

Robert Schlögl Fritz-Haber-Institut der MPG

SELECTIVITY IN HETEROGENEOUS CATALYTIC HYDROGENATION AND OXIDATION: FROM CONCEPTS TO MATERIALS?

Function of a catalyst: Static SM

Bulk is "irrelevant", no chemical transformations sub-surface

FUNDAMENTALS

High-energy sites

oxygen-adsorbed (100) step

T. Jakob M. Scheffler

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Translate function into process: material science and chemical engineering

Beyond the SM: dynamics

- Static model good for 1-step processes controlled by adsorption.
- Most reactions exhibit several pathways; multi-step process with selectivity.
- Catalysts are functional materials expressing isolated active sites through contact with their reagent.
- Kinetics of Catalyst-reactant interaction (gas-solid diffusion) is critical.

Nanostructuring in Catalysis

Dynamics: excluded for large objects

Fundamental process:

Desorption-dissolution (phase formation)

Process

Selectivity

- Catalysts in "complex" processes act on several elementary steps.
- Selective, if only one step is accelerated or remains unaffected and all other steps are retarded.
- High specificity of the active site with strong reactant-catalyst interactions.
- Material tuning through effective reactant-precursor interaction.

METAL (?) HYDROGENATION CATALYSTS

In-situ XPS: Pd 3d (720 eV): sub-surface C

In-situ time-resolved XPS:

Correlation
between equilibration
and sub-surface C
formation

Selectivity control

Origin of the effects

Intermetallics: kovalent interaction

PdGa: a designer system

FIRST SUMMARY

Surface and sub-surface species

At low potential: metal plus dissolved species ("dirt")

At slightly elevated potential: "trilayer" (theory)

At potentials bejond the "pressure gap": sub-surface compounds (transient)

At high potential: compound; when defective: nucleo- and electrophilic

Catalyst dynamics

Finite values of k_{2,3} and k₄ under selective reaction conditions only when nanostructured

reductants, carbon

Consequences

- Active catalysts cannot be "prepared": precursors activate in chemical potential of reactants.
- {Structure} of the precursor controls composition and structure of the active phase.
- Analysis of fresh precursors and ex situ allow limited conclusions about active state.
- The same precursor will catalyze different processes under different conditions: screen and optimize operation conditions as much as precursor compositions.

MMO vs. models

OXIDES AS CATALYSTS

Alkane activation

Self-organisation

bulk insulator

metal-insuator assembly

623 K

C3H1/O1/HO C3H1/O2

Redox catalysis is about electrons: Conductivity and work function

623 K

623 K

C₃H₂O₂

298 K

C₃H₂/O₂

segregate

Complex oxides: MMO

Reference oxides

Exp. conditions: in O_2 at 623-673 K

MMO electronically derived from MoO₃: covalent rehybridisation

Catalysts Oxygen vacancies

- 4 MoV: in $C_3H_6+O_2$ at 623 K
- 3 MoVW: in $C_3H_6+O_2+H_2O$ at 623 K
- 2 M1 (1886): in $C_3H_8+O_2+H_2O$ at 623 K
- 1 M1 (1761): in $C_3H_8+O_2+H_2O$ at 623 K

M1: MoVTeNbO_x: a typical system

V-SBA 15: a "molecular model"

Surface dynamics

Low-temperature CO adsorption

- a) After dehydation and evacuation
- b) After a following O₂ exposure at 85 K

Several active sites, incompatible with single species, reactivity towards co-ordinating oxygen

V-O-V

Reaction pathway

SECOND SUMMARY

Active sites in a high performance catalyst

- An active heterogeneous catalyst contains few adaptive sites for reaction.
- They adapt their structure according to the local chemical potential and guarantee selective operation on progressively more reactive adsorbates.
- The complex structure of the precursors is required to fix the chemical potential of the active phase in the reaction environment.

Selective oxidation: Coupling of transformation and material

Catalyst dynamics

Catalyst dynamics

