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Kurzfassung

Die vorliegende Arbeit untersucht theoretisch und experimentell die raumzeitliche

Musterbildung der CO-Reaktion auf Pt(110) mit den Methoden der nichtlinearen Dy-

namik. Die Reaktion selbst ist eine gut erforschte und verstandene chemische nicht-

lineare Reaktion auf einer Einkristalloberfläche. Es werden hier die statistischen und

nichtlinearen Eigenschaften (wie Chaos, Turbulenz, Defekte, Cluster) der Musterbil-

dung dieser chemischen Reaktion in Abhängigkeit von Druck und Druckmodulation

betrachtet.

Die Untersuchungen werden in einer UHV-Kammer von 10−10 mbar Basisdruck durchge-

führt. Die Musterbildung der Reaktion auf der Pt(110)-Oberfläche wird mit einem

Photoelektronenmikroskop (PEEM) beobachtet. Ein spezieller neu entwickelter Kom-

pressor erlaubt CO-Druckmodulationen großer Amplitude in der UHV-Kammer.

Die Reaktionen werden in subharmonischen 2:1, 3:1, und 4:1 Resonanzen des Verhältnis-

ses Anregungsfrequenz (forcing frequency) zur mittleren natürlichen Fourier-Eigenfrequ-

enz (natural frequency) der Katalysatorfläche betrieben. In der 2:1 Resonanz kann die

chemische Turbulenz durch die erzwungenen Schwingungen unterdrückt werden. Mit

steigender Amplitude dieser Modulation kann man dann über eine Periodenverdopplung-

skaskade die Musterbildung der chemischen Reaktion ins Chaos treiben. Bei der

3:1 Resonanz werden zwei-, drei- und sechs-Phasencluster beobachtet, was mit einer

entsprechenden subharmonischen Synchronisation (entrainment) des System einhergeht.

Die 4:1 Resonanz wird im turbulenten und nicht-turbulenten Bereich untersucht. Im

turbulenten Bereich werden 4-Phasencluster gefunden, im nicht-turbulenten Bereich

2-Phasencluster.
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Die Experimente werden mit Simulationen des gängigen realistischen Krischer, Eiswirth,

und Ertl (KEE) Modells verglichen. Das Modell zeigt einen signifikanten Unter-

schied zwischen der Eigenfrequenz eines einzelnen (Punkt-)Oszillators und der mit-

tleren Eigenfrequenz des flächig verteilten Systems im turbulenten Bereich. Die natürli-

che Eigenfrequenz der Fläche ist größer als die des einzelnen-Punkt-Oszillators. Im

nicht-turbulenten Bereich tritt dieser Unterschied nicht auf, weil hier die diffusive

Kopplung über die Fläche geringer ist. In den meisten Fällen zeigen die Simulatio-

nen qualitativ dasselbe Verhalten wie die Experimente. In den Simulationen kon-

nten jedoch keine 2:1 Amplituden-Cluster reproduziert werden Umgekehrt konnten

im nicht turbulenten Bereich die theoretisch vorhergesagten 4-Phasen-Cluster nicht

experimentell beobachtet werden. Weiterhin wurden im Rahmen der vorliegenden Ar-

beit die statistischen Eigenschaften chemischer Turbulenz anhand der topologischen

Defekte untersucht. Bei steigendem CO-Druck konnte eine Erhhung der Defektanzahl

nachgewiesen werden.



Abstract

Pattern formation is a subfield of nonlinear science. In the last few decades pat-

tern forming processes in non-equilibrium systems have been extensively studied. A

well known example of pattern-forming non-equilibrium systems is CO oxidation on

Pt(110). The dynamics of the reaction are widely understood. Thus, CO oxidation

on Pt(110) is utilized as a well-suited model system for the analysis of spatial and

temporal pattern formation.

A large part of the present work is focused on the effects of periodic external forcing

on chemical turbulence in CO oxidation on Pt(110), investigated both experimentally

and theoretically.

Experiments are performed in an UHV chamber with a base pressure of 10−10 mbar.

Photoemission electron microscopy (PEEM) is used to obtain spatially resolved im-

ages of adsorbate patterns on the catalytic Pt(110) surface. A compressor driven

reactor which allows global gas-phase forcing for frequency modulations up to 4 Hz

was specifically designed.

Experiments are performed in different resonant forcing regimes such as 2:1, 3:1, and

4:1.

Under 2:1 forcing, experiments show that periodic forcing on chemical turbulence may

suppress spatial turbulence and could lead to a chaotic response of the system. The

path to chaos is given by a period doubling cascade, which could be experimentally

followed by the subsequent increase of the forcing amplitude. Two different types,

phase clusters and amplitude clusters, are found.
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At 3:1 forcing, two, three, and six phase clusters are found at 2:1, 3:1, and 6:1 entrain-

ment respectively.

4:1 resonance forcing is performed in turbulent and nonturbulent regimes. In turbulent

regime, four phase clusters are observed while in nonturbulent regime, two phase

clusters are observed.

The experimental results are compared with numerical simulations by using the realis-

tic Krischer, Eiswirth, and Ertl (KEE) model. An analysis of the KEE model reveals

significant differences between the oscillation frequency of the single oscillator and the

mean frequency of the extended system, which appears to be higher in the turbulent

state.

Numerical simulations support the findings of experimental results with only small

deviations found. Under 2:1 forcing, only phase clusters are observed numerically,

while under 4:1 forcing in nonturbulent regime, the four phase patterns could not be

observed experimentally.

Thus, the results of this work demonstrate that by means of periodic forcing, tur-

bulence can be effectively controlled and manipulated. Furthermore, the statistical

properties of chemical turbulence are determined with increasing order of CO pressure

experimentally.
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Chapter 1

Introduction

Spatiotemporal pattern formation in spatially extended systems out of equilibrium

maintained through the dissipation of energy which is continuously fed into the system

has been a rapidly growing field of research for several decades, due to its importance

in many fields such as biology, chemistry, and physics [1–8]. Pattern formation in these

systems can lead to coherent pattern formation, which is generated by the interplay

of the nonlinear components of the system.

The study of the dynamics of two-dimensional patterns often includes the observa-

tion of spatiotemporal disorder, sometimes called turbulence as an analogy to fluid

dynamics. Such pattern turbulence has been observed in a wide variety of spatially

extended experimental systems with different governing mechanisms [4]. The general

study of model equations for these systems has led to the delineation of the categories:

phase turbulence [8]; spatiotemporal intermittency [9]; and defect-mediated turbulence

[10, 11]. The transition from a simple regular pattern (for example stripes, hexagons,

or a spiral) to a time-dependent disorder often involves the spontaneous nucleation of

defects in the pattern, which can move through the system as individual entities, or

1
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coherent structures.

Theoretical work by Prigogine and coworkers in 1955 [12, 13] provided the basis for the

understanding of how order can emerge out of disorder in systems far from equilibrium.

They pointed out in that open systems, i.e., systems open to the exchange of matter

and/or energy with their surroundings, kept far from equilibrium could exhibit spon-

taneous self-organization by dissipating energy to the surroundings to compensate for

the entropy decrease in the system. The temporal or spatial structures that can arise

in this way are called dissipative structures. A closed system must reach equilibrium

and so can exhibit only transitory oscillations as it approaches equilibrium. Sustained

oscillations require an open system with a continuous flow of new reagents and removal

of waste products. The first chemical model was proposed by Prigogine and Lefever in

1968 and dubbed the “Brusselator” by Tyson in 1973. In 1977, Nicolis and Prigogine

summarized the work of the Brussels school in a book entitled Self-Organization in

Non-equilibrium Systems. For his work on non-equilibrium systems, Ilya Prigogine

was awarded the 1977 Nobel Prize in Chemistry.

Nonlinear phenomena are essential in surface chemical reactions. The mechanisms of

surface chemical reactions are often relatively simple. The most prominent examples

are the Belousov-Zhabotinsky (BZ) reaction and CO oxidation on Pt(110) [14–16].

A BZ reaction involves several reagents and various intermediate species; the central

reaction step is the oxidation of malonic acid by bromate, catalyzed by metal ions.

The first observations of kinetic oscillations in a continuously stirred BZ medium were

reported by Belousov in 1951 [17, 18]. Two decades later, Zhabotinsky and Winfree

observed traveling waves of chemical activity in an unstirred reactor [19, 20].

CO oxidation on Pt(110) has emerged as a fascinating interdisciplinary branch of the

natural sciences, since Langmuir’s pioneering studies [21], the oxidation of CO over

Pt is a classic example of a heterogeneous catalytic reaction. It is considered to be

generic due to its apparently simple mechanism, richness of spatiotemporal behavior,

and practical relevance [22–24]. Kinetic oscillations in this reaction were first found by

Hugo in 1970 on a supported catalyst [25]. This phenomenon was later observed for

other types of catalysts (polycrystalline wires and single crystals) both at ultrahigh

vacuum (UHV) and sub-atmospheric conditions [26].



3

In particular, Ertl and co-workers have demonstrated that on Pt(100) and (110), at

UHV, the oscillations result from the interplay between bistability and adsorbate-

induced surface reconstruction exposing patches with different O2 sticking probabilities

[23, 26]. For his contribution on studies of the catalytic oxidation of CO on platinum,

Ertl was awarded the Nobel Prize in Chemistry 2007.

A Modern surface imaging technique, photoemission microscopy (PEEM, described in

Chapter 3) with high spatial resolution has provided real time pictures of propagating

fronts, spiral waves, target patterns, standing waves, and chemical turbulence. Before

these spatial features could be resolved, work function measurements had already

revealed that the reaction rate may become oscillatory and even chaotic.

Controlling deterministic chaos has become an active field in the study of nonlinear

dynamics over the past few decades. Since the pioneering work of Ott, Grebogi, and

Yorke [27], significant progress [28–31] has been achieved in controlling chaos in systems

with few degrees of freedom. These efforts have been naturally extended to control

spatiotemporal chaos [32] in spatially extended systems, due to it’s many potential

applications in many fields: plasma devices [33]; laser systems [34]; chemical reactions

[35]; and biological systems [36], where both spatial and temporal dependence need to

be considered.

Theoretically spatiotemporal chaos has been extensively studied in the complex Ginzburg-

Landau equation (CGLE) system [37], which describes universal dynamics features of

spatially extended systems near a supercritical Hopf bifurcation. It exhibits defect

mediated turbulence or spiral wave turbulence in a wide range of parameter regions.

In order to control spiral wave turbulence in spatially extended systems, global con-

trol methods are practical since local access to all system elements is often difficult

to achieve. Previous studies performed in the framework of abstract models have

theoretically investigated the effects of periodic forcing [38–41] and different schemes

of global feedback [42–44], suggesting that turbulence and pattern formation can be

successfully controlled in nonlinear systems.

As a recent theoretical contribution, Davidsen et. al. studied the dynamics of fronts

between phase-locked domains in resonantly forced catalytic CO oxidation on Pt(110)
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[45]. Their numerical investigations were carried out using the Krischer, Eiswirth,

and Ertl (KEE) model, a well-established realistic model of the CO oxidation reaction

[46]. Motivated by similar observations in the forced CGLE [47, 48], they focused

on explosion-type front instabilities that can be observed if the forcing amplitude is

decreased below a critical value.

In the 2:1 resonantly forced regime, this instability gave rise to a disordered state

of defect mediated turbulence. Depending on the forcing parameters, a cascade of

period doubling bifurcations was observed as the front instability was approached

with decreasing forcing amplitude.

In the case of 3:1 resonance forcing, a labyrinthine structure emerged. Interestingly,

resonance with a bistability between 3:1 and 2:1 locking to the external force can be

observed.

The present work is focused on spatiotemporal pattern formation in CO oxidation on

Pt(110). In particular, control of turbulence by resonance forcing is studied. Also, the

effect of resonance forcing is analyzed theoretically in extended systems by using the

KEE model. Furthermore, the effect of CO pressure on defect mediated turbulence is

presented and applied experimentally.

The outline of the thesis is as follows. In Chapter 2 the basic concept of nonlinear

dynamics and CO oxidation on Pt(110) is described in detail.

Chapter 3 deals with the experimental setup, numerical method, and the method used

for the pattern analysis. In the first section, the laboratory setup, Photoemission elec-

tron microscope (PEEM), implementation for periodic forcing, and the modification

is briefly discussed.

In the second section the numerical method and implementation for the resonance

forcing is explained. Finally in the last section the method used for the pattern

analysis is explained.

In Chapters 4 and 5, control of chemical turbulence by high frequency resonance forcing

is investigated in detail experimentally and theoretically, respectively.

In Chapter 6, the effect of CO pressure on defect mediated turbulence is considered
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experimentally. Topological defects can be identified in the phase and amplitude

representation of the data and are characterized statistically.

Finally, Chapter 7 summaries the basic results presented in this thesis and gives pos-

sible perspectives for future research.
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Chapter 2

Basic Concepts

A reaction diffusion system is an extended nonlinear system. The field of nonlin-

ear systems is one that has been rapidly developing for the past 30 years. A nonlinear

system is defined as one which does not satisfy the superposition property. The sim-

plest form of nonlinear system is the static nonlinearity where the output depends only

on the current value of input but in a nonlinear manner, for example the mathematical

relationship.

y(t) = ax(t) + bx3(t) (2.1)

where the output is a linear plus cubed function of the input.

In the first section of this Chapter, we briefly discuss the basic concepts of nonlinear

dynamics and in the second section, the oxidation of carbon monoxide on Pt(110)

single crystal surface is introduced in detail.

7
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2.1 Nonlinear Dynamics

The dynamic behavior of a single element with no diffusion coupling can be explained

in terms of a set of n coupled ordinary differential equations.

∂u

∂t
= f(u,p) (2.2)

where the function f(u,p) represents the kinetics of the reaction and depends on a set

of time dependent concentrations of reacting species u = (u1, u2, u3, ....un) and system

parameters p = (p1, p2, p3, ...., pm). In a chemical context, u represent concentrations

and p the parameters (i.e., rate constants, temperature, reactant composition, flow

rate, etc.).

2.1.1 Limit Sets, Stability, and Bifurcations

The concepts of phase space and phase portrait are important tools for visualizing the

evolution of a system. Solving the dynamic system equation (2.2) for each variable

u1, u2, u3...., un gives a point in phase space. The trajectories in phase space are the

temporal evolution of a system with some initial conditions. The deterministic nature

of dynamics uniquely determines the function f for a given initial condition. A phase

portrait is a geometric representation of the trajectories of a dynamical system in the

phase plane.

Subsets of phase space that are approached by the trajectories as t → ±∞ are called

limit sets. The limit sets with t → +∞, are called attractors. A system may have

various attractors; they may correspond to stationary, periodic, quasi-periodic, or

chaotic dynamical states. Limit sets with t → −∞ are called repellers.

Many features of system dynamics can be understood by the stability analysis of the

fixed points of the system.

