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Abstract. - Propulsion motion of a simple mechanical model at low Reynolds numbers is consid-
ered. The model consists of two spheroids (wings) connected by a hinge. Its non-reciprocal operation
cycles represent combinations of flapping motions of the wings and of their rotations, resembling
conformational motions characteristic for real protein machines and similar to the propulsion pat-
tern of a butterfly. The net generated velocity and the net stall force, exhibited by an immobilized
machine on its support, are calculated and their dependence on the model parameters is discussed.

Introduction. – It is well known that bacteria and other microorganisms can swim
through fluids by periodically changing their shape. The only restriction, imposed by the
laws of hydrodynamics at low Reynolds numbers, has been pointed out by Purcell [1] in
the form of the “scallop theorem”: a purely reciprocal cyclic motion, such as opening and
closing of a scallop’s shell, cannot generate net propulsion. General analysis of propulsion
effects of an object cyclically changing its shape is available [2, 3].

Several theoretical models of propulsion have been considered to achieve non-reciprocal
motion. The Purcell’s three-link swimmer, a simplest model swimmer, consists of three
rigid rods connected at two hinges each of which has one degree of freedom: the relative
angle between two rods [1, 4–6]. The model with three linked spheres, presented by Najafi
and Golestanian [7], has three spheres connected via two deformable rods(see also [8]).
Examples of propulsion motion, characteristic for bacterial motions and involving cilia waves
or rotation of flagella, have been considered [9–17].

Not only microorganisms, but even individual macromolecules operating as protein ma-
chines can cyclically change their shapes while being immersed into a fluid. Typically, a
protein machine receives energy in the chemical form, with an ATP or other molecule bind-
ing to it as a ligand. This leads to a gradual change of the protein shape, representing a
process of conformational relaxation of the protein-ligand complex to its equilibrium state
. At some stage, the ligand is converted into a product (such as the ADP molecule) which
then leaves the protein. After product detachment, the free protein molecule undergoes con-
formational relaxation back to its equilibrium state. Thus, the cycle of a machine consists
of two relaxational motions, the forward one induced by ligand binding and the backward
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one following product detachment. Generally, these two conformational motions do not fol-
low the same trajectories in the conformational space (see, e.g., [18]),which means that the
motion is non-reciprocal. Therefore the swimming effect should be expected.

To obtain estimates of the magnitude of propulsion effects for molecular machines and to
understand their dependence on the internal motions present, simple mechanical models can
be used. While very rough estimates can be already gained by using the above-mentioned
models of the elementary three-link or three-sphere swimmers(see, e.g., [8]), it should be also
noticed that the kinds of internal motions assumed in these two models are not quite typical
for protein molecules. It is more often that a protein machine would possess only a single
hinge connecting two relatively rigid parts. Nonetheless, the cyclic motion of a machine can
still be non-reciprocal, because the shapes or the mutual orientation of the rigid blocks are
not the same in the forward and back motions.

The simplest swimmer with single-hinge motions can be described as a butterfly micro-
swimmer. Such butterfly has two wings connected via a hinge. Flapping motions of the
wings are repeatedly performed. Inside each cycle, the forward and back flapping motions
are not however completely reciprocal. Before the wings start to move back, they are rotated
and therefore they get a different orientation with respect to the flapping direction. When
the back flapping is completed, the wings are turned back and the initial configuration is
restored, so that the next cycle starts with the same initial condition. For simplicity, the
wings are modelled in our study as asymmertic spheroids (see Fig.1). The two spheroids
are connected to the central node by two thin rigid rods which can perform hinge motions.
Additionally, the spheroids can turn around the rods changing their orientation with respect
to the induced flows.

Note that such movements indeed mimic the genuine butterfly’s flapping motion in which
the angle of attack in the downstroke differs from that in the upstroke [19]. However,
real butterflies fly by generating macroscopic flows including dynamics of coherent vortices
at relatively high Reynolds numbers where the effective viscosity is low. Owing to such
effect, net propulsion can already be achieved by pure reciprocal motions (see [20, 21]).
The butterfly micro-swimmer, considered in the present study, operates in the regime of
low Reynolds numbers and of high effective viscocity, where the non-reciprocity of internal
motions is a necessary condition for self-propulsion.

