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Abstract

We examine the effects of a linearly polarized nonresonant radiative field on the
dynamics of rotationally inelastic Na+ + N2 collisions at eV collision energies.
Our treatment is based on the Fraunhofer model of matter wave scattering and its
recent extension to collisions in electric fields [M. Lemeshko and B. Friedrich, J.
Chem. Phys., in press]. The nonresonant radiative field changes the effective shape
of the target molecule by aligning it in the space-fixed frame. This markedly alters
the differential and integral scattering cross sections. As the cross sections can be
evaluated for a polarization of the radiative field collinear or perpendicular to the
relative velocity vector, the model also offers predictions about steric asymmetry of
the collisions.

Key words: Ion-molecule collisions, rotationally inelastic scattering, models of
molecular collisions, alignment and orientation, induced dipole interaction
PACS: 34.10.+x, 34.50.-s, 34.50.Ez, 34.80.Qb, 52.20.Hv

1 Introduction

Reactions between ions and simple molecules have been invoked in the chem-
istry of comets [1], dense interstellar clouds [2], as well as in the atmospheric
chemistry of planet-like objects, such as Io [3] and Titan [4]. Since the late
1990s, the Na+ + X collisions (with X an atmospheric ligand) have been
recognized to be responsible for the formation of sporadic sodium layers in
Earth’s upper mesosphere [5].

The species that take part in the reactions in the upper atmosphere and in
interstellar space are exposed to electromagnetic radiation of varying inten-
sity. When polarized, this radiation may create directional molecular states in
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which the spatial distribution of the molecular axis is itself polarized. This axis
polarization arises from the nonresonant interaction of the radiation with the
anisotropic molecular polarizability [6]. Here we examine how such polariza-
tion may affect the differential and integral cross sections of the ion-molecule
collisions.

In particular, we investigate the effect of an intense nonresonant radiative
field on the rotationally inelastic collisions of Na+ ions with N2 molecules
at eV collision energies. This collision system is of paramount importance in
generating sporadic sodium in the mesosphere [5].

In our investigation, we make use of a recently developed quantum model of
collisions in fields [7], which we here adapt for the case of an induced-dipole
interaction of a nonresonant radiative field with molecular polarizability [6].
We limit our considerations to the scattering of 1Σ molecules by ground-state
atomic ions. The model is based on Fraunhofer scattering of matter waves [8],
[9], [10], and is analytic in both its field-free and field-dependent variant.

In Section 2, we briefly describe the Fraunhofer model of matter-wave scatter-
ing and its extension to the case of scattering in nonresonant radiative fields.
In Section 3, we apply the model to the Na+ + N2 rotationally inelastic
collisions, and evaluate their differential and integral cross sections and the
steric asymmetry as a function of the intensity of the radiative field. The main
conclusions of this work are summarized in Section 4.

2 The Fraunhofer model of matter-wave scattering

2.1 Field-free scattering

Inherent to the Fraunhofer model of matter-wave scattering is the energy
sudden approximation and the assumption of an impenetrable, sharp-edged
scatterer [7]. As a result, the Fraunhofer amplitude for scattering into an angle
ϑ from an initial, |i〉, to a final, |f〉, state is given by

fi→f(ϑ) = 〈f|f(ϑ)|i〉 (1)

with

f(ϑ) ≈
∫
e−ikRϑ cosϕdR (2)

the amplitude for Fraunhofer diffraction as observed at a point of radiusvector
r from the scatterer, see Fig. 1. Here ϕ is the polar angle of the radius vector
R which traces the shape of the scatterer, R ≡ |R|, and k ≡ |k| with k the
initial wave vector. Relevant is the shape of the obstacle in the space-fixed
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XY plane, perpendicular to k, itself directed along the space-fixed Z-axis, cf.
Fig. 1.

We note that the notion of a sharp-edged scatterer comes close to the rigid-
shell approximation, widely used in classical [11], [12], [13], quantum [14],
and quasi-quantum [15] treatments of field-free molecular collisions, where
the collision energy by far exceeds the depth of any potential energy well.

