localized states, and therefore overcomes the major
failure of LDA for these systems. To describe highly local-
ized states accurately, we have implemented an all-electron
G0W0 approach [31] based on the full-potential linearized
augmented plane wave method [32].

The LDA+U method is conceptually similar toGW . It is,
however,not a substitute forGW even for localized states:
1) The link between the LDA+U and theGW approximation
relies on the assumption that the hybridization between lo-
calized and itinerant states can be neglected, which in many
cases is not valid; 2) theδV̂ U correction in LDA+U hasdi-
rect effects only on the corresponding localized states; the
description of itinerant states remains at the LDA level; and
3) screening in LDA+U is static, while in reality screening
is dynamic and, has a stronger energy-dependence for local-
ized electrons than for itinerant ones. The LDA+U approach
by itself is therefore not expected to provide a satisfactory de-
scription to the electronic structure off -electron systems.

An advantage of theG0W0@LDA+U approach lies in the
fact that the HubbardU corrections enter self-consistently in
the ground state calculation. This becomes important when
localized states hybridize with band states. A less appealing
aspect of the LDA+U approach concerns the parameterU ,
which, in many cases, is determined by fitting to experimental
data. The onsite Coulomb interactionU , however, has a well-
defined physical meaning, and can be calculated from first-
principles (see, e.g. Refs. [33]). In addition we demonstrate
below thatG0W0 based on LDA+U is much less sensitive
to U than the LDA+U itself. TheG0W0 calculations also
remove the problem of the double counting corrections that

are not well defined in the LDA+U approach, by subtracting
them out as part ofVxc in Eq. 1. Despite these advantages the
G0W0@LDA+U approach will not be suitable in cases where
strong correlation effects become important (e.g. the Kondo
resonance), for which many-body interactions that go beyond
theGW approach have to be included. This is currently the
domain of DMFT, as alluded to in the introduction.

Figure 1 shows the density of states (DOS) of CeO2 and
Ce2O3 calculated from LDA, LDA+U , andG0W0@LDA+U
(with U = 5.4 eV [34]) together with the experimental spec-
tra. TheG0W0 density of states for CeO2 agrees well with
the experimental data from direct (XPS) and inverse (BIS)
photoemission spectroscopy or X-ray absorption spectroscopy
(XAS). In CeO2, the emptyf -states introduce a sharp peak
in the fundamental band gap formed between the O-2p va-
lence and Ce-5d conduction band. The most important quan-
tities here are therefore thep-f andp-d gaps. For the latter
theG0W0 value of 6.1 eV is in good agreement with the ex-
perimental one of 6.0 eV. Thep-f gap, however, cannot be
unambiguously determined from XPS-BIS or other available
measurements (See, e.g. Ref. [18] and references therein).
As expected, LDA underestimates both gaps, but thep-d gap
is only slightly smaller than in experiment (5.5 vs 6.0 eV),
whereas LDA+U decreases it to 5.1 eV. We also note that our
G0W0@LDA+U DOS for CeO2 is very close to that obtained
from the recently proposed self-consistentGW method [35].

More intriguing features are observed for Ce2O3. As ex-
pected, the on-site Hubbard correction in the LDA+U splits
the singlef -peak in LDA to occupied and unoccupiedf -
bands (denoted asfocc andfun , respectively), the former
falling within thep-d gap and the latter overlapping with the
conduction bands. Thep-d gap is nearly the same as in LDA,
but thep-focc splitting is greatly reduced. Applying the
G0W0 corrections to the LDA+U ground state, we observe
two remarkable features: 1) the O-2p band is pushed to lower
energy with respect to thefocc band, and 2) thefun -band
shifts up in energy away from the conduction band edge in-
creasing the splitting between thefocc andfun bands at the
same time.
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FIG. 2: (Color online) Band gaps of CeO2 (p-f and p-d, up-
per row) and Ce2O3 (f -d and p-d, lower row) from LDA+U and
G0W0@LDA+U as a function ofU . The dashed rectangles in the
lower panel indicate the range of physically meaningful values ofU
(see text).

TheG0W0 and the experimental spectrum in Fig. 1 are
aligned at the upper valence band edge and not the Fermi level
since this is not well defined at the 0 K at which the calcu-
lations are performed. We again find thefun peak to be in
good agreement with the BIS data. The position of thefocc

peak, however, differs by approximately 1 eV. With respect to
the band gap the comparison with experiment is aggravated
by the limited experimental resolution. Taking the difference
between the conduction band edge and the upper edge of the
XPS-XASfocc peak gives a band gap that is consistent with
the optical band gap of∼2.4 eV [8, 36] and theG0W0 gap
of 2.0 eV. If one instead references against the peak center of
thefocc states, the experimental band gap of Ce2O3 would
be larger than 3 eV. Further experimental evidence is clearly
needed to determine the actual value.