Directly solving the hydrodynamics equations at low Reynolds numbers, we determine
the flows induced by the butterfly swimmer and the forces acting on it. This allows us to
analytically estimate the net propulsion velocity of the swimmer, depending on the charac-
teristic length sizes of the model and the parameters of the internal mechanical motions. We
also calculate the stall force that should be applied to the swimmer to prevent its transla-
tional motions. Using these data, estimates for the parameter ranges characteristic for real
protein machines are obtained.

Model. – We consider a simple butterfly model of a molecular machine consisting of
two identical wings. Each wing represents a spheroid (Fig.1(b)) described by the equation

x2 + y2

a2
+

z2

a2(1 − ε)2
= 1. (1)

It will be assumed that the spheroid is only slightly asymmetrical, so that ε ¿ 1. The
spheroids are attached to two rigid rods with length l which are connected at central hinge
node O (Fig.1(c)). The rods are infinitely thin and have no direct effect on the fluid. They
can move, changing their relative angle 2α. Additionally, spheroids can rotate around the
rods. The angles β and γ between the symmerty directions of the two rods and the plane
of hinge motions are changing as the result of such internal rotations. Only the symmetric
case of γ = −β will be considered below. The cyclic motion of this model consists of
transitions A → B → C → D → A... between four distinct states A, B, C and D, each of
which is characterized by a certain set of angles: A [(α, β) = (α0, 0)], B [(α, β) = (α1, 0)],
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Fig. 1: (a) The butterfly micro-swimmer. Propulsion is generated by a combination of the flapping
motion and of rotations. Coordinates are defined for a single spheroid [(b)] and for the model of
two spheroids connected though a hinge [(c)]. The cyclic motion of the model represents sequential
transitions between the states A, B, C and D.

C [(α, β) = (α1,
π
2 )], and D [(α, β) = (α0,

π
2 )] (see Fig.1,bottom). After the state D, the

model returns to the state A. To perform analytical calculaton, we assume that the distance
between two spheroids, 2l sinα, is sufficiently larger than the length scale of the spheroid,
2a; i.e., a ¿ l sinα. Under this assumption, the flow caused by the motion of a wing can be
assumed uniform at the position of the other wing.

The dimensionless parameters specifying the model geometry are: ε, expressing the
asymmetry of the spheroid (ε = 0 corresponds to a sphere), and ζ = a/l, the length ratio of
the longer axis of the spheroid and the rod. We assume that ε ¿ 1 and ζ ¿ sinα.

The flow around the model is assumed to be governed by the Stokes equations, i.e.,
µ∆u = ∇p, ∇ · u = 0, where µ,u, p are the viscosity, the flow field, and the pressure,
respectively. In this case, the flow induced by a spheroid moving with translational velocity
v and rotating with angular velocity ω is given by u = utrans. +urot., where the components
of utrans. and urot. can be calculated by a perturbation method, described in Ref. [22].
The calculations yield utrans.

i = Cijvj , u
rot.
i = Dijωj (Einstein’s summation rule is applied

throughout the paper), where

Cij(r) =
1
4
(3η + η3 − 3εp)δij +

3
4
(η − η3 + εp)

rirj

r2
, (2)

Dij(r) = (1 − 6
5
ε)η3εijkrk. (3)

Here p ≡ cos(2θ)+1, η ≡ a/r, r = (x, y, z) ≡ (r1, r2, r3) is the position vector, and εijk is the
Eddinton’s epsilon (εijk = 1 for all combinations of indexes i, j and k obtained by a cyclic
permutation from (1,2,3) and εijk = −1 otherwise). Note that we have kept all terms up to
O(η3ε) in the above perturbation expansions. The force acting on the spheroid moving with
velocity v and angular velocity ω, F , is given by Fi = −6πµaKijvj , where Kij = δij − εkij

with kij ≡ 2
5δij for i = 1, 2 and kij ≡ 1

5δij for i = 3.
Below, three coordinate systems shall be used (Fig.1(b)). The first of them has the

origin of coordinates in the hinge center O, with the (y, z) plane corresponding to the
hinge motion. The two others have their origins in the centers of the spheroids A and B,
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respectively. Their z-axes correspond to the axes of the symmetry. Suppose that a(O), a(A)

and a(B) are representations of the same vector in the three coordinate systems. Then,
they are related via a transformation a(A) = TAOa(O) and a similar equation for a(B). The
transformation matrices can be expressed through the rotation matirices Ri(θ) (rotation by
angle θ around the ri−axis) as TAO = Ry(−β)Rx(−α), TBO = Ry(−γ)Rx(α). Note that
TOA = (TAO)−1 and TOB = (TBO)−1. Hereafter, the superscript (O) will be omitted for
simplicity.

