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Self-organized pacemakers and bistability of pulses in an excitable medium
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Pattern formation in an excitable medium described by a three-component reaction-diffusion system is

investigated. Our focus is on stable self-organized pacemakers which give rise to spatially extended target
patterns. Bistability of pulse solutions in the excitable regime is also reported, and interactions of the different
pulses with each other and the pacemaker are studied. Self-organized pacemakers are created by a suitable
perturbation from the steady state or through interaction of pulses. Bound states of one-dimensional pacemak-

ers and phase flips are also observed.
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I. INTRODUCTION

Reaction-diffusion systems such as the Belousov-
Zhabotinsky (BZ) reaction display a rich variety of spa-
tiotemporal wave patterns [1,2]. The first wave pattern dis-
covered in the BZ reaction consisted of concentric waves
that were emitted periodically by a wave source [3]. The
pattern formed by these waves is called a target pattern and
the corresponding wave source a pacemaker. Target patterns
of the same or similar nature have been observed in a variety
of chemical, physical, and biological systems (see, e.g.,
[4-7]), which indicates that target patterns are generic for
nonlinear dissipative media.

Due to the periodic feature of the pattern, target patterns
are typically associated with oscillatory systems. A simple
theoretical explanation of target patterns in oscillatory sys-
tems is that the pacemakers are created by heterogeneities
which modify the properties of the medium such that the
oscillation frequency is locally increased (see Ref. [8] and
references therein). However, it is not necessary that the
whole medium be oscillatory. It is sufficient that just a small
part of the medium is oscillatory, while the rest of the me-
dium is excitable. The oscillatory region creates waves that
enter and propagate through the excitable region of the me-
dium and form a target pattern. Also in this case it is as-
sumed that heterogeneities are present, being capable of driv-
ing the medium locally into the oscillatory state.

However, experimental observations where pacemakers
could not be related to any impurities in the BZ reaction [9]
justify the general question of whether self-organized pace-
makers, representing an intrinsic dynamical property, are
possible in the absence of heterogeneities. Besides, target
pattern formation in liquid crystals [5] or Dictyostelium dis-
coideum colonies [10] has been directly related to the inter-
nal dynamics of the system. Another motivation of the study
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of self-organized pacemakers comes from the theoretical
side: while spiral wave patterns are stable solutions for many
oscillatory and excitable two-component systems, self-
organized target patterns seem to be unstable (at least if no
additional coupling mechanism besides diffusion is consid-
ered). Therefore, three-component systems moved into the
focus of attention (see, e.g., Refs. [11,12] and Ref. [13] for a
model of the above-mentioned experiment [5]). Indepen-
dently, the investigation of pattern formation in three-
component reaction-diffusion systems has attracted growing
interest in recent years; see, e.g., Refs. [14—18].

In this article we discuss a three-component reaction-
diffusion system, introduced in Sec. II, which has stable so-
lutions representing self-organized pacemakers in the excit-
able regime (Sec. III). We emphasize that, although stable
self-organized pacemakers have been reported (see Ref. [8]
and references therein) for oscillatory systems, the same does
not hold for excitable media. Bistability of pulse solutions
is also observed (Sec. IV), being an interesting and nontri-
vial pattern for reaction-diffusion systems. We compare the
pulse solutions and target waves and describe the interaction
of the different spatiotemporal solutions with each other
(Sec. V). The article is closed with a discussion of the results
(Sec. VI).

II. MODEL

The model investigated in this article is given by the
reaction-diffusion system

Tou=u—u—v+ linu, (1a)
T, =au+ B-v—k(s—u, (1b)
7,05 = u— s+ 12V, (1c)

which describes the evolution of three variables u, v, and s in
spatially extended one- or two-dimensional domains. The
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parameters [, and /; represent the diffusion lengths and 7,, 7,
and 7, the characteristic time scales of the system variables.
The parameters « and S describe the local kinetics of the
variable v. The variable s obeys simple linear kinetics and is
coupled linearly to the variable v via the parameter «.