The type of limit sets (fixed points) depends on the chemical kinetic term f(u;p) and

on the dimension n of phase space. While fixed points are the only possible attractor
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in one-dimensional phase spaces, another important type of attractor is possible in

two-dimensional phase spaces, namely the limit cycle. A limit cycle on a plane or a

two-dimensional manifold is a closed trajectory in phase space having the property

that at least one other trajectory spirals into it as time t → +∞. In cases where all of

the neighboring trajectories approach the limit cycle as time t → +∞, it is referred as

a stable limit cycle (see Fig. 2.1). Stable limit cycles imply self sustained oscillations.

Any small perturbation from the closed trajectory would cause the system to return

to the limit cycle, making the system stick to the limit cycle.

Figure 2.1: Phase space portrait of the stable limit cycle.

Stability

The stationary states or fixed points of system are denoted as us and satisfy the

condition u̇ = 0. Consider any infinitesimal small perturbations δu on any orbit u0

leading to δu(t) = u(t)− us.

The difference vector δu(t) is inserted into equation (2.2) and f is expanded around

us in a Taylor series, where only the linear term is kept yielding

˙δu = J(us)δu where Jij = ∂fi

∂uj
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Figure 2.2: Fixed points in two-dimensional phase space. (a) Stable node, (b) saddle

point, (c) unstable node, (d) stable focus, and (e) unstable focus.

The eigenvalues λ1,λ2,...λn of the linear evolution matrix J evaluated at a fixed point

us govern its stability. The fixed point is stable if the real parts of all eigenvalues λi

are negative; it is unstable if the real part of at least one eigenvalue is positive. In

two-dimensional phase space, the eigenvalues λ1 and λ2 may either be real or com-

plex conjugated. Different types of fixed points for a two-dimensional vector field are

summarized in Fig. 2.2.

Bifurcations

The stability of a fixed point may changed when a system parameter is changed and

at least one of the eigenvalues of a fixed point changes its sign. This change is called

bifurcation.

If a control parameter µ having a critical value µc is varied around the critical value,

this leads to non-stationary behavior. The simplest example of bifurcation leading

to non-stationary dynamical behavior is the supercritical Hopf bifurcation, see Fig.
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Figure 2.3: Phase portraits in the vicinity of a supercritical Hopf bifurcation.

2.3. In subcritical Hopf bifurcation the existing solution becomes stable and newly

emerging solutions are unstable. As an appropriate parameter µ is varied beyond its

critical value µc, a stable focus becomes unstable and simultaneously a stable limit

cycle is born. Sufficiently close to the bifurcation point, the oscillations are harmonic

and amplitude follows a square root dependence A ∼
√

µ− µc. Far from the Hopf

bifurcation, the amplitude may become large and strongly anharmonic, depending on

the properties of the system. Supercritical Hopf bifurcation does not depend on the

direction of the parameter change.

Further examples of local bifurcation include the subcritical variant of Hopf bifurca-

tion. Supercritical and subcritical Hopf bifurcations are displayed in Fig. 2.4. In

the subcritical case, the oscillations are born suddenly with finite amplitude at one

critical parameter value. Fig. 2.4(b) illustrates the situation when an unstable limit

cycle born in a subcritical Hopf bifurcation is stabilized in a saddle-node bifurcation

(a stable node and a saddle point appear at the bifurcation point) of limit cycles. In

subcritical Hopf bifurcation, when the parameter is scanned in the opposite direction,
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Figure 2.4: The amplitude |A| of the limit cycle is shown as a function of the control

parameter µ in supercritical Hopf bifurcation (a), and subcritical Hopf bifurcation

with stabilized limit cycle (b). Solid (dashed) lines denote stable (unstable) states.

the oscillations disappear at another critical parameter value and hysteresis occurs.

Detailed information about limit sets and their stability can be found in [49].

2.1.2 Extended Dynamics

Pattern formation is a ubiquitous phenomenon in the dynamics of extended nonlinear

systems. Patterns in extended systems arise as a result of the interplay of many

factors including nonlinearities, external forcing and/or excitability of the medium,

spatial interactions, and internal dissipation.

In an extended or distributed system, the elements can be considered as being com-

posed of many individual components. Extended systems are commonly classified

according to the local dynamics of their individual elements [50]. Fig. 2.5 shows the

schematic diagram of monostable, bistable, excitable, and oscillatory systems.
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Figure 2.5: Schematic phase space diagrams. (a) monostable, (b) bistable, (c) ex-

citable, and (d) oscillatory dynamics.

Monostable System

In a monostable system (Fig. 2.5(a)) the dynamics is determined by the stable fixed

point. Under perturbation the system experienced damping and always returned to

the same stable steady state.

Bistable systems

A bistable system is characterized by the presence of two stable steady states separated

by a saddle point. In other words bistability refers to the situation in which two stable

steady states coexist. The nullclines (the line in phase space obeying u̇1 = 0, u̇
2

= 0)
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of a bistable system possesses three intersection points, which correspond to two stable

fixed points separated by a saddle point (Fig. 2.5(b)).

For small perturbations the system remains in one of the stable states, while under

sufficiently strong perturbations transitions between the two states may occur. Bista-

bility often arises as a result of symmetry breaking the instabilities of uniform states.

Bistability comes from the fact that its free energy has three critical points with two

minima and one maximum. By default, the system state will be in either of the minima

states, because that corresponds to the state of lowest energy. The maximum can be

visualized as a barrier. A transition from one state of minimal free energy requires

some form of activation energy to penetrate the barrier. After the barrier has been

reached, the system will relax into the next state of lowest energy again. The time it

takes is usually attributed as the relaxation time.

Excitable Systems

Excitable systems are characterized by only one stable steady state corresponding to

a single intersection of nullclines (Fig. 2.5(c)). For small perturbations away from the

equilibrium, the return is monotonic, however, for perturbations beyond a threshold

value, the return is not monotonic, but undergoes a large excursion before settling

down.

An excitable system remains in a stable configuration in absence of (or in presence

of small) perturbations. If the perturbations surpass a threshold, the system per-

forms an excursion in phase space (in most cases independent on the strength of the

perturbation), returning back to the original state.

For the system in continuous or discrete media, it usually gives rise to some global

behaviors which are believed to be related to the realization of certain functions of the

system. A spiral wave is one of a typical global phenomenon of excitable medium, and

has been observed in various systems [51–57].
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Oscillatory Systems

Oscillatory systems are characterized by a stable limit cycle and an unstable fixed

point (Fig. 2.5(d)).

An oscillatory system, however, can be subjected to an external force which may alter

the nature of oscillation. For example, a system capable of oscillation can be set to

oscillate at a frequency other than a natural frequency. (The natural frequency is the

frequency at which a particular object or system vibrates when pushed by a single

force or impulse, and is not influenced by other external forces or by damping.)

Traveling pulses, target patterns [58], standing waves [59], and asymmetric target

patterns [60, 61] have been observed in the oscillatory systems and in some cases

reproduced by numerical simulations.

2.1.3 Periodically Forced System

A nonlinear dynamic system has four states: the fixed point, the periodic motion, the

quasi-periodic motion, and the chaotic motion. When the system is in the critical

state, a small perturbation of the system parameters may lead to the qualitative

change of the system state. Periodic forcing of nonlinear oscillators produces a rich

variety of dynamical responses, including frequency locking, quasi-periodic oscillations,

period doubling, and chaos [62]. The well known examples are physical, biological, and

chemical systems [63–68].

Single Oscillator

Most theoretical studies of periodically forced oscillatory systems have focused on

frequency locking phenomena and the onset of chaos in single oscillator models [45, 62].

Frequency locking refers to the property of a forced system to oscillate at a frequency

ω which is a rational fraction of the forcing frequency ωf in some range. These ranges

of resonant behavior get wider as the forcing strength is increased, and are commonly

refer to as Arnold tongues. The fractional frequencies a forced system can realize

follow the Farey rule: between the tongues ωf : ω = n : m, where n : m resonance is

denoted as sub-harmonic if n > m and super-harmonic if n < m.
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Extended System

The response of a spatially extended system to a periodic stimulus is more complicated

than that of a single oscillator since it is possible for individual elements to oscillate

with different amplitude and phase with respect to each other. Frequency locking in

spatially extended systems can be enhanced or suppressed by diffusive coupling. On

the other hand, close to the boundaries of Arnold’s tongues stable frequency locked

patterns may exist at forcing parameters where single oscillatory elements are not

locked. For example, the dominating contribution of the diffusion terms can prevent

frequency locking at small forcing amplitudes [41].

In spatially extended oscillatory systems, periodic forcing can change the nature of the

phase patterns from traveling waves or spiral waves in the unforced system to standing

wave labyrinths [69] or multiphase spirals [70].

Theoretical work on resonantly forced oscillators has focused on the complex Ginzburg-

Landau equation (CGLE) (a generic equation for oscillatory systems close to the

Hopf bifurcation), FitzHugh-Nagumo, Brusselator, and the Krisher, Eiswirth, and

Ertl (KEE) model [41, 45, 69, 71].

Frequency locking of extended oscillatory systems has been observed experimentally

in the light-sensitive Belousov-Zhabotinsky (BZ) reaction and in CO oxidation on

Pt(110). In a BZ reaction the uniform oscillations and spiral wave could be entrained,

however, the always stable and spontaneous development of turbulence is not known

[72–78], while in catalytic CO oxidation on Pt(110) periodic forcing was used to control

chemical turbulence [79, 80]. Catalytic CO oxidations on Pt(110) single crystal surface

show both stable oscillations as well as spiral wave turbulence [8, 14].

2.2 CO Oxidation on Platinum Crystal

CO oxidation on a platinum single crystal is one of the most studied heterogeneous

catalytic reactions due to its simplicity and it can be treated as model system for

the experimental and theoretical understanding of heterogeneous catalysis [16]. The

catalytic oxidation of CO on a platinum single crystal surface follows the Langmuir-
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Hinshelwood mechanism where the two reacting species are chemisorbed on the cat-

alyst surface before the reaction takes place [21]. Under UHV condition with certain

sets of control parameters (partial pressure of CO, O2, and temperature (T)), different

spatiotemporal patterns can be observed [81, 82].

Different surface imaging techniques like photoemission electron microscopy (PEEM)

[14, 83–85], Reflection Anisotropy Microscopy (RAM) [22, 86], and Ellipsomicroscopy

for Surface Imaging (EMSI) [87] can be used to study the pattern formation on Pt

surface. In particular, PEEM is used as a powerful tool for real-time pattern formation

on catalytic surface due to its non-destructive imaging nature.

2.2.1 The Platinum(110) Surface

A clean Pt(110) single crystal surface is a face centered cubic (fcc) structure at room

temperature, having lattice constant a = 0.392 nm. The (110) surface of fcc metals

is the most open of the low Miller index surfaces therefore it has the lowest surface

atomic density and the highest surface energy.

Figure 2.6: Face centered cubic (fcc) crystal structure of Pt(110) (left) and the (1×1)

and (1×2) structure of the Pt(110) (right).
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In the non-reconstructed form, also known as (1 × 1), the platinum atoms on (110)

surface are arranged according to their bulk position, however, the clean Pt(110)

surface undergoes a reconstruction to lower its surface energy that leads to a missing

row structure characterized by (1 × 2) [88–92]. The (1 × 2) structure is composed of

alternating rows and troughs of Pt atoms in the [110] direction as seen in Fig. 2.6.

2.2.2 Interaction of Adsorbates with Surface

When atoms or molecules adsorb on ordered crystal surfaces, they usually form ordered

layer structures over a wide range of temperatures and surface coverage. The driving

force for ordering originates in mutual interatomic interactions. Here, an important

distinction must be made between adsorbate-adsorbate and adsorbate-substrate inter-

actions.

The adsorbate-adsorbate forces are usually small compared to the adsorbate-substrate

binding forces, so that the adsorbate locations are determined by an interplay between

their entropy-related accessibility and the optimum adsorbate substrate bonding. The

adsorbate-adsorbate interactions dominate the long-range ordering of the over-layer.

These interactions can be studied experimentally by examining, e.g. the changes in

the over-layer structure as a function of coverage, or by theoretical calculations. The

surface coverage is thus an important parameter in ordering.

The effects of a strong adsorbate-substrate bond on the surface structure of the sub-

strate can be large. The presence of an adsorbed over-layer often removes the recon-

struction of clean surfaces and the substrate surface atoms usually return to their bulk-

like equilibrium position. The thermodynamic driving force for adsorbate-induced

restructuring is the difference in strength of the adsorbate-substrate bonds for the

reconstructed and unreconstructed surfaces. More specifically, the loss in adsorption

energy is larger than the gain in energy associated with the reconstruction of the clean

surface. If massive diffusion-controlled atom transport along the surface is not needed,

adsorbate-induced restructuring can occur on the time scale of catalytic reactions (sec-

onds).
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Carbon Monoxide Adsorption on Pt(110)

The adsorption of CO on Pt surfaces has attracted much attention because of the

many potential applications, such as in car exhaust catalysts where it promotes the

oxidation of CO to CO2. CO generally prefers binding at low coordination sites, such

as on-top of a Pt atom or bridging two Pt atoms.

Figure 2.7: Schematic diagram of synergic bonding of CO to a metal. In CO the

molecular orbital are 1σ22σ23σ24σ21π45σ22π∗. The 4σ orbital is localized on the

oxygen atom while the 5σ orbital is localized on the carbon atom, and both of these

orbitals are non-bonding. The empty 2π∗ anti-bonding orbital is also available to take

parting the interaction with the surface. This combination of σ and π orbital of CO

in the interaction with the surface is called synergic bonding. In the case of molecular

chemisorption of CO, a covalent bond is formed by donation of electrons from the 5σ

orbital to a vacant metal d orbital (a). At the same time, the full d orbital are able to

donate electron density into the vacant 2π∗ orbital (b). On adsorption the situation

is analogous (c).
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The adsorption of CO on Pt(110) takes place in molecular form and induces a struc-

tural change in the surface. The CO bonding to metal surfaces is described in the

terms of the Blyholder model, which invokes a donor-acceptor mechanism [93, 94].

The 5σ and the 2π frontier molecular orbital (MO) of the CO molecule are substan-

tially modified by the presence of the metal surface.

A filled 5σ “lone pair” orbital interacts with the empty dσ metal orbital, leading to

a partial transfer of electron density to the metal. At the same time the filled metal

dπ orbital overlap with the 2π∗ antibonding molecular orbital of the CO (Fig. 2.7)

[22, 87, 95, 96]. Moreover, since the 5σ and 2π MO of CO are localized mainly at the

C atom, the bonding occurs with the carbon atom facing the surface.

In the clean platinum surface (1×2) structure, the CO sticking probability on Pt(110),

sco is close to unity and remains almost constant for low coverage of CO [88, 97, 98]. For

higher coverage (u = 0.35 monolayers), the sticking coefficient decreases. According

to Gasser and Smith who described it in [99], sco = s0
co(1− uq) (where q is a mobility

parameter between 3 and 4). The CO saturation coverage on Pt(110) is equal to unity

[97, 100, 101].