Using these notations, forces acting on the model can be determined. Let us define the
velocity of the center of mass of the model as U , the relative velocity of the spheroid A to
the center of mass of the model as vA, and that of the spheroid B as vB . Then, the forces
acting on the spheroids A and B, F A and F B are given by

F
(A)
A = −6πµaK(v(A)

A − u
(A)
B (rA − rB) + U (A)), (4)

F
(B)
B = −6πµaK(v(B)

B − u
(B)
A (rB − rA) + U (B)), (5)

where u
(A)
B (rA − rB) is the velocity induced at r = rA due to the motion of the spheroid

B at r = rB and vice versa:

u
(A)
B (rA − rB) = TABu

(B)
B (6)

= TAB(C(B)v
(B)
B + D(B)ω

(B)
B ), (7)

u
(B)
A (rB − rA) = TBAu

(A)
A (8)

= TBA(C(A)v
(A)
A + D(A)ω

(A)
A ), (9)

The force-balance equation is:

Fex + F A + F B = 0, (10)

where we have assumed that an external force Fex acts at the hinge. By using eq.(10), we
analyze further two characteristic cases: free-swimming with Fex = 0 and the stall condition,
where the hinge is fixed at some point.

Free swimming. – For the free-swimming case, we are interested in the swimming
velocity U under no external force: Fex = 0.

For the A → B and C → D motions, dβ/dt = 0. Because of the symmetry of these
internal motions, we have Ux = Uz = 0. A straightforward calculation based on eq.(10)
yields the velocity Uy and the displacement ∆y(αa, αb;β) along the y direction within the
time interval [ta, tb](α = αa at t = ta and α = αb at t = tb) as

Uy = f(α, β)l
dα

dt
, (11)

∆y(αa, αb;β) = l

∫ αb

αa

f(α, β)dα. (12)

The explicit forms of f(α, β) for β = 0 and β = π/2 are given by:

f(α, β) = f0(α, β) + εf1(α, β), (13)

where f0(α, 0) = f0(α, π/2) = sin α, f1(α, 0) = (17/10) cos2 α sinα, f1(α, π/2) = 0 up to
their leading orders.

For the B → C and D → A motions, dα/dt = 0. In this case, the symmetry impies
Uy = Uz = 0 . The velocity Ux and the displacement ∆x(α;βa, βb) in the x direction within
the time interval [ta, tb](β = βa at t = ta and β = βb at t = tb) are:

Ux = g(α)ζ3l
dβ

dt
, (14)

∆x(α;βa, βb) = ζ3l

∫ βb

βa

g(α)dβ = ζ3l(βb − βa)g(α), (15)
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where g(α) = −(1/20)(5 − 6ε) cos α/ sin2 α.
The total vector displacement within one cycle, ∆X = (∆X, ∆Y,∆Z), is:

∆X =
π

2
ζ3l(g(α1) − g(α0)), (16)

∆Y = −εl

∫ α0

α1

f1(α, 0)dα, (17)

∆Z = 0. (18)

The net propulsion velocity is 〈V〉 = ∆X/T where T is the cycle time.

The stall condition. – Now we assume that the translational motion of the model is
prevented by fixing at its hinge center O, but the model can still freely rotate around this
center. Because of the symmetry of the model, the induced rotation takes place along the
z−axis (Fig.1(c)) and is characterized by some angular velocity Ωz. Due to the rotation, the
orientation of the stall force, needed to prevent translational motion, is also changing with
time. If the angular velocity is constant, the stall force is always directed towards the hinge
center. In the coordinate frame attached to the model (Fig.1(c)) it has only the component
along the y−direction, i.e. Fex = (0, Fstall, 0). Note that, because of the rotation, the wings
have instantaneous linear velocities Ux = Ωzl cos α along the x−axis in this frame.