For k=0, the model decouples and the subsystem (1a) and
(Ib) represents for a>0 an activator-inhibitor system con-
sisting of an activator ¥ and an inhibitor v. We choose «
=1, =0.2, 7,=0.1, and 7,=1 for all simulations shown in
this article. For these parameters, the activator u is fast com-
pared to the inhibitor v and the subsystem (1a) and (1b) is in
the excitable regime: The only attractor is a fixed point,
while an appropriate and sufficiently large perturbation of the
stationary state leads to a large excursion in phase space
before returning to it. The typical pattern appearing in a spa-
tially extended excitable system is a pulse which propagates
with constant shape and speed. After returning to its station-
ary state, the medium can be reexcited, thus supporting the
propagation of pulse trains. The pulse solution does not de-
pend on the specific details of the perturbation once the
threshold is crossed. If a perturbation does not reach the
critical magnitude and width, the perturbation directly de-
cays to the steady state. For the stable pulse solution to exist,
diffusion of v is not essential and not assumed in this model.

The dynamics of the additional variable s only depends on
itself and the activator u; the inhibitor v does not appear in
Eq. (Ic). Formally, the additional variable s can be inter-
preted as either an activator or an inhibitor, depending on the
value of the coupling coefficient k. If k>0, s inhibits the
inhibitor v, which is assumed below. Since the coupling term
is proportional to the difference s—u, the coupling also modi-
fies the activatory role of u. However, as long as k> -« is
fulfilled, the variable u still behaves as an activator for v.

The set of equations (1) can be interpreted as a relatively
simple extension of a standard activator-inhibitor model. We
consider the case that the time scale of the variables s and u
are of the same order and that s diffuses more strongly than
u. The coupling constant « usually takes positive values of
order unity. Therefore, s inhibits v and mimicks the role of a
second activator, which, however, diffuses more strongly
than u.

For numerical simulations, we use explicit Euler and
fourth-order Runge-Kutta schemes, three- and five-point rep-
resentations of the Laplacian operators, and different scalings
of the diffusion coefficients and system sizes, given in the
respective figure captions.

II1. SELF-ORGANIZED PACEMAKERS
IN THE EXCITABLE REGIME

In this section, we investigate the formation of self-
organized pacemakers in the excitable regime of the model
(1). Setting a=1, B=0.2, 7,=0.1, and 7,=1, the subsystem
(1a) and (1b) is in the excitable regime. Choosing further-
more k=1.0 and 7,=0.1, relaxational oscillations are absent
for $>0.143, assuring that also the local dynamics of the
full system is excitable. We assume that diffusion of s is
strong compared to diffusion of u. In such a system, the
initial condition, such as the width of a superthreshold per-
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turbation of the rest state, determines whether the pertur-
bation gives rise to a pulse pair or a pacemaker. This is
shown in Fig. 1. On the one hand, a pair of pulses is created
if the perturbation has a very large spatial extension [Figs.
1(a) and 1(c)]. On the other hand, if the width of the pertur-
bation is small, a pacemaker is created [Figs. 1(b) and 1(d)].
The stable fixed point for these simulations is given by
u=s,=—0.58 and v,=-0.38. The thin solid lines in Figs. 1(a)
and 1(b) indicate the initial condition of u, where the pertur-
bation consists of a constant shift to u=0 within a region of
width R.

If the perturbation is wide, a pair of pulses is emitted. The
thick lines in Fig. 1(a) denote the distributions of u, v, and s
shortly after the emission of the pair of pulses. The subse-
quent evolution in the central region is characterized by a
decay to the stationary state, and the two pulses remain the
only excited regions in the system. Note that the distribution
of the activator u possesses two local maxima at positions
where the boundaries of the initial perturbation were located
before. These maxima are associated with the nonmonoto-
nous, oscillatory tail of each pulse and are typical for a pulse
in an excitable regime close to the onset of oscillations. In
the space-time diagram that shows the formation of a pulse
pair [Fig. 1(c)], the local maxima of u can be identified as
dark lines in the middle of the displayed time interval. Later,
these maxima subsequently develop to the first maxima in
the oscillating tails of the pulses. The inhibitor v also shows
two maxima at these positions, which, however, are less pro-
nounced. The component s, on the other hand, shows a
broader profile and has its maximum in the center of the
pattern. This is not surprising because the diffusion length [,
is relatively large.