The adsorption of CO on Pt(110) induces a structural change in the surface. The 1×2

missing row reconstruction is lifted to 1×1 bulk phase.

The Adsorption of Oxygen on Pt(110)

The adsorption of oxygen take place dissociatively at temperature 240K. Dissociative

adsorption of oxygen was found to proceed via second order kinetics in the free sites

[102, 103]. The activation energies for oxygen diffusion are much higher than CO

diffusion, and depends on the crystallographic orientation. Diffusion of oxygen is

practically limited to the [110] direction and no transport occurs perpendicular to the

ridges of the missing row structure.

Oxygen desorbs only in molecular form. At about 800K recombinative molecular

desorption takes place. The dissociation of oxygen on metal surfaces has been modeled

by ab-initio fully quantum-dynamical simulations [102, 104].
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The initial sticking probability for oxygen on the (1×2) surface of the Pt(110) facet

is about 0.4 at room temperature [103, 105, 106]. With growing oxygen coverage, the

sticking coefficient decreases to 0.03 for a coverage greater than 0.35 ML [107].

Subsurface of Oxygen

Subsurface oxygen is defined as an atomic oxygen species located directly underneath

the uppermost metal crystal layer. The formation of subsurface oxygen can take place

only on the non-reconstructed (1×1) surface and subsurface oxygen tends to stabilized

(1× 1) phase which effects the reaction dynamics.

Subsurface of oxygen is responsible for the drastic decrease of the local work function

of the Pt(110) surface.

2.3 Mechanism of the Reaction

In a catalytic process, the reaction occurs in a sequence of elementary steps. This se-

quence includes adsorption, surface diffusion, chemical rearrangement (bond breaking,

bond-forming, molecular rearrangement) of the adsorbed intermediates, and products

desorption.

The catalytic oxidation of CO on platinum follows the Langmuir-Hinshelwood mecha-

nism (i.e., CO and oxygen have to adsorb before the reaction to CO2 can take place),

both reactants adsorb on the catalyst surface in order to yield the product [16].

The reaction steps are

2CO + 2⊕ 
 2COad

O2 + 2⊕ → 2Oad

2COad + 2Oad → 2CO2 ↑ + 4⊗
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Figure 2.8: Basic reaction mechanism: adsorption of CO and O2 molecules, CO

diffusion, and reaction.

where index ad denotes adsorbed molecules or atoms and ⊕ stands for a free adsorp-

tion site. Due to a high energy barrier for spontaneous reaction of CO and O2 in the

gas phase they have to adsorb before the reaction. The adsorption of oxygen is dis-

sociative. Adsorbed CO molecules are bound to the surface considerably less strongly

than oxygen atoms and hence may desorb as well as diffuse on the surface and such

processes are negligible for Oad under typical reaction conditions.

At temperatures above 300K, produced carbon dioxide almost immediately desorbs

into the gas phase, again leaving free space for adsorption. The reaction mechanism

is illustrated in Fig. 2.8.
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2.3.1 Bistability

In a certain range of parameters, the system exhibits bistability between a mainly

oxygen covered, reactive state, and a non-reactive CO covered state. This bistability

can be traced back to an asymmetric inhibition of adsorption. Adsorbed oxygen forms

an open structure where CO molecules can still adsorb and react, whereas a fully CO

covered surface completely inhibits the adsorption of oxygen, and hence poisons the

reaction.

Figure 2.9: Reconstruction from 1× 1 to 1× 2.

After the sputtering (Ar ion) and annealing a reconstructed (1× 2) phase is observed,

as illustrated in Fig. 2.9. When CO is admitted in the reconstructed (1 × 2) phase

this reconstruction will be lifted and a phase transition to a non-reconstructed (1× 1)

phase occurs. CO starts to lift the reconstruction of the surface at a CO coverage

of 0.2 ML and completes the reconstruction at a coverage of 0.5 ML. The activation

energy for this phase transition in 29 KJ/mol [108].

As already discussed in section 2.2, the sticking coefficient of the oxygen is higher in
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the non-reconstructed (1× 1) phase compared to the reconstructed one by a factor of

1.5. As a consequence, the surface will transform in to an oxygen covered one. When

the surface is oxygen covered, with no CO species to lift the reconstruction, it will

reconstruct again. A reconstructed surface has low sticking coefficient for oxygen thus

enabling CO to take over. Now the surface become CO covered and the oscillation

cycle starts again.

Faceting

Faceting is a process which causes an initially flat, single-crystal surface to separate

into two (or three) other surface orientations [109, 110]. This process has been studied

intensively on Pt(110) [99, 109, 111].

Figure 2.10: Schematic diagram of the relation between the conditions for faceting

and the kinetics of catalytic CO oxidation on Pt(110).

Faceting takes place at temperatures below 530K, above this temperature a thermal
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reordering process keeps the (110) surface flat. A CO covered 1×1 surface constitutes

the starting point of an oscillation cycle. On this surface the reaction rate is low and

the facets grow slowly. These facets have a high sticking coefficient for O2, and at a

certain point the surface becomes oxygen covered [23, 112].

The faceting of Pt(110) is associated with an increase in catalytic activity, which in a

reaction rate vs. pCO diagram, shows up as a shift of the rate maximum toward higher

pCO [23], as displayed in Fig. 2.10.

2.3.2 Spatial Coupling

Spatial coupling in CO oxidation on Pt(110) surface is provided by two different mech-

anisms: local coupling and global coupling. Surface diffusion of adsorbed CO molecules

gives rise to local coupling between neighbored sites.

Global coupling acts in the gas phase as a consequence of mass balance in the reaction.

Since the mean free path in the gas phase is typically large in comparison to the size

of the chamber, local partial pressure variations that result from the consumption of

the educts by the reaction quickly extend to affect the whole system. Therefore, the

gas-phase coupling is global.

The interplay between diffusion and gas-phase coupling can lead to phenomena such

as synchronous oscillations, standing waves, cellular structures, and spiral wave tur-

bulence [14, 83].

2.4 Mathematical Modeling

The mechanism of low-pressure CO oxidation on Pt(110) is described through a three

step reaction-diffusion type model knows as the Krischer-Eiswirth-Ertl (KEE) model

[46].
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KEE Model

The KEE model is based on decomposition of the entire reaction into elementary steps.

It consists of three coupled ordinary differential equations for the local dynamics,

taking into account the most significant physical processes.

∂tu = k1sCOpCO − k2u− k3uv (2.3)

∂tv = k4sOpO2 − k3uv (2.4)

∂tw = k5(f(u)− w) (2.5)

where u, is the local CO coverage, i.e., the fraction of CO adsorption sites on the metal

surface that are occupied by adsorbed CO molecules. The second variable, v, is the

local oxygen coverage. The third variable, w, specifies the local fraction of the surface

area occupied by the non-reconstructed (1× 1) structural phase.

The first term in equation (2.3) describes the process of CO adsorption. Here, k1 is

the adsorption rate constant and sco is the sticking coefficient for CO molecules. As

mentioned above, the sticking coefficients are coverage dependent. For sCO a precursor

effect has to be considered and is modeled following Gasser and Smith [113].

Thus the sticking coefficient of CO is given by the expression,

sCO = s0
CO(1− u3)

where s0
CO is the initial sticking probability of CO. The term (1−u3) for CO adsorption

describes a precursor effect.

pCO is the partial pressure of CO in the gas phase. The second and the third terms

in this equation describe desorption of CO and its reaction with adsorbed oxygen

molecules, where k2 and k3 are the desorption rate constant respectively.

The second equation (2.4) of the KEE model describes the kinetics of adsorbed oxy-

gen. The first term is the adsorption rate depending on the partial pressure oxygen
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molecules, where k4 , pO2 , and sO are the impingement rate constants, partial pressure,

and sticking coefficient of oxygen molecules respectively.

sO given by the expression

sO = [s0
O,1×1w + s0

O,1×2(1− w)](1− u− v)2

where s0
O,1×1 and s0

O,1×2 denote the initial sticking probabilities of oxygen on the (1×1)

and (1× 2) surface.

The last equation (2.5) of the KEE model is a phenomenological mean-field descrip-

tion of the phase transition kinetics. The surface free of CO molecules is in the

reconstructed (1×2) phase, while the surface completely covered by CO is in the non-

reconstructed (1 × 1) phase. At intermediate CO coverage, a mosaic of microscopic

domains of both structural phases occupy the surface. The characteristic sizes of such

domain are, however, on the nanometer scale and cannot be resolved in the above

mean-field micrometer scale description. Here, it is simply assumed that, at a fixed

CO coverage u, the local fraction w of the surface area in the non-reconstructed phase

tends to approach

f(u) = 1
1+exp[(u−u0)/δu]

The values of parameters u0 and δ sets the threshold above which the surface structure

is affected by the CO coverage and the steepness of the threshold [46, 114].

The partial pressure of the reactants (pCO and pO2) and temperature T can be changed,

which determines the rate constants k2, k3, and k5 according to the Arrhenius activa-

tion law,

ki = νiexp[Ei/kT ]

Depending upon the control parameters the model exhibits monostable, bistable, ex-

citable, and oscillatory behavior.
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Figure 2.11: The function f (u) for parameters u0 = 0.35 and δu = 0.05 (solid line),

and its piecewise original form (dashed line).

2.5 Pattern Formation in CO Oxidation on Pt(110)

In the 1970s, the group of E. Wicke discovered oscillations of the reaction rate in

catalytic oxidation of carbon monoxide [115]. In 1982 Ertl et. al. observed the

oscillatory kinetics on single crystal surfaces, in CO oxidation on Pt(100) and later

in 1986, oscillations were also reported on Pt(110) where they showed rich behavior,

ranging from periodic and mixed-mode oscillations to deterministic chaos [26, 116].

The development of spatially resolving techniques such as PEEM [84, 117] has shifted

the focus from purely temporal phenomena to spatiotemporal pattern formation. Mea-

surements employing PEEM allow the display of the local work function, which is

changed by the adsorbates, across a surface area of about 500 µm in diameter. The

evolution of patterns on the catalytic surface can be followed in real time with a spa-

tial resolution of about 0.2 µm. Among surface chemical reactions, by far the richest

variety of spatiotemporal patterns has been found in CO oxidation on Pt(110). The

observed phenomena include rotating spiral waves, target patterns, standing waves,
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Figure 2.12: Snapshots of PEEM images displaying different patterns in CO oxidation

on Pt(110). Dark areas in the images correspond to predominantly oxygen covered

regions, and bright areas indicate mainly CO covered regions. (a) Rotating spiral

waves, (b) Target patterns , (c) standing waves [122], and (d) chaos.

cellular structures, chemical turbulence, and solitary waves [14, 118–120]. Examples

of such patterns are displayed in Fig. 2.12.
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Chapter 3

Methods

This Chapter describes the experimental setup used, numerical method used, and the

method used to analyze the patterns obtained from the experiments and numerical

simulations.

3.1 Experimental Setup

This section explains the UHV, PEEM, implementation for periodic forcing, and mod-

ification for high periodic forcing.

3.1.1 UHV Chamber

The experiments presented in Chapters 4 and 6 are conducted in a stainless steel UHV

chamber with a volume of 60L and the pressure about 10−10 mbar in the chamber.

Attached to the UHV chamber are an automated dosing system that keeps the partial

31
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pressures of gases constant within a maximal variation of 0.1, gas supplies for CO

and O2, and two pressure gauges that allow for controlled dosing of the reactants into

the UHV chamber [121]. With the combination of feedback-regulated gas dosing and

permanent pumping of the chamber the CO oxidation reaction can be observed under

constant flow conditions.

Figure 3.1: Schematic diagram of the ultrahigh vacuum (UHV) chamber with pumping

and gas supply system.

The chamber is equipped with a PEEM, a quadrupole mass spectrometer, low energy

electron diffraction (LEED), an Ar-ion sputtering gun, and resistive sample heating.

For imaging the spatiotemporal adsorbate patterns on the catalytic surface, the PEEM

was used, which operated under differential pumping. Platinum crystal is mounted

on a sample holder which allows controlled movement of the sample in x, y, and z-

directions as well as radial and azimuthal rotation by electric step. Preparation of

the clean platinum single crystal was performed by oxidizing at 750K (10−6 mbar),

sputtering, and annealing cycles at up to 1100 K to image pattern formation on the
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Pt(110) surface, which produces images of the intensity distribution of electrons photo-

emitted from an area with a typical diameter of about 500 µm.

3.1.2 Photoemission Electron Microscopy (PEEM)

The PEEM is an excellent imaging technique for the real time observation of pattern

formation during catalytic reactions [14, 83–85]. The PEEM provides spatially resolved

information of reacting species on the surface, since the local work function at a given

point depends on the adsorbate coverage on the surface, therefore, images with different

brightnesses are obtained due to different values of local work function (∇φ).

Figure 3.2: Schematic diagram of the photoemission electron microscope (PEEM).

The clean Pt surface has the lowest work function and displays therefore the bright-

est image. Compared to the clean Pt(110) surface, a monolayer of oxygen coverage

increases the work function (∇φ) by 0.8eV, thereby strongly decreasing the brightness
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of PEEM images. Full CO coverage also increases the work function but produces a

smaller effect (∇φ = 0.3eV) [22, 122].

Fig. 3.2 shows the systematic drawing of the PEEM, creating a complete picture of

the photoelectron distribution emitted from the imaged surface region. To induce

the emission of photoelectrons, the platinum sample is irradiated with ultraviolet light

from a 200 W deuterium discharge lamp. The ultraviolet light has a continuous spectral

intensity characteristic [123]. The angle of light incidence is about 750 from the surface

normal. To capture as many photoelectrons as possible for the imaging, the distance

between the sample and the objective is small (d = 4 mm.). Within this distance, the

electrons are accelerated by a potential difference of about 20kV.

Besides the objective lenses, on the left side in Fig. 3.2, two more lenses are used to

create an image of the sample, an intermediate three electrode lens next to the objective

lens magnifies the electron image by a factor of 102 to 103. The lens combination also

decelerates the fast electrons to energies for which the channel plate has its highest

sensitivity (about 1keV). The channel plate typically amplifies the electron distribution

by a factor of 103.

Finally, a phosphor screen converts the electron image into a photon image which then

recorded by a CCD camera.

An additional problem for investigating surface reactions with PEEM is the restric-

tion of the pressures below 10−6 mbar. This is in part circumvented by the differential

pumping of the PEEM which allows its operation up to pressures of 10−3 mbar even in

the presence of the oxygen around the sample. To maintain the three orders of mag-

nitude pressure difference, an aperture of 300 µm in diameter has to be incorporated

at the focus of the cathode lenses indicated in Fig. 3.2.

In our experiments, the PEEM instrument has been used to monitor a surface area of

500 µm in diameter. The spatial resolution of the images was about 1 µm. The PEEM

is combined with a CCD camera, and provides information on temporal evolution of

reacting species on the surface. A frame rate of 25 images per second gives a sufficiently

good temporal resolution of the PEEM recordings. The video pictures are stored on

a recorder or are used as input for the LABVIEW card controlling the feedback loop.
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3.1.3 Implementation for Resonance Forcing

Periodic forcing has been implemented experimentally in gas-phase. Partial pressure

variations affect the reaction conditions on the catalytic surface in a uniform way.