In optics, Fraunhofer (i.e., far-field) diffraction [16] occurs when the Fresnel
number is small,

F ≡ a2

rλ
� 1 (3)

Here a is the dimension of the obstacle, r ≡ |r| is the distance from the
obstacle to the observer, and λ is the wavelength, cf. Fig. 1. Condition (3)
is well satisfied for nuclear scattering at MeV collision energies as well as for
molecular collisions at thermal and hyperthermal energies. In the latter case,
inequality (3) is fulfilled due to the compensation of the larger molecular size a
by a larger de Broglie wavelength λ pertaining to thermal molecular velocities.

For nearly-circular targets, with a boundary R(ϕ) = R0 + δ(ϕ) in the XY
plane, the Fraunhofer integral of Eq. (2) can be evaluated and expanded in a
power series in the deformation δ(ϕ),

f(ϑ) = f0(ϑ) + f1(ϑ, δ) + f2(ϑ, δ2) + · · · (4)

with f0(ϑ) the amplitude for scattering by a disk of radius R0

f0(ϑ) = i(kR2
0)
J1(kR0ϑ)

(kR0ϑ)
(5)

and f1 the lowest-order anisotropic amplitude,

f1(ϑ) =
ik

2π

∫ 2π

0
δ(ϕ)e−i(kR0ϑ) cosϕdϕ (6)

where J1 is a Bessel function of the first kind. Both Eqs. (5) and (6) are appli-
cable at small values of ϑ . 30◦, i.e., within the validity of the approximation
sinϑ ≈ ϑ.

The scatterer’s shape in the space fixed frame, see Fig. 1, is given by

R(α, β, γ; θ, ϕ) =
∑
κνρ

ΞκνD
κ
ρν(αβγ)Yκρ(θ, ϕ) (7)

where (α, β, γ) are the Euler angles through which the body-fixed frame is
rotated relative to the space-fixed frame, (θ, ϕ) are the polar and azimuthal
angles in the space-fixed frame, Dκ

ρν(αβγ) are the Wigner rotation matrices,
and Ξκν are the Legendre moments describing the scatterer’s shape in the
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body-fixed frame. Clearly, the term with ν = 0 corresponds to a disk of radius
R0,

R0 ≈
Ξ00√

4π
(8)

Since of relevance is the shape of the target in the XY plane, we set θ = π
2

in
Eq. (7). As a result,

δ(ϕ) = R(α, β, γ; π
2
, ϕ)−R0 = R(ϕ)−R0 =

∑
κνρ
κ6=0

ΞκνD
κ
ρν(αβγ)Yκρ(

π
2
, ϕ) (9)

By combining Eqs. (1), (6), and (9) we finally obtain

fi→f(ϑ) ≈ 〈f|f0 + f1|i〉 = 〈f|f1|i〉 =
ikR0

2π

∑
κνρ
κ6=0

κ+ρ even

Ξκν〈f|Dκ
ρν |i〉FκρJ|ρ|(kR0ϑ)

(10)
where

Fκρ =


(−1)ρ2π

(
2κ+1

4π

) 1
2 (−i)κ

√
(κ+ρ)!(κ−ρ)!

(κ+ρ)!!(κ−ρ)!!
for κ+ ρ even and κ ≥ ρ

0 elsewhere

(11)
For negative values of ρ, the factor (−i)κ is to be replaced by iκ.

2.2 Scattering in a radiative field

When subject to an external electric field, the electronic distribution of any
molecule becomes polarized to some extent. This interaction, governed by the
molecular polarizability, results in an induced dipole moment. While for the ex-
perimentally feasible static fields such induced moments are very weak, sizable
dipole moments can be induced by a radiative field. If the induced-dipole inter-
action is anisotropic and sufficiently strong, the molecular rotational states un-
dergo hybridization (coherent linear superposition) which aligns the molecular
axis along the field vector [6]. The strength of the interaction is characterized
by a dimensionless parameter ∆ω

∆ω ≡ 2π∆αI

Bc
=

∆αε2

4B
(12)

with ∆α = α‖− α⊥ the polarizability anisotropy, α‖,⊥ the polarizability com-
ponents parallel and perpendicular to the molecular axis, B the rotational
constant of the molecule, I the radiation intensity, and ε the amplitude of the
corresponding oscillating electric field. The induced-dipole interaction couples
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states of the free-rotor basis set with same M but with J ’s that differ by 0,±2.
Thus the resulting hybrid states take the form

|J̃ ,M ; ∆ω〉 =
∑
J=2n

aJ̃JM(∆ω)|J,M〉 for J̃ even (13)

|J̃ ,M ; ∆ω〉 =
∑

J=2n+1

aJ̃JM(∆ω)|J,M〉 for J̃ odd (14)

where 2n = m+|M | and 2n+1 = m+|M | with m either 0, 2, 4 . . . or 1, 3, 5 . . . .