In Figs. 1(b) and 1(d), the same system is shown where
the width of the initial perturbation of u is smaller (but still
large enough to trigger the formation of waves). After the
emission of the first waves, the distribution of u first also
shows two maxima like those in Figs. 1(a) and 1(c). Then,
these maxima merge in the central part of the pattern because
they are located sufficiently close to each other. This local
increase in the activator u in the center constitutes a super-
threshold perturbation which creates a new pair of waves. In
terms of the variable s, we can describe the process in the
following way: The component s shows a broader profile due
to its larger diffusion length and reaches its maximum value
in the center of the pattern. Since s decreases the value of the
inhibitor v wherever s>u (and in this way acting as an ac-
tivator), the accumulation of s in the center with a suffi-
ciently broad distribution facilitates the increase of u in the
center of the pattern. This scenario of wave emission is
repeated, and a pacemaker is established. The stability of
the pacemaker solution has been checked through long simu-
lations which comprise thousands of wave emissions
(£=5000).

In order to understand the formation of stable self-
organized pacemakers, we have varied the parameters 3, ,
and [, using two different simulation protocols. First, we
have applied variable widths of the initial perturbation of u,
and second, we have started with a developed stable pace-
maker for 8=0.2, k=1.0, and /,=1.0 and changed the param-
eters in small steps. Of course, in the limit k— 0, the two-
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FIG. 1. Formation of pulse pairs and pacemakers. Characteristic stages in the development of a pulse pair (a) and a pacemaker (b) are
displayed. The initial conditions for u# are shown as thin solid lines. Space-time diagrams for the formation of a pulse pair and a pacemaker
are displayed in (c) and (d), respectively. There, the variable u is shown in gray scale. The gray scale maps are always scaled to the minimum
(white) and maximum (black) values of the variable in the displayed time interval. Here, the gray scale map is furthermore nonlinear to
emphasize the increased values of u in the tail of the waves. The parameters are =1, 8=0.2, k=1, 7,=0.1, 7,=1, 7,=0.1, /,=0.001, and
[,=0.017. The simulated (displayed) system size is L=1.0 (AL=0.3), and the shown time interval in (c), (d) is Az=5. In all space-time

diagrams, space is displayed vertically and time horizontally.

component dynamics without stable pacemakers is
recovered. The larger «, the larger is the decrease of the
inhibitor v if s>u and consequently the larger the activatory
effect of s. For [,—[,, the variable s mimicks the variable u
and also no pacemakers are observed. If /,>1,, the pulses
have a broader distribution in s than in # and hence we have
locations in space where s>u. If we decrease B and ap-
proach (and finally reach) the oscillatory regime, tails of
pulses become more and more oscillatory and it becomes
easier to produce pacemakers. Increasing 3 shrinks the set of
initial conditions yielding pacemakers. The results can be
summarized in the following way: If we increase 3, decrease
K, or decrease [,, it becomes increasingly difficult to create or
maintain a self-organized wave source. We thus can infer that
proximity to the oscillatory regime, sufficiently strong diffu-
sion of s, and sufficiently strong coupling strength are favor-
able for the formation of stable pacemakers.

Figure 2 displays the evolution of a system with pace-
maker for a longer time interval. Since periodic boundary
conditions have been applied, not only the pacemaker is ob-
served (in the upper part of the figure), but also the location
where the waves collide (in the lower part of the figure). As
already noticed, the first waves emitted by the pacemaker
strongly resemble pulses. Later, the wave number and the
frequency of the waves increase with time. However, the
pulselike waves emitted first are faster than the subsequent

ones; i.e., the wave speed decreases with time. As indicated
by the different gray levels for s in Fig. 2(a), the maximum
value of s within a pulse-like wave is significantly larger
than in those waves which form the asymptotic wave train.
Furthermore, the amplitude of s within the collision zone of
the waves is also much larger than within the wave train. The
difference in amplitude between the first (pulselike) waves
and the asymptotic wave train is restricted to the variable s.
The values of u in a pulse and in the asymptotic wave train
are very similar [Fig. 2(b)]. In the asymptotic regime, the
wave number of the propagating waves is constant. Within

b

A

FIG. 2. Stable self-organized pacemaker in one spatial dimen-
sion. Space-time diagrams for (a) s and (b) u are shown. The pa-
rameters are a=1, B=0.2, k=1, 7,=0.05, 7,=1, 7,=0.1, [,
=0.00071, and 7,=0.017. The displayed time interval is A¢=50, and
the system size is L=1. Periodic boundary conditions are used.
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FIG. 3. Stable self-organized pacemaker in two spatial dimen-
sions. Snapshots of the distributions of (a) s and (b) u are displayed.
The parameters are a=1, =0.2, =1, 7,=0.1, 7,=1, 7,=0.1, [,
=0.05, [;=1, LX=Ly=15, and r=500. No-flux boundary conditions
are used.

