M. Armbrüster, K. Kovnir, R. Giedigkeit, J. Grin, MPI CPFS

Robert Schlögl Fritz-Haber-Institut der MPG

Pd and its Intermetallics in Heterogeneous Catalysis

FUNDAMENTALS

The function of a catalyst: The single crystal approach

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Defects: Oxo-philicity

Metastable sub-surface species

At low potential: metal plus dissolved species ("dirt")

At slightly elevated potential: "trilayer" (theory)

At potentials bejond the "pressure gap": sub-oxide, sub-surface oxide, TSO (HP-XPS)

At high potential: oxide; when defective: nucleo and electrophilic

Di-oxygen as oxidant

- Atomic chemisorbed oxygen (created typically in UHV) is amphoteric in redox properties: at "virtual pressure" → sub-surface
- Sub-surface oxygen is not reactive but
 - Polarizes the surface for adsorption
 - Restructures the surface by incorporation (autocatalytic)
 - Segregates to the surface as O nucleo
 - Polarizes atomic oxygen into O electro
- Electrophilic oxygen
 - Oxidizes functional substrates (CO, olefines)
 - Creates all oxygenate organic molecules
- Nucleophilic oxygen
 - Activates C-H bonds into functional substrates
 - Creates basicity and binds water (OH)
 - Protonates via OH oxygenates

With metals

8

Multifunctional oxygen

Analogy: Protonic vs hydridic hydrogen?

Hydrogenation Catalysis

- A widely used yet often poorly selective catalyst for hydrogenation reactions is Pd metal as nano-particles on supports.
- Selectivity controlled by additives (poorly reproducible).
- Concept: Size of active site controls selectivity.
- Concept: sub-surface "hydride" is relevant or detrimental.

Reaction pathway: role of H_{sub}

Active site: 6 Pd atoms: Rate controlled by equal chemical potentials of [H] and [substrate].

Sub-surface hydrogen strongly increases [H] above surface sticking:

- + activity
- selectivity.

Pd-H in nanoparticles

Nano Pd in fluid phase oxidation

Alcohol	Time Reaction (h)	Conversion		Selectivity to aldehyde	
		Pd CNTs	Pd N-CNTs	Pd CNTs	Pd N-CNTs
Benzyl alcohol	2	16	96	>99	>99
1-phenylethanol	2	25	99	>99* *ketone	>99* *ketone
Cinnamyl alcohol	2	10	78	74	77
2-octen-1-ol	2	14	81	34	42
1-octanol	8	3	14	54	58

Structure controls reactivity.

Size as proxy?

Metal (?) Hydrogenation Catalysts

Pd in selective hydrogenation

A consecutive reaction

Deep hydrogenation before selective hydrogenation

0.03 mbar pentyne 0.85 mbar H2

In-situ XPS: Pd 3d (720 eV): sub-surface C

In-situ XPS: Pd 3d depth profiling

unambiguous localisation of carboninduced component in the surface-near region

Sub-surface H vs. sub-surface C

FHI

Selectivity control

www: fhi-berlin.mpg.de

F H I

Pressure gap: origin

Real structue: the role of nanostructuring

23

Department of Inorganic Chemistry

"Structure sensitivity"

FIRST SUMMARY

Catalyst dynamics

Comparison to model studies: role of sub-surface hydrogen

Summary

Alkyne \rightarrow Alkene:

Alkene \rightarrow Alkane: Alkyne \rightarrow Alkane:

Alloys and Intermetallics: Two different classes of metals as Catalysts

Alloy Systems

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Intermetallics: kovalent interaction

Structures and termination

Chemical etching for activation

Opportunities

- Alloys are chemically unstable and segregate: rapid loss of site-isolating effect.
- Alloys exhibit only weak modifications of electronic structure: strong influence of local geometry, (ensemble effect).
- Concept: use intermetallics:
 - Covalent metal-metal interaction: High structural stability
 - No sub-surface chemistry: Design of active site.