The hybridization coefficients aJ̃JM(∆ω) depend solely on the interaction pa-
rameter ∆ω. The symbol J̃ denotes the nominal value of J that pertains to
the field-free rotational state which adiabatically correlates with the hybrid
state,

|J̃ ,M,∆ω → 0〉 → |J,M〉 (15)

Since the hybrid wavefunctions, Eqs. (13) and (14), comprise either even or

odd J ’s, the states have definite parity, (−1)J̃ .

Apart from possessing a particular energy level pattern, the |J̃ ,M,∆ω〉 eigen-
states are aligned along the electric field vector, ε. The degree of alignment
depends on the values of J̃ , M , and ∆ω. In such states, the molecular axis
librates about the field direction like a pendulum, and so the hybrid states are
referred to as pendular. It is the directionality of the pendular states that enters
the field-dependent Fraunhofer model and distinguishes it from the field-free
model, which assumes an isotropic distribution of the molecular axes. The di-
rectional properties of pendular states are exemplified in Fig. 2, which shows
polar diagrams of both field-free and pendular wave functions at ∆ω = 25.

The scattering process in the field consists of the following steps: A molecule
in a free-rotor state |J,M〉 enters adiabatically the radiative field where it is
transformed into a pendular state |J̃ ,M,∆ω〉. This pendular state may be
changed by the collision in the field into another pendular state, |J̃ ′,M ′,∆ω〉.
As the molecule leaves the field, the latter pendular state is adiabatically
transformed into a free-rotor state |J ′,M ′〉. Thus the net result is, in general,
a rotationally inelastic collision, |J,M〉 → |J ′,M ′〉.

In order to be able to apply Eq. (10) to collisions in the radiative field, we have
to transform Eqs. (13) and (14) to the space-fixed frame XY Z. If the electric
field vector is specified by the Euler angles (ϕε, θε, 0) in the XY Z frame, the
initial and final pendular states take the form

|i〉 ≡ |J̃ ,M ; ∆ω〉 =
∑
J

aJ̃JM(∆ω)
∑
ξ

DJ
ξM(ϕε, θε, 0)YJξ(θ, ϕ) (16)

〈f| ≡ 〈J̃ ′,M ′; ∆ω| =
∑
J ′
bJ̃

′∗
J ′M ′(∆ω)

∑
ξ′

DJ ′∗
ξ′M ′(ϕε, θε, 0)Y ∗J ′ξ′(θ, ϕ) (17)

which is seen to depend solely on the angles θ and ϕ.
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On substituting from Eqs. (16) and (17) into Eq. (10) and its integration,
we obtain a general expression for the Fraunhofer scattering amplitude in the
field,

fωi→f(ϑ) =
ikR0

2π

∑
κ,ρ
κ6=0

κ+ρ even

Dκ∗
−ρ,∆M(ϕε, θε, 0)Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
JJ ′

aJ̃JM(∆ω)bJ̃
′∗
J ′M ′(∆ω)

√
2J + 1

2J ′ + 1
C(JκJ ′; 000)C(JκJ ′;M∆MM ′) (18)

where ∆M ≡ M ′ −M and C(J1, J2, J3;M1,M2,M3) are Clebsch-Gordan co-
effients [20]. Since the ion-linear molecule potential is axially symmetric, only
the Ξκ0 coefficients contribute to the scattering amplitude.

