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Introduction - Methanol

onsumption: Methanol is one of the most
important basic components in the chemical industry
with an annually worldwide production volume of
about 40 million tons. It is used in organic chemistry
and also to obtain precursors for polymerization (Fig.
1). Aside a steadily increasing amount is applied as
fuel additive due to its high energy content of 173,6
kcal/mol and good transport and storing properties.
Furthermore, methanol is a promising candidate for
chemical hydrogen storage and may play a key role in
a future hydrogen economy leading to more
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Catalysts: Preparation of Cu/ZnO/Al,O; catalysts has been optimized in
the last 40 years of industrial application and currently follows a multi-
step synthesis route. Mixed metal hydroxy carbonate precursors are
formed by controlled coprecipitation (e.g. pH 6.5, T = 65°C) from
aqueous Cu/Zn/Al nitrate solutions and soda solution as precipitating
agent. Subsequently the precipitate is aged in the mother liquor,

filtrated, washed, dried, calcined to yield a dark powder (Fig. 3) and

finally reduced.
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Results

Aim: To optimize parameters of the continuous precipitation, we modified the
overall metal concentration and the temperature of the precipitation step with the
aim of obtaining higher specific surface areas of the products while simultaneously
maintaining the high intrinsic activity.

Fig. 3: CuO/ZnO/Al,0,
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. p. . Table 1: BET surface area; T = const = 65 °C Table 2: BET surface area; Cy, = const = 1 mol/|
Catalyst Preparation — Effect of Modifications e
. P . Precursor Precursor
In a previous work we could show the effect of some modifications during precursor
. X - R . R BET surface area BET surface area

preparation (see Experimental) which yielded very active catalysts with good homogeneity 1 . .
[1]. Probably the special microstructure (Fig. 4, 5) with its intensive boundary layer contact 1.0mol /1 842m?/g 65°C 842m?/g
between Cu and the matrix-like oxidic Zn/Al phase is responsible for this outcome. 0.3mol /1 96.3m?/g 45°C 525m?/g
Modified synthesis route Conventional synthesis route 0.1mol /1 152.7m?/g 25°C 65.9m?/g
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of Cu/ZnO/Al, 0,4 Cu/Zn0O/Al,0,

The Cu surface area of catalyst A {modified synthesis route) was smaller than that of catalyst
B (Fig. 7). Nevertheless, the higher intrinsic activity (activity related to the Cu surface area)

BET: Within the range of the investigated overall metal concentrations the BET
surface area increased with decreasing concentration (Table 1). The dependance on
the temperature revealed no obvious correlation (Table 2).

o= 0mol/IRT 88 c % w1 =2 mol/l;T= 65°C SEM: The comparison of two
BET152,7 /gl L 4 samples of the concentration
’ series showed in both cases
roundish particles and some
platelets. The higher BET
surface area corresponded
with a smaller particle size.

TPR: The reduction curves of the calcined

compensated this drawbagk and even led to higher productivity. Because of the similarity of ] Temperature-programmed reduciion
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Conclusions: continuous precipitation technique can lead to precursors with high surface areas
@ BET: correlation between surface area and metal concentration
no obvious correlation between surface area and precipitation temperature
@ SEM: surface area corresponds with particle size

@ TPR: similar reducibilities indicate similar intrinsic properties of the Cu phase
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