The automated gas inlet system allowed the controlled modulation of the CO partial

pressure in the chamber by changing the dosing rate of CO molecules. Resonance

forcing has been implemented by using a frequency generator to control the dosing

rate of CO molecules. The schematic diagram of periodic forcing is shown in Fig. 3.3.

Figure 3.3: Schematic drawing of the experimental setup with periodic forcing.

For resonant forcing, the carbon monoxide pressure pCO in the chamber is varied by:

pCO(t) = po[1 + Asin(2πωf t)], (3.1)

where po is the base pressure of CO, A is the forcing amplitude, and ωf is the forcing

frequency. In this way, the CO partial pressure in the reaction chamber could be

periodically modulated with a nearly harmonic signal of amplitude A and frequency
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ωf , while its temporal average po was kept constant. For forcing frequencies ωf ≤
2Hz, an electronic valve was used to control the carbon monoxide flux. The valve is

connected to the computer and is regulated by an oscillating voltage signal generated

by the LABVIEW program. This setup provides the ability to scan over a predefined

range of forcing amplitudes and frequencies to measure the system’s response in a wide

range of the parameter space [124].

Modification: The above setup fails for higher forcing frequencies, as the forcing

amplitude is strongly damped.

Figure 3.4: The CO pressure regulating system is represented as an electric circuit.

Symbols, abbreviations, and indices: σ = conductivity, C = capacity, X1 = pressure

in the UHV chamber, X2 = regulated CO pressure in the gas dosing system, X3 =

pressure in the pre-pressure system, DV = dosing valve, EV = exhaust valve, GDS =

gas dosing system, i = inner, IM = ionization manometer, L = leakage, M = manome-

ter, MOT = compressor, P0 = pressure after manometer, PPP = pre-pressure pump,

PPS = prepressure system, PI = Pirani pressure sensor, PT = pressure transducer,

RV = regulating valve, TP = turbo pump, and UHV = ultrahigh vacuum.



3.1. EXPERIMENTAL SETUP 37

Figure 3.5: Design of the forcing compressor.

Figure 3.6: Bode plots of the UHV chamber showing the compressor (a) forcing fre-

quency vs. phase, and (b) amplitude of resulting oscillations inside the UHV chamber.

The experimental results are shown as (+), while the dashed lines indicate approxi-

mation fits with a first order low-pass filter function.
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Based on the analogy between electrical and pneumatic circuits [125], the UHV cham-

ber and the CO pressure regulating system was analyzed in detail.

Analysis of the UHV chamber and the whole CO pressure regulating system reveals

its intrinsic low pass filtering characteristics, as could be deduced from the equivalent

circuit diagram, given in Fig. 3.4. It neglects chemical and thermal driven flows in

the system and it ignores the finite velocity of the gas.

In order to enlarge the oscillation amplitude at higher frequencies, a small self-built

compressor was implemented in the gas dosing system (Fig. 3.5). This compressor

basically consists of a piston which periodically draws CO from the gas line, compresses

and pumps it back to the pre-pressure line, resulting in an harmonic modification of

the pCO in the chamber. The forcing frequency is adjusted by the velocity of the

stepper motor driving the piston, while the amplitude can be regulated in a limited

range by an additional cylinder setting an offset gas volume.

The forcing frequency is adjusted by the rotational frequency of the stepper motor

driving the piston compressor. The other side of the piston is pumped by a rotary

pump to ease the movement of the piston, since the CO pressure is normally operated

between 50 and 100 mbar.

This new device allows the application of periodic forcing at frequencies up to 4Hz

and well-defined amplitudes. The frequency response of the UHV chamber on partial

pressure in the pre-pressure line is shown as Bode plot in Fig. 3.6. The measurement

of the pCO = 2× 10−4 mbar in the UHV chamber was performed by using a ionization

manometer (Leybold IM510 with VIG17-head) in linear scaling. The experimental

results are shown as (+). The solid line indicates the linear approximation fit with a

chamber’s time constant.

3.2 Numerical Method

Mathematical modeling of the experiments is performed using a realistic model of

catalytic CO oxidation on Pt(110) known as the KEE model, introduced in Chapter 2.

The model takes adsorption of CO and oxygen molecules, reaction rates, desorption of
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CO molecules, the structural phase transition of the Pt(110) surface, surface diffusion

of adsorbed CO molecules, surface roughening into account while faceting, formation

of subsurface oxygen, and the effects of internal gas-phase coupling are not considered.

The differential equations describing a single element of the extended system are given

by:

ut = k1scopco(1− u3)− k2u− k3uv + D∇2u (3.2)

vt = k4pO2 [so,1×1w + so,1×2(1− w)](1− u− v)2 − k3uv (3.3)

wt = k5(
1

1 + exp[(u− u0)/δu]
− w) (3.4)

Numerical simulations of the model were performed using a second-order finite differ-

ence scheme for the spatial discrimination with a grid resolution of dx = 4 µm. For the

temporal discrimination an explicit Euler scheme with a fixed time steps dt = 0.001s

is used. A system size of 400 µm2 and no-flux boundary condition is taken.

3.2.1 Implementation for Resonance Forcing

Like in the experiments, resonance forcing is artificially introduced by means of con-

trolled variation of CO partial pressures. Therefore, to implement resonance forcing in

the CO oxidation model, it is assumed that the CO partial pressure pCO in equation

(3.2) is not constant but varies according to the equation (3.1).

All of the numerical simulations were carried out in a programming tool called Matlab.

In all cases, model equations were integrated in time by an Explicit Euler method. The

model parameters used for the numerical simulations are given in Tables 3.1 and 3.2.
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3.3 Pattern Analysis

For further analysis, either the experimentally obtained PEEM image sequence or the

numerical values of the CO surface coverage (for model simulations) are used. The

course of time is visualized by space-time plots, showing the pattern evolution along a

chosen line within the two-dimensional data as a function of time. Oscillatory behavior

as well as motion of cluster boundaries cross-sectioning this line can be determined

from these plots. Furthermore, the average image intensity in a small region of the

platinum surface is shown in comparison to the forcing as a function of time. From

these plots, the state of entrainment can be easily determined.

To measure the temporal response of the patterns, a frequency demodulation technique

is used. At each image pixel the brightness of the image is recorded, giving an ensemble

of time series of the local system dynamics. The Fourier transform of these time series

is calculated, and the complex Fourier coefficients of the main frequency component

allow for amplitude and phase representations of the data. The spatial distribution

of amplitude and phase is analyzed as well as the overall distribution of phase states,

given as phase histogram and mapping into the complex plane.
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k1 3.14× 105 s−1mbar−1 Impingement rate of CO

k2 10.23 s−1 CO desorption rate

k3 283.8 s−1 Reaction rate

k4 5.86× 105 s−1mbar−1 Impingement rate of O2

k5 1.610 s−1 Phase transition rate

sCO 1.0 CO sticking coefficient

sO,1×1 0.6 Oxygen sticking coefficient on the 1×1 phase

sO,1×2 0.4 Oxygen sticking coefficient on the 1×2 phase

u0, δu 0.35, 0.05 Parameters for the structural phase transition

D 40 µ2s−1 CO diffusion coefficient

pO2 1.2× 10−4 mbar O2 partial pressure

pO 4.6219548× 10−5 mbar Base CO partial pressure

Table 3.1: Parameters of the KEE model (Turbulent regime)

k1 3.14× 105 s−1mbar−1 Impingement rate of CO

k2 10.21 s−1 CO desorption rate

k3 281.6 s−1 Reaction rate

k4 5.86× 105 s−1mbar−1 Impingement rate of O2

k5 1.60 s−1 Phase transition rate

sCO 1.0 CO sticking coefficient

sO,1×1 0.6 Oxygen sticking coefficient on the 1×1 phase

sO,1×2 0.4 Oxygen sticking coefficient on the 1×2 phase

u0, δu 0.35, 0.05 Parameters for the structural phase transition

D 39.59 µ2s−1 CO diffusion coefficient

pO2 1.2× 10−4 mbar O2 partial pressure

pO 4.75× 10−5 mbar Base CO partial pressure

Table 3.2: Parameters of the KEE model (Nonturbulent regime)
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Chapter 4

Resonance Forcing: Experimental

Results

4.1 Natural Frequency of the System

The natural frequency of the system is defined as the main frequency of the Fourier

spectrum of the local PEEM intensity, i.e., the frequency with the highest amplitude

in the power spectrum of a local intensity time series. For a quick measurement of the

natural frequency during the experiments, a section of the PEEM image with a size

of 10× 10 pixels is chosen, its mean intensity is calculated, and its time series Fourier

transformed (Fig. 4.1).

The natural frequency is determined from the maximum of the power spectrum. Even

though the frequency analysis is performed locally, its validity is assumed for the whole

sample. To prove this assumption, 2500 pixels, equally distributed over the region of

interest were chosen from the same video sequence. The time series of the one single

pixel is shown in Fig. 4.2.

However, on a time scale of several minutes the natural frequency slowly decreases al-

43
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Figure 4.1: Time series of the averaged image intensity in an area of 10 × 10 pixels

(top panel) and power spectrum of the data (bottom panel). The 1Hz oscillations are

clearly seen in both the time series and the spectrum. The reaction parameters are T

= 515K, po2 = 1.5× 10−4 mbar, and po = 7.5× 10−5 mbar.

Figure 4.2: Time series of the gray value of one single pixel (top panel) and respective

power spectrum (bottom panel). The reaction parameters are the same as in Fig. 4.1.
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though the reaction parameters are kept constant (Fig. 4.3). This effect is presumably

caused by a faceting of the platinum surface, which is known to take place at the used

reaction conditions [99].

Figure 4.3: Fourier spectrogram showing the time evolution of the natural frequency of

the system without forcing. For each time moment an interval of 20.48s (512 samples

at 25 frames per second) is analyzed. The frequency has an initial value of about

1Hz. During the first 30 min it drops by approximately 0.2Hz. Broadening of the

frequency line is also observed, which indicates, that the system has developed into a

more turbulent state. Values of temperature (T = 515K), and partial pressures (po2

= 1.1× 10−4 mbar, po = 9.0× 10−5 mbar) were constant.

4.2 2:1 Forcing

The natural frequency of the system (ω0) is taken after the full development of spiral

wave turbulence. We apply the forcing ωf = 2ω0 in this system. After starting the

forcing, the spiral wave turbulence is first replaced by the intermittent turbulence

characterized by the repeated emergence and disappearance of localized turbulent
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bubbles on a background of locked uniform oscillations. In different reaction and

forcing parameters region, two types of clusters named phase and amplitude clusters

were found.

4.2.1 Phase Clusters

Phase clusters are characterized by equal oscillation amplitudes and a constant phase

shift between the cluster states. The oscillations in both cluster states correspond

to the same limit cycle, but are opposite in phase. The phase fronts that separate

different cluster domains exhibit rich behavior.

Fig. 4.4(a) shows the natural frequency of the system ω0 = 0.68Hz. The amplitudes

of the Fourier coefficients are normalized to the maximum peak. We fixed the forcing

frequency ωf = 1.36Hz and changed the forcing amplitude. During the experiment

the reaction parameters were fixed.

At different forcing amplitudes two and four phase cluster patterns under 2:1 and 4:1

entrainment were found.

2:1 Entrainment

At forcing amplitude A = 0.22, a phase locked regime with stable cluster patterns

due to 2:1 entrained was observed. Fig. 4.4(b) shows the Fourier spectrum of 2:1

entrained phase clusters and Fig. 4.5(a) shows three snapshots of PEEM images at

time intervals of one forcing period between subsequent frames.

Due to the non-harmonicity of the CO oxidation, the size of these phase domains is

not fixed but changes in time undergoing enlargement-reduction (breathing like) cycles

with a periodicity that is again two times the forcing cycle.

The space-time plot (Fig. 4.5(b)) shows that the domain wall of the opposite phase is

not stationary, taken along the line AB shown in Fig. 4.5(a). Fig. 4.5(c) gives the time

course of the surface marked by the (solid line) AB in the first image of Fig. 4.5(a)
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Figure 4.4: Mean Fourier spectra at different forcing amplitudes A. (a) 0, (b) 0.22, (c)

0.24. Other parameters are T = 529K, po2 = 1 × 10−4 mbar, po = 9.26 × 10−5 mbar,

ω0 = 0.68Hz, and ωf= 1.36Hz.

and the course of the forcing signal (dotted line), shows the sub-harmonic entrainment

of the system to the forcing frequency.

During two cycles of the forcing signal, the system performs one cycle of periodically

changing CO coverage, indicated by low and high PEEM intensity.

To further analyze the dynamics of oscillatory clusters, the frequency demodulation

technique (described detail in Chapter 3) was used which is useful for the characteriza-

tion of resonant patterns. On analyzing the patterns at ωf/2, the two phase patterns

differed by π were obtained.
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Figure 4.5: Phase cluster under 2:1 entrainment. (a) snapshots of PEEM images

300× 300 µm2 illustrating a phase locked regime, (b) space-time plot taken along the

AB line (top panel), and (c) intensity of the PEEM image averaged globally (solid

line) and the forcing signal (dotted line). The forcing amplitude A = 0.22 and other

parameters are the same as in Fig. 4.4.

In phase pattern Fig. 4.6(a), two phase states are clearly visible. Fig. 4.6(b) illustrates

that the oscillation amplitude is strongly reduced in the domain interfaces and that is

the same within the domains of the opposite phase.

Phase portrait Fig. 4.6(c), shows two spots of accumulating points corresponding to

the pixels located within the different domain. Phase histogram Fig. 4.6(d), corre-

sponds to two phases which are differ by π. The two phase states are not evenly

weighted.
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Figure 4.6: Phase and amplitude representation of the cluster patterns shown in Fig.

4.5(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

4:1 Entrainment

At forcing amplitude A = 0.24, two phase cluster patterns due to 4:1 entrainment were

observed. Fig. 4.4(c) shows the Fourier spectrum under 4:1 entrainment and one can

see the main sharp peak at ωf/4 and ωf .

The phase and amplitude analysis of the cluster patterns at ωf/4 shows two phase

cluster which differ by π have similar properties as 2:1 entrained cluster (data are not

shown).

Four Phase Clusters under 4:1 Entrainment:

The experimental protocol is modified in a way that the system is brought back to
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Figure 4.7: Phase and amplitude representation of the four phase cluster patterns. (a)

phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase histogram.The

forcing amplitude A = 0.25 and other parameters are same as in Fig. 4.4.

the unforced state and is then forced with these differing initial conditions, four phase

clusters could be obtained, in analogous to resonant 4:1 forcing. Fig. 4.7 shows the

phase and amplitude representation, analyzed at ωf/4. (PEEM images are not shown.)

The cluster patterns appears to be smaller scaled.