Eq. (18) simplifies for special cases. If we limit our considerations to homonu-
clear diatomics, only the Ξκ0 coefficients for even κ contribute to the expansion,
Eq. (7), and, consequently, to the scattering amplitude, Eq. (18). Furthermore,
if we fix the initial molecular state to the ground state, |J,M〉 ≡ |0, 0〉, and re-
strict the polarization of the radiation in the space-fixed frame to a particular
geometry, the problem simplifies as follows:

(i) For a polarization vector collinear with the initial wave vector, ε ‖ k,
we have θε → 0, ϕε → 0. As as result, only the ρ = −∆M ′ term yields a
nonvanishing contribution and so

f
ω,‖
0,0→J̃ ′,M ′(ϑ) = J|M ′|(kR0ϑ)

ikR0

2π

∑
κ even
κ6=0

Ξκ0FκM ′

×
∑
JJ ′

a0
J0(ω)bJ̃

′∗
J ′M ′(ω)

√
2J + 1

2J ′ + 1
C(JκJ ′; 000)C(JκJ ′; 0M ′M ′) (19)

We see that the angular dependence of the scattering amplitude for the parallel
case is simple, given by a single Bessel function, J|M ′|.

(ii) If the polarization vector is perpendicular to the initial wave vector, ε ⊥ k,
we have θε → π

2
, ϕε → 0. Hence

fω,⊥
0,0→J̃ ′,M ′(ϑ) =

ikR0

2π

∑
κ,ρ even
κ6=0

dκ−ρ,M ′

(
π

2

)
Ξκ0FκρJ|ρ|(kR0ϑ)

×
∑
JJ ′

a0
J0(ω)bJ̃

′∗
J ′M ′(ω)

√
2J + 1

2J ′ + 1
C(JκJ ′; 000)C(JκJ ′; 0M ′M ′) (20)

where dκ−ρ,M ′ are the real Wigner rotation matrices. Since the summation mixes
different Bessel functions (for a range of ρ’s), the angular dependence of the
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scattering amplitude in the perpendicular case is more involved than in the
parallel case.

The Clebsch-Gordan coefficient C(JκJ ′; 000) in Eqs. (19) and (20) is nonzero
only if J + J ′ is even, since the summation includes only even-κ terms. More-
over, given the definite parity of the pendular states, we see that only parity-
conserving transitions are allowed, namely J = 0 → J ′ = 2, 4, 6, . . . for our
choice of the initial state.

We can also see that, for either geometry, only the partial cross sections for the
J = 0,M = 0 → J ′,M ′ collisions with M ′ even contribute to the scattering.
This is particularly clear in the ε ‖ k case, where the FκM ′ coefficients vanish
for M ′ odd. In the ε ⊥ k case, a summation over ρ arises. Since for κ even and
M ′ odd the real Wigner matrices obey the relation dκ−ρ,M ′

(
π
2

)
= −dκρ,M ′

(
π
2

)
,

the sum over ρ is zero and so are the partial cross sections with M ′ odd.

3 Rotationally inelastic collisions of Na+ with N2 in a radiative
field

Here we apply the model to the Na+ + N2(J = 0 → J ′) collisions. The
polarization anisotropy ∆α = 0.93 Å3 and rotational constant B = 1.9982
cm−1 make the N2 molecule a suitable candidate for an experiment on laser-
assisted ion-molecule collisions.

According to Ref. [19], the ground-state Na+–N2 potential energy surface has
a global minimum −2712 cm−1 deep. The effect of this attractive well is neg-
ligible for low-energy collisions; we chose a collision energy of 5 eV, which
corresponds to a wave number k = 173.8 Å−1. The “hard shell” of the poten-
tial energy surface at this collision energy is shown in Fig. 3. We found it by a
fit to Eq. (7). The Ξκ0 coefficients are listed in Table 1. Due to the D2v sym-
metry of the potential energy surface, only even-κ terms arise. According to
Eq. (8), the Ξ00 coefficient determines the hard-sphere radius R0, responsible
for elastic scattering.

3.1 Differential cross sections

The field-free state-to-state differential cross section,

I f-f
0,0→J ′,M ′(ϑ) = |f0,0→J ′,M ′(ϑ)|2 (21)

see Eq. (10), is proportional to Ξ2
J ′0, which means that the shape of the repul-

sive potential provides direct information about the relative probabilities of
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the field-free transitions and vice versa. Since for the Na+–N2 system the Ξ2,0

coefficient dominates the anisotropic part of the potential, see Table 1, the
corresponding J = 0→ J ′ = 2 collisions are expected to dominate the inelas-
tic cross section. Because of the D2h symmetry, there are no parity-breaking
J = 0→ odd J ′ collisions in the Na+–N2(J = 0→ J ′) system.