the range of perturbations that lead to pacemakers, no depen-
dence of the asymptotic wave number on the specific width
of perturbation is detected. If a wave train created by a pace-
maker is isolated from the pacemaker and forced to travel in
the medium with periodic boundary conditions, we can
check the stability of the wave train. It is possible to delete
single waves from the train without observing a reappearance
of the waves. Thus, pulse trains with different wavelengths
are admitted solutions and we demonstrate that the
asymptotic wavelength is selected by the pacemaker.

Simulations of two-dimensional systems have also been
performed. Figure 3 shows an example of a target wave pat-
tern present in a system with no-flux boundary conditions.
The perturbation has been applied in a corner of the system
to show as many waves as possible. In Fig. 3(a), the variable
s is shown. As with the one-dimensional system, the variable
s has an intermediate amplitude within the wave train and a
large amplitude where the waves collide (here with the no-
flux boundary). Figure 3(b) shows that the amplitude of the
activator u does not undergo any significant changes at the
boundary. Performing several two-dimensional simulations,
we find that the evolution of that pattern is qualitatively simi-
lar to the one-dimensional case; i.e., a pacemaker arises only
for appropriate perturbations and the amplitude of s in the
asymptotic pattern is smaller than in the initial phase of the
dynamics.

IV. BISTABILITY OF PULSE SOLUTIONS

In the previous section, it has been shown that stable self-
organized pacemakers can appear in system (1). In this sec-
tion, we show that the system also admits two stable types of
pulse solutions. Figure 4 shows the profiles of three different
patterns found in one-dimensional systems: a target pattern
with pacemaker [(a)], a small pulse [(b), left], and a large
pulse [(b), right]. All these patterns are stable with respect to
small spatiotemporal perturbations.

The large pulse corresponds to the pulse already seen in
Fig. 1. It is created by applying a sufficiently large perturba-
tion of u to the uniform steady state. Its velocity is the largest
among the velocities of the three solutions, and the pattern is
characterized by the largest amplitude of s within the pulse.
In this pulse solution, the property of s acting as a second
activator, leading to a large deviation of both u and s from
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FIG. 4. Pacemaker and pulse solutions. The profiles of the vari-
ables are shown for a pacemaker (a) and the two pulse solutions (b).
The parameters are a=1, $=0.2, «=1, 7,=0.1, 7,=1, 7,=0.1, [,
=0.05, [;=1, and L=30. The solid, dotted, and dashed lines corre-
spond to u, v, and s, respectively. No-flux boundary conditions are
present in (a), being responsible for the increase of s at the bound-
ary. The arrows indicate the direction of wave propagation.

their stationary values, is clearly seen. If this pulse solution
is slightly perturbed, the perturbation is damped out quickly.
Simulations indicate that this also holds for relatively strong
perturbations, showing that this pulse solution is robust.

The small pulse is closely related to the pulse solution
known for the reduced model without s. It can be obtained
by performing a simulation starting with =0 and then
slowly increasing x without destroying the pulse (here, to
x=1). This pulse solution is not only short, but also slow
compared to the large pulse solution. The distribution of s
within the pulse only shows a small deviation from the sta-
tionary value. This pulse solution is also stable with respect
to small perturbations. However, it can easily be destabilized
with moderate perturbations, typically giving rise to a large
pulse, although pacemakers are also created occasionally.

The target pattern is formed by a wave train with a wave
speed which lies between the velocities of the two pulse
solutions. The amplitude of s within the wave train—i.e., the
difference between the maximum and minimum values of
s—also lies between the large amplitude for the large pulse
and the small amplitude for the small pulse. In order to com-
pare the widths of the pulses with the width of a single wave
in the target pattern, it is convenient to consider the half-
width of a wave as the distance between the maximum and
minimum of the profile of the activator u. In the case of the
wave train, the half-width is approximately half of one wave-
length. The half-width of the target wave lies in between the
half-widths of the two pulses.