In the A → B and C → D transitions, dβ/dt = 0 and therefore Ωz = 0 due to the
symmetry. A straightforward calculation yields the instantaneous stall force Fstall and the
total momentum transfer I(αa, αb;β) along the y−direction within the time interval [ta, tb] ,

Fstall = h(α, β)µl2ζ
dα

dt
, (19)

I(αa, αb;β) = µl2ζ

∫ αb

αa

h(α, β)dα. (20)

The explicit forms for h(α, β) for β = 0, π/2 are

h(α, β) = h0(α, β) + εh1(α, β), (21)

where h0(α, 0) = h0(α, π/2) = −12π sin α, h1(α, 0) = −(3π/10)(7 sinα+15 sin(3α)), h1(α, π/2) =
(24π/5) sin α up to their leading orders.

In the B → C and D → A transitions, dα/dt = 0 and rotation along the z−axis takes
place. The instantaneous angular velocity Ωz and the total angle increment ∆Θ(α;βa, βb)
are caclulated as

Ωz = θ(α)ζ3 dβ

dt
, (22)

∆Θ = θ(α)ζ3(βb − βa), (23)

where θ(α) = −g(α)/ cos α = (1/20)(5 − 6ε)/ sin2 α. Note that, to prevent translational
motion during these transitions, some stall force acting along the y−direction should be
applied. This force is equal to the sum of the the centrifugal forces of the two wings,
f = 2mΩ2

zl cos α where m is the mass of a wing. As we show in the Discussion section,
such centrifugal forces are however very small on the microscales and can be neglected, as
compared with the stall forces needed in two other transitions.

In each machine cycle, the total momentum transfer Itotal, the total angle increment
∆Θtotal and the net stall force 〈Fstall〉, averaged over the cycle, are

Itotal = µl2ζε

∫ α0

α1

(h1(α,
π

2
) − h1(α, 0))dα, (24)

∆Θtotal =
π

2
ζ3 {θ(α1) − θ(α0)} , (25)

〈Fstall〉 =
Itotal

T
. (26)
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Fig. 2: Locomotion path of the model.

The net angular velocity is 〈Ωz〉 = ∆Θtotal/T . Note that the angle increment ∆Θtotal is
proportional to ζ3 and therefore is small; after each cycle, the model only slightly changes
its spatial orientation.

Discussion. – In this section we analyze our analytical results both for the free-
swimming and the stall cases and provide estimates for the magnitude of the propulsion
velocity and the stall force.

Our analytical derivations have been performed assuming that the spheroid is only
slightly asymmetric (ε ¿ 1) and that the distance between two spheroids is much shorter
than the spheroid radius (ζ ¿ sin α). The strongest propulsion effects are reached, as intu-
itively expected, for the largest magnitude of the hinge motion, which corresponds to α1 → 0
and α0 → π. In this limit, analytical expressions get simplified. The net relative displace-
ments along x− and y−directions per single cycle are ∆X/l ≈ −(πζ3/8)(1/α2

1+1/(π−α0)2)
and ∆Y/l ≈ −(17/15)ε. The smallest possible hinge angle α1 is constrained by the condi-
tion that spheroids still do not touch each other in the final state, i.e. sinα1 > ζ. Thus,
the smallest possible angle is of the order α1 = ζ. Similar arguments show that the largest
possible hinge angle should satisfy π − α0 = ζ by the order of magnitude. Therefore, the
maximum net propulsion velocities along the x− and y−directions can be roughly esti-
mated as 〈Vx〉 ≈ −(π/4)ζ(l/T ) and 〈Vy〉 ≈ −(17/15)ε(l/T ) where T is the duration of a
single machine cycle.

Note that propulsion velocity 〈Vx〉 does not vanish when ε = 0, i.e. for the limit when
spheroids become spheres. Even in this case, sphere rotations, corresponding to transitions
B → C and D → A in the model, induce hydrodynamical flows in the surrounding fluid
and the cycle is non-reciprocal. On the other hand, 〈Vy〉 = 0 because the opening motion is
then symmetric to the closing motion with respect to the x − y plane. Generally, 〈Vx〉 ∝ ζ
and 〈Vy〉 ∝ ε for the maximal propulsion velocities that can be reached.

The maximum stall force (needed to prevent translational motion of the machine) is
given by eq. (26). Examining this equation, we find that the maximal stall force is again
required when α1 → 0 and α0 → π.Similar discussion to the free-swimming case leads to
the estimation of the stall force as 〈Fstall〉 ≈ (84/5)πεζ(µl2/T ) where µ is the fluid viscosity.
It is proportional to both small parameters ε and ζ.