Figure 2 illustrates the influence ofU on the LDA+U and
G0W0@LDA+U calculations for the examples of CeO2 and
Ce2O3. Since thef -states are essentially empty in CeO2,
the effect ofU is relatively weak: ForU=0 to 8 eV, thep-
f andp-d gaps from LDA+U change only by approximately
1.0 and 0.5 eV, respectively, and become nearly constant in
G0W0. The situation is more complex in Ce2O3. In LDA+U ,
thef -d gap depends sensitively onU and varies by nearly 3
eV, but thep-d gap remains almost unaffected. In contrast,
both thef -d and thep-d gap exhibit a slightU -dependence
in G0W0, changing by 1.2 and 0.6 eV over the fullU range
explored here. Most importantly, however, theU -dependence
reduces to only approximately 0.3 eV in the range of “phys-
ically meaningful” values ofU (∼5-7 eV [18, 19]), which is
already in the range of experimental error bars. We note in
passing that the relatively weak dependence onU has also re-
cently been reported by Kioupakiset al., who applied a similar
approach to solid hydrogen [37]. In addition, Figure 2 shows
that within LDA+U one could obtain an apparently more ac-
curatep-f (in CeO2) andf -d (in Ce2O3) gap by using a sig-
nificantly largerU , which, however, would not improve the

VB: O-2p
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FIG. 3: (Color online) Band gaps of the Ln2O3 series from LDA+U
andG0W0 (U=5.4 eV) are compared to SIC-LDA results [10] and
experimental optical gaps [8]. The schematic in the upper part of the
figure illustrates the position of thefocc andfun states extracted
from theG0W0@LDA+U calculations in relation to the valence and
conduction band edge (VB and CB).

description of itinerant states including, in particular,thep-d
gap.

It has long been recognized that, although many proper-
ties of rare-earth compounds exhibit a monotonous behavior
across the lanthanide series, some show a striking variation.
For example the optical band gaps of rare earth sesquioxides
[8] shown in Fig. 3 exhibit clear dips for Ce, Eu, Tb, and Yb,
which appear to be unaffected by structural variation across
the series. In Fig. 3 the optical gaps of the Ln2O3 series [36]
are compared to LDA+U ,G0W0@LDA+U and previous self-
interaction corrected LDA (SIC-LDA) results [10]. SinceU
is the effective e-e interaction amongf -electronsscreened by
spd states, which are very similar in all Ln2O3 compounds,
we expectU to be only weakly dependent on the number of
localizedf -electrons, and therefore use a constantU=5.4 eV
for the whole series. Compounds denoted by filled circles in
Fig. 3 crystallize preferentially in the hexagonal structure, for
which all calculations have been performed. Starting from
Sm2O3 (denoted by open circles), the most stable phase at
room temperature is cubic bixbyite, but the middle members
can also exist in the monoclinic phase [9].

As can be seen from Fig. 3 all the essential features in the
experimental curve are reproduced by theG0W0 calculations
including the four dips and the behavior in between. Even
the quantitative agreement is good for most compounds. In
addition our first principles calculations provide easy access
to the character of each peak in the DOS and thus the char-
acter of the band gap, which is schematically shown in the
upper part of Fig. 3. In La2O3 (emptyf -shell) the band gap is
formed between the O-2p valence and the La-5d conduction
band. As the occupation of thef -states increases, bothfocc

andfun continuously move downward in energy and the band
gap evolves fromp-d via f -d to p-f . This process repeats
itself in the second part of the series (starting from Gd2O3)
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where the spin-upf -states have become fully occupied (and
lie deep below the O-2p states) and the spin-downf -states
move downward in energy with increasing occupation.

The character of the band gap across the series agrees well
with the experimental conjecture derived from phenomeno-
logical arguments [7, 8, 38]. This is not the case in SIC-LDA
and LDA+U . Not only does LDA+U underestimate the band
gaps of most Ln2O3 compounds, it also only shows a weak
minimum at Tb2O3 and fails to reproduce the plateau between
Ho2O3, Er2O3, and Tm2O3.

The remaining quantitative differences between theG0W0

and experimental curve (especially for the later members of
the series) could be due to several factors: 1) the experimen-
tal error bar, sample quality and instrumental resolution are
not known [8]; 2) to exclude the influence of excitonic ef-
fects theG0W0 results should be compared to photoemission
(both direct and inverse) spectra, which are unfortunatelynot
available for most members of the Ln2O3 series; 3) spin-orbit
and multiplet effects are not taken into account in our calcu-
lations; and 4) ourG0W0 calculations are performed for the
hexagonal structure, but the later members of the Ln2O3 series
(after Ln=Sm) crystallize in the monoclinic or cubic bixbyite
structure [6]. Further investigations of these issues willbe ad-
dressed in the future.

We close this Letter with some remarks about strong corre-
lation. A system is often commonly (but by no means satis-
factorily) classified as strongly correlated if DMFT provides
an improved description over LDA and it is therefore interest-
ing to compareG0W0@LDA+U and LDA+DMFT [5]. Both
methods add dynamic (i.e. energy dependent) effects to the
LDA+U Hamiltonian. LDA+DMFT is based on an under-
lying picture of localized states, in which higher order cor-
relation effects among the localized states can be easily in-
corporated. However, delocalized states (e.g.spd states in
f -electron systems) are still treated at the LDA level. In con-
trast,G0W0 based on LDA+U improves upon LDA+U in the
band picture and both localized and itinerant states are treated
at the same level (i.e.G0W0). For Ce2O3 this can be di-
rectly quantified by comparing theG0W0@LDA+U density
of states with that from recent LDA+DMFT calculations by
Pourovskiiet. al. [20]. Thef -states are described in a simi-
lar manner, but thep-d gap in LDA+DMFT amounts to only
∼3.5 eV, which is significantly smaller than the experimental
(∼ 5.5 eV) and theG0W0@LDA+U (∼ 5.1 eV) value. For
many opend- or f -shell compounds it can therefore be ex-
pected that theGW approach can provide a consistent and
accurate treatment for both localized and itinerant statesand
it will be illuminating to see when many-body effects beyond
theG0W0 approximation become significant.
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