For the set of parameters a=1, 8=0.2, 7,=7,=0.1, 7,=1,
1,=0.05, and [;=1, bistability of pulses is observed for
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FIG. 5. Two colliding small pulses lead to a bound state of two
pacemakers and a wave sink. Space-time diagrams for (a) s and (b)
u. The parameters are a=1, =0.2, k=1, 7,=0.1, 7,=1, 7,=0.1,
1,=0.05, and [,=1. The displayed time interval is Ar=40, and the
system size is L=20. No-flux boundary conditions are used.

0.73<k<1.09. For k<0.73, only the small pulse is stable,
while for «>1.09 only the large pulse is stable (larger values
than «=1.2 have not been considered in the simulations).

V. INTERACTION OF PULSES AND PACEMAKERS

The two different kinds of pulse solutions are stable with
respect to small perturbations and travel persistently on the
background of the steady state in a one-dimensional medium
with periodic boundary conditions. However, when pulses of
both types are present in such a medium, they necessarily
interact because they travel with different velocities. Further-
more, pulses of the same kind may collide and give rise to
complex spatiotemporal patterns. The following interactions
have been studied for a fixed set of parameters: large pulse,
large pulse; large pulse, waves from a pacemaker; small
pulse, small pulse; large pulse, small pulse (head-on and the
large pulse running into the back of the small one); and small
pulse, waves from a pacemaker (head-on and the target
waves running into the back of the small pulse).

When two large pulses meet, they annihilate in the colli-
sion and the system returns to the stationary state. This cor-
responds to the typical behavior of pulses in excitable media
and is therefore not further discussed here. If a large pulse
collides with waves emitted by a pacemaker, the large pulse
is annihilated and the pacemaker entrains the medium.

At the location where two small pulses collide (Fig. 5),
the amplitude of s increases strongly, as displayed in Fig.
5(a). Subsequently, slightly apart from the collision zone,
two symmetrically shifted pacemakers appear which form a

FIG. 6. Unstable bound state of pacemakers. Space-time dia-
grams for (a) s and (b) u are shown. The parameters are like in Fig.
5. The displayed time interval is At=50, and the system size is L
=25. No-flux boundary conditions are imposed.
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FIG. 7. Interaction of a small pulse (coming from above) with a
large pulse (coming from below). A stable pacemaker is formed.
Space-time diagrams for (a) s and (b) u for the initial evolution of
the system are shown. The parameters of the system are as in Fig. 5.

bound state. Between the two wave sources, there is a small
region where the waves collide and where the component s
performs large-amplitude oscillations. The frequency and
wave number of the waves emitted by such a bound state of
two pacemakers are larger than the corresponding values of
the waves emitted by only one pacemaker. The bound state
of two pacemakers emits hundreds of waves, but it is actu-
ally found to be unstable for the studied sets of parameters
and the system finally returns to the rest state. This is shown
for a different simulation in Fig. 6.

If a large and a small pulse interact, as displayed in Fig. 7,
the waves first seem to annihilate. However, the large pulse
actually reappears and proceeds into its initial direction. Also
the small pulse reappears and first seems to proceed as be-
fore. Yet it becomes unstable and transforms into a large
pulse. Then, in the tail of this pulse, a pacemaker appears. In
the wave pattern subsequently formed, the impact of the
small pulse is still seen as a local modulation of s which is
advected toward the border and finally decays there. The
asymptotic state consists of a stable pacemaker located close
to the collision zone of the pulses.

If the different pulses do not meet in a head-on collision,
but if the fast (large) pulse runs into the back of the slow
(short) one, the asymptotic state also consists of a pacemaker
that is created at the location of the collision. Corresponding
simulations are not shown here.

The next interaction scenario is the case of a small pulse
colliding with the waves emitted by a pacemaker. The result
of such an interaction is shown in Fig. 8. Within the collision
zone, large-amplitude oscillations of s appear, forming a lo-
calized pattern which can be clearly identified. This localized
pattern can be interpreted as a disruption of the wave train of

FIG. 8. Interaction of a small pulse with a pacemaker. Space-
time diagrams for the initial evolution of (a) s and (b) u are dis-
played. The parameters of the system are as in Fig. 5, except the
system size, which is L=50.