The phase portrait, given in Fig. 4.7(c), shows a cross-shaped structure rather than the

line structure in the preceding images, indicating the presence of four distinct cluster

states. This is confirmed by the phase histogram, shown in Fig. 4.7(d), where four

maxima appear with a difference of π/2. However, two of the phase states, differing by

π, are more predominant. This may indicate that the two phase cluster configuration

might be more stable and the system tends to reach a two phase state.
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4.2.2 Amplitude Clusters

In amplitude clusters, not only the oscillation phase but also the oscillation amplitude

is different in the regions occupied by the two different states. Thus, uniform oscilla-

tions within two different clusters correspond to different coexisting limit cycles of an

equal period. The phase shift between the oscillations in two cluster states is constant,

but depends on the controlling parameters ωf and A.

Figure 4.8: Mean Fourier spectra at different forcing amplitudes A. (a) 0, (b) 0.014,

(c) 0.064, (d) 0.079, and (e) 0.093. Other parameters are T = 546 K, pO2 = 1.5× 10−4

mbar, po = 6.22× 10−5 mbar, and ωf = 1.27Hz.

2:1 Entrainment

As above, forcing is applied after the full development of spiral wave turbulence. Fig.

4.8(a) shows the frequency spectrum of the unforced turbulent system. The natural
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frequency, defined as the most prominent line, is found at ω0 = (0.59±0.03)Hz. The

forcing frequency is set to ωf = 1.27Hz, which is slightly higher than twice the calcu-

lated natural frequency.

At A = 0.014, two phase frequency locked amplitude clusters were observed. It is

locked to the external stimulus with a phase shift of one forcing period between the

two states. Analysis of the phase and amplitude representation of amplitude cluster

patterns at ωf/2 is shown in Fig. 4.9.

In phase pattern (Fig. 4.9(a)), two phase states are clearly visible and the amplitude

pattern (Fig. 4.9(b)) indicates that the amplitude is different not only at the border

of the cluster but also in different domains of the cluster pattern. The phase portrait

Fig. 4.9(c) and histogram Fig. 4.9(d) shows the phase difference between two clusters

is π.

Figure 4.9: Phase and amplitude representation of amplitude clusters at 2:1 entrain-

ment. (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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4:1 Entrainment

At slightly stronger forcing amplitude A = 0.064, the system’s oscillations are period

doubled, indicated by the appearance of the sub-harmonic line ω = ωf/4 and it’s

rational multiples 3/4ωf , 5/3ωf , as seen in Fig. 4.8(c). Two phase amplitude clusters

were again observed.

The phase and amplitude representation of the amplitude clusters at ωf/4 shows the

same properties as two phase cluster at 2:1 entrainment (data are not shown).

8:1 Entrainment

Figure 4.10: Phase and amplitude representation of the amplitude cluster patterns

at 8:1 entrainment. (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and

(d) phase histogram.

A slight increase in the forcing amplitude to A = 0.0108 leads to the next bifurcation

within the period doubling cascade. The system shows 8:1 entrainment, locking to
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a frequency of ωf/8, while the Fourier coefficient of ωf/4 nearly vanishes, the sub-

harmonic 3/8ωf is strongly pronounced as seen in Fig. 4.8(c))

In Fig. 4.10, the spatial amplitude, phase distribution, the phase portrait, and the

phase histogram are shown, obtained for the Fourier coefficients of ωf/8. Fig. 4.10(a)

shows the phase patterns, where two phase states are mainly observed. They appear

in clusters, which are separated by low amplitude boundaries and the amplitude is

different in two phase states as can be seen from the amplitude pattern in Fig. 4.10(b).

The phase portrait, given in Fig. 4.10(c), is mainly line-shaped, with two accumulation

points with opposite phase. The clustering into two phase states can clearly be seen

in the phase histogram, given in Fig. 4.10(d).

Transition to Chaos

Finally, applying a slightly higher forcing amplitude of A = 0.093, the oscillation is

no longer entrained. The Fourier spectrum given in Fig. 4.8(e), shows the absence

of the sub-harmonic line at ωf/8. Lines at ωf/4, ωf/2, and ωf are still present, but

additional frequency components appear in the sub-harmonic regime.

The strong peak between ωf/4 and ωf/2 might be related to 3/8ωf within the fre-

quency resolution, but the peak slightly above ωf/2 (determined to be at ωf = (0.73±
0.03)Hz) cannot be assigned to a rational multiple of the forcing frequency. There-

fore, we state a chaotic response of the system at sufficiently high forcing amplitude.

Regarding the spatial dynamics, the entrainment of the system is accompanied by the

suppression of chemical turbulence and cluster formation.

4.3 3:1 Forcing

Pattern formation under 3:1 resonance is explained in this section. Two phase, three

phase, and six phase patterns were observed at 2:1, 3:1, and 6:1 entrainment respec-

tively.
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4.3.1 2:1 Entrainment

As above the system is forced with three times its natural frequency (ωf = 3ω0). The

natural frequency of the system is found at about 0.76Hz. The forcing parameters

were fixed at ωf = 2.3Hz and A = 0.12 and the phase locked regimes were observed

(Fig. 4.11). As can be seen in the space-time plot (Fig. 4.11(b)), the system largely

performs oscillations with a frequency of ω = ωf/2 (2:1 entrainment). However, it

seems that for this amplitude of 3:1 forcing the system is not fully entrained. At t =

5.5 s the pattern inverts in the space-time plot and a large amplitude oscillation is not

followed by a small shoulder but by another large amplitude oscillation (Fig. 4.11(c)).

Figure 4.11: Two phase cluster due to 2:1 entrainment in 3:1 forcing. (a) snapshots of

PEEM images (size 300×300 µm2), (b) space-time plot showing the pattern evolution

along the AB line (see top panel), and (c) averaged intensity (solid line), and the

forcing signal (dotted line). The reaction parameters are: T = 534 K, po2 = 1.6×10−4

mbar, po = 7.6 × 10−5 mbar, ωo = 0.76Hz, and the forcing parameters are A = 0.11,

and ωf = 2.3Hz.
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Figure 4.12: Phase and amplitude representation of the cluster patterns shown in Fig.

4.11(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

After this transition, the oscillations of the system are again 2:1 entrained. These

more complex dynamics are also visible when phase and amplitude of the patterns are

analyzed (Fig. 4.12). Two distinct clusters with sharp boundaries can be observed

(Fig. 4.12(a)). The two phase locked cluster having different amplitude in different

domains indicate the observation of an amplitude cluster (Fig. 4.12(a)), which are not

exactly separated by a phase difference of π (Fig. 4.12(c) and (d)).

4.3.2 3:1 Entrainment

Another experiment begins with spiral wave turbulence, and without forcing the sys-

tem oscillates with a natural frequency ω0 = 0.8Hz (Fig. 4.13(a)). The forcing fre-

quency is set to ωf = 2.4Hz, which again is three times of the calculated natural
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frequency. At forcing amplitude A = 0.12, the system oscillates with one third of the

forcing frequency, and the system frequency locked in 3:1 entrainment. Fig. 4.13(b)

shows the Fourier spectrum at 3:1 entrainment, where one can see the peak at ωf and

ωf/3.

Figure 4.13: Fourier spectra at different forcing amplitudes A: (a) 0, and (b) 0.12.

The reaction parameters are: T = 534 K, po2 = 1.6 × 10−4 mbar, po = 7.66 × 10−5

mbar, ωo = 0.8Hz, and ωf = 2.4Hz.

Fig. 4.14(a) shows the snapshots of stripe like wave fronts that periodically appear on

the platinum surface under 3:1 entrainment. Every PEEM image is taken after one

forcing period. The temporal evolution of the system is represented as a space-time

plot in Fig. 4.14(b) taken along the AB shown in Fig 4.14(a).

In space-time plot one can see that the domain of opposite phase is not stationary.

Fig. 4.14(c) gives the time course of the surface along the line AB shown in the first
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Figure 4.14: Three phase cluster formation and entrainment at 3:1 resonant forcing.

(a) snapshots of PEEM images (size 300 × 300 µm2), (b) space-time plot showing

the pattern evolution along the AB line indicated in first image (top panel), and

(c) averaged intensity (solid line) and the forcing signal (dotted line). The reaction

parameters are: T = 534 K, po2 = 1.6 × 10−4 mbar, po = 7.66 × 10−5 mbar, ωo =

0.8Hz, and the forcing parameters are A= 0.12, and ωf = 2.4Hz.

image of Fig. 4.14(a) (solid line) and the course of the forcing signal (dotted line),

shows the sub-harmonic entrainment of the system to the forcing frequency.

Fig. 4.15 shows the phase and amplitude representation at ωf/3. Well-defined phase

fronts such as black, dark gray, and light gray areas are visible in phase pattern in

Fig. 4.15(a). The amplitude pattern in Fig. 4.15(b) shows that the amplitude is

approximately the same except for the border. Accordingly, the phase distribution,

given in Fig. 4.15(c) and Fig. 4.15(d), shows three maxima with a distance of 2π/3.
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Figure 4.15: Phase and amplitude representation of the cluster patterns shown in Fig.

4.14(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

4.3.3 6:1 Entrainment

At forcing frequency ωf = 2.5Hz, a response with large spectral power at ω/ωf = 1/6

was observed as shown in the power spectrum Fig. 4.16. The power spectrum shows

the main peak at ωf/6, ωf/3, ωf , 1.95ωf .

The phase and amplitude representation at ωf/6 is shown in Fig. 4.17. In phase

pattern the six phases are clearly visible (Fig 4.17(a)). In the amplitude pattern (Fig

4.17(b)), the amplitude drops only at the border. The phase portrait (Fig 4.17(c))

shows the six fold symmetry corresponding to six stable uniform phases, which are

found at the point farthest from the center. The states are connected with traveling

fronts that shift the phase by π/3 and do not go through the origin. The scattering of

the point is due to the experimental noise. The phase histogram (Fig. 4.17(d)) shows

that the phase difference in each phase is approximately 2π/6.
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Figure 4.16: Spatially averaged Fourier spectrum of the PEEM intensity at ωf =

2.5Hz. Other parameters are same as in Fig. 4.15.

Figure 4.17: Phase and amplitude representation of the cluster patterns at 6:1 en-

trainment. (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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4.4 4:1 Forcing

In this section we explore pattern formation of the forced CO oxidation on Pt(110)

under 4:1 resonance in turbulent and nonturbulent regimes. Recent developments

enable the exploration of a wider range of forcing parameters, allowing frequencies of

about four times the natural frequency of the oscillatory system to be reached for the

first time.

4.4.1 4:1 Forcing in Turbulent Regime

Like above, the natural frequency of the system was measured after the full devel-

opment of the spiral wave turbulence. The natural frequency of the system is about

0.72Hz (see in Fig. 4.18(a)). At forcing amplitude of A = 0.068, the spiral-wave tur-

bulence develops into stripe like wave fronts that periodically appear on the platinum

surface (see Fig. 4.19(a) and 4.19(b)). Fig. 4.19(c), which gives the time course of

the surface marked by the square in the first image of Fig. 4.19(a) (solid line) and the

course of the forcing signal (dotted line), shows the sub-harmonic entrainment of the

system to the forcing frequency.

During four cycles of the forcing signal, the system performs one cycle of periodically

changing CO coverage. While small changes within the PEEM signal occur at all

phases of the forcing frequency, the sudden increase of the CO coverage is in phase

with the rising edge of the applied CO pressure.

The same could be observed for the strong decrease of the CO coverage occurring in

accordance with every fourth trailing edge of the forcing signal. The moment of high

and low CO coverage occurs at different phases of the sub-harmonic oscillation for

different places on the surface. It can best be seen in the space-time plot, given in

Fig. 4.19(b). It shows the intensity along the line indicated in the first image of Fig.

4.19(a). Spatially resolved analysis of the appearing pattern using the demodulation

technique shows phase clusters (see Fig. 4.20(a)). Along with a notable amount of

phase defects indicating that the system is still turbulent, especially in the upper right

area and the lower part of the analyzed surface, a regular four-phase pattern can be
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observed.

The different phase states are visible in the phase pattern in Fig. 4.20(a) as black, dark-

gray, gray, and light-gray areas. These areas also show higher oscillation amplitude,

given as bright areas in Fig. 4.20(b), while the domain interfaces are visible as regions

with reduced amplitude, shown in gray. The regions with strongly reduced amplitude

near zero, seen in black, are located at the defect points.

The two areas of high amplitude and regular phase pattern are separated by a tur-

bulent regime, where the number of defects is larger and phase clusters cannot be

identified. The phase portrait and the phase histogram, given in Fig. 4.20(c) and Fig.

4.20(d), show the presence of four distinct phase states with a phase difference of π/2,

accompanied by an underlying random phase distribution due to the turbulent regime.

Figure 4.18: Fourier spectra at different forcing amplitudes A. (a) 0, (b) 0.068. The

reaction parameters are: T = 534 K, po2 = 1.7 × 10−4 mbar, po = 5.88 × 10−5 mbar,

ωo = 0.72Hz, and ωf = 2.88Hz.
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Figure 4.19: Four phase cluster at 4:1 resonant forcing. (a) snapshots of PEEM

images (size 300× 300 µm2), (b) space-time plot, and (c) averaged intensity of a local

area of the surface (solid line), indicated by the square in (a), and the forcing signal

(dotted line). The reaction parameters are the same as in Fig. 4.18.

Figure 4.20: Phase and amplitude representations of the cluster patterns shown in

Fig. 4.19(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d)

phase histogram.
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4.4.2 4:1 Forcing in a Nonturbulent Regime

Figure 4.21: Fourier spectra at different forcing amplitudes A. (a) 0, and (b) 0.12.

The parameters are: T = 534 K, po2 = 1.2× 10−4 mbar, po = 5.8× 10−5 mbar, ωo =

0.5Hz, and ωf = 2Hz.

4:1 forcing is done experimentally in a nonturbulent regime in the ruthenium-catalyzed

BZ reaction forced by periodic illumination revealed, where the unforced pattern is a

rotating spiral wave of ruthenium catalyst concentration. However, four phase patterns

at low forcing amplitude were seen but the two phase standing wave patterns at high

forcing amplitude were not seen.

The system was forced after the full development of homogenous oscillation. Fig.

4.21(a) shows the natural frequency of the system around 0.5Hz. The system was

forced around four times its natural frequency.

At weak forcing amplitude A = 0.11, the system oscillates with half of the forcing

frequency; the system is frequency locked in 2:1 entrainment (see Fig. 4.21(b)). Fig.

4.22(a) shows the PEEM images of the phase clusters taken after one forcing period.
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Figure 4.22: Two phase cluster formation and 2:1 entrainment at 4:1 resonant forcing.

(a) snapshots of PEEM images (size 300× 300 µm2), (b) space-time plot showing the

pattern evolution along the AB line indicated in (a), and (c) averaged intensity of a

local area of the surface (solid line) and the forcing signal (dotted line). The parameters

are: T= 534 K, po2 = 1.2× 10−4 mbar, po = 5.8× 10−5 mbar, ωo = 0.5Hz, ωf = 2Hz,

A = 0.12.