After averaging over M ′ and invoking the asymptotic properties of the Bessel
functions [21], we obtain for the parity-conserving J = 0→ even J ′ collisions

I f-f
0→J ′(ϑ) ∼ cos2

(
kR0ϑ−

π

4

)
(22)

The elastic differential scattering cross section, cf. Eq. (5), has a sin2
(
kR0ϑ− π

4

)
asymptote, and so is seen to be shifted with respect to the differential cross
sections for even-J ′ transitions by a quarter of a wavelength. Known as the
“Blair phase rule,” the shift is a conspicuous feature of Figs. 4 and 5.

The state-to-state differential cross sections for scattering in a radiative field
parallel (ε ‖ k) and perpendicular (ε ⊥ k) to the initial wave vector are given
by

Iω,(‖,⊥)
0→J ′ (ϑ) =

∑
M ′
Iω,(‖,⊥)

0,0→J ′,M ′(ϑ) (23)

with
Iω,(‖,⊥)

0,0→J ′,M ′(ϑ) =
∣∣∣fω,(‖,⊥)

0,0→J̃ ′,M ′(ϑ)
∣∣∣2 (24)

The differential cross sections for the Na+ + N2 collisions are presented in
Figs. 4 and 5 for an interaction parameter ∆ω = 10 and 25, corresponding to
laser intensities of 2.15×1012 W/cm2 and 5.37×1012 W/cm2, respectively. The
figures show that a radiative field on the order of 1012 W/cm2 dramatically
alters the magnitudes of the differential cross sections, but does not produce
any “phase shift” of the angular oscillations. Such a “phase shift” is absent
because only even Bessel functions, which have a cos2

(
kR0ϑ− π

4

)
asymptote,

contribute to the scattering at any field strength, see Eqs. (19) and (20).

3.2 Integral cross sections

The angular range, ϑ . 30◦, where the Fraunhofer approximation applies the
best, comprises the largest impact-parameter collisions that contribute to the
scattering the most, see Figs. 4 and 5. Therefore, the integral cross section can
be obtained to a good approximation by integrating the Fraunhofer differential
cross section, Eq. (23), over the solid angle sinϑdϑdϕ,

σ
ω,(‖,⊥)
0→J ′ =

∫ 2π

0
dϕ
∫ π

0
Iω,(‖,⊥)

0→J ′ (ϑ) sinϑdϑ (25)
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The integral cross-sections thus obtained for the field parallel and perpendic-
ular to the initial wave vector are presented in Fig. 6. One can see that the
state-to-state cross section for the J = 0→ J ′ = 2 collisions steadily decreases
with the interaction parameter ∆ω, whereas the other state-to-state cross sec-
tions show a non-monotonous dependence. These features can be explained by
the field dependence of the overlap of the hybridization coefficients, aJ̃JM(∆ω)

and bJ̃
′
J ′M ′(∆ω), affecting the scattering amplitude, cf. Eqs. (19) and (20) and

Ref. [7]. The requisite laser intensities needed for attaining such dramatic
changes of the cross sections are on the order of 1012 W/cm2 and can be easily
achieved by means of standard nonresonant pulsed laser radiation, focused to
a waist ranging between 10-100 µm. A suitable laser system for hybridizing ro-
tor states of diatomic molecules is a Nd:YAG laser operated at its fundamental
frequency (wavelength of 1064 nm) [22].