026110-5



STICH, MIKHAILOV, AND KURAMOTO
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FIG. 9. Traveling phase flip. Space-time diagrams for (a) s and
(b) u are shown. The parameters of the system are as in Fig. 5,
except the system size (L=22.625) and the displayed time interval
(At=50). Periodic boundary conditions are used.

the pacemaker. This pattern is not stationary, but travels at
very low speed toward the original pacemaker. Finally, the
traveling-localized pattern reaches the initial pacemaker and
forms the type of bound state of two pacemakers already
discussed in Fig. 5. This pattern is unstable, the pacemaker is
finally destroyed, and the stationary state is recovered (cf.
Fig. 6). The transient, however, is long and comprises hun-
dreds of wave emissions.

The traveling-localized pattern can be interpreted as a
moving phase flip on the background of traveling waves. The
dynamics of this phase flip can be studied without the initial
pacemaker in a one-dimensional system with periodic
boundary conditions. This is shown in Fig. 9. The flip drifts
at a low constant speed through the medium. The phase dif-
ference between the waves on the left and the right of the flip
is 27 (illustrated by the white dotted lines).

The last interaction scenario that has been studied consists
of waves emitted by a pacemaker which run into the tail of
the small pulse. Simulations not displayed here show that the
waves from the pacemaker overtake the pulse and entrain the
rest of the system. This means that the asymptotic state con-
sists of the initial pacemaker. The small pulse produces a
local perturbation which is advected to the no-flux boundary
and decays there.

VI. DISCUSSION

The two main results of this article are the observation of
stable self-organized pacemakers in an excitable medium—
i.e., not in an oscillatory medium—and the simultaneous ex-
istence of two stable pulse solutions. These three solutions
allow the system to have a rich repertoire of spatiotemporal
patterns, for which we can only give account of the most
important ones. In the following, we will discuss the model,
the most important findings, and their implications.

The system consists of a generic two-component
activator-inhibitor system extended by an additional diffus-
ing variable s. This component obeys linear kinetics and has
been introduced to extend the two-component model in a
simple way. The following conditions are sufficient to create
a stable self-organized pacemaker: proximity to the regime
of relaxational oscillations, sufficiently strong coupling of s
to the inhibitor v, and strong diffusion of the variable s (com-
pared to diffusion of u). Then, whether a pacemaker or a pair
of pulses develops is a matter of the initial condition. Essen-
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tial for pacemaker formation is to provide a superthreshold
perturbation for the activator u. This is accomplished by the
variable s: wherever s > u, s decreases v and hence favors the
increase of u. Besides the coupling constant «, which is re-
sponsible for the above-mentioned decrease of v locally, the
diffusion length /; must be larger than [, in order to establish
a difference of s and u in the spatially extended system. To
be more specific, in the example discussed in Sec. III, the
inhibitor v is decreased sufficiently in the space between the
two tails of the first pulse pair emitted, such that in the center
the increase of u is possible. It is helpful to be close to the
oscillatory regime where pulse tails tend to be nonmonoto-
nous.

If the parameter B is decreased slightly—such that the
system is in the regime of relaxational oscillations—the for-
mation of self-organized pacemakers is also observed. Thus,
the mechanism leading to these structures is not restricted to
the excitable regime. The wavelength of the target pattern is
selected by the pacemaker. Therefore, this system constitutes
an example of a three-component reaction-diffusion system
showing stable autonomous pacemakers (for other examples
see, e.g., Refs. [11,12] and references therein). An alternative
way to create target patterns in excitable systems also in the
absence of heterogeneities is the application of noise [19].

The model studied here consists of three independent
variables. Several years ago, a two-component model with
coexistence of excitable kinetics and stable uniform oscilla-
tions was presented [20,21]. There, self-organized pacemak-
ers were also created by appropriate initial conditions. How-
ever, the pacemakers were unstable and uniform oscillations
were approached asymptotically. Two main differences be-
tween that system and our model are that the local dynamics
of our system is not oscillatory and the pacemakers studied
here do not decay to uniform oscillations, but remain stable.