The space-time plot represents (Fig. 4.22(b)) that the domain of the opposite phase

are not stationary, taken along the line AB shown in Fig. 4.22(a). In Fig. 4.22(c)

the solid line shows the average PEEM intensity and the dotted line shows the forcing

signal of the system.

To get an idea about phase and amplitude frequency demodulation technique is used

again. Fig. 4.23 shows the phase and amplitude representation of two phase clusters.

In Fig. 4.23(b) one can see that the amplitude drops only at the border of the cluster

and it is the same between the opposite domains Fig. 4.23(a). Fig. 4.23(c) and Fig.

4.23(d) represent that the phase difference is π.
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Figure 4.23: Phase and amplitude representations of the cluster patterns shown in

Fig. 4.22(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d)

phase histogram.

4.5 Conclusion

Resonance forcing is investigated in turbulent and nonturbulent regimes in CO oxida-

tion on Pt(110). A compressor driven reactor which allows global gas-phase forcing for

frequency modulations up to 4Hz was designed and built [80]. Experiments in differ-

ent resonant forcing regimes (2:1, 3:1, 4:1) were performed and the observed pattern

formation is discussed with respect to experimental studies.

In the case of 2:1 resonance forcing, a complete path from chemical turbulence to

entrainment and further to chaotic oscillations via a period doubling cascade was

obtained. A variety of patterns were observed under 2:1 forcing. Under 2:1 and

4:1 entrainment both types of cluster (phase and amplitude) differing by π were ob-

tained. Four phase clusters are obtained under 4:1 entrainment. In the case of 8:1

sub-harmonic entrainment, only an amplitude clusters were obtained. Phase fronts

separating different homogeneous phase locked states were clearly observed during the
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experiments. In addition, the theoretical work under 2:1 resonance forcing in a sin-

gle oscillator predicts [45] front explosions for decaying forcing amplitude, turbulent

interfacial zones were not observed under 2:1 resonance forcing.

In 3:1 resonance forcing, three phase and six phase moving clusters were observed

at 3:1 and 6:1 entrainment, while in BZ reaction three phase moving and six phase

stationary clusters were observed respectively [77].

Theoretically predicted labyrinth patterns in a single oscillator [45], could not be found

experimentally probably due to the high sensitivity of the system to parameter changes

and present technical limitations in the application of soft changes in amplitude A.

Under 4:1 resonance forcing, 4:1 entrainment and four-phase cluster patterns could

be observed [126]. However, the cluster formation takes place in finite regions of the

surface, while other parts appear not to be 4:1 entrained, but still show turbulent

behavior. This is one of the reasons why global coupling [46, 127] can be neglected

under 4:1 forcing. Global coupling can stabilize homogeneous oscillations in a large

surface area. This system, however, breaks up into a large number of rather small

clusters. Thus, the effect of global coupling is averaged out. Additionally, the applied

forcing amplitudes are comparably high, making an influence of global coupling even

more unlikely.

In the case of 4:1 resonance forcing in a nonturbulent regime, only two phase moving

phase clusters differing by π were obtained, while the four phase patterns could not be

observed. Experimentally in BZ reaction in nonturbulent regime the four phase cluster

patterns could be observed but the two phase standing wave patterns (predicted in

CGLE equation, FitzHugh-Nagumo and Brusselator models) were not observed [71].

In summary, it was demonstrated that attempts to control chemical turbulence by

periodic forcing may suppress spatial turbulence, but could lead to chaotic response

of the system. The path to chaos was given by a periodic doubling cascade which was

followed by the subsequent increase of forcing amplitude. Further with the help of a

new compressor (described in Chapter 3) 3:1 and 4:1 resonance forcing regions were

reached for first time.
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Chapter 5

Resonance Forcing: Theoretical

Results

Numerical simulations have been performed for comparison to the experiments. The

KEE model was used and its implementation for resonance forcing is explained in

Chapter 3.

Periodic forcing under 2:1 and 3:1 is explained by Davidson et. al. in a single oscillator

[45] but this is unknown in an extended system. As the experimental system used an

extended system, to compare the results the simulation was performed in an extended

system.

5.1 Natural Frequency of an Extended System

As has been already discussed, the natural frequency of the single oscillator in nontur-

bulent state is identical with the oscillation frequency of the extended system, while

69
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Figure 5.1: Frequency of an extended system. (a) spatial distribution, (b) histogram of

most prominent frequency in a numerical simulation of unforced turbulence. ω0,single

denotes the natural frequency of a single oscillator. The parameters are given in

Chapter 3, Table 3.1.

Figure 5.2: Oscillation frequency of a single oscillator (circles) and mean oscillation

frequency of the extended system (squares) using the KEE model with different p0

within the turbulent regime. The end points, where both frequencies coincide, indicate

the onset of homogeneous oscillations.
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in the turbulent state the system oscillates at higher frequencies due to diffusive in-

teraction of the surface elements.

To get an overview over the oscillatory characteristics of an extended system, we

performed Fourier analysis of the free running system in a fully developed turbulent

state. The initial parameters of the partial pressures were chosen such that the un-

forced system oscillates and exhibits spontaneously spiral wave turbulence. The model

parameters are given in Chapter 3 in Table 3.1.

Fig. 5.1(a) shows the most prominent frequency for each surface element. The local

generic frequency variation spans a frequency range of about 0.4-0.6Hz. A certain

frequency range is expected because of the turbulent state, but the distribution of

oscillation frequencies found locally, shown as histogram in Fig. 5.1(b), shows that

the mean frequency of 0.51Hz is remarkably higher than the oscillation frequency of

the single oscillator, which is rarely found in the extended system.

Fig. 5.2 shows the course of both characteristic frequencies, the mean frequency of the

extended system (squares) and the natural frequency of the single oscillator (circles),

with increasing CO base pressure p0. At the borders of the turbulent regime, homo-

geneous oscillations are found in the extended system, where the system behaves as a

single oscillator. A maximum frequency difference of more than 0.1Hz appears in the

center of the turbulent regime, at p0 = 4.63 ×10−5 mbar. Defining the characteristic

frequency of the extended system ω0, extended as the mean local oscillation frequency,

it was obtained for the chosen parameter set ωo,ext = 0.51Hz ≈ 1.2ω0,single.

5.2 2:1 Forcing

The forcing frequency ωf = 0.98Hz was chosen to be near the second harmonic of the

most prominent frequency in the extended system in fully developed turbulence (ω0,ext

= 0.51Hz) (Fig. 5.1(b)), rather than twice the single oscillator’s natural frequency

(ω0,single
= 0.42Hz).

Increasing the forcing amplitude, frequency locked 2:1 entrainment is obtained at A =

0.0078 (Fig. 5.3(a)). In the space-time plot (Fig. 5.3(b)), one can see that the domain
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Figure 5.3: Two phase cluster at 2:1entrainment, KEE model. (a) Snapshots of CO

coverage (size 400× 400 µm2), (b) space-time plot along the AB line from Fig. 5.3(a),

and (c) CO coverage along the line AB (solid line) and forcing signal (dotted line).

Forcing parameters are ωf = 0.98Hz and A = 0.086.

between opposite phases are stationary.

It can be seen clearly in the space-time stroboscopic plot (Fig. 5.4), showing the

pattern evolution along the same AB line of Fig. 5.3(a), choosing one frame every two

forcing cycles. Non-equilibrium Bloch walls were observed as the borders between two

different entrained states (π-fronts).

The phase and amplitude presentations are shown in Fig. 5.5. In phase pattern

(Fig. 5.5(a)), the two phase states of black and dark gray are clearly visible. The

amplitude is the same in the different domain except the cluster boundary (as seen in

the amplitude pattern (in Fig. 5.5(b)). The phase difference between the two phase

cluster is π, shown in the phase portrait (Fig. 5.5(c)) and phase histogram (Fig.

5.5(d)), respectively. The existence of two stable entrained states differing by a phase
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Figure 5.4: Stroboscopic space-time plot showing the pattern evolution along the line

AB shown in Fig. 5.3(a), choosing one frame every two forcing cycle.

shift of π is a property of the 2:1 resonance, distinguishing it from the 1:1 resonance

regime [128].

Period doubling to 4:1 entrainment takes place at A = 0.0102. A further period dou-

bling to 8:1 entrainment could be found at A = 0.0108, leading to chaotic oscillations,

similar to the experimental results (explained in section 4.2.2).

At the higher forcing amplitude A = 0.06, the chaotic regime is confined by an inverse

period doubling cascade to final 1:1 entrainment. The phase and amplitude represen-

tation of 4:1 and 8:1 entrained data always exhibit phase clusters which differ by π or

π/2 (data are not shown). An overview over the sub-harmonic frequency spectrum for

increasing forcing amplitude is given in Fig. 5.6.

At 8:1 entrainment, the labyrinthine patterns were found. An example is given in Fig.

5.7(c). The transition between two phase cluster states and the labyrinthine pattern is

induced by phase instabilities within the cluster boundary. However, transition times
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Figure 5.5: Phase and amplitude representation of the cluster patterns shown in Fig.

5.3(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

are longer than 300s and might not be fully covered within the experiment. In the

chaotic regime, where the oscillation is not entrained to the forcing signal, chemical tur-

bulence is nevertheless suppressed. Global coupling induced by the forcing is assumed

to lead to low-dimensional chaos, where the system is spatially correlated. Cluster for-

mations were observed similar to a 4:1 entrainment (see Fig. 5.7(b)), although phase

fluctuation within the clusters were observed (see Fig. 5.7(d)).

The spatial correlation is determined by the cross-correlation of the dynamics at 100

evenly distributed surface locations, averaged over their distance. The results for un-

forced and forced spatiotemporal chaos in both the experimental (explained in section

4.2.2) and the simulated system are given in Fig. 5.8. The cross-correlation is nor-

malized to the mean auto-correlation of the sample points, while the cross-correlation

of the forced experimental system is nearly independent of the distance; it decreases

strongly with distance in the unforced turbulent state. The numerical results show
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Figure 5.6: Periodically forced KEE model. Low frequency part of Fourier spectra at

different forcing amplitudes.

Figure 5.7: Simulated CO coverage for different entrainment states. (a) unforced

turbulence, (b) 4:1 entrainment, (c) 8:1 entrainment, and (d) chaotic.
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the same qualitative behavior, but the difference between the two states is less pro-

nounced. The shorter correlation length in the unforced experiment compared with

the simulation can be explained by noise. On the other hand, the higher correlation

of the forced experiment might be induced by stronger forcing, as the numerical result

is obtained near the lower amplitude boundary of the chaotic regime.

Figure 5.8: Mean spatial cross-correlation of unforced turbulence and forced chaotic

oscillations. Results are given for experimental and numerical data.

5.3 3:1 Forcing

5.3.1 3:1 Entrainment

Resonant forcing was applied (ωf close to 3ω0,ext). At forcing amplitude A = 0.0865,

the phase locked clusters were observed. In Fig. 5.9(a), the snapshots of three phase

locked clusters after each forcing cycle are shown. The space-time plot (Fig. 5.9(b))

explains that the domain walls are not stationary. This is visible in the space-time stro-
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Figure 5.9: Three phase cluster at 3:1 entrainment. (a) snapshots of CO coverage

(size 400× 400 µm2), (b) space-time plot along the AB line from Fig. 5.9(a), and (c)

CO coverage along the line AB (solid line) and forcing signal (dotted line). Forcing

parameters are ωf = 1.53Hz and A = 0.0865.

Figure 5.10: Space-time stroboscopic plot showing the pattern evolution along the

same AB line of Fig. 5.9(a), choosing one frame every three forcing cycles.
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boscopic plot Fig. 5.10 taken along the line AB shown in Fig. 5.9(a), but choosing one

frame for every three forcing cycles. The amplitude is increased, moving three-phase

clusters are observed until the system changes to 1:1 entrainment with homogeneous

oscillations.

The three phase states are clearly visible in phase pattern Fig. 5.11(a) and the phase

portrait Fig. 5.11(c). All phase states appear with the same amplitude (Fig. 5.11(b)),

while only the phase fronts show decreased amplitude, and amplitude defects i.e.,

points where the amplitude is decreased to zero and the phase is undefined appear at

locations where all three phase states meet. The histogram Fig. 5.11(d) shows that

the phase difference between the cluster states is 2π/3.

Figure 5.11: Phase and amplitude representation of the cluster patterns shown in Fig.

5.9(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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5.3.2 6:1 Entrainment

When the forcing amplitude A was fixed and the forcing frequency was changed to

ωf = 1.54Hz, a phase locked regime with stable cluster patterns, 6:1 entrained, was

observed (see Fig. 5.12). The arising spatiotemporal patterns exhibit a periodicity

of six forcing cycles, which indicates that the system performs period doubled 6:1

entrained oscillations. The space-time plot (Fig. 5.12(b)) indicates that the domain

walls are moving slowly.

Figure 5.12: Six phase cluster under 3:1 forcing at 6:1 entrainment. (a) snapshots of

CO coverage (size 400 × 400 µm2), (b) space-time plot along the AB line from Fig.

5.12(a), and (c) CO coverage along the line AB (solid line) and forcing signal (dotted

line). Forcing parameters are ωf = 1.53Hz and A = 0.0865.

The six phase states are clearly visible in phase pattern Fig. 5.13(a). The amplitude

is different only at the boundaries of the clusters (Fig. 5.13(b)). At locations where
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Figure 5.13: Phase and amplitude representation of the cluster patterns shown in Fig.

5.12. (a) Phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

more than two phase clusters meet, amplitude defects are present. The phase portrait

Fig. 5.13(c) shows that the fronts between the six phases always traverse through

zero, indicating a standing-wave pattern. The histogram Fig. 5.13(d) represents the

high density of six different phases states where the maxima have a phase difference

of 2π/6. The six phases are not equally weighted.

On further increasing the forcing amplitude and frequency, transitions from 3:1 to 1:1

oscillation were always found. Like a single oscillator [45], at high forcing amplitude

two phase cluster could not be observed under 2:1 entrainment. The transition from

a three phase cluster to 1:1 oscillation is shown in Fig. 5.14.
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Figure 5.14: Transition from a three phase cluster to oscillation. (a) Snapshots of CO

coverage (size 400×400 µm2), (b) space-time plot along the AB line from Fig. 5.14(a),

and (c) CO coverage along the line AB (solid line) and forcing signal (dotted line).

Forcing parameters are ωf = 1.32 Hz, and A = 0.093.

5.4 4:1 Forcing

5.4.1 Turbulent Regime

Simulations in the turbulent regime are performed for resonant forcing of the complex

Ginzburg-Landau equation (CGLE) in Benjamin Fair instability with 2:1 and 3:1 forc-

ing [47, 69, 129], but no simulations on 4:1 resonant forcing have been performed for

oscillatory systems in a turbulent state.