Finally, we can also estimate the maximum angular velocity 〈Ωz〉 of the machine pinned
at its hinge center. It should be remarked that 〈Ωz〉 vanishes when the maximum propulsion
efficiency is achieved, although it does not vanish in general. When the largest hinge angle
is α0 = π/2, we obtain 〈Ωz〉 ≈ (π/8)ζ(1/T ). This angular velocity does not depend on the
small parameter ε.

In numerical estimates, we choose the following parameters for the geometry of our
model: l = 10nm, a = 3nm, ε = 1/3, α0 = π − 3/10, α1 = 3/10, µ = 10−3Pa·s, and
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T = 1ms. Their orders are those of a typical molecular machine. We note that these values
give ε = 1/3 and ζ = 3/10. The value of α1 satisfies α1 = ζ, which corresponds to the
maximum propulsion efficiency.

For the free-swimming case, these parameters give the increments during each cycle as
follows: ∆yA→B = −22nm,∆xB→C = −0.70nm,∆yC→D = 19nm,∆xD→A = −0.70nm, and
other components are zero. Consequently, the mean velocity is: Vmean = (−1.4,−3.3)[nm/ms].
The path of the model is staggered, as shown in Fig.2. We note that the path is helical when
α0 < π/2. For the stall condition, the momentum and angle increment during each process
are given as follows: IA→B = 2.3 × 10−3pN · ms, IC→D = −1.9 × 10−3pN · ms,ΘB→C =
−ΘD→A = 0.012 × 2π, and other components are zero. The net stall force is: 〈Fstall〉 =
IA→B+IC→D

T = 4.7 × 10−4pN. The centrifugal forces f during the transitions B → C and
D → A motions are of the order of 10−25pN if l ∼ 10nm,Ωz ∼ 10−4rad/s,m ∼ 103kDa '
10−21kg with f = 2mlΩ2

z where m is the inertia mass of the wing. Therefore, they can
indeed be neglected when the net stall force, averaged over a cycle, is calculated. Note that,
because of the approximations used, the above numerical estimates should be viewed as
providing only the order-of-magnitude evaluations of the respective effects.

Conclusions. – The butterfly micro-swimmer can propel itself and, when transla-
tionally immobilized, it exhibits some force on its support. Our analysis has been per-
formed assuming the existence of two small parameters ε and ζ, specifying the asymmetry
of spheroids (wings) and their relative sizes as compared to the length of the connecting
rods. The maximum propulsion is realized when the utmost flapping angles α1 and α0 are
close to 0 and π. Then, the net translational increments per one cycle are esimated as
(∆X/l, ∆Y/l, ∆Z/l) = (O(ζ), O(ε), 0). Generally, if the flapping angles are not close to 0
and π, the estimates (∆X/l, ∆Y/l,∆Z/l) = (O(ζ3), O(ε), 0). The net stall force, averaged
per a cycle, is of the order of 〈Fstall〉 /(µl2/T ) = O(ζε) in both cases.

The considered model of the butterfly swimmer has internal mechanical motions which
are similar to the hinge motions typical for protein machines. Obviously, it cannot be
viewed as a realistic model for proteins - the latter never have regular geometrical shapes
bounded by smooth surfaces. Moreover, hydrodynamic fluctuations become important on
the nanoscales, but they have been neglected in our study. Nonetheless, in absence of more
realistic descriptions, our results can be used to get rough estimates of propulsion effects
for molecular machines. For a machine of linear size of 10 nm and the cycle time of 1 ms,
we obtain, as the upper estimates, the propulsion velocities of the order of 1 µm/s and the
propulsion (stall) forces of the order of 10−4 pN. For comparison, the characteristic force
generated by a protein motor, moving along a filament and transporting a cargo, is about 1
pN. Moreover, due to thermal Brownian motion a molecule will move on the average over
the distance of a micrometer in one millisecond, as compared with the distance of about
1 nanometer per millisecond due to hydrodynamical self-propulsion. We see that propul-
sion effects for individual molecular machines as nano-swimmers are very weak. However,
hydrodynamical propulsion forces can nonetheless be essential for the collective behavior
of large populations of molecular machines. Recently, properties of thin liquid films with
floating molecular machiens have been considered and it was found that even the machiens
generating propulsion forces of down to 10−5 pN can induce instabilities of the film surface
and development of active hydrodynamical flows [23].

Thus, we have proposed a new model of a micro-swimmer and obtained analytical and
numerical estimates for the propulsion properties of this model.

∗ ∗ ∗
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