A family of compounds with quite different properties

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

PdGa: a designer system

www: fhi-berlin.mpg.de

Reaction in C3-yne hydrogenation

Exporimont	H/Pd	Catalytic	Conversion
Experiment	I II/FU	conditions	Selectivity
1 -5.°C: St	arts unselective	~50% C ₂ H ₂ and C ₂ H	hain the product stream
	0.024±123%		.6 p.e. <u>e</u> xelet ett eett
25°C.Ge	ŧts selective: ~¢	56% C ₃ H _{4/} Conversion	X· >00 00%
3 -1 °C . St	arte producina (Γ H again $C_3 \Gamma_4$	A. >99.9978
		\mathbf{Y}_3 18 Scale in $\mathbf{C}_3\mathbf{H}_6$	S(C ₃ H ₆): 75 / 83%
4. ^C -2 ^{™®} C: ~6	7% C ₃ H ₈ and 3	3% C ₃ Haminithe produ	Ct Streanျ H ₈): 17 / 10%
		91 / 60 °C	S(C ₆): 7%
in N ₂	0.06±48%	-	-

Experiment	H/Pd	Catalytic conditions	Conversion Selectivity
in H ₂	0.75±6%	-	-
C3-Mix	0.8±5%	1.2 ml/min C_3H_4 12 ml/min C_3H_6 12 ml/min H_2 ~-5 °C	

A stable sub-surface regime

D. Teschner et al., J. Catal. 2006, 242 26.

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Pd in alkyne/H₂

Pd_2Ga

38

stable bulk but surface condensation

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Site isolation: experimental

www: fhi-berlin.mpg.de

SECOND SUMMARY

Materials

- Intermetallics provide a novel and robust opportunity for selective catalysis:
- Decoupling of surface catalysis and subsurface reactant storage.
- Strong modification of electronic structure: "design".
- Chemically robust surface termination: site isolation.

Nanostructured and supported: PdGa on hydrotalcite

Outlook

- Combination of intermetallics and nanostructuring should allow control over catalytic material properties: no more material dynamics.
- Enhanced chance to apply theory as predictive tool.
- Synthesis of system with yet unknown catalytic properties ("pseudo Pt") for largest challenges in catalysis: energy conversion.

Metal physics meets catalysis through theory

Alkene and alkyne hydrogenation at the synchrotron Pd foil, ~70°C, 1 mbar (0.1 C_xH_v + 0.9 H₂)

Structure-function correlation in Ag: PO formation

Auto-formation of selective electrophilic oxygen by gradual intercalation of subsurface oxygen in Ag

Ag nano, 473 K, 0.5 mbar, 1:2 C₃H₈:O₂ Total oxygen content "0.2 ML" Department of Inorganic Chemistry

www: fhi-berlin.mpg.de

The function of a promoter

Chlorine is an effective but not sustained promoter

Meet the challenge: Intermetallics of Pd

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Structural stability: No bulk reaction

PdGa und Pd_3Ga_7 in 50% H_2 + 50% He No hydrides, no segregation, no phase transformations.

The catalysts

52

Consequences

- Well-ordered extended (model) materials slow down activation and stay often non-reactive (gaps);
- Except for kinetically non-demanding reactions (single step processes);
- Where they also reach only moderate performance.
- High performance catalysis needs addition of complexity:
 - Nanostructuring (for synthesis)
 - In-situ methods (for functional analysis and optimization)

A stable sub-surface regime

D. Teschner et al., J. Catal. 2006, 242 26.

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Pd in alkyne/H₂

The reactions

Selective hydrogenation of C-C triple bonds in medium-sized molecules to olefins: Key step in vitamin and pharmaceutical synthesis

> Extremely critical reaction conditions Severe stability problems

Selective hydrogenation of acetylene in ethylene as pre-requisite for effective polyethylene synthesis

Flexibility of concept?

PdSn₂

Sample	Etching solution	Conversion after 1 hour	Conversion after 3 hour
# 2039	100mg of sample, no etching	4 %	_
# 2040	saturated EDTA	15%	10%
# 2041	EDTA/NH ₃ , pH=10.3	21%	15%
# 2042	EDTA/NH ₃ /H ₂ O ₂ , pH=10.5	> 10%	1
# 2049	EDTA/NaOH, pH=12.8	25%	12%
# 2051	EDTA/NaOH, pH=13.3	43%	20%
# 2015	EDTA/NaOH, pH=13.8	37%	5%

Good active sites but solid state dynamics?

85 mg after washing with EDTA at pH 13

Proof of concept: new hydrogenation systems

EXAFS analysis Pd_3Ga_7 in 10% C_2H_2 + 20% H_2

59

Active sites in a high performance catalyst

- An active heterogeneous catalyst contains adaptive sites for reaction.
- They adapt their structure according to the local chemical potential and guarantee selective operation on progressively more reactive adsorbates.
- The complex structure of the precursors is required to fix the chemical potential of the active phase in the reaction environment.

Decouple oxygen reagent from cat structure Metal-free catalysis for butane ODH

Department of Inorganic Chemistry www: fhi-berlin.mpg.de

Coupling of transformation and material

Catalyst dynamics

FHI

Reaction pathway: role of H_{sub}