As 4:1 forcing is unknown in a single oscillator in turbulent regime, as a first attempt



82 CHAPTER 5. RESONANCE FORCING: THEORETICAL RESULTS

Figure 5.15: Three phase cluster and 3:1 entrainment at 4:1 resonant forcing. (a)

snapshots of CO coverage (size 400× 400 µm2), (b) space-time plot along the AB line

(see top panel), and (c) local CO coverage at point A and forcing signal (dotted line).

Forcing parameters ωf = 1.567Hz and A = 0.065.

the 4th harmonic of the generic frequency was applied (ωf = 4ω0,single
), 3:1 entrainment

was found with three phase cluster patterns in a wide parameter range of forcing

amplitudes and frequency detuning.

Fig. 5.15 shows the snapshots of three phase clusters for A = 0.065, which repeat after

three cycles of the forcing period and the space-time plot indicates that the domain

walls are not stationary.

The phase and amplitude representations are given in Fig. 5.16. The three different

phase states can clearly be seen in the phase plot Fig. 5.16(a) and the phase portrait

Fig. 5.16(c). All phase states appear with the same amplitude in Fig. 5.16(b). These
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Figure 5.16: Phase and amplitude representations of the cluster patterns shown in Fig.

5.15(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

findings explain the 3:1 entrainment when forcing with the 4th harmonic of the single

oscillator’s natural frequency and the absence of 4:1 entrainment.

Even if transient 4:1 entrainment was sometime observed, long-term simulations al-

ways ended up in 3:1 entrainment and three phase pattern or at high amplitude in

homogeneous oscillations with 1:1 entrainment to the forcing frequency. Four phase

entrainment under 4:1 resonance forcing was observed. A possible bistability between

3:1 and 4:1 locking, similar to the bistability of 3:1 and 2:1 near ωf = 3ω0 found by

Davidson [45], could not be verified. A 4:1 regime within the vicinity of the ωf = 4ω0

could not be found.

Therefore, the system was forced by the 4th harmonic of the most prominent frequency

of the turbulent system which leads in four phase patterns with partial or full 4:1

entrainment, depending on the reaction parameters chosen. On applying A = 0.086,
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Figure 5.17: Four phase cluster and entrainment at 4:1 resonant forcing. (a) snapshots

of CO coverage (size 400 × 400 µm2), (b) space-time plot along the AB line (see top

panel), and(c) Local CO coverage at point A and forcing signal (dotted line). Forcing

parameters: ωf = 2.04Hz and A = 0.086.

ωf = 2.04Hz, the system is entrained and four phase clusters appear. Snapshots of the

pattern, the evolution along a line section, and the CO coverage for a sample point is

given in Fig. 5.17.

The snapshots show separated phase clusters, which repeat every four cycles of the

forcing period. The boundaries of the phase clusters seem to move from one forcing

cycle to the other. This is visible in the space-time plot (Fig. 5.17(b)), where the

bright clusters seem to shrink, but then recover to their original width within the next

cycle of the system’s oscillation (covering four cycles of the forcing signal, as can be

seen in Fig. 5.17(c)).
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Figure 5.18: Stroboscopic space-time plot showing the pattern evolution along a ver-

tical line on the surface every 4th forcing cycle. Forcing parameters are the same as in

Fig. 5.17.

Fig. 5.18 shows a stroboscopic space-time plot, where the CO coverage is shown along

a vertical line of the surface every 4th forcing cycle. The movement of the cluster

boundaries is clearly visible. The phase front velocity varies, which might be due to

the varying orientation of the phase front’s normal to the intersection as well as due

to the different curvature of the phase front.

The phase representation again shows the prominence of four phase states, visible as

four different gray levels in Fig. 5.19(a) and as highly populated points in the phase

portrait Fig. 5.19(c). The histogram Fig. 5.19(d) shows the high density of four

different phase states where the maxima have a phase difference of π/2.

Fronts between the clusters are represented by lines of low amplitude in Fig. 5.19(b)

where most of the phase fronts are π/2. The π fronts appear at the broadened bound-

aries. At locations, where more than two phase clusters meet, amplitude defects are
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Figure 5.19: Phase and amplitude representations of the cluster patterns shown in Fig.

5.17(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.

present. The phase fronts are not stationary but move slowly.

Due to local analysis and finite frequency resolution of 0.02Hz within the experiments,

the estimation of the natural frequency is subject to errors, which may result in a

slight frequency mismatching, therefore we simulated the response of the system under

moderate detuning. The system is driven with ωf = 2Hz, keeping the amplitude at

A = 0.086. Results are presented in the time domain (Fig 5.20) as well as in the

Fourier domain (Fig. 5.21)). The snapshots of the CO coverage (Fig. 5.20(a)) show

remarkable higher turbulent behavior. A few phase clusters with locally homogeneous

CO coverage are visible, mainly located at the borders of the surface. Large parts of

the surface show no sharp phase fronts, but a smooth change of CO coverage. They

exhibit quasi-periodic behaviors, as deviations from periodic behaviors are not visible

on small time scales of a few Tf .
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Figure 5.20: Four phase cluster and entrainment at 4:1 resonant forcing. (a) snapshots

of CO coverage size 400 × 400 µm2, (b) space-time plot along the AB line (see top

panel), and (c) local CO coverage at point A and forcing signal (dotted line). Model

parameters: ωf = 2.04Hz and A = 0.086.

Figure 5.21: Phase and amplitude representations of the cluster patterns given in Fig.

5.20(a). (a) Phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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Figure 5.22: Transition from four phase cluster to oscillation at 4:1 resonant forcing.

(a) snapshots of CO coverage (size 400× 400 µm2), (b) space-time plot along the AB

line (see top panel), and (c) local CO coverage at point A and forcing signal (dotted

line). Model parameters: ωf = 2.04Hz, and A = 0.129.

Although the space-time plot and the local time series show no qualitative difference

from the system at resonant forcing (compared to Fig. 5.18), analysis of the phase

and amplitude representation (Fig. 5.21 (a) and (b)) reveal an increased number of

topological defects; large parts of the system feature a decreased oscillation amplitude

while the phase clusters appear as regions with high amplitude, visible as bright regions

in Fig. 5.21(b). This can also be seen in the phase portrait, shown in Fig. 5.21(c),

where the phase-amplitude distribution of the surface elements is less concentrated at

maximum amplitude. The phase histogram, presented in Fig. 5.21(d), still contains

four peaks with a phase difference of π/2.

Increasing the amplitude, four phase clusters are observed moving until the system

changes to 1:1 entrainment with homogeneous oscillations (Fig. 5.22).
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5.4.2 Nonturbulent Regime

Most of the numerical studies are done in the nonturbulent regime. The well known

examples are the CGLE, FitzHugh-Nagumo (FHN) and Brusselator models [39, 71].

All of the models predict four phase moving clusters at low forcing amplitude and two

phase stationary clusters at high forcing amplitude.

Figure 5.23: Natural frequency of the system in nonturbulent regime. (a) spatial

distribution, and (b) histogram of most prominent frequency in a numerical simulation

of unforced turbulence.

Four phase stationary cluster were consistently found at low forcing amplitude and two

phase stationary clusters were found at high forcing amplitude. The model parameters

and the reaction parameters are given in Chapter 3, Table 3.2. The natural frequency

of the system is shown in Fig. 5.23, which is about 0.25Hz.

Four Phase Cluster

The forcing was applied at four times the natural frequency. At forcing amplitude A

= 0.042, the four phase patterns were found. Fig. 5.24 shows the snapshots of the four
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Figure 5.24: Four phase cluster at 4:1 resonant forcing. (a) snapshots of CO coverage

(size 400 × 400 µm2), (b) space-time plot along the AB line (see top panel), and (c)

CO coverage (solid line) and forcing signal (dotted line). Model parameters: ωf =

0.92Hz and A = 0.042.

phase clusters taken after one forcing cycle. The boundaries of the phase clusters are

stationary from one forcing cycle another, as seen in the space-time plot Fig. 5.24(b).

The stationary behavior of the cluster can be seen clearly in the stroboscopic space-

time plot Fig. 5.25, where the CO coverage is shown along a vertical line of the surface

every 4th forcing cycle.

Phase and amplitude representations are given in Fig. 5.26. In phase pattern Fig.

5.26(a), four phase states (black, gray, light gray, and dark gray) are visible as four

different gray levels. The amplitude drops only at the boundary of the cluster (Fig.

5.26(b)). The phase portrait Fig. 5.26(c) shows that the fronts between the four

phases always traverse through zero, indicating a standing-wave pattern and the high

density of four different phase states, where the maxima have a phase difference of

π/2, as shown in phase histogram Fig. 5.26(d).
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Figure 5.25: Space-time stroboscopic plot showing the pattern evolution along the

same AB line of Fig. 5.24(a), choosing one frame every four forcing cycles.

Figure 5.26: Phase and amplitude representations of the cluster patterns shown in Fig.

5.24(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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Two Phase Cluster

At forcing amplitude A = 0.074, the two phase stationary cluster was observed. Fig.

5.27(a) shows the snapshots of the two phase cluster, taken after each forcing cycle.

The boundary of the cluster is always stationary, as can be seen in space-time plot

Fig. 5.27(b). Fig. 5.28 shows a stroboscopic space-time plot, where CO coverage is

shown along a vertical line of the surface every 2nd forcing cycle.

Figure 5.27: Two phase cluster at 4:1 resonant forcing. (a) snapshots of CO coverage

(size 400 × 400 µm2), (b) space-time plot along the AB line (see top panel), and (c)

CO coverage (solid line) and forcing signal (dotted line). Model parameters: ωf =

0.92Hz and A = 0.074.

Phase and amplitude representations are given in Fig 5.29. In phase pattern Fig.

5.29(a), two phase states are visible as two different gray levels. The amplitude pattern

Fig. 5.29(b) shows that the amplitudes are approximately the same for the different

domains except at the cluster boundary. The phase portrait Fig. 5.29(c) and phase

histogram Fig. 5.29(d) shows the high density of four different phase states, where the

maxima have a phase difference of π/2.
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Figure 5.28: Space-time stroboscopic plot showing the pattern evolution along the

same AB line of Fig. 5.27, choosing one frame every two forcing cycles.

Figure 5.29: Phase and amplitude representations of the cluster patterns shown in Fig.

5.27(a). (a) phase pattern, (b) amplitude pattern, (c) phase portrait, and (d) phase

histogram.
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Conclusion:

Pattern formations have been investigated in a CO oxidation on Pt(110), forced by an

external periodic perturbation in an extended system.

An analysis of the KEE model reveals significant differences between the oscillation

frequency of the single oscillator and the mean frequency on the surface, which appears

to be higher in the turbulent state due to diffusive interaction of the surface elements.

Interestingly, a similar frequency increase with respect to homogeneous oscillations

was found for the spiral-wave oscillation frequency in the BZ reaction [71]. There,

simulations showed entrainment when using the homogenous oscillation frequency and

quasi-periodic behavior when forcing with the higher spiral-wave frequency, which is

in contrast to the findings for the turbulent case. This is of major impact for the

attempt of controlling the system by resonant forcing.

Under 2:1 forcing the path to chaos is given by a period doubling cascade, which could

be followed by subsequent increase of the forcing amplitude is verified theoretically.

Experimentally, two types of clusters named phase and amplitude clusters were found,

however, theoretically only the phase clusters were observed.

In 3:1 resonance forcing, three phase moving clusters and six phase stationary clusters

were found under 3:1 and 6:1 entrainment respectively, like in the FitzHugh-Nagumo

(FHN) model [77].

The bistability between 2:1 and 3:1 could not be found even at high forcing amplitude

and frequency. At high forcing amplitude and frequency the transition from three

phase cluster to homogeneous oscillations takes place (see Fig. 5.14).

The application of 4:1 forcing with the 4th harmonic of the natural frequency of the

single oscillator leads to 3:1 entrained three phase patterns; 4:1 entrainment could be

obtained by forcing with the 4th harmonic of the mean oscillation frequency. Weak

detuning leads to the appearance of turbulent regions.

Numerical simulations of the KEE model in the 4:1 nonturbulent regime reproduces

standing four phase clusters as well as two phase clusters at a higher amplitude, in

contrast to CGLE and FHN which predict four phase moving and two phase stationary
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clusters at low and high forcing amplitudes [39, 71].

The greater the difference between these two characteristic frequencies, the more diffi-

cult it is to entrain both turbulent and phase-clustered regions. A necessary condition

for entrainment of the phase clusters is that the forcing frequency lie within the re-

spective Arnold’s tongue of the single oscillator.

Further investigation of high-frequency forcing of turbulent reaction-diffusion systems

may give new insight into the nature of turbulence and may lead to new strategies for

controlling chaos.
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Chapter 6

Defect Mediated Turbulence

The most basic feature of the chemical turbulence (also known as defect mediated tur-

bulence), is that the spatial disorder is generated by so-called defects, which present

singularities in the field of the oscillation phase.

The spatiotemporal chaos originates from the spontaneous and persistent creation and

annihilation of topological defects.

A defect is characterized by its integer topological charge mtop, which is defined by

mtop = 1
2π

∮
∇φ(x, t).ds

where φ(x, t) is the local phase and the integral is taken along a closed curve surround-

ing the defect.

Experimentally defect turbulence has been found to be abundant in systems such as

autocatalytic chemical reactions [130, 131], fluid convection [132, 133], electro convec-

tion in liquid crystals [134], and in nonlinear optics [135].

Theories about defect mediated turbulence have been extensively studied in the CGLE
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system [10, 10, 136], which describes universal dynamics features of spatially extended

systems near a supercritical Hopf bifurcation.

The first probabilistic characterization of defect turbulence was given by Gil et. al.

[136] for the regime of amplitude turbulence in the CGLE. They considered a system

with periodic boundary conditions and assumed a constant rate of creation for pairs

of topological defects, independent of the number of pairs m in the system. The

rate of annihilation was taken proportional to m2 since defects annihilate in pairs

of opposite topological charge. In this Chapter the statistical properties of defect

mediated turbulence in catalytic CO oxidation on Pt(110) are described by using the

probabilistic model with increasing order of CO pressure.

Recently Beta et. al. [131] have analyzed the statistical properties of chemical tur-

bulence in oscillatory catalytic CO oxidation on Pt(110) based on the experimental

data, where the two-dimensional experimental images are transformed into phase and

amplitude patterns. The defects are identified from phase images which are not related

to the surface heterogeneities.

By assuming that the defects are statistically independent, the shape of the probability

distribution function (PDF) can be explained in terms of a simple probabilistic model,

based on the gain and loss rates of defects in the observed area. By use of a nearest-

neighbor tracking algorithm, they follow defects between adjacent frames and identify

creation (C) and entering (E) events as well as defects decay (D) and leaving (L) the

area of observation.

The observed rates are approximately given by

C(N)) = C0 (6.1)

E(N) = E0 (6.2)

L(N) = L0N (6.3)
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D(N) = D01N
2 + D02N (6.4)

In the statistically stationary state, the master equation for the probability p(N) of

finding a number of N defects in the observed area can be written in the simple

recursive relation.