3.3 Steric asymmetry

We define the steric asymmetry as

Si→f =
σ‖ − σ⊥
σ‖ + σ⊥

, (26)

where the cross sections σ‖,⊥ correspond, respectively, to ε ‖ k and ε ⊥ k,
and are obtained from Eq. (25). The dependence of the steric asymmetry on
the induced dipole interaction parameter ∆ω is presented in Fig. 7. One can
see that a particularly pronounced asymmetry obtains for the J = 0→ J ′ = 6
channel. This can be traced to the field dependence of the corresponding
integral cross sections, Fig. 6. Indeed, a conspicuous feature seen in Fig. 6 is
the significant dependence of the J = 0 → J ′ = 6 channel on the collision
geometry. The integral cross section for the J = 0→ J ′ = 6 channel is always
greater for the ε ⊥ k geometry than it is for ε ‖ k because of the non-
vanishing dκ−ρ,M ′(π2 ) Wigner matrices, cf. Eqs. (19) and (20). The asymmetry
for the J = 0 → J ′ = 2 or 4 channels is less pronounced, as only terms with
M ′ up to 2 or 4 are involved for ε ⊥ k.

We note that within the Fraunhofer model, elastic collisions do not exhibit
any steric asymmetry. This follows from the isotropy of the elastic scattering
amplitude, Eq. (20), which depends on the radius R0 only: a sphere looks the
same from any direction.
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4 Conclusions

We made use of the Fraunhofer model of matter wave scattering to treat
rotationally inelastic ion-molecule collisions in nonresonant radiative fields. In
accordance with the energy sudden approximation, inherent to the Fraunhofer
model, the interaction must be dominated by repulsion, which is typically
well satisfied for ion-molecule collisions down to collision energies on the oder
of 1 eV. The Fraunhofer model is also inherently quantum and, therefore,
capable of accounting for interference and other non-classical effects. The effect
of the radiative field enters the model via the directional properties of the
molecular states created by the field. Even a small alignment of the molecules
was shown to cause a large alteration of the differential and integral cross
sections. The strength of the analytic model lies in its ability to separate
dynamical and geometrical effects and to qualitatively explain the resulting
scattering features. These include the angular oscillations in the state-to-state
differential cross sections or the rotational-state dependent oscillations in the
integral cross sections as a function of the intensity of the radiative field.

We hope that the model will inspire new experimental work based on the
combination of an ion trap with a molecular beam overlaid by a laser beam
[23].
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Table 1
Hard shell Legendre moments Ξκ0, Eq. (7), for the Na+−N2 potential at a collision
energy of 5 eV. All odd moments are zero.

κ Ξκ0 (Å)

0 6.1221

2 0.5301

4 -0.0359

6 0.0022

8 0.0002
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Fig. 1. Schematic of Fraunhofer diffraction by an impenetrable, sharp-edged obstacle
as observed at a point of radius vector r(X,Z) from the obstacle. Relevant is the
shape of the obstacle in the XY plane, perpendicular to the initial wave vector, k,
itself directed along the Z-axis of the space-fixed system XY Z. The angle ϕ is the
polar angle of the radius vector R which traces the shape of the obstacle in the
X,Y plane and ϑ is the scattering angle. See text.
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Fig. 2. A comparison of the moduli of the free rotor wavefunctions |J,M = 0〉, panel
(a), with the moduli of the pendular wavefunctions |J̃ ,M = 0; ∆ω = 25〉, panel (b).
The polarization vector ε of the radiative field is also shown.
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Fig. 3. Equipotential line R(θ) for the Na+– N2 potential energy surface at a collision
energy of 5 eV. The Legendre moments, Eq. (7), of the potential energy surface are
listed in Table 1.
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Fig. 4. Differential cross sections for the Na+ + N2 (J = 0 → J ′) collisions in a
radiative field for ∆ω = 10 (red dashed line) and ∆ω = 25 (blue solid line), parallel
to the initial wave vector. The field-free cross sections are shown by the green solid
line.
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Fig. 5. Differential cross sections for the Na+ + N2 (J = 0 → J ′) collisions in
a radiative field for ∆ω = 10 (red dashed line) and ∆ω = 25 (blue solid line),
perpendicular to the initial wave vector. The field-free cross sections are shown by
the green solid line.
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Fig. 6. Partial integral cross sections for Na+ + N2 (J = 0 → J ′) collisions in a
radiative field parallel, panel (a), and perpendicular, panel (b), to the initial wave
vector.
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Fig. 7. Steric asymmetry, as defined by Eq. (26), for Na+ + N2 (J = 0 → J ′)
collisions.
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