Within the last decades, it has been shown that reaction-
diffusion systems can display interesting dynamics which
cannot be satisfactorily described by standard two-
component models, such as traveling and complex interact-
ing spots, autonomous pacemakers, or complex pulse dy-
namics. In recent years, many articles investigated pattern
formation in three-component reaction-diffusion systems:
among the topics studied range the dynamics of spot solu-
tions [15,16], birhythmicity [14], and front and pulse dynam-
ics [17,18,22]. Particularly interesting in our context are Ref.
[18] for studying heterogeneity-induced pulse dynamics,
among them periodic wave emission (see also Ref. [22]), and
Ref. [17] for observing the creation of a wave source as a
result of the collision of pulses. The systems studied in those
references have two inhibitors and model a planar dc gas-
discharge system [23]. The three-component model studied
here is not designed to explain the behavior of a specific
reaction-diffusion system. The additional component s inhib-
its the inhibitor v and hence can be interpreted as mimicking
the role of a second activator.

Complex pulse and spot interactions have been studied
intensively and can also be found in two-component models.
For work in this context, we refer to the work by Argentina
et al. who showed that the transition from annihilation to
preservation of colliding waves can proceed via a homoclinic
bifurcation [24,25] and to the work by Nishiura et al. who
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interpreted the interaction process in terms of unstable solu-
tions called scattors [26].

In certain limit cases, three-component reaction-diffusion
systems are essentially equivalent to two-component
reaction-diffusion systems with nonlocal coupling [27]. A
particular interesting effect of nonlocality is the emergence
of multiscaled turbulence [28-30]. As long as we have two
diffusive species in our system, no such turbulence is ob-
served. However, simulations not shown here demonstrate
that in the absence of diffusion of u, target patterns with
turbulent and small-scale waves may develop. Also other re-
cent work elucidates the influence of global and nonlocal
coupling on pattern formation—e.g., drifting patterns [31],
complex wave dynamics (among them also one-dimensional
symmetric and asymmentric target patterns) in an electro-
chemical system [32], and the formation of bound states of
pulses in excitable media [33]. Target patterns appearing for
systems with global and long-range interaction have also
been reported before [34,35].

Besides the solution corresponding to a pacemaker, also
pulse solutions in the excitable regime of the full three-
component model have been presented. For the studied sets
of parameters, two stable types of pulses have been found,
one resembling the pulse solution for the reduced two-
component model, the other being a genuine three-
component pulse solution with considerably larger velocity,
amplitude, and width. Bistability of pulse solutions is con-
sidered to be relatively uncommon to reaction-diffusion sys-
tems. Winfree showed that multiple-spiral-wave solutions are
possible in an excitable system [36,37]. There, the dispersion
relation of the waves—i.e., the dependence of the velocity on
the wavelength—shows an oscillatory behavior. The local
minima of the dispersion relation determine the stable spiral
solutions. Consequently, several spirals with different wave-
lengths and speeds may coexist in such a system. Another
type of bistability of pulse solutions was presented by Bord-
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yugov and Engel [38,39]. There, pulse trains with identical
wavelengths and different velocities may coexist. Here, the
pulse solutions are very different in wavelengths and speed.
While one pulse corresponds to the pulse solution known for
reduced system, the other is genuine for the whole, coupled
system and exists only for sufficiently large coupling
strengths x. We have focused on the formation of pacemak-
ers, but a more detailed characterization of the pulse solu-
tions in the three-component model is certainly an interesting
topic for further study.

As a result of the different types of interaction between
the pulses and pacemakers, not only may stable pacemakers
appear, but also localized patterns representing bound states
of pacemakers and traveling phase flips. We expect that this
is just a first glance of the richness of possible wave patterns
appearing in this three-component reaction-diffusion system.
Here we emphasize that the appearance of pacemakers
through pulse interaction demonstrates that the class of ini-
tial conditions giving rise to pacemakers is not small. Al-
though the bound state of pacemakers is unstable in the
simulations, its transient is long. Therefore, we cannot ex-
clude that this pattern may be stable for other sets of param-
eters and may also have long-lasting counterparts in experi-
ments, in particular in strictly one-dimensional systems—
e.g., electrochemical pattern formation on ring electrodes
[7,40]. Since the bound state of two pacemakers emits waves
with a larger frequency than one pacemaker only, the com-
petition and interaction of pacemakers may be studied. Find-
ing a stable bound state of pacemakers would mean that this
pattern itself could be interpreted as a self-organized wave
source and hence bistability of different pacemaker solutions
could be possible.
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