∂tp(N, t) = k+(N − 1)p(N − 1, t) + k−(N + 1)p(N + 1, t)

−k+(N)p(N, t)− k−(N)p(N, t)
(6.5)

where k+(N) and k−(N) are the gain and loss rates of the defects. In a asymptotic

regime, ∂tp(N, t) = 0, equation (6.5) yields a simple recursive relation for the proba-

bility p(N)

p(N) =
k+(N − 1)

k−(N)
p(N − 1) (6.6)

where k+(N) = C0 + E0,

k−(N) = D01N
2 + (D02 + L0)N

where N denotes the number of positive and negative defects N = N±. C0, E0, L0, D0

are the creation, entering, leaving, and decay rates respectively.

By performing the recursion and normalization the distribution, a modified distribu-

tion is found,

p(N) =
γ(ν/2+N)

Iν(2
√

γ)Γ(1 + ν + N)N !
(6.7)

where Iν is the modified bessel function , γ = (Co +E0)/D01, and ν = (D02 +L0)/D01.



100 CHAPTER 6. DEFECT MEDIATED TURBULENCE

Figure 6.1: Defect mediated turbulence with increasing order of CO pressure. (a) ,

(b), (c) are PEEM images of size 300×300 µm2 and, (d), (e), and (f) are the respective

phase patterns. The reaction parameters are: T = 534 K, po2 = 1.58× 10−4 mbar, pco

= (a) 5.85×10−5 mbar, (b) 5.91×10−5 mbar, and (c) 6.05×10−5 mbar

.

6.1 Method

The snapshots of the PEEM images shown in Fig. 6.1 (a), (b), and (c) are 300× 300

µm2 in size. Prior to the actual characterization of turbulent dynamics, standard

image processing techniques were applied to enhance contrast and minimize the level of

experimental noise. The PEEM images were denoised by application of a 3×3 median

filter and finally, a Butterworth high pass filter of order seven with a frequency cutoff

at k = 1 was applied to eliminate large scale modulations in the illumination of the

PEEM images. The chemical turbulence in oscillatory system with increasing order of

CO pressure is analyzed based on a phase and amplitude method.

The phase and amplitude variables are computed from the experimental data by em-
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Figure 6.2: Number of negatively charged defects N− as a function of time (sec.) with

increasing order of CO pressure. The mean over all series N+,− (t) in (a) 4.58, (b)

5.62, and (c) 8.23.

ploying a variant of the analytic signal approach. This method is used to transform

sequences of experimental PEEM images into time-dependent spatial distributions of

phase and amplitude variables. For the local PEEM intensity I(x, t) at an observation

point x, its Hilbert transform,

ζ(x, t) = I(x, t) + iĪ(x, t)

where

Ī(x, t)= 1
π

∫∞
−∞(t− t′)−1I(x, t′)dt′

is the Hilbert transform of I(x, t). The time-dependent spatial distributions of phase

φ(x, t) and amplitude R(x, t) were determined from the analytic signal. The phase

was directly computed as φ = arg ξ, thus representing the polar angle in the plane

spanned by the variables I and Ī.
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Figure 6.3: Probability distribution function (PDF) of number of defects (N) computed

from the all time series N+,− (t) and the modified Poisson distribution (open circles).

The amplitude was defined as R = ρ/ρref (φ), where ρ is the standard definition of the

amplitude modulus within the analytic signal approach.

6.2 Experimental Results

Fig. 6.1 (d), (e), and (f) are the phase representations of the PEEM image, shown

in (a), (b), and (c), with increasing order CO pressure. In PEEM images and phase

patterns one can see that as the CO pressure increases the patterns became more

chaotic.

Fig. 6.2 (a), (b), and (c) show the number of negative defects as a function of time

with increasing pressure of CO. A steadily increasing average number of defects and

growing fluctuation indicate that as the CO pressure increases the system becomes
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Figure 6.4: Creation rates averaged over the rates for both positive and negative

defects. The measured rates are fitted with (a) 2.42, (b) 3.52, and (c) 4.93.

Figure 6.5: Entering rates averaged over the rates for both positive and negative

defects with increasing order of CO pressure. The measured are fitted with (a) 0.066,

(b) 0.19, and (c) 0.29.
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Figure 6.6: Decay rates averaged over the rates for both positive and negative defects

with increasing order of CO pressure the measured rates are fitted with (a) D01(N
2)

=0.016, D02(N) = 0.45, (b) D01(N
2) = 0.017, D02(N) = 0.46, (c) D01(N

2) = 0.014,

D02(N) = 0.44.

Figure 6.7: Leaving rates averaged over the rates for both negative and positive

defects. The measured rates are fitted with (a) 0.024, (b) 0.025, and (c) 0.035
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more turbulent. The mean value of Fig. 6.2 (a), (b), and (c) are 4.58, 5.62, 8.23

obtained for the number of positive/ negative defects respectively. Fig. 6.3 (a), (b),

and (c) display the PDF for the number of defects (N) in area of 50 × 50 µm2 with

increasing order of CO pressure.

The resulting gain (creation and entering) and loss (decay and leaving) rates are shown

in Fig. 6.4, 6.5, 6.6, and 6.7 respectively. This is the effect due to the dependence of

topological defects. The CO pressure is anticipated to have increased the amount of

phase instability in the system which is responsible for the creation of defects. The

phase gradient under the action of stochastic fluctuations of CO pressure has led to a

faster pinching of the equiphases. The relaxation of the field leads thereby to a faster

creation of defects (Fig. 6.4).

The modified Poisson distribution shown in Fig. 6.3 (a), (b) , and (c) for the values

(open circle) with increasing order of the CO pressure. The modified Poisson distri-

bution approximately match with the experimental data (bars).The modified Poisson

distribution obtained by performing the recursion of equation (6.6), shows the well

agreement with experimental data from Fig. 6.4, 6.5, 6.6, and 6.7. The modified

Poisson distribution correctly captures the mean and width of the PDF. In Fig. 6.3

the modified Poisson distribution is shown for the values in (a) γ = 150.70, ν = 28.75,

(b) γ = 218.70, ν = 28.52, and (c) γ = 373.07, ν = 33.92 respectively.

6.3 Conclusion

Like in Beta et. al. [131], it was found that the creation and entering rates were

constant, leaving rates increase linearly, and the decay rates increase in linear and

quadratic way.

The creation and entering rates of defects, which is approximately a constant, is raised

to a higher level as the CO pressure increases. The decay and leaving rate of the defects

is also increased by the CO pressure.

Under the influence of CO pressure, the probability distributions of defects are flat-

tened more and more as the CO pressure increases, and can be fitted with the modified-
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Poisson distribution also found theoretically in modified FHN model under the influ-

ence of noise, however they found that the decay rate depended on N linearly [137].

To summarize, it has been shown that the dynamics of defects in defect-mediated

turbulence driven by CO pressure can be described by a simple statistical model. Like

noise, CO pressure has the ability to create defects in the turbulent background with

a constant rate [138], while at the same time destroying the existing defects at a rate

that is best approximated by adding a linear contribution to the quadratic annihilation

term.

6.4 Appendix: PDF of Topological Defects

The following Appendix includes a detailed derivation of the PDF of the number of

topological defects. Based on the gain and loss rates of defects, k+(N) and k−(N), the

master equation for the probability p(N, t) reads

∂tp(N, t) = k+(N − 1)p(N − 1, t) + k−(N + 1)p(N + 1, t)

−k+(N)p(N, t)− k−(N)p(N, t)
(6.8)

In the asymptotic regime, ∂tp(N, t) = 0 transforms into a recursive relation for the

probability p(N),

p(N) =
k+(N − 1)

k−(N)
p(N − 1) (6.9)

The gain and loss rates are approximated by the following expressions

k+(N) = C0 + E0 (6.10)

k−(N) = D01N
2 + (D02 + l0)N (6.11)
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putting 6.10 and 6.11 in equation 6.9

p(N) =
C0 + E0

D01N2 + (D02 + l0)N
p(N − 1) (6.12)

p(N) =
γ

N(N + ν
p(N − 1) (6.13)

where γ =C0+E0

D01
and ν = D02+L0

D01

the above equation can be further expanded to

p(N) = p(0)
γN

N !

N∏
k=1

1

k + ν
(6.14)

using product of the components of mathematic series

a1.a2.a3............aN = dN Γ(a1

d
+ N)

Γ(a1

d
)

(6.15)

where a1 is first term of the series with total N terms and d is common difference,

equation 6.14 leads to

p(N) =
γN

N !

Γ(1 + ν)

Γ(1 + ν + N)
p(0) (6.16)

Since p(N) is a probability, normalization leads to

∞∑
N=0

p(N) = 1 (6.17)

gives
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p(0) = 1/
∞∑

N=0

γNΓ(1 + ν)

Γ(1 + ν + N)
(6.18)

using the value of p(0) and modified Bessel function of the first kind

Iν(z) = (z/2)ν
∞∑

N=0

(z2/4)ν

N !Γ(1 + ν + N)
(6.19)

in equation 6.16

p(N) =
γ(ν/2+N)

Iν(2
√

γ)Γ(1 + ν + N)N !
(6.20)



Chapter 7

Summary and Outlook

Spatially extended systems are known to exhibit spatiotemporal pattern formation

including oscillations, spirals, chemical waves and turbulence. The present work is de-

voted to giving deeper insight into the nature of chemical turbulence in catalytic CO

oxidation on a Pt(110) single crystal surface. The reaction is a well known example

of an extended system.

A focus of the work is on periodic forcing in order to control defect mediated turbulence

which has been studied experimentally and numerically by using the KEE model.

It is found that resonance forcing allows turbulence in the considered system, and it

can be successfully used as a tool to produce various complex patterns, but depending

on the forcing frequency, period doubling cascades to chaos are also observed.

The mean frequency of the turbulent state may differ strongly from the system ex-

hibiting homogeneous oscillations. Due to experimental noise, homogeneous oscilla-

tions are unstable, but can be simulated numerically. In contrast to the nonturbulent

state, where the natural frequency of the single oscillator is identical with the oscilla-

tion frequency of the extended system, in the turbulent state the system oscillates at
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higher frequencies due to diffusive interaction of the surface elements.

This is important for the definition of resonance as the generic frequency, experimen-

tally determined as the mean oscillation frequency average over a certain area of the

surface, should not be set equal to the single oscillators generic frequency, as it is

sometimes found in theoretical publications [126]. Furthermore, it implies that the

generic frequency in the turbulent state is more of a statistical measure than a sharply

defined value. Therefore a resonance forcing frequency is used, which is in vicinity of

the measured generic frequency or a harmonic of it.

The present work covers the range of 2:1 to 4:1 harmonic forcing. The following main

results are found experimentally. Under 2:1 resonances forcing two different types

of cluster patterns have been identified: amplitude clusters and phase clusters. In

contrast to phase clusters, that just differ in their oscillation phase relative to the (sub

harmonic) forcing frequency and belong to the same limit cycle, amplitude clusters

indicate the coexistence of limit cycles of equal periods but different amplitudes. In

both cluster types, the phase difference between the two cluster domains was π. The

patterns did not show the property of phase balance, i.e., the total fractions of the

medium occupied by the domains of the different clusters were different. However,

phase balance is not expected in a small area of the surface as it is a global property.

Stationary cluster walls could not observed probably due to the non-harmonicity of

the CO oxidation. The path to chaos is given by a period doubling cascade, which

could be experimentally followed by a subsequent increase of the forcing amplitude.

With the help of the new compressor, the regimes of 3:1 and 4:1 resonance forcing

were successfully reached. However, the cluster formation takes place in finite regions

of the surface, while other parts appear not to be 3:1 and 4:1 entrained, but still show

turbulent behavior.

Numerical simulations of the KEE model support the experimental findings, and give

further insight into the nature of catalytic CO oxidation. The resonant forcing is

applied to the system according to the natural frequency of an extended system. Un-

der 2:1 resonance which is in contrast to the experiments, phase clusters were found

rather than amplitude clusters. Interestingly, labyrinthine patterns were found at 8:1

entrainment. The transition between two phase cluster states and the labyrinthine
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pattern is induced by phase instabilities within the cluster boundary.

In 3:1 resonance forcing, the bistability between 2:1 and 3:1 could not be observed by

applying the forcing according to the extended system.

At 4:1 periodic forcing, forcing with the 4th harmonic of the natural frequency of the

single oscillator leads to 3:1 entrained three phase patterns, 4:1 entrainment could be

obtained by forcing with the 4th harmonic of the mean oscillation frequency. Weak

detuning leads to the appearance of turbulent regions, similar to the experimental

results.

However, it was found that the greater the difference between the two characteristic

frequencies (single and extended system), the more difficult it is to entrain both turbu-

lent and phase-clustered regions. A necessary condition for entrainment of the phase

clusters is that the forcing frequency lie within the respective Arnold tongue of the sin-

gle oscillator. As the Arnold’s tongues generally become smaller for higher harmonics,

the effect of differing characteristic frequencies became more and more pronounced by

forcing the system with higher frequencies. In 2:1 forcing with the natural frequency

of the single oscillator leads to 2:1 entrainment, 3:1 forcing resulted in bistability of

2:1 and 3:1 entrainment [45]. 4:1 forcing finally resulted in 3:1 entrainment, while 4:1

entrainment could not be obtained.

Further investigation of high-frequency forcing of turbulent reaction-diffusion systems

may give new insight into the nature of turbulence and may lead to new strategies for

controlling chaos.

Further studies on cluster patterns are performed on 4:1 forcing within the nonturbu-

lent system.

The 4:1 resonance forcing in nonturbulent regime shows the two phase traveling phase

cluster experimentally. Numerical simulations of the KEE model in the nonturbu-

lent regime reproduce stationary four phase clusters as well as two phase clusters at

higher amplitudes, while other models namely the CGLE, FHN show traveling four

phase clusters and stationary two phase clusters at low and high forcing amplitudes

respectively [39, 78].

Finally, the spiral wave turbulence in catalytic CO oxidation was statistically charac-
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terized, with increasing order of CO pressure only experimentally. By using a Hilbert

transform, the experimental data was translated into phase and amplitude variables.

In this representation, topological defects could be identified at higher CO pressure

defining a measure for the strength of turbulence.

The temporal fluctuations in the number of defects were characterized in terms of

statistical moments and probability distribution functions. On the basis of the gain

and loss rates of defects, a probabilistic model was derived that yields a good ap-

proximation of the experimental results. As the CO pressure increases the probability

distribution of the defect are flattened more and more and can be fitted with the mod-

ified distribution function also found in FHN and Rössler models as the noise intensity

increases.

In summary, once again catalytic CO oxidation turns out to be one of the most power-

ful nonlinear model systems, where many effects predicted by nonlinear theory can be

observed experimentally and reproduced numerically. The system allows for switching

between distinct spatiotemporal chaotic states by tuning an easily accessible experi-

mental parameter. Investigation of the complex nature of reaction-diffusion systems

- as this work is a part of - may lead to improved strategies for control of extended

nonlinear systems.
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